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NONPARAMETRIC REGRESSION WITH HOMOGENEOUS
GROUP TESTING DATA

By Aurore Delaigle∗, and Peter Hall∗

University of Melbourne

We introduce new nonparametric predictors for homogeneous
pooled data in the context of group testing for rare abnormalities,
and show that they achieve optimal rates of convergence. In par-
ticular, when the level of pooling is moderate then, despite the cost
savings, the method enjoys the same convergence rate as in the case of
no pooling. In the setting of “over-pooling” the convergence rate dif-
fers from that of an optimal estimator by no more than a logarithmic
factor. Our approach improves on the random-pooling nonparametric
predictor, which is currently the only nonparametric method avail-
able, unless there is no pooling, in which case the two approaches are
identical.

1. Introduction. In large screening studies where infection is detected
by testing a fluid (e.g. blood, urine, water, etc), data are often pooled in
groups before the test is carried out, which permits savings in time and
money. This technique, known as group testing, dates back at least to
the Second World War, where Dorfman (1943) suggested using it to de-
tect syphilis in U.S. soldiers. It has been used in a variety of large screening
studies, for example to detect human immunodeficiency virus, or HIV (Gast-
wirth and Hammick, 1989), but pooling is also employed to detect pollution,
e.g. in water or milk (see Nagi and Raggi, 1972; Wahed et al., 2006; Lennon,
2007; Fahey et al., 2006). Often in these studies, one or several explanatory
variables are available, in which case it is generally of interest to estimate the
conditional probability of infection. This problem has received considerable
attention in the group testing literature, where most suggested techniques
are parametric. See, for example, Vansteelandt et al. (2000), Bilder and
Tebbs (2009) and Chen et al. (2009). Related work includes that of Chen
and Swallow (1990), Gastwirth and Johnson (1994), Hardwick et al. (1998),
and Xie (2001).

Thus, although the original purpose of group testing was merely to iden-
tify infected individuals more economically, the idea has since been expanded
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2 A. DELAIGLE AND P. HALL

extensively to include more general statistical methodology when the data
have to be gathered through grouping. Our paper contributes in this context,
developing and describing a particularly effective approach to nonparamet-
ric regression. Obtaining information in this way can be useful on its own,
or for planning a subsequent study.

Recently, Delaigle and Meister (2011) suggested a nonparametric estima-
tor of the conditional probability of infection. Their method enjoys optimal
convergence rates when pooling is random, but it is not consistent in the
case of nonrandom, homogeneous pooling, which can be defined as a setting
where the covariates of individuals in a group take similar values. In the
parametric context it is well known that homogeneous grouping improves
the quality of estimators, but the potential gains of homogeneous grouping
are even greater in the nonparametric context, where random grouping in
moderate to large groups can seriously degrade the quality of estimators.

We demonstrate that, when the data are grouped homogeneously, one can
construct more accurate nonparametric estimators of the conditional prob-
ability of infection. We show that these improved estimators enjoy faster,
and optimal, convergence rates in a variety of contexts. Having reliable es-
timators of the conditional probability of infection enables more accurate
identification of vulnerable categories of people, and can lead to subsequent
studies that can assist individuals who are particularly vulnerable to infec-
tion. We illustrate the practical performance of our procedure via simulated
examples and an application to the National Health and Nutrition Examina-
tion Survey (NHANES) study, a large health and nutrition survey collected
in the US; see www.cdc.gov/nchs/nhanes.htm for more about the NHANES
research program.

2. Model and methodology.

2.1. Main group testing model. We observe independent and identically
distributed (i.i.d.) data X1, . . . , XN , where X is a covariate observed on each
of N respective objects (e.g. items or individuals), each of which is subject
to a potential relatively rare “abnormality”. For example, X could be the
age or weight of an individual, and the abnormality could be contamination
by HIV. Let Yi denote the result of a test on the ith object, such as blood
or urine test. That is, Yi takes the value 1 or 0 according as the abnormality
is detected or not, respectively. In large screening studies, where N is very
large, testing each individual for contamination can be too expensive or take
too much time, and to overcome this difficulty, it is common to pool data
on several individuals before performing the detection test.

Pooling is performed by partitioning the original dataset X , comprised
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NONPARAMETRIC REGRESSION FROM GROUPED DATA 3

of the values X1, . . . , XN , into J subsets, or groups, X1, . . . ,XJ , say, where
Xj is of size nj and n1 + . . . + nJ = N . We denote the elements of Xj by
X1j , . . . , Xnjj . Each Xij corresponds to an Xk, and each Xk has a concomi-
tant Yk. If the ith element Xij of Xj is Xk, then the concomitant of Xij is
Yij = Yk. Instead of trying to determine the value of Yij directly, each group
Xj is tested to discover whether the abnormality is present in the group,
i.e. to determine the value of

Y ∗
j = max

1≤i≤nj

Yij =

{
1 if Yij = 1 for some i in the range 1 ≤ i ≤ nj

0 otherwise .

Of course, Y ∗
j is obtained without observing the Yijs directly; for exam-

ple, when the abnormality is detected by a blood test, the bloods of all
individuals in a group are mixed together, and this mixed blood is tested
for contamination. From the data pairs (Xj , Y

∗
j ) we wish to estimate the

probability function p(x) = P (Yi = 1 |Xi = x) = E(Yi = 1 |Xi = x).
Since p is a regression curve, then if the sample (Xi, Yi), i = 1, . . . , N were

observed, we could use standard nonparametric regression techniques such
as, for example, local polynomial estimators. Let ℓ ≥ 0 be an integer, h > 0
a bandwidth, K a kernel function and Kh(x) = h−1K(x/h). The standard
ℓth degree local polynomial estimator of p is defined by

p̂S(x) = (1, 0, . . . , 0)Q−1R, (2.1)

whereR =
(
R0(x), . . . , Rℓ(x)

)T
,Q =

(
Qij

)
1≤i,j≤ℓ+1

, withQij = Qi+j−2(x),

and where Qk(x) =
∑N

i=1(Xi − x)kKh(Xi − x) and Rk(x) =
∑N

i=1 Yi(Xi −
x)kKh(Xi − x). See, for example, Fan and Gijbels (1996). Of course, when
the data are pooled the Yis are not available and we cannot calculate such
estimators. Therefore we need to develop specific ways to estimate p from
pooled data.

2.2. Method for homogeneous pools. Depending on the study, it is not
always possible to observe the Xis before pooling the data, so that the in-
dividuals are pooled randomly. This is the context of the work of Delaigle
and Meister (2011), who constructed a nonparametric estimator for the case
where data Xi are assigned randomly to the groups Xj . See appendix A.1 of
the supplemental article (Delaigle and Hall, 2011) for a summary of prop-
erties of their estimator. In other studies, the Xis are observed beforehand;
see, for example, the study of hepatitis C infection among 10,654 healthcare
workers in Scotland, carried out by Thorburn et al. (2001). In such cases,
it has already been demonstrated in the parametric context that it can be
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4 A. DELAIGLE AND P. HALL

greatly advantageous to pool the data non randomly; see Vansteelandt et
al. (2000).

Unfortunately, the only nonparametric estimator available for group test-
ing data (see Delaigle and Meister, 2011) crucially relies on random grouping
and is not valid when homogeneous groups are created. Below we suggest
a new nonparametric approach which is valid with homogeneous pooling.
We introduce our procedure in the case of a single covariate and equal-sized
groups. Generalisations of our method to unequal group sizes, and multiple
covariates, will be treated in section 5. These generalisations are similar in
most respects.

To create homogeneous pools we divide the data into equal-number groups,
taking the jth group to be Xj = {X((j−1)ν+1), . . . , X(jν)}, where ν = nj , in
this case not depending on j, is the number of data in each group, and
X(1) ≤ . . . ≤ X(N) denotes an ordering of the data in X . We assume that ν
divides N ; the case where it does not is a particular case of our generalisation
in section 5. Note that, with Z∗

j = 1− Y ∗
j ,

E(Z∗
j | X ) =

ν∏
i=1

{1− p(Xij)} . (2.2)

The right-hand side here is generally close to {1 − p(X̄j)}ν , where X̄j =
ν−1

∑
i Xij denotes the average value of the Xijs in the jth group, and that

closeness motivates the definition of p̂(x) at (2.4), below. Let

µ(x) = {1− p(x)}ν . (2.3)

Reflecting (2.2) and the above discussion, we suggesting estimating p(x) by

p̂(x) = 1− µ̂(x)1/ν , (2.4)

where µ̂ is a nonparametric estimator of µ.
It remains to estimate µ. We begin by giving motivation for our methodol-

ogy. Since, by construction, the groups are homogeneous, the observations in
a given group are similar. In particular, p(X((j−1)ν+1)), . . . , p(X(jν)) are well
approximated by p(X̄j). Together, this and the identity (2.2) suggest that
µ(X̄j) can be approximated by E(Z∗

j | X̄j), so that µ(x) is approximately

equal to the average of the E(Z∗
j | X̄j)s over the X̄js close to x, which can

be estimated by standard nonparametric regression estimators calculated
from the data (X̄j , Z

∗
j ), j = 1, . . . , J . Motivated by these considerations, we

define an ℓth order local polynomial estimator of µ, constructed from the
data (X̄j , Z

∗
j ), by

µ̂(x) = (1, 0, . . . , 0)S−1T, (2.5)
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NONPARAMETRIC REGRESSION FROM GROUPED DATA 5

whereT =
(
T0(x), . . . , Tℓ(x)

)T
and S =

(
Sij

)
1≤i,j≤ℓ+1

, with Sij = Si+j−2(x),

Sk(x) =
∑

j (X̄j−x)kKh(X̄j−x), and Tk(x) =
∑

j Z
∗
j (X̄j−x)kKh(X̄j−x).

We shall show in section 3 that this approach is well founded, by proving
consistency of the resulting estimator p̂ of p. We shall develop our theoretical
results for a larger class of estimators which encompasses the estimator at
(2.5).

3. Theoretical properties. To study properties of our estimator it is
convenient to express the probability p, at a particular x, as

p(x) = δ(N)π(x) , (3.1)

where δ = δ(N) denotes a sequence of positive numbers that potentially
depend on N , and π is a fixed, nonnegative function. To be as general as
possible, we permit the group size ν = ν(N) ≥ 1 to increase, and δ = δ(N)
to decrease, as N diverges.

In large screening studies the abnormalities under investigation are in-
variably rare, i.e. p is small. To understand the limitations of our estimator,
we shall study properties in the extreme situation where δ → 0 (and hence
p → 0) as N → ∞. More precisely, we shall consider the “low prevalence”
situation where νδ → 0 as N → ∞, which is an asymptotic representation
of the case where the group size ν is relatively small and infection is rare. In
practice, groups are rarely taken larger than 10 to 20. One reason for this is
that, depending on the proportion of positive individuals in the population,
some tests (e.g. HIV tests) become too unreliable if the pool size is too large
(larger than ν = 5 to 10 in the HIV example). To reflect this fact, we shall
also consider the standard “moderate pooling” situation where νδ → c > 0
as N → ∞. However, there are tests for which groups could be taken as
large as ν = 40 to 50. From the viewpoint of economics, large groups would
be beneficial, and might even be the only possible way to screen individuals
in poor countries. Hence we need to understand their effects on the qual-
ity of estimators. We shall do this by investigating asymptotic properties
of our estimator in the extreme “over-pooling” situation where νδ → ∞ as
N → ∞.

3.1. Conditions. We shall derive theoretical properties of the estimator
p̂ defined at (2.4), where for µ̂ we shall generalise the local polynomial esti-
mators introduced at (2.5), by considering a whole class of linear smoothers,
defined by

µ̂(x) =
∑
j

wj(x)Z
∗
j

/∑
j

wj(x) , (3.2)
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6 A. DELAIGLE AND P. HALL

where the weights wj depend on X but not on the variables Z∗
j . The local

polynomial estimator defined at (2.5) can be rewritten easily in this form,
and other popular nonparametric estimators (e.g. smoothing splines) can be
expressed in this form too; see, for example, Ruppert et al. (2003).

Recall that X̄j = ν−1
∑

i Xij and let h = h(N) denote a sequence of con-
stants decreasing to zero as N → ∞. We can interpret h(N) as the band-
width in a kernel-based construction of the weight functions wj in (3.2).
Typically, the weights wj would depend on X̄j , and we assume that, for
each x ∈ I, where I is a given compact, nondegenerate interval:

Condition S:
(S1)

∑
j wj(x) (X̄j − x)

/∑
j wj(x) = 0 ,

(S2)
∑

j wj(x) (X̄j − x)2
/∑

j wj(x) = h2 b(x) + op
(
h2

)
,

(S3)
∑

j wj(x)
2
/
{
∑

j wj(x)}2 = ν v(x)/(Nh) + op{ν/(Nh)} ,
(S4) for each integer k ≥ 1,

∑
j |wj(x)|k

/
{
∑

j wj(x)}k = Op

[
{ν/(Nh)}k−1

]
,

where the functions b and v are continuous on J and are related to the type
of estimator. We also assume that:

Condition T:
(T1) the distribution of X has a continuous density, f , that is bounded away
from zero on an open interval J containing I;
(T2) p = δπ is bounded away from 1 uniformly in x ∈ I and in N ≥ 1;
(T3) the function π in (3.1) has two Hölder-continuous derivatives on J ;
(T4) for some ϵ > 0, h+ νδh+ (ν2/N1−ϵhδ) → 0 as N → ∞;
(T5) the weights wj(x) vanish for |X̄j−x| > C h, where C > 0 is a constant.

The assumption, in (T1), that f is bounded away from zero on a compact
interval allows us to avoid pathological issues that arise when too few values
of X are available in neighbourhoods of zeros of f . Finally, when describing
the size of p̂(x)−p(x) simultaneously in many values x we shall ask that for
some C, ϵ > 0,

sup
x, x′∈I : |x−x′|≤N−C

{
1

|x− x′|ϵ
∑
k

∣∣∣∣ wk(x)∑
j wj(x)

− wk(x
′)∑

j wj(x′)

∣∣∣∣} = Op(1) . (3.3)

For example, if the weights wj correspond to the local polynomial estima-
tor in (2.5) with ℓ = 1 (i.e. the local linear estimator), with bandwidth h and
a compactly supported, symmetric, Hölder continuous, nonnegative kernel
K satisfying

∫
K = 1; if h+ (Nh)−1 = O(N−ϵ1) for some ϵ1 > 0, and (T1)

holds; then (T5), S and (3.3) hold with, in (S2) and (S3), b =
∫
u2K(u) du
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(not depending on x) and v(x) = f(x)−1
∫
K2. Furthermore, S holds uni-

formly in x ∈ I. More generally it is easy to see that when ℓ > 1, the ℓth
order local polynomial estimator in (2.5) satisfies

∑
j wj(x) (X̄j − x)k = 0

for k = 0, . . . , ℓ−1, and hence conditions (S1) and (S2) are trivially satisfied.
Conditions (S3) and (S4) too are satisfied in this case, under mild conditions
on the kernel. Note that condition (S1) is not satisfied in the local constant
case (ℓ = 0 in (2.5)). Although this instance can be easily accommodated by
modifying our conditions slightly, we simply omit it from our theory because
in practice the local linear estimator is almost invariably preferred to the
local constant one.

Remark 1. Instead of linear smoothers, such as local polynomial esti-
mators, we could use alternative procedures which are sometimes preferred
in the context of binary dependent variables. For example, Fan, Heckman
and Wand (1995) suggest modelling the regression curve m by m(x) =
g−1{η(x)}, where g is a known link function and η is an unknown curve.
These methods have theoretical properties similar to those of local poly-
nomial estimators; the two methods differ mostly through their bias, and,
depending on the shapes of m and g, one method has a smaller bias than
the other. We prefer local polynomial estimators because they are easier to
implement in practice.

3.2. Low prevalence and moderate pooling. Our first result establishes
convergence rates and asymptotic normality for the estimator p̂ defined at
(2.4), with µ̂ at (3.2). Note that we do not insist that ν and δ vary with
N ; the regularity conditions for Theorem 3.1 hold in many cases where ν
and δ are both fixed. Below we use the notation A(x) to denote the value
taken by a function A at a point x, and the notation A when referring to the
function itself. However, in some places, for example in result (3.4) where
it is necessary to refer explicitly to the point x mentioned in the statement
“for all x ∈ I”; and in definitions (3.5) and (3.6), where we are defining
functions; the two notations may appear a little ambiguous.

Theorem 3.1. Assume that Conditions S and T hold, and that νδ =
O(1). Then, for each x ∈ I,

p̂(x)− p(x) = A(x)V (x) +B(x) + op
{
δh2 + (δ/Nh)1/2

}
, (3.4)

where the distribution of V (x) converges to the standard normal law as N →
∞, and the functions A and B are given by

A =
[
(νNh)−1 (1− p)2−ν

{
1− (1− p)ν

}
v
]1/2

= O
{
(δ/Nh)1/2

}
,(3.5)
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8 A. DELAIGLE AND P. HALL

B = 1
2 h

2
{
p′′ − (ν − 1) (1− p)−1 (p′)2

}
b = O

(
δ h2

)
, (3.6)

where b and v are as in (S2) and (S3). If, in addition, condition S holds
uniformly in x ∈ I, if (3.3) holds, and if the functions b and v are bounded
and continuous, then∫

I
(p̂− p)2 =

∫
I
(A2 +B2) + op

{
δ2h4 + (δ/Nh)

}
. (3.7)

Note that A and B represent, to first order, the standard deviation of
the error about the mean, and the main effect of bias, which arise from the
asymptotic distribution. For simplicity we shall call A2 and B the asymptotic
variance and bias of the estimator. From the theorem we see that, when
B(x) ̸= 0 (e.g. for the local polynomial estimator with ℓ = 1), if Nδ → ∞
as N → ∞, then the rate of the estimator is optimised when h is of size
(Nδ)−1/5, in which case the estimator satisfies:

for each x ∈ I , p̂(x)− p(x) = Op

{
(δ3/N2)1/5

}
. (3.8)

Note that when ν = 1 (no grouping), µ = 1−p and our estimator of p reduces
to a standard local linear smoother of 1 − µ. For example, the estimator
at (2.5) coincides with 1 − p̂S in (2.1). Taking ν = 1 in the theorem, we
deduce that the convergence rate of our estimator for ν > 1, given at (3.8),
coincides with the rate for conventional linear smoothers employed with non-
grouped data. By standard arguments it is straightforward to show that this
rate is optimal when π has two derivatives, and hence our estimator is rate
optimal. Although, in (T3), we assume that π has two continuous derivatives,
continuity is imposed only so that the dominant term in an expansion of
bias can be identified relatively simply, and the convergence rate at (3.8)
can be derived without the assumption of continuity. In addition, note that
when νδ = o(1) our estimator has the same asymptotic bias and variance
expressions, B and A, as the estimator when ν = 1, which in that case
reduce to A = (δ/Nh)1/2 (π v)1/2 and B = 1

2 δ h
2 π′′ b + op

(
δ h2

)
. In other

words, in that case the statistical cost of pooling is virtually zero.
The results discussed above also apply if performance is measured in terms

of integrated squared error (ISE), as at (3.7). In particular, if h is of size
(Nδ)−1/5, provided that νδ is bounded, the estimator p̂ achieves the minimax
optimal convergence rate:∫

I
(p̂− p)2 = Op

{
(δ3/N2)2/5

}
. (3.9)
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NONPARAMETRIC REGRESSION FROM GROUPED DATA 9

Remark 2. Similar conclusions can be drawn in the case of estimators
for which B(x) = 0, but this requires us to assume that the function π has
enough derivatives so that an explicit, asymptotic, dominating, non zero
bias term can be derived. For example, for our local polynomial estimator
of order ℓ > 1, we have B(x) = 0 and the term oP (δh

2) is only an upper
bound to the bias of the estimator. A non vanishing asymptotic expression
for the bias can easily be obtained for ℓ > 1 if we assume that π has ℓ + 1
continuous derivatives. This can be done in a straightforward manner, but
to keep presentation simple, and since in practice local linear estimators are
almost invariably preferred to other local polynomial estimators, we omit
such expansions.

Remark 3. In the case where δ → 0 it could be argued that the rates
are meaningless since we are trying to estimate a function that tends to zero,
and that it is more appropriate to consider the non zero part π of p in the
model at (3.1), and see how fast π̂ = p̂/δ converges to π. The convergence
rate of π̂ is easily deducible from (3.8):

for each x ∈ I , π̂(x)− π(x) = Op

{
(Nδ)−2/5

}
. (3.10)

Provided that Nδ → ∞ as N → ∞, π̂(x) is consistent for π(x) and the
convergence rate evinced by (3.10) is optimal.

3.3. Over-pooling. The situation is quite different when νδ → ∞ as N →
∞, which can be interpreted as an asymptotic representation of the situation
where the data are pooled in groups of relatively large size ν. In practical
terms the results in this section serve as a salutary warning not to skimp
on the testing budget. The work in section 3.2 shows that the performance
of estimators is robust, up to a point, against increasing group size, but
in the present section we demonstrate that, after the dividing line between
moderate pooling and overpooling has been crossed, performance decreases
sharply.

When νδ → ∞, properties of the estimator of p(x) depend on x, because
there the order of magnitude of µ(x), at (2.3), depends critically on the rate
at which {1 − p(x)}ν converges to zero. The following condition captures
this aspect:

for some ϵ > 0 , ν/h = o
[
N1−ϵ {1− δ π(x)}ν

]
, (3.11)

and the following theorem replaces Theorem 3.1.
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10 A. DELAIGLE AND P. HALL

Theorem 3.2. Assume that νδ → ∞ as N → ∞, conditions S, T
and (3.11) hold, and π, b and v are all nonzero at x. Then p̂(x) − p(x) =
A(x)V (x)+ {1+ op(1)}B(x) , where V (x) is asymptotically distributed as a
normal N(0, 1) as N → ∞, and A and B are given by the first identities in
each of (3.5) and (3.6).

Note that the orders of magnitude given by the second identities in each
of (3.5) and (3.6) are not valid in this case, and neither does result (3.7)
necessarily hold under the conditions of Theorem 3.2. Note too that the
theorem can be extended to cases where b = 0, along the lines discussed
in Remark 2. To elucidate the implications of Theorem 3.2, assume that
π′(x) is nonzero and define λN (x)5 = {1− δ π(x)}−ν , which, when νδ → ∞,
diverges exponentially fast as a function of νδ. Given a sequence of constants
cN and a sequence of random variables VN , write VN ≍p cN to indicate that
both VN = Op(cN ) and cN = Op(VN ) as N → ∞. Theorem 3.2 implies that,
if νδ → ∞ and h is a constant multiple of λN (Nδ4ν3)−1/5, then

{p̂(x)− p(x)}2 ≍p (δ
3/N2)2/5 (νδ)−2/5 λN (x)4, (3.12)

and in particular diverges at a rate that is exponentially slower, as a function
of νδ, than in the case where νδ = O(1) treated in section 3.2. Result (3.12)
follows from the fact that A(x)2 ≍ (νNh)−1 λN (x)5 and |B(x)| ≍ h2 ν δ2,
where a1(N) ≍ a2(N) means that a1(N)/a2(N) is bounded away from zero
and infinity. Note that (3.12) includes the case where p (and hence δ) is held
fixed, and ν → ∞ as N → ∞.

The result at (3.12) shows that when ν → ∞ as N → ∞, p̂ suffers from a
clear degradation of rates compared to the case where νδ = O(1). Next we
show that this degradation is intrinsic to the problem, not to our estimator
p̂; any estimator based on the pooled data in section 2.2 will experience an
exponentially rapid decline in performance as νδ → ∞. More precisely we
show in Theorem 3.3 that, when νδ → ∞ as N → ∞, p̂ is near rate-optimal
among all such estimators. Recall that, under our model (3.1), p = δ π,
where δ = δ(N) potentially converges to zero. If νδ → ∞ then, by (3.12),
we have:

|p̂(x)− p(x)| = Op

[(
δ3
/
N2

)1/5
(νδ)−1/5 {1− p(x)}−2ν/5

]
. (3.13)

Although this result was derived under the assumption that π is a fixed
function with two continuous derivatives, since (3.13) is only an upper bound
then it is readily established under the following more general assumption:
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NONPARAMETRIC REGRESSION FROM GROUPED DATA 11

the nonnegative function π = πN can depend on N and satisfies
πN (x)+ |π′N (x)| + |π′′N (x)| ≤ C1, for all N and all x, where the
constant C1 > 0 does not depend on N or x. (3.14)

Take the explanatory variables Xi to be uniformly distributed on the
interval M = [−1

2 ,
1
2 ], and let I ⊂ J ⊂ M where 0 is an interior point of I.

Let p1 = δ πN , where πN satisfies (3.14), let p0 ≡ δ denote the version of p1

when πN ≡ 1, and consider the condition:

(ν3δ)1/2 = o
{
N (1− δ)ν

}
. (3.15)

This assumption permits νδ to diverge with N , but not too quickly. Indeed,
using arguments similar to those in section 6.3 it can be shown that if (3.15)
fails then no estimator of p is consistent. Let P be the class of measurable
functions p̌ of the pooled data pairs (Xj , Y

∗
j ) introduced in section 2.2.

Theorem 3.3. Assume that p0 and p1 are bounded below 1, that (3.15)
holds and that νδ → ∞. Let x be an interior point of the support, [−1

2 ,
1
2 ], of

the uniformly distributed explanatory variables Xi. Then C2 > 0, and πN ,
satisfying (3.14), can be chosen such that

lim inf
n→∞

max
p=p0, p1

inf
p̌∈P

P
[
|p̌(x)− p(x)| > C2 δ

3/5(Nνδ)−2/5 {1− p(x)}−2ν/5
]
> 0 .

(3.16)

Except for the fact that (νδ)−2/5, rather than (νδ)−1/5, appears in (3.16),
the latter result represents a converse to (3.13). The difference in powers here
is of minor importance since the main issue is the factor {1 − p(x)}−2ν/5,
which (in the context νδ → ∞ of over-pooling), diverges faster than any
power of νδ, and this feature is represented in both (3.13) and (3.14).

3.4. Comparison with the approach of Delaigle and Meister. Arguments
similar to those of Delaigle and Meister (2011) can be used to show that,
under conditions similar to those used in our Theorem 3.1, their estimator
p̃ (see (A.1) in the supplemental article, Delaigle and Hall, 2011) satisfies
p̃(x)−p(x) = A1(x)V1(x)+B1(x)+op

{
δh2+(νδ/Nh)1/2

}
, where the random

variable V1(x) has an asymptotic standard normal distribution and

A1 =
[
(Nh)−1 (1− p) q1−ν

{
1− (1− p) qν−1

}
v
]1/2

= O(νδ/Nh) , (3.17)

B1 =
1
2 h

2 p′′ b = O
(
δh2

)
, (3.18)

with q = E{1 − p(X)}. Likewise, the analogue of (3.7) can be derived:∫
I(p̃−p)

2 =
∫
I(A

2
1+B

2
1)+op{δ2h4+(νδ/Nh)} . To simplify the comparison,
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12 A. DELAIGLE AND P. HALL

assume that we use estimators for which b and v do not vanish, and that π >
0. We see when comparing (3.17)–(3.18) with (3.5)–(3.6) that the asymptotic
variance term A2 of our estimator is an order of magnitude ν times smaller
than A2

1. Note too the asymptotic bias terms of p̂ and p̃ are of the same size
(the two biases are asymptotically equivalent if νδ → 0, and have the same
magnitude in other cases). Hence, with our procedure the gain in accuracy
can be quite substantial, especially if ν is large.

4. Numerical study. We applied the local linear version of our local
polynomial estimation procedure (i.e. the one based on (2.5) with ℓ = 1)
on simulated and real examples. This method, which we denote below by
DH, is the one we prefer because it works well and it is very easy to imple-
ment, and we can easily derive and compute a good data-driven bandwidth
for it. The practical advantages of local linear estimators over other local
polynomial estimators have been discussed at length in the standard non-
parametric regression literature. Of course, other versions of our general
local linear smoother procedure can be used, such as a spline approach or
more complicated iterative kernel procedures (see Remark 1). Each of the
methods gives essentially the same estimator.

In our simulations we compared the DH procedure, calculated by defini-
tion from homogeneous groups, with the local linear estimator p̂S at (2.1)
that we would use if we had access to the original non grouped data. We
also compared DH with the local linear version of the method of Delaigle
and Meister (2011) which, by definition, is calculated from randomly created
groups. We denote these two methods by LL and DM, respectively. We took
the kernel, K, equal to the standard normal density. For h, in the DM case
we used the plug-in bandwidth of Delaigle and Meister (2011) with their
weight ω0; we used a similar plug-in bandwidth in the LL and DH cases, see
section A.2 of the supplemental article (Delaigle and Hall, 2011) for details.

4.1. Simulation results. To facilitate the comparison with the DMmethod,
we simulated data according to the four models used by Delaigle and Meis-
ter (2011):
(i) p(x) = {sin(πx/2) + 1.2}/[20 + 40x2{sign(x) + 1}] and X ∼ U [−3, 3] or
X ∼ N(0, 1.52);
(ii) p(x) = exp(−4 + 2x)/{8 + 8 exp(−4 + 2x)} and X ∼ U [−1, 4] or
X ∼ N(2, 1.52);
(iii) p(x) = x2/8 and X ∼ U [0, 1] or X ∼ N(0.5, 0.52);
(iv) p(x) = x2/8 and X ∼ U [−1, 1] or X ∼ N(0, 0.752).
We generated 200 samples from each model, with X normal or uniform, and
with N = 1, 000, N = 5, 000 and N = 10, 000. Then for the DH method we
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Table 1
Simulation results for models (i) to (iv), when the Xi,js are uniform. The numbers show

104× MED (IQR) of the ISE calculated from 200 simulated samples.

ν = 1 ν = 5 ν = 10 ν = 20
Model N LL DH DM DH DM DH DM
(i) 103 9.35(7.42) 10.1(8.16) 26.9(24.1) 11.0(8.53) 51.2(49.6) 17.8(484) 122(110)

5.103 2.91(2.01) 2.94(2.38) 7.59(5.34) 3.30(2.06) 14.1(11.4) 4.46(2.94) 29.2(25.2)
104 1.62(1.20) 1.83(1.40) 4.54(3.05) 2.07(1.63) 7.70(6.13) 2.89(1.95) 16.8(13.9)

(ii) 103 6.37(8.38) 8.66(9.99) 29.4(28.4) 10.3(11.4) 64.7(69.5) 29.7(1560) 166(169)
5.103 1.48(1.37) 1.66(2.26) 6.37(5.93) 2.41(2.74) 13.8(12.1) 4.47(5.94) 35.8(30.0)
104 .963(.843) 1.02(1.16) 3.39(2.89) 1.35(1.25) 7.04(6.20) 2.35(3.26) 19.1(17.2)

(iii) 103 .777(.978) .860(1.26) 3.44(4.03) 1.02(1.31) 7.26(8.37) 1.90(4.81) 19.9(19.5)
5.103 .176(.220) .166(.254) .722(.818) .214(.298) 1.68(1.67) .356(.482) 4.48(3.97)
104 .093(.108) .100(.128) .355(.344) .117(.158) .797(.800) .200(.212) 2.28(1.79)

(iv) 103 2.33(2.11) 2.49(2.32) 7.41(9.81) 2.70(2.55) 17.2(16.3) 5.07(166) 39.7(34.1)
5.103 .590(.510) .633(.602) 2.01(1.73) .637(.702) 4.05(3.70) .964(1.06) 9.62(9.11)
104 .309(.254) .317(.293) 1.10(.873) .373(.311) 2.31(1.89) .570(.539) 5.47(4.80)

Table 2
Simulation results for models (i) to (iv), when the Xi,js are normal. The numbers show

104× MED (IQR) of the ISE calculated from 200 simulated samples.

ν = 1 ν = 5 ν = 10 ν = 20
Model N LL DH DM DH DM DH DM
(i) 103 10.3(6.69) 10.7(7.18) 20.8(19.0) 10.8(8.04) 37.0(35.3) 12.8(9.70) 85.6(72.8)

5.103 4.35(2.80) 4.14(2.71) 9.60(5.49) 4.32(2.95) 12.0(11.1) 4.50(3.44) 17.3(18.8)
104 3.12(1.77) 3.33(2.07) 7.66(4.12) 3.01(2.01) 9.42(5.68) 3.20(2.19) 13.6(11.0)

(ii) 103 5.02(5.20) 5.78(6.83) 17.0(23.0) 8.18(10.6) 46.0(57.8) 21.1(64.0) 167(202)
5.103 1.69(1.95) 1.98(2.18) 4.23(5.97) 2.36(3.40) 9.48(12.3) 5.37(6.75) 28.3(36.9)
104 1.02(.925) 1.17(1.21) 2.99(3.12) 1.46(1.64) 5.51(6.81) 3.04(3.22) 15.0(17.7)

(iii) 103 .897(1.53) .885(1.06) 2.95(3.36) .910(1.27) 5.73(7.10) 1.37(2.14) 23.7(27.3)
5.103 .274(.389) .263(.325) .946(.997) .260(.383) 1.61(2.08) .448(.692) 4.26(4.93)
104 .204(.270) .148(.175) .637(.725) .182(.219) 1.13(1.10) .323(.435) 2.42(2.58)

(iv) 103 4.13(4.30) 3.60(3.48) 13.2(12.5) 4.32(3.84) 28.1(26.9) 7.60(9.43) 82.3(75.2)
5.103 1.30(1.33) 1.10(1.01) 3.85(3.77) 1.21(1.22) 7.45(6.56) 2.24(2.20) 16.6(18.1)
104 .764(.651) .566(.474) 2.50(1.86) .676(.672) 4.63(4.03) 1.01(1.04) 10.1(9.96)

split each sample homogeneously into groups of equal sizes ν = 5, ν = 10
or ν = 20; for the DM method, we created the groups randomly (remember
that this estimator is valid only for random groups).

To assess the performance of our DH estimator we calculated, in each
case and for each of the 200 generated samples, the integrated squared error
ISE =

∫ b
a (p̂− p)2, with a and b denoting the 0.05 and 0.95 quantiles of the

distribution of X. We did the same for the DM and LL estimators p̃ and
p̂S . For brevity, figures illustrating the results are provided in section A.4 of
the supplemental article (Delaigle and Hall, 2011), and here we show only
summary statistics. In the graphs of section A.4, we show the target curve
(thin uninterrupted curve) as well as three interrupted curves; these were
calculated from the samples that gave the first, second and third quartiles
of the 200 ISE values.
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14 A. DELAIGLE AND P. HALL

In Table 1 we show, for each model with X uniform, the median (MED)
and interquartile range (IQR) of the 200 ISE values obtained using the LL
estimator based on non grouped data, and, for several values of ν, the DH
and the DM approaches based on data pooled in groups of size ν; Table
2 shows the same but for X normal. Note that LL cannot be calculated
from grouped data, but we include it to assess the potential loss incurred
by pooling the data. The tables show that for ν ≤ 10, pooling the data
homogeneously hardly affects the quality of the estimator. Sometimes, the
results are even slightly better with the DH method than with the LL one.
Indeed a careful analysis of the bias and variance of the various estimators
shows that for some curves p(x), grouping homogeneously can sometimes
be slightly beneficial when ν is small (roughly this is because by grouping a
little we lose very little information, but we increase the number of Y ∗

j posi-
tive, which makes the estimation a little easier for this particular estimator.
Theoretical arguments support this conclusion). The situation is much less
favourable for the DM random grouping method, whose quality degrades
quickly as ν increases. Unsurprisingly, DH beat DM systematically, except
when N/ν was small (N = 1, 000 and ν = 20), where the J = 50 grouped
observations did not suffice to estimate very well the curves from models (i)
and (ii).

4.2. Real data application. We also applied our DH method on real
data. To make the comparison with the LL estimator possible we used
data for which we had access to the entire, non grouped set of obser-
vations (Xi, Yi). Then we grouped the data and compared the DH and
LL procedures. We used data from the NHANES study, which are avail-
able at www.cdc.gov/nchs/nhanes/nhanes1999-2000/nhanes99_00.htm.
These data were collected in the US between 1999 and 2000.

As in Delaigle and Meister (2011), our goal was to estimate two condi-
tional probabilities: pHBc(x) = E(YHBc|X = x) and pCL(x) = E(YCL|X =
x), where X was the age of a patient, YHBc = 0 or 1 indicating the absence or
presence of antibody to hepatitis B virus core antigen in the patients serum
or plasma, and YCL = 0 or 1 indicating the absence or presence of genital
Chlamydia trachomatis infection in the urine of the patient. The sample size
was N = 7, 016 for HBc and N = 2, 042 for CL. The percentage of Yi’s equal
to one was 0.047 in the HBc case and 0.044 in the CL case. See Delaigle and
Meister (2011) for more details on these data and the methods employed to
collect them.

For brevity here we only present the results obtained using our method by
pooling the data homogeneously in groups of equal size ν = 2, 5, 10 and 20.
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Fig 1. NHANES study: DH estimator for ν = 2, 5, 10 and 20 and LL estimator (thick
curve) when Y = YHBc (left) or Y = YCL (right).

As in the simulations, our DH estimator improved considerably on the DM
method. An illustration of our procedure with a second covariate is given in
section A.3 of the supplemental article (Delaigle and Hall, 2011). In Figure
1 we compare DH with LL. All curves were calculated using our bandwidth
procedure described in section A.2 of the supplemental article (Delaigle and
Hall, 2011). We see that, in these examples, grouping data in pools of size
as large as ν = 20 does not dramatically degrade performance.

5. Generalisations to unequal groups and the multivariate case.
Our procedure for estimating p can be extended to the multivariate setting,
where the covariates are random d-vectors, and to unequal group sizes. These
extensions can be performed in many different ways, for example by binning
on each variable, using bins of potentially different sizes to accommodate
different levels of homogeneity. If we group using bins of equal dimension
then, to a large extent, the theoretical properties discussed earlier, in the
setting of equal-size groups, continue to hold. To briefly indicate this we
give, below, details of methodology and results in the case of multivariate
histogram binning where, for definiteness, the bin sizes and shapes, but not
the group sizes, are equal. Cases where the bin sizes and shapes also vary
can be treated in a similar manner, provided the variation is not too great,
but since there are so many possibilities we do not treat those cases here. An
approach of this type is discussed in section A.3 of the supplemental article
(Delaigle and Hall, 2011).

In the analysis below we take X to be a d-vector, and the function p
to be d-variate, where d ≥ 1. We group the data in bins of equal width,
specifically width (ν/N)1/d along each of the d coordinate axes, rather than
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16 A. DELAIGLE AND P. HALL

in groups of equal number. In the theory described below, for notational
simplicity we assume that the support of the distribution of X contains the
cube I = [0, 1]d, and we estimate p there. We choose ν so that J = (N/ν)1/d

is an integer (on this occasion ν is not necessarily an integer itself), and take
the bins to be the cubes B(k1, . . . , kd) defined by

B(k1, . . . , kd) =
d∏

ℓ=1

(
1
2 (2kℓ + 1) (ν/N)1/d − 1

2 (ν/N)1/d,

1
2 (2kℓ + 1) (ν/N)1/d + 1

2 (ν/N)1/d
]
,

where kℓ = 0, . . . , J − 1 for ℓ = 1, . . . , d. In this setting it is convenient
to write the paired data as simply (X1, Y1), . . . , (XN , YN ), where Xj is a
d-vector and each Yj = 0 or 1, and refer to Xj in terms of the bin in which
it lies, rather than give it a double subscript (as in the notation Xij , where
j is the bin index).

Put b(k1, . . . , kd) = (12 (2k1 + 1) (ν/N)1/d, . . . , 12 (2kd + 1) (ν/N)1/d), rep-
resenting the centre of the bin B(k1, . . . , kd), define

Z∗(k1, . . . , kd) = 1− max
j :Xj∈B(k1,...,kd)

Y ∗
j ,

and compute µ̂ by applying a d-variate local polynomial smoother to the
values of (b(k1, . . . , kd), Z

∗(k1, . . . , kd)), interpreted as (explanatory variable,
response variable) pairs in a conventional d-variate nonparametric regression
problem. To derive an estimator of p from µ̂ we take

p̂(x) = 1− µ̂(x)1/m(x) , (5.1)

where m(x) denotes the number of data Xj in the bin containing x ∈ I.
In developing theoretical properties of this estimator we choose our reg-

ularity conditions to simplify exposition. In particular, we replace assump-
tions (S1)–(S4) and (T5) by the following restriction:

(U) the nonparametric smoother defined by the estimator at (3.2) is a stan-
dard d-variate local linear smoother (see e.g. Fan, 1993), where the kernelK,
a function of d variables, is a spherically symmetric, compactly supported,
Hölder continuous probability density, and, for some ϵ > 0, the bandwidth
h satisfies h+ (Nhd)−1 = O(N−ϵ) as N → ∞.

Conditions (T1)–(T4) are replaced by (V1)–(V4), below, and (V5) is addi-
tional:
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Condition V:
(V1) the distribution of X has a continuous density, f , that is bounded
away from zero on an open set J that contains the cube I = [0, 1]d;
(V2) the function p = δπ is bounded below 1 uniformly on I and in N ≥ 1;
(V3) the fixed, nonnegative function π has two Hölder-continuous derivatives
on J ;
(V4) for some ϵ > 0, h+ νδh+ (ν2/N1−ϵhdδ) → 0 as N → ∞;
(V5) C1 (δN)4 ≤ νd+4 ≤ C2N

d+3/δ for constants C1, C2 > 0.

Theorem 5.1. Assume that conditions U and V hold, and that νδ =
O(1). Then, for each x ∈ I,

p̂(x) = p(x) +Op

{
(δ/Nhd)1/2 + δ h2

}
. (5.2)

The “Op” term on the right-hand side of (5.2) has exactly the same size as
the dominant remainder term, A(x)V (x) +B(x), on the right-hand side of
(3.4) in Theorem 3.1, provided of course that we take d = 1 in Theorem 5.1.
Refinements given in Theorem 3.1 and in the results in section 3.3 can also
be derived in the present setting.

Theorem 5.1 is proved similarly to Theorem 3.1, and so is not derived in
detail here. The main difference in the argument comes from incorporating
a slightly different definition of p̂, given by (5.1). For example, suppose p̂
is as defined at (5.1), and note that E(m) = ν1 + O{ν1 (ν1/N)2}, where
ν1(x) = ν f(x) and f denotes the density of X. Since in addition m −
E(m) = Op(ν

1/2), then m = ν1 (1+∆)−1 where |∆| = Op{ν−1/2+(ν/N)2},
and, much as in the argument leading to (6.7),

p̂ = 1− µ̂1/m = 1−
(
µ̂1/ν1

)1+∆

= 1−
[
1− p+Op

{
δ h2 +

(
δ
/
Nhd

)1/2}]1+∆

= 1− (1− p)
[
1 +Op

{
δ h2 +

(
δ
/
Nhd

)1/2
+ δ |∆|

}]
= p+Op

[
δ h2 +

(
δ
/
Nhd

)1/2
+ δ

{
ν−1/2 + (ν/N)2

}]
. (5.3)

Now, δ h2 + (δ/Nhd)1/2 is minimised by taking h = (Nδ)−1/(d+4), and for
this choice of h we have

δ−1
{
δ h2 + (δ/Nhd)1/2

}
≍ (δN)−2/(d+4) .

This quantity is not of smaller order than ν−1/2+(ν/N)2 if and only if both
ν−1/2 = O{(δN)−ρ} and (ν/N)2 = O{(δN)−ρ}, where ρ = 2/(d + 4). This
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18 A. DELAIGLE AND P. HALL

is in turn equivalent to

C1 (δN)4/(d+4) ≤ ν ≤ C2

(
Nd+3

/
δ
)1/(d+4)

,

for constants C1, C2 > 0, which is also equivalent to (V5). Therefore if (V5)
holds then we can deduce (5.2) from (5.3).

6. Technical arguments.

6.1. Proof of Theorem 3.1. Let Dj equal the maximum of |Xij−X̄j | over
i = 1, . . . , ν. The ratio ν/N equals the order of magnitude of the expected
value of the width of the group that contains x ∈ I, and it can be proved that

for each ϵ > 0, Dj = Op(ν/N
1−ϵ) uniformly in j such that |X̄j −

x| ≤ C h and x ∈ I. (6.1)

Note that, by (T4), ν/N1−ϵ → 0 for sufficiently small ϵ > 0.
For k = 1, 2 let p(k) be the kth derivative of p, and put pk = p(k)/{k! (1−

p)}. Let η > 0 denote the exponent of Hölder continuity of p′′ on I (see
(T3)); that is, |p′′(x1) − p′′(x2)| = O(|x1 − x2|η) uniformly in x1, x2 ∈ I.
Then, using (6.1) it can be proved that for each ϵ > 0,

E(Z∗
j | X ) =

ν∏
i=1

{1− p(Xij)}

= {1− p(X̄j)}ν
ν∏

i=1

{
1− p1(X̄j) (Xij − X̄j) +Op

(
δ D2

j

)}
= {1− p(X̄j)}ν

ν∏
i=1

exp
{
− p1(X̄j) (Xij − X̄j) +Op

(
δ D2

j

)}
= {1− p(X̄j)}ν exp

{
−

ν∑
i=1

p1(X̄j) (Xij − X̄j) +Op

(
ν δ D2

j

)}
= {1− p(X̄j)}ν exp

{
Op

(
ν δ D2

j

)}
= {1− p(X̄j)}ν

{
1 +Op

(
ν3 δ

/
N2−ϵ

)}
, (6.2)

uniformly in the sense of (6.1) and for each ϵ > 0. (Assumption (T4) implies
that ν3δ/N2−ϵ → 0 for some ϵ > 0.) Observe too that, uniformly in the
same sense,

{1− p(X̄j)}ν ={1− p(x)}ν
{
1− p1(x) (X̄j − x)− p2(x) (X̄j − x)2

+Op

(
δ h2+η

)}ν
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={1− p(x)}ν
[
1− ν p1(x) (X̄j − x) +

{
1
2 ν (ν − 1) p1(x)

2

− ν p2(x)
}
(X̄j − x)2 +Op

(
ν δ h2+η + ν3 δ3 h3

)]
, (6.3)

again uniformly in the sense of (6.1). (Note that, by (T4), νδh→ 0.) Com-
bining (3.2), (T4), (S1), (S2), (S4), (6.2) and (6.3) we deduce that, for each
ϵ > 0 and each x ∈ I,

µ̃(x) ≡ E{µ̂(x) | X} =
∑
j

wj(x)E(Z∗
j | X )

/∑
j

wj(x)

= {1− p(x)}ν
{
1 +

[
1
2 ν (ν − 1) p1(x)

2 − ν p2(x)
}] ∑j wj(x) (X̄j − x)2∑

j wj(x)

+Op

(
ν δ h2+η + ν3 δ3 h3 + ν3 δ N ϵ−2

)}
= {1− p(x)}ν

[
1 + h2

{
1
2 ν (ν − 1) p1(x)

2 − ν p2(x)
}
b(x)

+ op
(
ν δ h2 + ν3 δ N ϵ−2

)]
,

whence, for all ϵ > 0,

µ̃(x)1/ν = {1−p(x)}
[
1−h2

{
p2(x)−1

2(ν−1)p1(x)
2
}
b(x)+op

(
δ h2+ν2δ N ϵ−2

)]
,

(6.4)
uniformly in x ∈ I. Hence, defining

∆(x) = µ̂(x)− µ̃(x) =
∑
j

wj(x) {Z∗
j − E(Z∗

j | X )}
/∑

j

wj(x) , (6.5)

noting that 1 − p is bounded away from zero (see (T2)), and taking the
argument of the functions below to equal the specific point x referred to in
(3.4), we deduce that:

p̂ =1− µ̂1/ν = 1− (µ̃+∆)1/ν

=1−
(
µ̃1/ν + ν−1 µ̃−(ν−1)/ν ∆

)
+Op

(
ν−1 µ̃−(2ν−1)/ν ∆2

)
=1− (1− p)

[
1− h2

{
p2 − 1

2 (ν − 1) p21
}
b+ op

(
δ h2 + ν2 δ N ϵ−2

)]
− ν−1 µ̃−(ν−1)/ν ∆+Op

(
ν−1 µ̃−(2ν−1)/ν ∆2

)
=p+ (1− p)

[
h2

{
p2 − 1

2 (ν − 1) p21
}
b+ op

(
δ h2 + ν2 δ N ϵ−2

)]
− {1 + op(1)} ν−1 (1− p)−(ν−1)∆+Op

{
ν−1 (1− p)−(2ν−1)∆2

}
(6.6)

=p+ (1− p)
[
h2

{
p2 − 1

2 (ν − 1) p21
}
b+ op

(
δ h2

)]
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20 A. DELAIGLE AND P. HALL

− {1 + op(1)} ν−1 (1− p)−(ν−1)∆ , (6.7)

where (6.6) holds without the assumption νδ = O(1) (it holds under either
that condition or (3.11)), but (6.7) requires νδ = O(1). Note that, by (T4),
ν/N1−ϵh → 0 for some ϵ > 0, and so ν2δN2ϵ−2/(δh2) = (ν/N1−ϵh)2 → 0.
Additionally, it will follow from (6.9) below that, when δ = O(1), ∆ =
Op{(ν2δ/Nh)1/2}, and by (T4), δ/Nh → 0, so ∆ = op(1). The identity
leading from (6.6) to (6.7) follows from this property.

Observe that, by (6.2) and (6.3), E(Z∗
j | X ) = {1+ op(1)} {1−p(x)}ν and

1− E(Z∗
j | X ) = 1− {1− p(x)}ν +Op

[
{1− p(x)}ν

(
ν δ h+ ν3 δ N ϵ−2

)]
,

uniformly in j such that |X̄j−x| ≤ C h, where C is as in (T5), and moreover,

var(∆ | X ) =

∑
j w

2
j var(Z

∗
j | X )

(
∑

j wj)2
=

∑
j w

2
j E(Z∗

j | X ) {1− E(Z∗
j | X )}

(
∑

j wj)2
.

(Here and in (6.8)–(6.10) the argument of the functions is the point x
in (3.4).) Therefore, by (S3),

var(∆ | X ) = {1 + op(1)} (ν/Nh) (1− p)ν
{
1− (1− p)ν

}
v

+Op

[
(ν/Nh)

(
ν δ h+ ν3 δ N ϵ−2

)]
. (6.8)

Properties (T4) and (6.8), and Lyapounov’s central limit theorem (see the
next paragraph for details), imply that when νδ = O(1) and π(x) > 0 (the
latter is assumed here and below; the proof when π(x) = 0 is simpler), we
can write

∆ =
(
(ν/Nh)(1− p)ν

{
1− (1− p)ν

}
v +Op

[
(ν/Nh)

(
νδh+ ν3δN ϵ−2

)])1/2
V4

= {1 + op(1)}
[
(ν/Nh) (1− p)ν

{
1− (1− p)ν

}
v
]1/2

V4 , (6.9)

where the second identity follows from the fact that h+ν2N ϵ−2 → 0 for some
ϵ > 0 (see (T4)), and V4 denotes a random variable that is asymptotically
distributed as normal N(0, 1). This result and (6.7) imply that

p̂ = p+ (1− p)
[
h2

{
p2 − 1

2 (ν − 1) p21
}
b+ op

(
δ h2

)]
− {1 + op(1)}

[
(νNh)−1 (1− p)2−ν

{
1− (1− p)ν

}
v
]1/2

V4 . (6.10)

Result (3.4) follows from (6.10).
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When applying a generalised from of Lyapounov’s theorem to estab-
lish a central limit theorem for ∆, conditional on X , we should, in view
of (S4), prove that for some integer k > 2,

[
(ν/Nh) (1 − p)ν

{
1 − (1 −

p)ν
}
v
]−k/2

(ν/Nh)k−1 → 0 .When νδ = O(1) this is equivalent to (δ/Nh)−k/2

(ν/Nh)k−1 → 0, and hence to (Nh/ν)2 (ν2/Nhδ)k → 0; call this result (R).
Now, (T4) ensures that for some ϵ > 0, ν2/N1−ϵhδ → 0. Therefore (R) holds
for all sufficiently large k.

Next we outline the derivation of (3.7). It can be proved from (3.3) that
if C1 > 0 is given, if C2 = C2(C1) > 0 is chosen sufficiently large, if IN is a
regular grid of nC2 points in I, and if, for each x ∈ I, we define xN to be
the point in IN nearest to x, then

P
{
sup
x∈I

|∆(x)−∆(xN )| ≤ N−C1

}
→ 1 . (6.11)

Note that, by (T4), Applying (S3), (S4), Rosenthal’s and Markov’s inequali-
ties, we can prove that, for each C, ϵ > 0, supx∈I P

{
|∆(x)| > N ϵ (ν2δ/Nh)1/2∣∣ X}

= Op

(
N−C

)
. It follows that, for all C, ϵ > 0,

P
{

sup
x∈IN

|∆(x)| > N ϵ (ν2δ/Nh)1/2
∣∣∣ X}

= O
(
N−C

)
. (6.12)

Together (6.11) and (6.12) imply that, for each C, ϵ > 0,

P
{
sup
x∈I

|∆(x)| > N ϵ (ν2δ/Nh)1/2
}
→ 0 . (6.13)

Results (6.4) (which holds uniformly in x ∈ I) and (6.13) imply that (6.7)
holds uniformly in x ∈ I. Hence,∫

I
(p̂− p)2 =

∫
I
B2 +

∫
I

{
ν−1 (1− p)−(ν−1)∆

}2

− 2

∫
I
B
{
ν−1 (1− p)−(ν−1)∆

}
+ op

{(
δ h2)2 +

∫
I

(
∆/ν)2

}
.

(6.14)

Conditional on X the random variable ∆, at (6.5), equals a sum of indepen-
dent random variables with zero means, and using that property, condition
S (which, for this part of the theorem, holds uniformly in x ∈ I) and (3.4)
it can be proved that

E

[ ∫
I

{
ν−1 (1− p)−(ν−1)∆

}2
∣∣∣∣ X]

=

∫
I
A2 + op(δ/Nh) , (6.15)
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var

[ ∫
I

{
ν−1 (1− p)−(ν−1)∆

}2
∣∣∣∣ X]

= op
{
(δ/Nh)2

}
, (6.16)

var

[ ∫
I
B
{
ν−1 (1− p)−(ν−1)∆

} ∣∣∣∣ X]
= op

{
(δ/Nh)2 + (δh2)4

}
. (6.17)

Result (6.15) follows from (6.8). To derive (6.16), note that by (6.4) we have,
uniformly in x1, x2 ∈ I,

E
{
∆(x1)

2∆(x2)
2
∣∣ X}

= E
{
∆(x1)

2
∣∣ X}

E
{
∆(x2)

2
∣∣ X}

+Op{t1(x1, x2)} ,
(6.18)

where

t1(x1, x2) =

∑
j wj(x1)

2wj(x2)
2E

[
{Z∗

j − E(Z∗
j | X )}4

∣∣ X ]
{
∑

j wj(x1)}2 {
∑

j wj(x2)}2
= Op{t2(x1, x2)} ,

t2(x1, x2) =

∑
j wj(x1)

2wj(x2)
2 var(Z∗

j | X )

{
∑

j wj(x1)}2 {
∑

j wj(x2)}2

= Op

[
νδ

∑
j wj(x1)

4

{
∑

j wj(x1)}4

]
= Op

{( νδ
Nh

)2 ( ν2

Nhδ

)}
= op

{( νδ
Nh

)2}
,

again uniformly in x1, x2 ∈ I. (The last and second-last identities here
follow from (T4) and (S4) respectively.) Noting these bounds, defining ξ1 ≡
{ν−1 (1− p)−(ν−1)}2, and integrating (6.18) over x1, x2 ∈ I, we deduce that

E

{∫
ξ1(x)∆(x)2 dx

∣∣∣∣ X}2

=

[ ∫
ξ1(x)E

{
∆(x)2 | X

}
dx

]2
+ op

{
(νδ/Nh)2

}
,

which implies (6.16).
To derive (6.17), define ξ2 = B ξ1 and ej = E[{Z∗

j − E(Z∗
j | X )}2 | X ],

write M for the left-hand side of (6.17), and note that

M =

∫
I

∫
I
ξ2(x1) ξ2(x2)

∑
j wj(x1)wj(x2) ej

{
∑

j wj(x1)} {
∑

j wj(x2)}
dx1 dx2 .

In view of (T5), wj(x) = 0 if |X̄j − x| > C h, and so the series in the
numerator inside the integrand can be confined to indices j for which both
|X̄j − x1| ≤ C h and |X̄j − x2| ≤ C h. Therefore the integrand equals zero
unless |x1 − x2| ≤ 2C h. Hence, defining J(x1, x2) = 1 if |x1 − x2| ≤ 2C h,
and J(x1, x2) = 0 otherwise; using the Cauchy-Schwarz inequality to derive
both the inequalities below; and writing ∥I∥ for the length of the interval I;
we have:

M ≤
∫
I

∫
I
J(x1, x2)ξ2(x1)ξ2(x2)

[ 2∏
k=1

∑
j

wj(xk)
2ej

/
{
∑
j

wj(xk)}2
]1/2

dx1 dx2
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=

∫
I

∫
I
J(x1, x2) ξ2(x1) ξ2(x2)

[ 2∏
k=1

var{∆(xk) | X}
]1/2

dx1 dx2

≤∥I∥
(∫

I

∫
I
J(x1, x2)

[ 2∏
k=1

ξ2(xk)
2 var{∆(xk) | X}

]
dx1 dx2

)1/2

. (6.19)

Using (6.8) show that var{∆(xk) | X} = O(ν2δ/Nh), uniformly in xk ∈ I;
noting that B = O(δ h2) uniformly in x ∈ I (the bound at (3.7) holds uni-
formly in the argument of B); and observing that ξ1(x) = O(ν−2) uniformly
in x ∈ I, whence it follows from the bound for B that ξ2(x) = O(δ h2 ν−2)
uniformly in x ∈ I; we deduce from (6.19) that

M = Op

[(
ν2δ

/
Nh

) {(
δ h2 ν−2

)}2
] ( ∫

I

∫
I
J(x1, x2) dx1 dx2

)1/2

= Op

(
δ2 h7/2

/
N
)
= op

{
(δ/Nh)2 + (δh2)4

}
. (6.20)

Result (6.17) follows directly from (6.20).

6.2. Proof of Theorem 3.2. The proof is similar to that of the first part
of Theorem 3.1, the main difference occurring at the point at which the
remainder term, Op(R) where R = ν−1 (1− p)−(2ν−1)∆2, in (6.6), is shown
to be negligible relative to the term ν−1 (1− p)−(ν−1)∆ there. It suffices to
prove that (1− p)−ν ∆ → 0 in probability, or equivalently, in view of (6.9),
that (ν/Nh) (1− p)−ν → 0. However, the latter result is ensured by (3.11).

6.3. Proof of Theorem 3.3. Without loss of generality the point x in
(3.16) is x = 0. Recall that p0 ≡ δ, and take p1(u) = δ {1 + h2 ψ(u/h)},
where ψ is bounded and has two bounded derivatives on the real line, is
supported on [−1

2 ,
1
2 ] and satisfies ψ(0) ̸= 0. The respective functions π0 ≡ 1

and π1(u) = 1+h2 ψ(u/h) satisfy (3.14). (The quantity h = h(N) > 0 here is
not a bandwidth, but converges to 0 as N → ∞.) Therefore, p0(u) = p1(u)
except when u ∈ (−1

2 h,
1
2 h). We assume that νδ → ∞ as N → ∞, and

consider the problem of discriminating between p0 and p1 using the data
pairs (Xj , Y

∗
j ).

Without loss of generality we confine attention to those pairs (Xj , Y
∗
j ) for

which Xj is wholly contained in [−1
2 h,

1
2 h]. Pairs for which Xj has no inter-

section with [−1
2 h,

1
2 h] convey no information for discriminating between p0

and p1, and it is readily proved that including pairs for which Xj overlaps
the boundary does not affect the results we derive below. In a slight abuse
of notation we shall take the integers j for which Xj ⊆ [−1

2 h,
1
2 h] to be

1, . . . ,m, where m = hN/ν + oP (1) and is assumed to be an integer.
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The likelihood of the data pairs (Xj , Y
∗
j ) for 1 ≤ j ≤ m, conditional on

X = {X1, . . . , XN}, is
∏m

j=1 P
Y ∗
j

j (1− Pj)
1−Y ∗

j where Pj = P (Y ∗
j = 1 | X ) =

1−
∏ν

i=1 {1−p(Xij)} . Let P 0
j and P 1

j denote the versions of Pj when p = p0

and p = p1, respectively. Also, let Θ+
j = P 1

j /P
0
j and Θ−

j = (1−P 1
j )/(1−P 0

j ).
In this notation the log-likelihood ratio statistic is given by

L =

m∑
j=1

{
Y ∗
j log(Θ+

j ) + (1− Y ∗
j ) log(Θ

−
j )

}
=

m∑
j=1

(1− Y ∗
j ) log(Θ

−
j /Θ

+
j ) +

m∑
j=1

log(Θ+
j ) , (6.21)

and therefore, E(L | X ) =
∑m

j=1 (1 − Pj) log(Θ
−
j /Θ

+
j ) +

∑m
j=1 log(Θ+

j ) ,

var(L | X ) =
∑m

j=1 Pj (1 − Pj)
}
log(Θ−

j /Θ
+
j )

}2
. Writing E0 and var0 to

denote expectation and variance when p = p0, we deduce that

E0(L | X ) = (1− δ)ν
m∑
j=1

log(Θ−
j /Θ

+
j ) +

m∑
j=1

log(Θ+
j ) , (6.22)

var0(L | X ) = (1− δ)ν
{
1− (1− δ)ν

} m∑
j=1

{
log(Θ−

j /Θ
+
j )

}2
. (6.23)

Assume for the time being that

νδh2 → 0 (6.24)

as N → ∞, and observe that, since 1− P 0
j = (1− δ)ν , then

Θ−
j =

(
1− P 0

j

)−1
ν∏

i=1

[
1− δ

{
1 + h2 ψ(Xij/h)

}]
=

ν∏
i=1

{
1− δ

1− δ
h2 ψ(Xij/h)

}
= 1− ρ h2 Sj +Rj , (6.25)

where ρ = δ/(1 − δ), Sj =
∑

i ψ(Xij/h) and Rj = Op(νρ
2h4) uniformly in

1 ≤ j ≤ m. (We used (6.24) to derive the last identity in (6.25). To obtain
uniformity in the bound for Rj , and in later bounds, we used the fact that
ψ is bounded.) Hence,

log(Θ−
j ) = −

{
ρ h2 Sj −Rj +

1
2

(
ρ h2 Sj −Rj

)2
+ 1

3

(
ρ h2 Sj −Rj

)3 − . . .
}
.
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Similarly, since

P 1
j = 1−

(
1− P 1

j

)
= 1−

(
1− P 0

j

) ν∏
i=1

{
1− δ

1− δ
h2 ψ(Xij/h)

}
= 1−

(
1− P 0

j

) (
1− ρ h2 Sj +Rj

)
= P 0

j +
(
1− P 0

j

) (
ρ h2 Sj −Rj

)
,

then

log(Θ+
j ) = log

{
1 +

(
ρ h2 Sj −Rj

)
(1− P 0

j )/P
0
j

}
=

(1− δ)ν

1− (1− δ)ν
(
ρ h2 Sj −Rj

)
− 1

2 (1− δ)2ν
(
ρ h2 Sj −Rj

)2
+Op

{
(1− δ)3ν

(
ν ρ h2

)2}
,

uniformly in 1 ≤ j ≤ m. It follows that

log(Θ−
j /Θ

+
j ) =−

{(
ρ h2 Sj −Rj

)
+ 1

2

(
ρ h2 Sj −Rj

)2
+ 1

3

(
ρ h2 Sj −Rj

)3
+ . . .

}
− (1− δ)ν

1− (1− δ)ν
(
ρ h2 Sj −Rj

)
+ 1

2 (1− δ)2ν
(
ρ h2 Sj

−Rj

)2
+Op

{
(1− δ)3ν

(
ν ρ h2

)2}
=− ρ h2 Sj +Op

{
ν ρ2 h4 + (1− δ)ν ν ρ h2

}
, (6.26)

(1− δ)ν log(Θ−
j /Θ

+
j ) + log(Θ+

j )

= −(1− δ)ν
{(
ρ h2 Sj −Rj

)
+ 1

2

(
ρ h2 Sj −Rj

)2
+ 1

3

(
ρ h2 Sj −Rj

)3
+ . . .

}
− (1− δ)2ν

1− (1− δ)ν
(
ρ h2 Sj −Rj

)
+

(1− δ)ν

1− (1− δ)ν
(
ρ h2 Sj −Rj

)
− 1

2 (1− δ)2ν
(
ρ h2 Sj −Rj

)2
+Op

{
(1− δ)3ν

(
ν ρ h2

)2}
= −(1− δ)ν

{
1
2

(
ρ h2 Sj −Rj

)2
+ 1

3

(
ρ h2 Sj −Rj

)3
+ . . .

}
− 1

2 (1− δ)2ν
(
ρ h2 Sj −Rj

)2
+Op

{
(1− δ)3ν

(
ν ρ h2

)2}
= −1

2 (1− δ)ν
(
ρ h2 Sj

)2
+ op

{
(1− δ)ν

(
ν ρ h2

)2}
, (6.27)
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uniformly in 1 ≤ j ≤ m. Using (6.22), (6.23), (6.26) and (6.27) we deduce
that:

E0(L | X ) = −1
2 (1− δ)ν

(
ρ h2

)2 m∑
j=1

S2
j + op

{
m (1− δ)ν

(
ν ρ h2

)2}
,

var0(L | X ) = {1 + op(1)} (1− δ)ν
(
ρ h2

)2 m∑
j=1

S2
j + op

{
m (1− δ)ν

(
ν ρ h2

)2}
.

Choose h so that

the squared mean, and the variance, are of the same order . (6.28)

In particular, take
{
m (1 − δ)ν

(
ν ρ h2

)2}2
= C1m (1 − δ)ν

(
ν ρ h2

)2
, and

hence
m (1− δ)ν

(
ν ρ h2

)2
= C2 + oP (1) , (6.29)

or equivalently, using the fact that m = Nh/ν + oP (1),

h = C3

{
(N ν ρ2)−1 (1− δ)−ν

}1/5
, (6.30)

where C1, C2, C3 are positive constants; C3 can be chosen arbitrarily. It
follows that

ρh2 = C2
3

(
ρ
/
N2

)1/5
ν−2/5 λ2N , (6.31)

where λ5N = (1−δ)−ν . If h is given by (6.31) then νρh2 = C2
3 (ν

3ρ/N2)1/5 λ2N
and therefore (6.24) follows from (3.15).

It can be shown that, conditional on the explanatory variables, the log-
likelihood ratio L, centred at the conditional mean and variance, is asymp-
totically normally distributed with zero mean and unit variance. (We shall
give a proof below.) Therefore by taking C1, and hence C3, sufficiently small,
we can ensure that: (i) The probability of discriminating between p0 and p1,
when p = p0, is bounded below 1 as N → ∞. (This follows from (6.28).)
Similarly it can be proved that: (ii) The probability of discriminating be-
tween p0 and p1, when p = p1, is bounded below 1. Consider the assertion:
(iii) p̌(0) − p(0) converges in probability to 0, along a subsequence, at a
strictly faster rate than h2. If (iii) is true then the error rate of the clas-
sifier which asserts that p = p0 if p̌(0) is closer to p(0) than to p1(0), and
p = p1 otherwise, and converges to 0 as N → ∞. However, properties (i)
and (ii) show that even the optimal classifier, based on the likelihood ratio
rule, does not enjoy this degree of accuracy, and so (iii) must be false. This
proves (3.16).
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Finally we derive the asymptotic normality of L claimed in the previous
paragraph. We do this using Lindeberg’s central limit theorem, as follows.
In view of the definition of L at (6.21) it is enough to prove that for each
η > 0,

SN1(η) ≡ σ(X )−2
m∑
j=1

E0
[∣∣Y ∗

j − E(Y ∗
j | X )

∣∣2 σj(X )2

× I
{∣∣Y ∗

j − E(Y ∗
j | X )

∣∣σj(X ) > η σ(X )
} ∣∣∣ X ]

→ 0 (6.32)

in probability, where we define

σj(X )2 =
{
log(Θ−

j /Θ
+
j )

}2
=

(
ρh2Sj

)2
+ op

{
(νδh2

)2}
, (6.33)

σ(X )2 =

m∑
j=1

var0(Y ∗
j | X )σj(X )2 = {1 + op(1)}C4m

(
ν ρ h2

)2
(1− δ)ν ,

(6.34)

with C4 > 0 and (6.33) holding uniformly in j. (We used (6.26) to obtain
the second identities in each of (6.33) and (6.34).) Since m = hN/ν + oP (1)
then, by (6.30) and (6.34), σ(X )2 → C5 in probability, where C5 > 0. Hence,
by (6.32), with probability converging to 1 as N → ∞,

C6 SN1(η) ≤ SN2(η) ≡
m∑
j=1

E0
[∣∣Y ∗

j −E(Y ∗
j | X )

∣∣2 σj(X )2

× I
{∣∣Y ∗

j − E(Y ∗
j | X )

∣∣σj(X ) > C7

} ∣∣∣ X ]
,

where C6, C7 > 0 are constants and C7 depends on η.
Note too that, using (6.30) to obtain the second relation below, and (3.15)

to get the last relation, we have:
(
ν ρ h2

)5 ≍ (
νδh2

)5 ≍ {(
ν3 δ

)1/2
N−1 (1−

δ)−ν
}2 → 0 . Therefore, (6.24) holds. Since |Y ∗

j − E(Y ∗
j | X )| ≤ 1 then, if

σj(X ) ≤ C7, we have I{|Y ∗
j − E(Y ∗

j | X )|σj(X ) > C7} = 0. Hence, using
(6.26) and (6.24),

SN2(η) ≤
m∑
j=1

E0
{∣∣Y ∗

j − E(Y ∗
j | X )

∣∣2 ∣∣∣ X}
σj(X )2 I{σj(X ) > C7}

= (1− δ)ν
{
1− (1− δ)ν

} m∑
j=1

σj(X )2 I{σj(X ) > C7}

≤ (1− δ)ν C−2
7

m∑
j=1

σj(X )4 = Op

{
(1− δ)ν m (ν δ h2)4

}
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= op

{
m (1− δ)ν

(
ν δ h2

)2}
= op(1) ,

since m (1−δ)ν (νδh2)2 = C2; see (6.29). This completes the proof of (6.32).
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SUPPLEMENTARY MATERIAL

Supplement A: additional material
(Provided in a separate file). The supplementary article contains a descrip-
tion of Delaigle and Meister’s method, details for bandwidth choice, an alter-
native procedure for multivariate setting and unequal groups, and additional
numerical results.
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