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Abstract

In many applications we can expect that, or are interested to know if, a density function
or a regression curve satisfies some specific shape constraints. For example, when the ex-
planatory variable, X, represents the value taken by a treatment or dosage, the conditional
mean of the response, Y , is often anticipated to be a monotone function of X. Indeed,
if this regression mean is not monotone (in the appropriate direction) then the medical or
commercial value of the treatment is likely to be significantly curtailed, at least for values of
X that lie beyond the point at which monotonicity fails. In the case of a density, common
shape constraints include log-concavity and unimodality. If we can correctly guess the shape
of a curve, then nonparametric estimators can be improved by taking this information into
account. Addressing such problems requires a method for testing the hypothesis that the
curve of interest satisfies a shape constraint, and, if the conclusion of the test is positive, a
technique for estimating the curve subject to the constraint. Nonparametric methodology
for solving these problems already exists, but only in cases where the covariates are observed
precisely. However in many problems, data can only be observed with measurement errors,
and the methods employed in the error-free case typically do not carry over to this error
context. In this paper we develop a novel approach to hypothesis testing and function esti-
mation under shape constraints, which is valid in the context of measurement errors. Our
method is based on tilting an estimator of the density or the regression mean until it satisfies
the shape constraint, and we take as our test statistic the distance through which it is tilted.
Bootstrap methods are used to calibrate the test. The constrained curve estimators that we
develop are also based on tilting, and in that context our work has points of contact with
methodology in the error-free case.
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1 Introduction

In measurement errors problems, the interest is often in estimating a regression curve

g(x) = E(Y |X = x) from data on (W,Y ), or in estimating the density fX of X from

data on W , where W represents a contaminated version of X. For instance, in dietary stud-

ies, the level X of saturated fat is often measured through a food frequency questionnaire

(FFQ). Since FFQs that give information about X change upon repeated administration, the

observed data W are regarded as noisy or contaminated values of the true response variable.

Estimating g or fX nonparametrically in this measurement error context is notoriously very

hard. However, in many practical problems, we can anticipate that the regression curve or

the density function fX satisfies some shape constraints. For example, X might represent

the level of a dietary component and Y a surrogate for a detrimental medical condition.

If Y does not increase monotonically with X then we may need to reassess the usefulness

of X as a pointer to the condition. In the density context, constraints that are commonly

encountered include those of unimodality and log-concavity. In general, if our guess about a

shape constraint of a curve is correct, then incorporating this information into the estimation

procedure can improve the quality of estimators, which would be particularly useful in the

difficult errors-in-variables context. If we wish to assess the validity of our guess, then we

need to develop a procedure for testing hypotheses about the shape of the curve. Such meth-

ods exist in the literature, but only in the case where X is observed without measurement

errors, and these techniques are usually not valid in the error case.

Relying only on observations of (W,Y ) (in the regression case) or W (in the density

case), in this paper we develop methods for testing the hypothesis that g or fX satisfies a

shape constraint, against the alternative that it does not, and for estimating g or fX subject

to the assumption that it satisfies the constraint. In both problems we adopt a tilting-

based approach, a version of which was first suggested by Grenander (1956), for enforcing

constraints. See Hall and Huang (2001, 2002), Müller et al. (2005) and Schick andWefelmeyer

(2009) for recent examples of this type of methodology. In the context of hypothesis testing

we take our test statistic to be the distance through which the unconstrained estimator is

tilted, and this represents a new approach to solving hypothesis testing problems. Further, we
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use bootstrap methodology to calibrate our test. We study the properties of the suggested

estimating and testing procedures both in practice and in theory. As part of our work,

we describe what to the best of our knowledge is the first uniform convergence result for

nonparametric regression with errors-in-variables.

Statistical methodology for estimating g or fX , subject to shape constraints, or for testing

the validity of the shape constraints, has been widely studied in the literature. See for

example the relatively recent contributions by Groeneboom (2001), Hall and Huang (2001,

2002), Hall and Kang (2005), Dette et al. (2006), Antoniadis et al. (2007), Neumeyer (2007),

Pal and Woodroofe (2007), Birke and Dette (2007), Birke (2009), Dümbgen and Rufibach

(2009), Cule et al. (2010) and the references therein. Earlier work includes that of Friedman

and Tibshirani (1984), Mukerjee (1988), Kelly and Rice (1990), Mammen (1991, 1995) and

Sun and Woodroofe (1996).

The literature on estimating the density fX and the regression mean g in errors-in-

variables problems is particularly extensive, but can be accessed relatively easily through

the monograph by Carroll et al. (2006). In an errors-in-variables setting the only existing

work on inference subject to shape constraints appears to be that of Meister (2009), who

suggests a test for local monotonicity of a density function, and Cordy and Thomas (1997),

who estimate a distribution function under some unimodality constraint. Birke and Bissantz

(2009) construct monotone estimators in a related problem involving convolution operators.

However, these works do not provide adaptive, nonparametric approaches to estimation of,

or hypothesis testing of general shape assumptions about, g and fX .

2 Methodology

2.1 Model and constrained estimator

In the classical errors-in-variables regression problem, the interest is to estimate a regression

curve g from data (W1, Y1), . . . , (Wn, Yn) generated by the model

Y = g(X) + ϵ , W = X + U , (2.1)
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where U ∼ fU , X ∼ fX , U , X and ϵ are independent, E(ϵ2) = σ2 and E(ϵ) = 0. In

this model the variable U is unobserved and represents a measurement error. In the density

context, the standard problem is to estimate the density fX from dataW1, . . . ,Wn generated

as at (2.1). Identifiability of fX or g from data generated by the model (2.1) requires fU

to be known, and we shall also make this assumption. It is straightforward to extend our

methodology to cases where fU is unknown and estimated from replicated data, using the

techniques of Delaigle et al. (2008).

Our goal in the constrained errors-in-variables problem is to estimate g and fX nonpara-

metrically under shape restrictions. In principle a shape constraint can be quite general,

for example monotonicity, convexity, log-concavity or unimodality. In practice, it is usu-

ally motivated by some a priori information that we have about a particular problem. Our

approach to incorporating shape constraints is based on modifying standard non-restricted,

nonparametric, errors-in-variables curve estimators.

We start by presenting the methodology in the density case. Let h be a bandwidth

and K a kernel function, let ϕK(t) =
∫
eitxK(x) dx denote the Fourier transform of K,

and let ϕU(t) =
∫
eitx fU(x) dx be the characteristic function corresponding to fU . The

non-restricted errors-in-variables (or deconvolution) kernel estimator of fX is defined by

f̂X(x) =
1

nh

n∑
j=1

KU{(x−Wj)/h} (2.2)

where

KU(u) =
1

2π

∫
e−itu ϕK(t)/ϕU(t/h) dt . (2.3)

See Carroll and Hall (1988) and Stefanski and Carroll (1990).

To incorporate a shape constraint in the estimation procedure we use a tilting approach

which consists in first replacing the equal weights n−1, applied to the sum in (2.2), by more

general weights denoted respectively by pj, where

pj ≥ 0 for 1 ≤ j ≤ n , and p1 + . . .+ pn = 1 . (2.4)

That is, we replace f̂X(x) in (2.2) by

f̂X(x | p) =
1

h

n∑
j=1

pj KU{(x−Wj)/h} . (2.5)
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Then, we choose the multinomial vector p = (p1, . . . , pn) = p̂ so as to minimize the distance

from p to the uniform vector p0 = (n−1, . . . , n−1), subject to our estimator of fX satisfying

the constraint. A variety of distance measures can be used in this context, including those

suggested by Cressie and Read (1984), Read and Cressie (1988) and Hall and Presnell (1999).

They are generally not metrics, and for example the two Kullback-Leibler divergences in (2.7)

below are asymmetric in terms of the roles played by p and p0. They are nevertheless readily

interpretable from a statistical viewpoint. Suitable distance functions for 0 < ρ < 1 are

Dρ(p) =
1

ρ(1− ρ)

{
n−

n∑
j=1

(npj)
ρ

}
(2.6)

D0(p) = −
n∑

j=1

log(npj) , D1(p) = n
n∑

j=1

pj log(npj) . (2.7)

The distance measure D0 is arguably not as satisfactory as the others, since it takes the

value infinity when one or more of the pjs is zero and therefore strongly resists setting any

of the pjs to zero. This can result in other pjs being altered unnecessarily.

Remark 1. Each of these quantities has the advantage that it is not well-defined unless each

pj ≥ 0, or in fact pj > 0 in the case of D0. This avoids us having to impose nonnegativity as

an additional constraint. In contrast, the standard quadratic measure of distance between p

and p0 does not automatically ensure that the components of p are nonnegative. The other

required constraint, that
∑

1≤j≤n pj = 1, can be ensured more readily, for example by re-

placing p1 by 1−
∑

2≤j≤n pj. Note too that, for 0 ≤ ρ ≤ 1, Dρ(p
0) = 0 andDρ(p) > 0 if p ̸= p0.

We use a similar approach in the regression context. Here, we modify the non-restricted

errors-in-variables kernel estimator of Fan and Truong (1993), which is defined by

ĝ(x) =
ĝfX(x)

f̂X(x)
=

n∑
j=1

Sj(x)Yj , (2.8)

where f̂X is defined in (2.2), and where

ĝfX(x) =
1

nh

n∑
j=1

Yj KU{(x−Wj)/h} , (2.9)

Sj(x) =
KU{(x−Wj)/h}∑
k KU{(x−Wk)/h}

· (2.10)
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To incorporate a shape constraint we first replace the equal weights n−1, applied to each Yj

in (2.9), by more general weights pj satisfying (2.4). That is, we replace ĝ(x) in (2.8) by

ĝ(x | p) = n
n∑

j=1

pj Sj(x)Yj . (2.11)

Then, as in the density case, we choose the weights p̂ so as to minimize a distance from p to

p0 (for example Dρ(p) defined above) subject to ĝ( | p) satisfying the constraint.

From a computational viewpoint, our procedure for constructing a constrained density

or regression estimator can be implemented by choosing p to minimize

Dρ(p) + π(p, λ) ≡ Dρ(p) + λPen(p),

where Dρ is one of the distance measures at (2.6) and (2.7), Pen(p) is a positive penalty func-

tion of p which increases as the estimated curve departs further from the shape constraint,

and λ is a parameter used to control the strength of the penalty. In practice we start with

a small λ and repeat the procedure for successively larger values of λ until the constraint is

satisfied.

For example, the condition that g is monotone increasing on a specific interval I = [a, b],

say, can be imposed computationally by dividing I up into a regular, discrete grid of points,

a = x1 < . . . < xm = b, and adding to the distance measure Dρ(p) the penalty

π(p, λ) = λ

m−1∑
k=1

∣∣ĝ(xk | p)− ĝ(xk+1 | p)
∣∣rI{ĝ(xk | p)− ĝ(xk+1 | p) > 0

}
, (2.12)

where I(·) is the indicator function, ĝ( · | p) is as at (2.11), and r denotes a positive integer.

Similarly, the condition that fX is log-concave (i.e., f
(1)
X /fX is decreasing) on I = [a, b] can

be imposed by the penalty

π(p, λ) = λ
m−1∑
k=1

∣∣∣∣∣ f̂ (1)
X (xk | p)
f̂X(xk | p)

− f̂
(1)
X (xk+1 | p)
f̂X(xk+1 | p)

∣∣∣∣∣
r

I

{
f̂
(1)
X (xk | p)
f̂X(xk | p)

− f̂
(1)
X (xk+1 | p)
f̂X(xk+1 | p)

< 0

}
, (2.13)

where f̂X( · | p) is as at (2.5). Note that ρ and r are not smoothing parameters and that

their choice has a relatively minor impact on the success of the method. In our numerical

implementation of the procedure we took r = 2 and ρ = 1.
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Remark 2. Obviously, many standard methods, for example those based on splines and

ridging, can be implemented in this way. Our choice of a kernel approach enables us to

develop relatively detailed theoretical properties, which can be expected to reflect those in

other cases where such a concise account is out of reach. In the kernel case our methodology

and theory extend easily to local polynomial estimators (Delaigle et al., 2009).

Remark 3. Choosing the value of r to use in the constraint is quite similar to choosing

a distance to minimize in general statistical estimation problems. Essentially, any r ≥ 0

will lead to a consistent estimator that satisfies the shape constraint, but depending on the

sample, one value of r will work better than the other. In finite samples the results will

differ according to the value of r and, like the choice of a distance, the choice of r is up

the preference of the user. For example, the constraint at (2.12) will provide a consistent

monotone increasing estimator for any r ≥ 0. Taking r = 0 penalizes equally regions that

are almost monotone and regions that are strongly nonmonotone. Taking r larger puts a

heavier penalty on regions that are severely nonmonotone, and the iterative minimization

procedure first tries to correct severe violations, and then corrects smaller problems.

2.2 Hypothesis testing

The operation of choosing p, subject to each pj ≥ 0 and
∑

j pj = 1, to ensure that f̂X( · | p)

or ĝ( · | p) satisfies a shape constraint on I, produces an empirical probability distribution p̂.

We can interpret Dρ(p̂) as the distance through which we have to tilt the data in order to

ensure that the estimator satisfies the shape constraint. We expect that, as the shape of

fX or g moves further from the null hypothesis H0 that a given shape constraint on I is

satisfied, the value of Dρ(p̂) will increase. Therefore we suggest testing H0 by rejecting it if

Dρ(p̂) is too large.

In the density case, we calibrate the test using the bootstrap, as follows. (i) Compute

a conventional deconvolution-based estimator f̂X of fX , and a shape-constrained estimator

f̂X( · | p̂) of fX under H0, from the data set D = {W1, . . . ,Wn}. (ii) Convert f̂X( · | p̂) to

a proper density function f̃X( · | p̂) (Hall and Murison, 1993), and sample data X∗
1 , . . . , X

∗
n

from f̃X( · | p̂), and U∗
1 , . . . , U

∗
n from fU . Then construct W ∗

j = X∗
j +U

∗
j . (iii) Compute, from
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the data set D∗ = {W ∗
1 , . . . ,W

∗
n}, the bootstrap version f̂∗

X(· | p) of f̂X( · | p). (iv) Calculate

the version p̂∗ of p̂ by tilting to ensure that f̂ ∗
X(· | p̂∗) satisfies the shape constraint on I, and

compute Dρ(p̂
∗). (v) Given a potential level, α ∈ (0, 1), for a test of H0, and using bootstrap

simulation, compute the upper α-level critical point ξ̂α of the conditional distribution of

Dρ(p̂
∗). (vi) Reject the null hypothesis if Dρ(p̂) > ξ̂α.

In the regression case, we suggest calibrating the test using the bootstrap, as follows.

(i) Compute a conventional deconvolution-based estimator f̂X of fX , and a shape-constrained

estimator ĝ( · | p̂) of g under H0, from the data set D = {(W1, Y1), . . . , (Wn, Yn)}. (ii) Com-

pute an estimator σ̂2 of the variance σ2 = var(ϵ), using methods of Delaigle and Hall (2010).

(iii) Convert f̂X to a proper density function f̃X and sample data X∗
1 , . . . , X

∗
n from f̃X ,

U∗
1 , . . . , U

∗
n from fU , and ϵ

∗
1, . . . , ϵ

∗
p from a distribution with mean 0 and variance σ̂2 . Then set

W ∗
j = X∗

j+U
∗
j and Y ∗

j = ĝ(X∗
j | p̂)+ϵ∗j . (iv) Compute, from the data setD∗ = {(W ∗

1 , Y
∗
1 ), . . . ,

(W ∗
n , Y

∗
n )}, the bootstrap version ĝ∗(· | p) of ĝ( · | p). (v) Calculate the version p̂∗ of p̂ by tilt-

ing to ensure that ĝ∗(· | p̂∗) satisfies the shape constraint on I, and compute Dρ(p̂
∗). (vi)

and (vii): same as steps (v) and (vi) of the density case.

In step (iii) above we can for example assume the experimental errors to be uniformly

distributed since the method proves to be quite robust against this assumption. For in-

stance, first-order limit-theoretic properties depend on the error distribution only through

its variance.

Remark 4. The method of Hall and Murison (1993) consists in replacing an estimator

f̂X(x|p) by f̃X(x|p) = f̂X(x|p) · 1[a,b](x)/
∫ b

a
f̂X(x|p) dx, where [a, b] is the largest interval

where f̂X(x|p) is non negative. Note that f̂X(x|p) takes negative values only in areas where

there are very few or no observations, which, for most samples, corresponds to areas where

fX is equal to, or very close to, zero. Since f̂X(x|p) takes negative values only in its tails, in

most cases the Hall and Murison transformation will only affect the tails of the estimator,

and hence the transformed estimator will either satisfy the constraint, or violate it only

very mildly in the tails. To first order, this mild violation does not affect performance of

the bootstrap testing procedures. At first sight, it may appear to the reader that instead

of turning the constrained estimator into a density, we should rather directly modify the
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unconstrained estimator to be a proper density and then change the weights to impose the

shape constraint. However in general this would not guarantee that the constrained estimator

itself is a proper density.

3 Numerical properties

Here we apply our estimation and testing procedures to several density and regression models.

3.1 Log-Concave Simulations

In the density context, we focused on the log-concavity assumption, which has received

increasing attention in the recent error-free literature. We considered four densities fX : one

clearly log-concave, fX(x) = ϕ(x), with ϕ the standard normal density; one just log-concave:

fX(x) = 0.6ϕ(x)+0.4ϕ(x− 2); one just not log-concave: fX(x) = 0.6ϕ(x)+0.4ϕ(x− 3); and

one clearly not log-concave: fX(x) = 0.6ϕ(x)+0.4ϕ(x−4). Similar mixtures were considered

by Cule, Samworth and Stewart (2010). In each case we generated 200 contaminated samples

W1, . . . ,Wn of size n = 250, where Wi = Xi + Ui. We took U to be Laplace such that the

noise to signal ratio var(U)/var(X) equals 20%.

Figure 1 compares, for the first two densities, the deconvolution kernel density estima-

tor f̂X with its constrained version f̂X(· | p̂), where a log-concavity constraint is imposed

on the intervals I = [−2, 2] and I = [−2, 4], respectively. The estimators were calcu-

lated using the plug-in bandwidth of Delaigle and Gijbels (2002, 2004). We show four

curves, which we call “quantile curves”, and which are the estimated curves constructed

from the samples which gave the quantiles 0.2, 0.4, 0.6 and 0.8 of the values of the In-

tegrated Squared Errors, ISE(f̂X) =
∫
(f̂X − fX)

2. We also show kernel estimators of the

density of log[ISE(f̂X)/ ISE{f̂X(· | p̂)}]. The graphs in the third column of Figure 1 (and also

in the third column of Figure 2, below) illustrate the significant improvement that one can

get by incorporating a shape constraint; note that the densities graphed there are skewed

to the right. To see this improvement numerically, we computed the Median Integrated

Squared Errors (MISE), finding an improvement of 15% for the first standard normal den-
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Figure 1: Quantile curves of the estimators: unrestricted estimator of fX (left) or the log-
concave estimators (middle), when fX = ϕ(x) (top) or fX(x) = 0.6ϕ(x) + 0.4ϕ(x − 2)

(bottom). Right: kernel estimators of the density of log[ISE(f̂X)/ ISE{f̂X(· | p̂)}]; the vertical
line indicates the value 0 for reference.

sity (respectively 22% for the mixture density). In addition, in these cases, the percentage

of the times that the constrained estimator had smaller MISE was 70% (respectively 73%).

We applied our testing procedure to the four densities. For the first to the fourth densities,

we tested for log-concavity on the intervals I = [−2, 2], I = [−2, 4], I = [−2, 5] and

I = [−2, 5], respectively. Since, in the testing problem, our goal is not to estimate fX , but

to test a hypothesis about fX , where this hypothesis is really a hypothesis on f
(1)
X , we used

the plug-in bandwidth of Delaigle and Gijbels (2002, 2004) adapted to density derivative

estimation. With this bandwidth, the proportion of times we rejected H0 was 0.07 for the

first density; 0.05 for the second density; 0.38 for the third density; 0.93 for the fourth

density. In other words, the test approximately attained its desired level and had power to

detect deviations from the null hypothesis.
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Figure 2: Quantile curves of the estimators: unrestricted estimator of g (left) or monotonized
estimators (middle), when the regression curve corresponds to a = 0.15 (top) or a = 0
(bottom). Right: kernel estimators of the density of log[ISE(ĝ)/ ISE{ĝ(· | p̂)}]; the vertical
line indicates the value 0 for reference.

3.2 Monotonicity Simulations

Next we considered monotonicity constraints for a family of regression models, taken

from Bowman et al. (1998), and defined by g(x) = 1 + x − a exp{−50(x − 0.5)2}, ϵ =

Normal(0, 0.052), X = Normal(0.5, 0.1), where a is chosen so that g is clearly monotone in-

creasing (a = 0), only just monotone increasing (a = 0.15), slightly nonmonotone increasing

(a = 0.25) or more clearly nonmonotone (a = 0.45). Note that the situation in Bowman et

al. (1998) is much easier as, in their context, not only are the variables Xi observed without

error, but they are also fixed and equispaced between 0 and 1. For the testing procedure we

generated 200 samples (X1, Y1), . . . , (Xn, Yn) of size n = 250 from each of those regression

models, and added Laplace measurement errors Ui to the Xis, such that the noise to signal

ratio var(U)/var(X) was 20%.

Figure 2 compares the estimator ĝ with its monotonized version ĝ(· | p̂), when a = 0 or

a = 0.15. For these two examples, the unconstrained estimator satisfied the constraint a

number of times. Since in those cases the constrained estimator equalled the unconstrained
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one, to illustrate better the amount of improvement that the constrained estimator can offer

we generated random samples in the way described above, until we obtained 200 samples

for which the unconstrained estimator did not satisfy the constraint. The results discussed

in this paragraph correspond to those 200 samples. For both methods, we show four curves

corresponding to the samples which gave the quantiles 0.2, 0.4, 0.6 and 0.8 of the values

of the Integrated Squared Error, ISE(ĝ) =
∫
(ĝ − g)2. We also show kernel estimators

of the density of log[ISE(ĝ)/ ISE{ĝ(· | p̂)}] calculated from the 200 samples. We used the

bandwidth of Delaigle and Hall (2008). To see numerically the improvement of our method,

we computed the Median Integrated Squared Errors (MISE), finding an improvement of 12%

when a = 0.15 (respectively 7% when a = 0). In addition, in these cases, the percentage

of the times that the constrained estimator had smaller MISE was 61% when a = 0.15

(respectively 67% when a = 0).

We tested monotonicity of these four curves on the interval I = [0, 1] and calibrated the

test for a level α = 0.05. We calculated the regression estimators using the bandwidth of

Delaigle and Hall (2008), except for the estimator used to generate the bootstrap variables

Y ∗
j , where, as in Härdle and Marron (1995), we used a bandwidth of the order appropriate

to estimate g(2) with a second order kernel. More precisely, we multiplied the bandwidth of

Delaigle and Hall (2008) by nb, where, in the Laplace case, b = (1/9) − (1/13), see section

5. To reduce the occurrence of problems with the tails of the estimated regression curve, we

discarded too extreme bootstrap data; in this case, those for which X∗ was larger than 1

while Y ∗ was smaller than 1. For the same reason, to estimate the variance of ϵ, we used the

minimum between three estimators: the naive difference-based estimator (see Delaigle and

Hall, 2010), the corrected version of Delaigle and Hall (2010) and a SIMEX difference-based

estimator constructed using the same principle as the SIMEX bandwidth of Delaigle and

Hall (2008). To generate the bootstrap variables X∗
j we also needed a bandwidth for f̂X ,

and we used the plug-in bandwidth of Delaigle and Gijbels (2002, 2004). With these choices,

the proportion of times we rejected H0 was 0.06 when a = 0; 0.11 when a = 0.15; 0.32 when

a = 0.25 and 0.60 when a = 0.45. The power for a = 0.45 may seem a bit low, but the

problem is very difficult because the variance of the measurement errors is high whereas the

dip in the regression curve is narrow. Moreover, the variance of ϵ is very difficult to estimate

11
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Figure 3: Unrestricted and monotonized estimated curves g(x) for the Wright data.

in this case; when we used its real value instead of the estimated one, the power increased

to 0.71.

4 Empirical example

We applied our procedure to the peak expiratory flow rate (PEFR) data of Bland and

Altman (1986). The data concern measurements of the PEFR on 17 individuals, using

two procedures: two replicated accurate measurements obtained by a Wright peak flow

meter, and two replicated inaccurate measurements obtained by a mini Wright meter. As

in Delaigle et al. (2008), to reduce the variance of ϵ, we take Yi to be the average of the two

Wright readings, and use the two replicated inaccurate measurements to form the sample of

Wis (thus each Yi is used twice). The variance of U is estimated from the replicated mini

Wright readings, and for simplicity of calculation we assume a Laplace error. The aim is

to determine whether the mini Wright readings are in agreement with the Wright readings.

The data are plotted in Figure 3, as well as the two regression estimators (unrestricted and

monotonized). Although the unrestricted estimator fluctuates somewhat, an application of

our testing procedure does not permit us to reject the hypothesis that the readings by the

mini Wright meter are a monotonic function of the readings of the Wright meter, and it

is reasonable to infer that the fluctuations are probably artifacts caused by the low sample

size, rather than a true characteristic of the curve. In particular the monotonized estimator
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seems to improve the unrestricted estimator.

5 Theoretical properties

5.1 Introduction

Since the regression context is considerably more difficult to treat than the density case, in

this section we restrict our theoretical study to the regression case. We state three theorems.

They describe the uniform convergence of the standard, non-tilted estimator ĝ( · | p0) and

its derivatives (Theorem 1), the rich variety of functions to which the standard estimator

can be tilted (Theorem 2), and a lower bound to Dρ(p̂) (Theorem 3). The lower bound

complements an upper bound to Dρ(p̂), implied by Theorem 2; see (5.8). Following each

theorem the implications of that result are outlined and discussed. To our knowledge, no

uniform convergence results of the type given in Theorem 1 exist in the setting of errors-in-

variables problems. Therefore that result may be of independent interest.

5.2 Properties of the non-pivoted estimator ĝ( · | p0)

If J denotes an interval where fX vanishes, then it is easily seen that g is not identifiable

at any point in the interior J 0 of J . Therefore, we shall confine attention to properties

of ĝ(x | p) for x lying in intervals I where fX(x) > 0. Let I be an interval on which fX

is bounded away from zero, let W , X, U , ϵ and g be as in (2.1), and let ℓ ≥ 0 denote an

integer. When discussing convergence of the ℓth derivative, ĝ(ℓ), of ĝ to g(ℓ) we shall assume

that:

(a) the error ϵ in (2.1) satisfies E|ϵ|r < ∞, where r ≥ 2, and has zero

mean; (b) fX has ℓ + 2 bounded derivatives; (c) ϕK is compactly supported

and satisfies ϕK(0) = 1; (d) there exist constants B1, α > 0 such that

|ϕU(t)| ≥ B1 (1 + |t|)−α for all t; and (e) h = h(n) → 0 and, for some η > 0,

nh2(α+ℓ+1+η) ≥ 1 for all sufficiently large n.

(5.1)

The value of r that we need in (5.1)(a) depends only on α in (5.1)(d) and on η in

(5.1)(e), and increases as α increases and η decreases. The resulting moment condition in
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(5.1)(a), somewhat stronger than usual, is a consequence of the fact that, in Theorem 1 below,

we establish uniform convergence of ĝ( · | p0), not just convergence at a single point. The

condition on h in (5.1)(e) encompasses the optimal choice of bandwidth for ĝ(ℓ)(· | p0), which,

under the assumption of ℓ + 2 bounded derivatives of fX and gfX , is of size n−1/(2α+2ℓ+5).

More generally, assumptions (b)–(e) in (5.1) are standard in nonparametric deconvolution;

see Fan and Truong (1993).

Given r in (5.1)(a), fX in (5.1)(b), an integer ℓ ≥ 0 and a constant B2 > 0, we define a

class G = G(B2, ℓ, r, fX) of functions g as follows:

G is the class of (ℓ + 2)-times differentiable functions g such that, with

χ1 = max0≤m≤ℓ+2 |(gfX)(m)| and χ2(w) = E{|g(X)|r |W = w} fX(w),
(a) |χ1(w)| ≤ B2 for all w, (b) χ2(w) ≤ B2 for all w, and (c)

∫
χ2(w) dw ≤ B2.

(5.2)

Condition (5.2)(a) is a smoothness assumption on g, and, in combination with the smoothness

condition on fX in (5.1)(b), is conventional; and (5.2)(b) and (5.2)(c) are moment conditions

on g, which, in conjunction with the moment condition on ϵ in (5.1), are also fairly standard.

Theorem 1. Assume the model at (2.1), and that (5.1) holds for r ≥ 2 sufficiently large.

Assume also that G satisfies (5.2). Then there exists B3 > 0 such that

sup
g∈G

P

[
sup
x∈I

∣∣ĝ(ℓ)(x)− g(ℓ)(x)
∣∣ ≥ B3

{(
nh2α+2ℓ+1

)−1/2
(log n)1/2 + h2

}]
→ 0 . (5.3)

The convergence rate given in Theorem 1 is best possible, in the following sense. If ϵ1 > 0

is given; if g ∈ G, possibly depending on n; if m = m(n) diverges to infinity at rate nϵ2 ,

for ϵ2 > 0; if x1, . . . , xm are equally spaced points in the interval I; and if the (ℓ + 2)th

derivatives of fX and g are continuous, as well as bounded; then there exist small constants

B8 > 0 and B9 > 0 such that, for all sufficiently large n,

P

{
max

j=1,...,m

∣∣ĝ(ℓ)(xj)− g(ℓ)(xj)
∣∣ ≥ B8

(
nh2α+2ℓ+1

)−1/2
(log n)1/2 +B9 h

2

}
≥ 1− ϵ1 . (5.4)

Result (5.4) is proved by considering approximations to the joint distributions of ĝ(ℓ)(xj) for

1 ≤ j ≤ m.

Remark 5. The constant B9 can be taken to be zero only if the order h2 term in the

standard formula for the bias of ĝ(ℓ), as an estimator of g(ℓ), vanishes identically in I, so that
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bias equals o(h2) throughout I. (For example, this would be the case if fX and g were both

constant on I.) However, in this case the quantity B9h
2 would generally have to be replaced

by a term of higher order in h.

To connect Theorem 1 with the problem of estimation under shape restrictions, consider

for example the case where the shape constraint is that g is monotone on I. Theorem 1,

and the converse at (5.4), imply that

ζn ≡
(
nh2α+3

)−1/2
(log n)1/2 + h2

is a lower bound to the gradient of a linear function g for which the standard estima-

tor ĝ gives, with probability converging to 1, a monotone estimator. That is, if g = gn

is linear over a nondegenerate subinterval of I, and if the gradient of the line exceeds

B {(nh2α+3)−1/2 (log n)1/2 + h2} for a sufficiently large constant B, then the probability that

ĝ(1)(x) > 0 for all x ∈ I converges to 1; and, conversely, if bias is nonzero on a nondegen-

erate subinterval of I, and if the probability that ĝ(1)(x) > 0 for all x ∈ I converges to 1,

then the gradient of the line exceeds B {(nh2α+3)−1/2 (log n)1/2 + h2} for some B > 0. For

example, if the bandwidth h ≍ n−1/(2α+5) is chosen to ensure that ĝ has an optimal pointwise

convergence rate, i.e. if the standard deviation and bias terms (nh2α+1)−1/2 and h2 are of the

same size, then (nh2α+3)−1/2 (log n)1/2 + h2 ≍ n−1/{(2α+5)} (log n)1/2, which, up to a constant

multiplier, represents the shallowest gradient (in asymptotic terms) that the straight line, in

a graph of g, can have without it being necessary to tilt the estimator to ensure monotonicity

of ĝ. Analogous results can be stated for more general constraints of the form

ψ(g, g(1), . . . , g(k)) > 0 on a finite interval I , (5.5)

where k is a positive integer and ψ is a smooth function, for example the condition corre-

sponding to the constraint that g is log-concave.

5.3 Properties of the constrained estimator when g does not nec-

essarily satisfy the shape constraint

Theorem 4.1 of Hall and Huang (2001) describes general circumstances where the probability

distribution p, in any estimator ĝ( · | p) of the type at (2.11), can be chosen so as to ensure
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that the estimator is monotone increasing. We now discuss the very wide variety of other

possible shapes that a constrained graph of ĝ( · | p) can enjoy, even in the asymptotic limit.

As a prelude to stating the theorem we introduce a general smooth function, γ(·), to which

we shall show that ĝ( · | p) can converge uniformly. With ℓ denoting a nonnegative integer

we assume that:

g and γ, and their first ℓ + 2 derivatives, are continuous, g and γ are positive

and bounded away from zero and infinity, and g ∈ G(B2, ℓ, r, fX) for some

B2, r > 0.

(5.6)

Cases where g and γ are not necessarily positive and bounded can be treated too, but at

the expense of significantly more complex assumptions and theoretical arguments. Essen-

tially, Theorem 2 below states that the ℓth derivative γ(ℓ)(x) of any curve γ(x) that satisfies

(5.6) can be consistently estimated by the tilted estimator ĝ(ℓ)(x | p), defined to be the ℓth

derivative of ĝ(x | p) at (2.11). As before, let I be an interval on which fX is bounded away

from zero.

Theorem 2. Assume that (5.1) and (5.6) hold for r ≥ 2 sufficiently large. Then there exist

probability weights pj satisfying (2.4) and such that: (i) the quantities npj are uniformly

bounded away from zero and infinity, and (ii) for a constant B3 > 0,

P

[
sup
x∈I

∣∣ĝ(ℓ)(x | p)− γ(ℓ)(x)
∣∣ ≥ B3

{(
nh2α+2ℓ+1

)−1/2
(log n)1/2 + h2

}]
→ 0 . (5.7)

Under the conditions of the theorem we can construct data-dependent weights pj such

that npj is bounded away from zero and infinity, and ĝ(ℓ) (· | p) → γ(ℓ) uniformly on I. Since γ

is virtually arbitrary then this property demonstrates the great flexibility of tilting methods

for ensuring that, in the presence of errors in variables, an estimator of a regression mean

accurately reflects the shape of a given function γ. In our context of shape restriction, γ is

determined implicitly by the function in a given space, S say (e.g. the space of monotone

increasing functions), that is the closest to g. We choose the weights p̂j so that ĝ( | p̂) is

the tilted estimator in S that is closest to ĝ. More specifically, the constrained estimation

problem we are solving takes the form: find p to minimize Dρ(p) subject to ĝ(x | p) ∈ S for

x ∈ I, where I is an interval on which fX is bounded away from zero.
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Remark 6. We are not assuming that the true g lies in S on I; we are constraining ĝ( · | p)

to be in S without requiring the true regression mean to have that property. In cases where

g lies in S we have γ ≡ g, but the tilted estimator ĝ( · | p̂) gives better performance than the

estimator ĝ at (2.8) because it incorporates the knowledge that we have about g. Whether

g lies in S or not, we claim that, if p = p̂ minimizes Dρ(p) subject to ĝ( · | p) ∈ S on I, then,

as shown in Appendix A.2, as n→ ∞, there exists B4 > 0 such that

P{Dρ(p̂) ≤ B4 n} → 1. (5.8)

Remark 7. When the constraint is defined in terms of a strict inequality about a smooth

function of derivatives of g, for example as at (5.5), then if the true g satisfies these shape

constraint, the value of Dρ(p̂) is an order of magnitude smaller than the Op(n) bound given

at (5.8). More precisely, we show in appendix A.2 that, as n→ ∞,

P{Dρ(p̂) ≤ ϵn} → 1 for all ϵ > 0 . (5.9)

Remark 8. The case of a constraint defined in terms of a non-strict inequality, for example

(5.5) with > replaced by ≥, is statistically the most difficult, in the sense of requiring,

generally speaking, the greatest amount of tilting, i.e. the largest value of Dρ(p̂).

5.4 Consistent hypothesis testing

It remains to prove that the test suggested in section 2.2 is consistent. In Theorem 3, below,

we give a formal result about the asymptotic behavior of the test statistic Dρ(p̂) under the

alternative that g(·) is not monotone nondecreasing on I0. As we shall show, it implies that

the bootstrap-based hypothesis test suggested in section 2.2 gives statistically consistent

results.

Theorem 3. Assume the conditions of Theorem 2 pertaining to g and to the case ℓ = 1,

and that g is not monotone nondecreasing on I. Then,

lim
ϵ→0

lim inf
n→∞

P{Dρ(p̂) ≥ nϵ} = 1 . (5.10)
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Remark 9. Although Theorem 3 treats only the case where the constraint is one of mono-

tonicity, similar arguments can be used to prove that (5.10) also holds under H0 : g ∈ S on I

and H1 : g ̸∈ S on I, where S is a set of functions satisfying a constraint defined in terms of

an inequality such as that at (5.5). The more general version of Theorem 3, together with

the bootstrap version of (5.9), imply that if the true g ̸∈ S on I then the probability that

the bootstrap test in section 2.2, which is based on an empirical critical point ξ̂α, results in

rejection of H0, converges to 1 as n→ ∞. That is, as shown in Appendix A.3,

P
{
Dρ(p̂) > ξ̂α

}
→ 1 . (5.11)

Remark 10. If the true g is strictly monotone increasing on I, and the conditions of

Theorem 3 hold, then as shown in Appendix A.3, the probability that the hypothesis that g

is monotone nondecreasing is rejected converges to zero:

P{Dρ(p̂) > ξ̂α} → 0 . (5.12)

This result can be generalized to constraints that have the form at (5.5).

Remark 11. The case where the true g is monotone nondecreasing, but not strictly so, is

excluded above. It is problematic to treat because of the example where g is constant on

at least part of I. In the case of a constant g the probability that our test rejects the null

hypothesis converges to neither 0 nor 1.

6 Discussion

We have developed a general methodology for doing measurement error analysis subject to a

shape constraint, as well as a method for testing whether the constraint is actually satisfied.

Our simulations as well as our example show that in cases where a standard measurement

error estimator violates the constraint when it really holds, imposing the constraint provides

improvement in estimation accuracy.

While we have concentrated on log-concavity of a density function and monotonicity of

a regression function, many other shape constraints can be handled by our methodology.

The key is to find a positive penalty function, such as at (2.12) for log-concavity and (2.13)
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for monotonicity, which increases as the estimated curve departs further from the shape

constraint.

A Appendix

A.1 Proof of Theorem 1

For k = 0, 1, define

Tkℓ(x) =
1

nhℓ+1

n∑
j=1

Y k
j K

(ℓ)
U

(
x−Wj

h

)
.

Since, by (5.1)(b) and (5.2)(a), fX and gfX each have ℓ+ 2 uniformly bounded derivatives,

then

E{Tkℓ(x)} = g
(ℓ)
k (x) +O

(
h2
)
, (A.1)

uniformly in k = 0, 1 and x ∈ I, where g0 = fX and g1 = gfX . Also,

|Tkℓ(x1)− Tkℓ(x2)| ≤
|x1 − x2|
nhℓ+2

(
sup

∣∣K(ℓ+1)
U

∣∣) n∑
j=1

|Yj|k . (A.2)

For a constant C1 > 0 and all x,

|K(ℓ+1)
U (x)| = 1

2π

∣∣∣∣ ∫ tℓ+1 e−itx ϕK(t)ϕU(t/h)
−1 dt

∣∣∣∣ ≤ C1 h
−α ;

here we used (5.1)(d) and the fact that, by (5.1)(c), ϕK is compactly supported. Therefore

(A.2) implies that

|Tkℓ(x1)− Tkℓ(x2)| ≤
C1 |x1 − x2|
nhℓ+2+α

n∑
j=1

|Yj|k , (A.3)

uniformly in k = 0, 1 and x1, x2 ∈ I.
Since, by (5.1)(e), h → 0 and nh2(α+ℓ+1+η) ≥ 1 for all sufficiently large n, then for large

n, (hℓ+2+α)−1 ≤ nτ , where

τ =
ℓ+ 2 + α

2 (α+ ℓ+ 1)
.

Therefore (A.3) implies that

|Tkℓ(x1)− Tkℓ(x2)| ≤ C1 n
τ−1 |x1 − x2|

n∑
j=1

|Yj|k .

Hence, if x1 and x2 are constrained by

|x1 − x2| ≤ n−τ−1 (A.4)
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then

|Tkℓ(x1)− Tkℓ(x2)| ≤
C1

n2

n∑
j=1

|Yj|k . (A.5)

Put

σkℓ(x)
2 = var{Tkℓ(x)} = O

{
(nh2α+2ℓ+1)−1

}
, (A.6)

where the second identity holds uniformly in k = 0, 1 and x ∈ I; see (A.12), below, for

explicit calculation. Define Skℓ(x) = (1−E)Tkℓ(x)/σkℓ(x), so that Skℓ(x) has zero mean and

unit variance, and assume for the present that, with λn = (log n)1/2,

P{Skℓ(x) > cλn} = (2π)−1/2 (cλn)
−1 n−c2/2 {1 + o(1)} uniformly in

k = 0, 1 and x ∈ I. (A.7)

Let In denote a set consisting of O(n
c2/2) elements of I. Then (A.1), (A.6) and (A.7) together

imply that if C2 > c is sufficiently large then

P

[
sup
x∈In

∣∣Tkℓ(x)− g
(ℓ)
k (x)

∣∣ ≥ C2

{(
nh2α+2ℓ+1

)−1/2
(log n)1/2 + h2

}]
→ 0 (A.8)

as n → ∞. Combining (A.5) and (A.8), and noting that, by a law of large numbers and

since E(|Y |) <∞ (see (5.1)(a) and (5.2)(b)),

P

(
n−1

n∑
j=1

|Yj|k > E|Y |k + η

)
→ 0

for each η > 0, then if (A.4) holds and, in (A.7), we take c > 2 (τ + 1)1/2, we have, for any

C3 > C1E|Y |+ C2,

P

[
sup
x∈I

∣∣Tkℓ(x)− g
(ℓ)
k (x)

∣∣ ≥ C3

{(
nh2α+2ℓ+1

)−1/2
(log n)1/2 + h2

}]
→ 0 . (A.9)

Using (A.9), and using Taylor expansion, we deduce that Theorem 1 holds if nh2α+2ℓ+1 → ∞.

It remains to derive (A.7), which we do by following the argument used to prove Theo-

rem 1 of Rubin and Sethuraman (1965). Note that n1/2Skℓ(x) equals a sum of n independent

random variables, each with the distribution of

R = {(1− E)R0}/(varR0)
1/2 , (A.10)

where R0 = R0(x) = h−ℓ−1R1 and

R1 = Y kK
(ℓ)
U {(x−W )/h)} . (A.11)
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In our context, the random variables denoted by Xni in Theorem 1 of Rubin and Sethuraman

(1965) are all independent and identically distributed as R(x). This ensures that Rubin and

Sethuraman’s (1965) assumption (8) holds, with their a and A both equal to 1, and their

assumption (7) holds with (in their notation) σ2
ni = 1.

Recall the definition of gk above (A.2), and observe that, for k = 0, 1,

E(R0) =

∫
g
(ℓ)
k (x− hu)K(u) du = gk(x) +O

(
h2
)
,

uniformly in x ∈ I as n → ∞. Also, defining γ0(w) = E{g(X)2 |W = w} and σ2 = var(ϵ),

we have, in the case k = 1:

var(R0) = h−(2ℓ+1)

∫
{γ0(x− hu) + σ2} fW (x− hu)K

(ℓ)
U (u)2 du− (ER0)

2

= h−(2ℓ+1) {γ0(x) + σ2} fW (x)

∫
K

(ℓ)
U (u)2 du+ o

(
h−(2ℓ+1−2α)

)
∼ const. h−(2ℓ+2α+1) {γ0(x) + σ2} fW (x) , (A.12)

uniformly in x ∈ I. An identical formula, but with γ0(x) + σ2 replaced by 1, holds in the

case k = 0. Hence, for k = 0, 1,

R(x) = hα−(1/2)
{
R1(x)− hℓ+1 a(x, h)

}/
b(x, h), where |a(x, h)| and b(x, h)

are bounded, and b(x, h) is bounded above zero, uniformly in x ∈ I as

n→ ∞. (A.13)

Using (5.1) we deduce that

2π
∣∣K(ℓ)

U (x)
∣∣ = ∣∣∣∣ ∫ e−itx (−it)ℓ ϕK(t) fU(t/h)

−1 dt

∣∣∣∣ ≤ const. h−α , (A.14)

uniformly in all x. Combining (A.13) and (A.14) we see that, defining an = n1/2/(log n)β for

any fixed β > 0, if k = 0 in the definition of R1 at (A.11) (and thence in the definition of R

at (A.10)) then the event |R(x)| ≤ an is implied by h−1/2 ≤ const. n1/2/(log n)β, provided the

constant is sufficiently small; and that this inequality holds for all sufficiently large n since,

by (5.1)(e), nh2(α+ℓ+1+η) ≥ 1 for some η > 0, or equivalently, h−(α+ℓ+1) ≤ const. n(1/2)−η1

for some η1 > 0. Likewise, if k = 1 in (A.11) then |R(x)| ≤ an is implied by |Y | ≤ nη2 for

some η2 > 0, and if C4 > 0 is given, and we choose r, in (5.1)(a) and (5.2), sufficiently large,

then P (|Y | ≤ nη2) = 1 − O(n−C4). Therefore infx∈I P{|R(x)| ≤ an} = 1 − O(n−C4), and

similarly it can be proved that, again for sufficiently large r, supx∈I E[|R(x)|2 I{|R(x)| >

21



an}] = O(n−C4). Combining these results we deduce that:

if k = 0 then there exists n0 ≥ 1 such that P{supx |R(x)| ≤ an} = 1 for

all n ≥ n0; and if k = 1 and C4 > 0 is given then we can choose r, in

(5.1)(a) and (5.2), so large that infx∈I P{|R(x)| ≤ an} = 1−O(n−C4)

and supx∈I E[|R(x)|2 I{|R(x)| > an}] = O(n−C4). (A.15)

This property, when β = 1/2, implies results (30), (31) and (43) of Rubin and Sethuraman

(1965). Therefore, although condition (11) of Rubin and Sethuraman (1965) does not hold

in our context, since it is used only for their (30), (31) and (43) then we do not require it.

Result (A.15), in the case β = 3/2, also implies property (9) of Rubin and Sethuraman

(1965). Since Rubin and Sethuraman’s (1965) conditions (7), (8), (9) and (11) are all that

is needed for their Theorem 1 then that result holds in our case, uniformly in x ∈ I and for

k = 0, 1, where it implies (A.7). This completes the proof of our Theorem 1.

A.2 Proof of Theorem 2

For brevity we treat only the case ℓ = 0. Take pj = ϕ(Wj)/{
∑

j ϕ(Wj)}, where ϕ denotes a

function satisfying

C1 ≤ ϕ(x) ≤ C2 for all x , (A.16)

with 0 < C1 < C2 < ∞ and E{ϕ(W )} = 1. (The latter condition serves only to define

concisely the scale of ϕ.) Then the constraints at (2.4) hold, and part (i) of Theorem 2

follows from (A.16).

Using the definitions of Sj(x) and ĝ(x | p) at (2.10) and (2.11), respectively, and defining

δ = (nh2α+1)−1/2 (log n)1/2 and ψ1(w) = E{g(X) |W = w}, we see that:

ĝ(x | p) = n
n∑

j=1

pj Sj(x)Yj =
{
1 +Op

(
n−1/2

)} n∑
j=1

ϕ(Wj)Sj(x)Yj

=
{
1 +Op

(
n−1/2

)} ∑
k ϕ(Wk)YkKU{(x−Wk)/h}∑

k KU{(x−Wk)/h}

=
E[ϕ(W )ψ1(W )KU{(x−W )/h}]

E[KU{(x−W )/h}]
+Op(δ) , (A.17)

uniformly in x ∈ I. (In (A.17) the first identity comes from the definition of ĝ( · | p); the
second and third from the definition of pj, using the fact that

∑
j ϕ(Wj) = nE{ϕ(W )} +
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Op(n
1/2); and the third from property (A.16), using the arguments employed to prove The-

orem 1.) As h tends to zero,

h−1E[KU{(x−W )/h}] = fX(x) +O
(
h2
)
, (A.18)

h−1E[ϕ(W )ψ1(W )KU{(x−W )/h}] = ψ2(x) +O
(
h2
)
, (A.19)

where

ψ2(x) =
1

2π

∫
e−itx (ϕψ1fW )Ft(t)ϕU(t)

−1 dt . (A.20)

Now,

(ϕψ1fW )Ft(t) =

∫
eitw E{g(X) |W = w} (ϕfW )(w) dw

=

∫
eitw ϕ(w) dw

∫
g(x) fX(x) fU(w − x) dx

=

∫
eitw ϕ(w) {(gfX) ∗ fU}(w) dw .

If we define

ϕ = {(gfX) ∗ fU}−1 {(γfX) ∗ fU} (A.21)

then (ϕψ1fW )Ft = (γfX)
Ft ϕU , and hence, by (A.20), ψ2 = γfX . From this result and

(A.17)–(A.19) we deduce part (ii) of Theorem 2.

It remains to ensure that ϕ satisfies (A.16). If 0 < C4 ≤ min(g, γ) ≤ max(g, γ) ≤ C5

then, using (A.21) and the fact that fU and fX are probability densities,

ϕ ≤ C−1
4 C5 (fX ∗ fU)−1 (fX ∗ fU) = C−1

4 C5 ,

and similarly ϕ ≥ C−1
5 C4, where we interpret 0/0 as 1 and in particular define ϕ to be an

arbitrary positive constant at points where fX ∗ fU = 0. This establishes (A.16).

A.2.1 Argument leading to (5.8)

To appreciate why (5.8) is correct, suppose initially that the values of npj are constrained

to satisfy B6 ≤ npj ≤ B7 for all j, where 0 < B6 < B7 < ∞. Then it can be shown

directly from (2.6) and (2.7) that 0 ≤ Dρ(p) ≤ B4 n, where B4 depends only on B6, B7 and

ρ. Therefore Theorem 2 asserts the existence of B4 such that, with probability converging

to 1 as n → ∞, there exists at least one p for which Dρ(p) ≤ B4 n and ĝ(x | p) ∈ S for all

x ∈ I. Hence, since p̂ minimizes Dρ subject to ĝ(x | p) ∈ S, then Dρ(p̂) ≤ Dρ(p) ≤ B4 n

with probability converging to 1. Therefore (5.8) holds.
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A.2.2 Argument leading to (5.9)

To appreciate why, consider the case where the true g is strictly monotone nondecreasing;

more general constraints, such as that at (5.5), can be treated similarly. Then (5.9) is

readily proved using a slight modification of the argument leading to Theorem 2, noting

that a strictly increasing function γ for which the ratio g/γ is no further than a small, fixed

positive number δ from 1 can be achieved in the limit by tilting the standard estimator using

weights pj for which npj differs from 1 by no more than δ {1 + Op(n
−1/2)}, uniformly in j.

(Here it is necessary only to appeal to formula (A.21).) Therefore P{Dρ(p̂) ≤ ϵ(δ)n} → 1,

where ϵ(δ) depends only on g, ρ and δ and converges to zero as δ decreases. Property (5.9)

follows immediately.

A.3 Proof of Theorem 3

First we state a lemma. Let α0 ≥ α + 1 be an integer, and let ψ1 denote a nonnegative

function with support equal to [−1, 1] and with at least α0 bounded derivatives on the real

line. Define ψ(x |x1, x2) = ψ1[{x − 1
2
(x1 + x2)}/(x2 − x1)], where x1 and x2 are in I and

x1 ̸= x2.

Lemma 1. Assume that E(ϵ2) < ∞ and E(ϵ) = 0, that |ϕU(t)| ≥ B1 (1 + |t|)−α for all t,

that the functions χ3(w) = E{g(X)2 |W = w} and fW satisfy sup {(χ3 + 1) fW} < ∞, and

that fX is continuous and bounded away from zero on [x1, x2]. Then,∣∣∣∣ ∫ {ĝ(x | p)− ĝ(x | p0)}ψ(x |x1, x2) f̂X(x) dx
∣∣∣∣2 = Op

{
n−1

n∑
j=1

(npj − 1)2
}
, (A.22)

uniformly in n-variate probability distributions p.

Proof of Lemma 1. To derive Lemma 1, observe that the function

κ(w |h) = 1

h

∫
KU

(
x− w

h

)
ψ(x |x1, x2) dx

has Fourier transform κFt(t |h) = ϕK(ht)ψ
Ft(t |x1, x2)ϕU(t)

−1. Since ψ(· | x1, x2) has α0 ≥
α+ 1 bounded derivatives then, for a constant C6 > 0,∣∣ψFt(t |x1, x2)ϕU(t)

−1
∣∣ ≤ C6 (1 + |t|)−α0 (1 + |t|)α ≤ C6 (1 + |t|)−1 .
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Therefore, defining C7 = sup {(χ3 + σ2) fW}, we have:

E
{
Y 2 κ(W |h)2

}
=

∫ {
χ3(w) + σ2

}
fW (w)κ(w |h)2 dw

≤ C7

∫
κ(w |h)2 dw = (2π)−1C7

∫ ∣∣κFt(t |h)∣∣2 dt
≤ (2π)−1C2

6 C7

∫
(1 + |t|)−2 dt <∞ . (A.23)

Furthermore, the left-hand side of (A.22) equals the square of:∫
{ĝ(x | p)− ĝ(x | p0)}ψ(x |x1, x2) f̂X(x) dx

=
n∑

j=1

(npj − 1)Yj

∫
Sj(x)ψ(x | x1, x2) f̂X(x) dx

=
1

n

n∑
j=1

(npj − 1)Yj
1

h

∫
KU

(
x−Wj

h

)
ψ(x |x1, x2) dx

=
1

n

n∑
j=1

(npj − 1)Yj κ(Wj |h) .

Therefore, by the Cauchy-Schwarz inequality, the left-hand side of (A.22) does not exceed

the value of{
1

n

n∑
j=1

(npj − 1)2
}{

1

n

n∑
j=1

Y 2
j κ(Wj |h)2

}
= Op

{
1

n

n∑
j=1

(npj − 1)2
}
,

where the identity follows from (A.23) and holds uniformly in p. This proves Lemma 1.

To establish Theorem 3, if g is not monotone nondecreasing on I = [a, b] then there exists

a sequence of subintervals of I, say [xk1, xk2] for 1 ≤ k ≤ m where a ≤ x11 ≤ . . . ≤ xm2 ≤ b

and xk1 ≤ xk2 for each k, where on each interval g is strictly decreasing; and there exists a

constant C8 > 0; such that

inf
mon. nondecr. γ

max
1≤k≤m

∣∣∣∣ ∫ {γ(x)− g(x)}ψ(x | xk1, xk2) fX(x) dx
∣∣∣∣ ≥ C8 , (A.24)

with the infimum taken over all monotone nondecreasing functions γ on I. To appreciate

why (A.24) must hold, for all functions g that are not monotone nondecreasing on I, there
exists C9 > 0 such that

inf
mon. nondecr. γ

∫
I
|γ(x)− g(x)| fX(x) dx ≥ C9 .
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Hence, using an argument by contradiction, we see that if a = y0 < y1 < . . . < ym = b is a

decomposition of I into a regular grid of edge width δ = (b− a)/m then we can choose δ so

small that

inf
mon. nondecr. γ

∑m
k=1

∣∣∣∣ ∫ {γ(x)− g(x)}ψ(x | yk−1, yk) fX(x) dx

∣∣∣∣ ≥ C10 ,

for a positive constant C10. Therefore,

inf
mon. nondecr. γ

max
1≤k≤m

∣∣∣∣ ∫ {γ(x)− g(x)}ψ(x | yk−1, yk) fX(x) dx

∣∣∣∣ ≥ C10/(m) ,

which implies (A.24).

It follows from Theorem 2 that, under the assumptions of Theorem 3, the event E that

there exists a value p̂ of p such that ĝ( · | p̂) is monotone nondecreasing on I, satisfies P (E) →
1 as n → ∞. If E obtains, let p̂ denote a p that minimizes Dρ(p) subject to ĝ( · | p) being

monotone nondecreasing. Then, since ĝ( · | p0) and f̂X converge in probability to g and fX ,

respectively, uniformly on compact intervals where fX is bounded away from zero (in the

case of f̂X this convergence can be proved as in the derivation of Theorem 1 in the case

ℓ = 0), then (A.24) implies that:

P

{
max
1≤k≤m

∣∣∣∣ ∫ {ĝ(x | p̂)− ĝ(x | p0)}ψ(x |xk1, xk2) f̂X(x) dx
∣∣∣∣ ≥ 1

2
C8

}
→ 1 .

Therefore, by Lemma 1,

lim
ϵ→0

lim inf
n→∞

P

{ n∑
j=1

(np̂j − 1)2 ≥ nϵ

}
= 1 . (A.25)

IfDρ is as defined as at (2.6) or (2.7) then it can be shown by a Lagrange multiplier argument,

differentiating Dρ(p)+λ (
∑

j pj − 1), that, for any given p = (p1, . . . , pn), the value of Dρ(p)

is decreased by decreasing components pj for which pj > n−1 and increasing components for

which pj < n−1. Hence, if there exists a distribution p such that ĝ( · | p) is nondecreasing on

I and C−1
10 ≤ npj ≤ C10, where C10 > 0 is given, then the distribution p̂ = (p̂1, . . . , p̂n) that

minimizes Dρ(p) subject to ĝ( · | p) being nondecreasing also satisfies C−1
10 ≤ np̂j ≤ C10. Call

this property (P1), and let (P2) denote the property that the distance measure Dρ, defined

by (2.6) or (2.7), satisfies C11

∑
j (npj − 1)2 ≤ Dρ(p) ≤ C12

∑
j (npj − 1)2 uniformly in

n-variate probability distributions p such that C−1
10 ≤ npj ≤ C10, where C11 and C12 depend

only on ρ and C10. Property (P2) can be derived by elementary calculus. Together, (P1) and
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(P2) imply that, if

there exists C10 > 1 such that, with probability converging to 1 as n→ ∞,

there is a probability distribution p such that C−1
10 ≤ npj ≤ C10 for all j

and ĝ( · | p) is monotone nondecreasing on I, (A.26)

then with probability converging to 1 the particular distribution p̂ that minimizes Dρ subject

to monotonicity satisfies

P

{
C11

n∑
j=1

(np̂j − 1)2 ≤ Dρ(p̂)

}
→ 1 (A.27)

as n → ∞. Property (A.26) is implied by Theorem 2 in the case ℓ = 1, on taking γ in the

theorem to be a strictly monotone increasing function. In this setting, (A.25) and (A.27)

imply (5.10).

A.3.1 Argument leading to (5.11)

Step (i) of the bootstrap algorithm in section 2.2 involves constructing an estimator ĝ( · | p̂)
which lies in S on I. Step (iii) takes this function to be the true g in the bootstrap step,

and then tilts the resulting bootstrap estimator, ĝ∗(· | p), to ĝ∗(· | p̂∗), so that the latter lies

in S on I. As argued at (5.9), this produces a tilting distance Dρ(p̂
∗) that is of smaller order

than n, in the following sense: As n diverges,

P{Dρ(p̂
∗) ≤ ϵn | D} → 1 in probability, for all ϵ > 0 . (A.28)

Recall that D, introduced in section 2.2, denotes the full data set. A formal proof of (A.28)

differs in only minor respects from that of (5.9), and so is not given here. Result (A.28)

implies that the critical point ξ̂α satisfies P (ξ̂α ≤ nϵ) → 1 for each ϵ > 0. This property and

(5.10) imply (5.11).

A.3.2 Argument leading to (5.12)

To appreciate why, note first that P (p̂ = p0) → 1 as n → ∞; this follows from the fact

that, by Theorem 1, supx∈I |ĝ(ℓ)(x | p0)− g(ℓ)(x)| → 0 in probability. In consequence, P (p̂∗ =

p0 | D) → 1 in probability as n → ∞. Therefore, P{Dρ(p̂
∗) = 0 | D} → 1, and so the value

of the critical point satisfies P (ξ̂α = 0) → 1 as n → ∞. Hence, with probability converging

to 1 the statement Dρ(p̂) > ξ̂α is identical to 0 > 0, and so fails to hold. Therefore (5.12)

obtains. This argument, too, can be generalized to constraints that have the form at (5.5).
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