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In the classical errors-in-variables problem, the goal is to estimate a regression curve from data in which the explanatory variable is measured
with error. In this context, nonparametric methods have been proposed that rely on the assumption that the measurement errors are identically
distributed. Although there are many situations in which this assumption is too restrictive, nonparametric estimators in the more realistic
setting of heteroscedastic errors have not been studied in the literature. We propose an estimator of the regression function in such a setting
and show that it is optimal. We give estimators in cases in which the error distributions are unknown and replicated observations are
available. Practical methods, including an adaptive bandwidth selector for the errors-in-variables regression problem, are suggested, and
their finite-sample performance is illustrated through simulated and real data examples.
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1. INTRODUCTION

We consider nonparametric estimation of a regression func-
tion m from a sample in which the covariate contains random
measurement error. Suppose that the observations are a sample
of independent and identically distributed (iid) random vectors
(W1, Y1), . . . , (Wn,Yn) generated by the model

Yj = m(Xj ) + ηj , Wj = Xj + Uj , E(ηj |Xj) = 0,

with Xj ∼ fX and Uj ∼ fU , (1)

where Uj are the error variables, independent of (Xj ,Yj , ηj ),
and fU is known. Under model (1), this estimation problem,
referred to as an errors-in-variables problem, has received con-
siderable attention in the literature. (References, not restricted
to the nonparametric case, include Fan and Masry 1992; Cook
and Stefanski 1994; Stefanski and Cook 1995; Carroll, Maca,
and Ruppert 1999; Taupin 2001; Berry, Carroll, and Ruppert
2002; Carroll and Hall 2004; and Liang and Wang 2005; see
also Carroll, Ruppert, Stefanski, and Crainiceanu 2006 for an
exhaustive review of this problem). In this context, Fan and
Truong (1993) proposed a nonparametric estimator of m(x) =
E(Y |X = x) that is valid when for all t , f ft

U (t) �= 0, with gft de-
noting the Fourier transform of a function g. Let K be a square-
integrable kernel function and h > 0 be a smoothing bandwidth
parameter. The nonparametric estimator of m is defined by

m̂(x) = (nh)−1
n

∑

j=1

YjKU

(

x − Wj

h

)

/

̂fn(x), (2)

where ̂fn(x) = (nh)−1 ∑n
j=1 KU(

x−Wj

h
) is the deconvolution

kernel density estimator of fX of Carroll and Hall (1988)
and Stefanski and Carroll (1990), with KU(x) = (2π)−1 ×
∫

e−itxK ft(t)/f ft
U (t/h)dt .

In real data applications, there are many examples in which
it is not realistic to assume that the errors Ui are homoscedas-
tic. In practice, heteroscedasticity arises as soon as the ob-
servations are obtained in nonhomogeneous conditions. For
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example, the sample might have been obtained by collating
data from different laboratories (see, e.g., National Research
Council 1993) or from different studies (meta-analysis; see
Walter 1997). Groups of individuals (e.g., healthy/unhealthy,
smoker/nonsmoker) might be subject to a different contami-
nation process (see Fuller 1987 for an early consideration of
this problem), and the measurement process might be subjec-
tive and differ among all individuals (see Bennett and Franklin
1954 for an example related to subjective assessment of iron
content of substances by different students). (See also Riu and
Rius 1995, 1996; Kulathinal, Kuulasmaa, and Gasbarra 2002;
Thamerus 2003; and Cheng and Riu 2006.) In such instances,
we alter model (1) to

Yj = m(Xj ) + ηj , Wj = Xj + Uj , E(ηj |Xj) = 0,

where Xj ∼ fX and Uj ∼ fUj
, (3)

with Uj independent of (Xj ,Yj , ηj ); the error densities fUj

may depend on both the observation number j and the sam-
ple size n. Then the estimator (2) cannot be applied, because it
uses only one error density fU in its construction. Despite its
numerous applications and the attention that it has received in
the parametric literature, the heteroscedastic problem has not
yet been considered in the nonparametric literature. In Sec-
tion 2 we introduce a kernel estimator of the function m that
can be applied for heteroscedastic errors when the error dis-
tributions are known. We show that the estimator is consistent
and achieves optimal convergence rates under smoothness and
regularity constraints.

The classical deconvolution methods for nonparametric esti-
mation of the regression function with errors in variables rely
on the fact that the error distribution is known (e.g., Fan and
Truong 1993). But this assumption is unrealistic in many prac-
tical situations. Some recent articles have considered deconvo-
lution with unknown error density when replicates are observed
in the homoscedastic error setting (e.g., Horowitz and Marka-
tou 1996; Li and Vuong 1998; Hall and Yao 2003; Delaigle,
Hall, and Meister 2007a; Neumann 2007). We show in Sec-
tion 3 that even in the heteroscedastic case, the regression func-
tion can still be estimated consistently if such additional obser-
vations are available. We propose consistent estimators of the
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regression function m in the case where the observations are
replicated at least once.

We study finite-sample performance of the procedures in
Section 4. In practice, the estimator involves selection of a
bandwidth parameter from the data. This is extremely compli-
cated in errors-in-variable problems, because classical methods,
such as cross-validation, usually cannot be implemented. The
method that we propose is based on alternative ideas related
to SIMEX and bootstrap procedures and also can be used in
the homoscedastic case to improve a first approximate method
proposed in the literature. We show in simulated examples that
the method works well, illustrate its use on a real data example
from a study on coronary heart disease, and compare the results
with those from an alternative SIMEX regression estimator.

2. ESTIMATION PROCEDURE

Suppose that we want to estimate a regression curve m from a
sample of independent random vectors (W1, Y1), . . . , (Wn,Yn)

generated by the heteroscedastic error model (3). In this con-
text, a natural generalization of (2) leads to the estimator

m̂(x) = (nh)−1
n

∑

j=1

YjKUj

(

x − Wj

h

)

/

̂fn(x), (4)

where KUj
(x) = (2π)−1

∫

e−itxK ft(t)/f ft
Uj

(t/h)dt and

̂fn(x) = (nh)−1 ∑n
j=1 KUj

(
x−Wj

h
). Careful analysis of the

properties of (4), however, shows that its rates of convergence
are dictated by the least favorable errors Uj , which makes it un-
acceptable. The alternative estimator that we propose is defined
by

m̂n(x) = h−1
n

∑

j=1

YjKUj

(

x − Wj

h

)

/

̂fn(x), (5)

where ̂fn(x) = h−1 ∑n
j=1 KUj

(
x−Wj

h
) is an estimator of fX

that is valid when the errors are heteroscedastic, with

KUj
(x) = (2π)−1

∫

e−itxK ft(t)�j (t/h)dt,

and where �j(t) = f ft
Uj

(−t)/(
∑n

k=1 |f ft
Uk

(t)|2) generalizes the

term {nf ft
U (t)}−1 used in the homoscedastic setting. Let τ 2(x) =

var(Y |X = x). The estimator is well defined under the follow-
ing conditions:

Condition A.

(A1) There is a j such that |f ft
Uj

(t)| �= 0 for all t ∈ R.

(A2) K ∈ L1(R) ∩ L2(R) is such that K ft is supported on
[−1,1]; |K ft(t) − 1| ↓ 0 as t → 0.

(A3) fX(x) �= 0.
(A4) τ 2fX , fX , and m2fX are bounded and continuous and

(mfX)ft, f ft
X ∈ L1(R).

These conditions are rather standard in deconvolution and
errors-in-variables problems (see, e.g., Fan and Truong 1993
and references therein). The only difference between the ho-
moscedastic and the heteroscedastic cases is condition (A1);
whereas under homoscedastic contamination, f ft

U is usually as-
sumed to vanish nowhere, only one of the f ft

Uj
’s is required to

have no 0’s for our estimator to be well defined.

Note that our estimator can be applied generally whether or
not the errors are heteroscedastic, because it reduces to the clas-
sical estimator (2) when the errors are homoscedastic. In par-
ticular, all of the results obtained in this article, including the
bandwidth selection procedure, can be applied directly to the
classical estimator (2).

2.1 Theoretical Properties

First, we study pointwise consistency of the estimator (5)
under general conditions. [See Stone 1977 for general consis-
tency in the standard (noncontaminated) nonparametric regres-
sion problem.] Although for the estimator to be well defined,
only one f ft

Uj
must not vanish anywhere, for the estimator to be

consistent, we need to ensure that a sufficient number of such
functions are nonzero. More precisely, we assume that for al-
most all t ,

n
∑

j=1

|f ft
Uj

(t)|2 → ∞, as n → ∞ and

(6)

inf
n

n
∑

j=1

|f ft
Uj

(t)|2 > 0, ∀t.

In the homoscedastic case (e.g., where f ft
Uj

= f ft
U ), this condi-

tion is satisfied under the usual assumption that f ft
U (t) does not

vanish anywhere. The condition is less restrictive in the het-
eroscedastic case, because some of the f ft

Uj
(t)’s are allowed to

be equal to 0. We also consider strong consistency of our es-
timator. There the following more restrictive version of (6) is
required: There exist some δ > 1 and κ > 0 such that

0 ← h ≥ c · n1−δ+κ and
(7)

∫

|t |≤1/h

(

n
∑

j=1

∣

∣f ft
Uj

(t)
∣

∣

2

)−2

dt = O(n−δ).

Note that it is possible to select the bandwidth h so that
(7) is satisfied if for each ξ > 0, we have infn n−α ×
inf|t |≤ξ

∑n
j=1 |f ft

Uj
(t)|2 > 0 for some α > δ/2 [put κ = (δ −

1)/2]. We are now ready to establish general pointwise consis-
tency of our estimator.

Theorem 1. Assume Condition A and (6). Then the follow-
ing results hold:

a. If h → 0 and
∫

|t |≤1/h
(
∑n

j=1 |f ft
Uj

(t)|2)−1 dt → 0, then

m̂(x)
P→ m(x) as n → ∞.

b. Also assume that ‖m‖∞ < ∞. Under (7), if E|ηj |l ≤
Cl < ∞ for all integers j and all 0 < l ≤ 2�1/κ� + 2, then

m̂(x)
a.s.→ m(x) as n → ∞.

Here we use �a� to denote the smallest integer larger or equal
to a.

Next, we derive the pointwise rates of convergence of the
estimator m̂(x) at an arbitrary but fixed x ∈ R, and show that
these are optimal in a minimax sense with respect to any re-
gression estimator in model (3). We consider a weak version
of consistency similar to that of Fan and Truong (1993). To
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determine the precise behavior of the estimator, we need to
quantify the smoothness degree of m and fX . Toward this end,
we fix x ∈ R arbitrary and define the following class of func-
tions: Fβ,C,D ≡ {g ∈ C0 s.t. g and gft are integrable on R and
|g(β)(y)| ≤ C,∀y ∈ (x − D,x + D)}, where g(β) denotes the
βth derivative of g. We need the following additional assump-
tions on fX , m, and K :

Condition B.

(B1) mfX is continuous and integrable on R, and mfX ∈
Fβ,C1,D for some C1, β,D > 0.

(B2) fX ∈ Fβ,C1,D with β , D, and C1 as in (B1).
(B3) ‖m2fX‖∞ ≤ C2, ‖fX‖∞ ≤ C3, and ‖τ 2fX‖∞ ≤ C4.
(B4)

∫

K(y)dy = 1,
∫

yjK(y)dy = 0 ∀j = 1, . . . , k,
∫ |y|kK(y)dy < ∞ for some k ≥ 2β , and K ft is sup-
ported on [−1,1] with β as in (C1).

(B5) |m(x)| ≤ C7 and fX(x) ≥ C8 > 0.

Note that in (B5), boundedness of m and fX is needed only
at the fixed x, where m(x) is estimated. We also need some
conditions on the error distributions. Suppose that there exist α,
C > 0 and some positive monotonously decreasing functions
�ϕj,n(t) and ϕ

j,n
(t) such that the following conditions hold:

Condition C.

(C1) P(|Uj | ≤ α) ≥ C,∀j,n.
(C2) |f ft

Uj
(t)| ≥ ϕ

j,n
(T ),∀|t | ≤ T .

(C3) ϕ
j,n

(t) ≤ |f ft
Uj

(t)| ≤ �ϕj,n(t),∀t > T .

(C4) |f ft
Uj

′(t)| ≤ �ϕj,n(t),∀t > T .
(C5) ϕ

j,n
(t) ≥ c1 · �ϕj,n(c2t),∀t > 0.

These conditions assume some T ≥ 0, c1 > 0, and c2 ≥ 1
that do not depend on j and n. Note that (C1) gives a regular-
ity condition to prevent the densities fUj

from spreading too
heavily and becoming too smooth as j increases; conditions
(C2)–(C5) represent a weak version of monotonicity for |f ft

Uj
|.

In particular, the so-called “ordinary smooth densities” fUj
,

in the terminology of Fan (1991a,b), satisfy ϕ
j,n

(t) = C5|t |−ν

and �ϕj,n(t) = C′
5|t |−ν , and accordingly, for the supersmooth

densities we have ϕ
j,n

(t) = C5|t |ρ1 exp(−c|t |γ ) and �ϕj,n(t) =
C′

5|t |ρ2 exp(−c|t |γ ).
Finally, we define the class F containing all pairs (m,fX)

satisfying Conditions B and C with uniform constants and pa-
rameters. Now we are able to derive rate optimality for our es-
timator (5). In the sequel, “const” denotes an arbitrary positive
constant.

Theorem 2. Fix an arbitrary x ∈ R. Let Conditions B and
C hold. Assume that there is a sequence an ↑ ∞ such that for
some C11 ≥ C10 > 0, β > 0,

C10a
1+2β
n ≤

n
∑

j=1

|�ϕj,n(an)|2 ≤ C11a
1+2β
n (8)

is valid for all n. Then,

(a) When putting h = c2a
−1
n [with c2 as in (C5)], the estima-

tor m̂n satisfies

lim sup
n→∞

sup
(m,fX)∈F

P
(|m̂n(x) − m(x)|2 > da−2β

n

)

≤ const · d−1, ∀d > 0.

(b) For an arbitrary estimator m̃(x) = m̃n(x; (W1, Y1), . . . ,

(Wn,Yn)), and for sufficiently large constants C and D in F =
Fβ,C,D , there is some C12 > 0 such that

lim inf
n→∞ sup

(m,fX)∈F
P

(|m̃(x) − m(x)|2 > C12a
−2β
n

) ≥ const.

3. THE CASE OF UNKNOWN ERROR DENSITIES

Although in traditional nonparametric deconvolution set-
tings, the error density is usually assumed known, this condi-
tion seems unrealistic in many real life situations. When the
error distribution is unknown, it is not possible to consistently
estimate the functions m and fX unless extra observations are
available. We focus on the problem in which each Xj is re-
peatedly measured with independent noise, because there is
significant potential for obtaining replicated observations on
individuals, as reflected in the vast parametric and semipara-
metric literature, where the error variance is often estimated
from replicated observations (see, e.g., Madansky 1959; Car-
roll, Eltinge, and Ruppert 1993; Stefanski and Bay 1996; Car-
roll et al. 1999, 2006, and references therein). Recent related
work in the econometrics literature includes that of Horowitz
and Markatou (1996), Li (2002), Li and Hsiao (2004), and
Schennach (2004a,b). Replicated data are also drawing in-
creased interest in the nonparametric literature (see, e.g., Li and
Vuong 1998; Linton and Whang 2002; Susko and Nadon 2002;
Hall and Yao 2003; Delaigle et al. 2007a; Delaigle, Hall, and
Müller 2007b; Neumann 2007).

Replicated data subject to normally distributed heteroscedas-
tic errors have been considered by Devanarayana and Stefanski
(2002), who used a parametric SIMEX method to estimate the
regression curve. In our context, we treat the problem according
to the type of observations available. We distinguish between
two cases.

Case I: Groups of Observations. If the observations can be
gathered in a small number G [G = o(n)] of groups of ho-
moscedastic individuals (see Sec. 1 for some examples), then
the methods developed in the homoscedastic case can be ex-
tended to the current problem. Assume that we have observa-
tions of the form (Wjk, Ij , Yj ), j = 1, . . . , n, k = 1, . . . , rj ,
where Ij ∈ {1, . . . ,G} indicates the group of the j th observa-
tion and

Wj,k = Xj + Uj,k with Uj,k ∼ fUj
≡ f

Ij

U ,

j ∈ {1, . . . , n}, k ∈ {1, . . . , rj }.
Also assume that for each group g, f

g
U is symmetric and f

g,ft
U

is nonnegative. Within each group, we use the technique devel-
oped by Delaigle et al. (2007a), that is, we estimate f

g,ft
U (t)

by ̂f
g,ft

U (t) = |1/Ng

∑

(j,k1,k2)∈Sg
cos{t (Wj,k1 − Wj,k2)}|1/2,

where Sg = {(j, k1, k2) s.t. 1 ≤ j ≤ n, 1 ≤ k1 < k2 ≤ rj and
Ij = g} and Ng = #Sg . Then we define our estimator of m by

m̃1,n(x) =
n

∑

j=1

Yj K̃Uj

(

x − Wj

h

)/ n
∑

j=1

K̃Uj

(

x − Wj

h

)

,

(9)

with K̃Uj
(x) = (2π)−1

∫

e−itxK ft(t)�̃j (t/h)dt and �̃j (t) =
̂f ft
Uj

(t)/(
∑n

k=1 | ̂f ft
Uk

(t)|2 + ρ). Here ρ > 0 is a ridge parame-
ter introduced to avoid division by 0, but in Section 4 we show
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how to avoid its use in practice. We must assume that sufficient
observations are available for each group (e.g., Ng ≥ const · n

and
∑

j (rj − 1)1{Ij =g} ≥ const · n). In the homoscedastic case,
Delaigle et al. (2007a) proved that the convergence rates for this
estimator are the same as those for the estimator for the case of
known error densities. They were able to derive this result after
imposing additional smoothness assumptions on fX and some
appropriate inequalities for the smoothness degrees of the error
and fX . It is possible to extend their results to the context of
heteroscedastic errors, but the generalization is nontrivial and
requires many technical assumptions on the errors and on the
density fX .

Case II: General Case. In some cases the contamination
process is completely subjective and may differ among the ob-
servations. This situation is much more complicated, and at
first sight, m might seem nonidentifiable unless we have a large
number of replications for each individual allowing estimation
of each error density fUj

. It is possible to define an estima-
tor of m without having to estimate each component fUj

and
without the need for more than two replications per individual.
Suppose that we have replicated data in the form (Wj,k, Yj ),
j = 1, . . . , n, k = 1, . . . , rj , and

Wj,k = Xj + Uj,k, Uj,k ∼ fUj,k
,

j ∈ {1, . . . , n}, k ∈ {1, . . . , rj }, rj ≥ 2. (10)

Here each observation is replicated at least once, and the repli-
cations do not need to have the same error distribution. The
only assumption needed for the identification is that at least
one of the densities fUj,· is symmetric around 0 for each j ;
without loss of generality, we assume that fUj,rj

has this prop-

erty. Let ϕW(t) = n−1 ∑n
j=1

∑rj −1
k=1 exp(it (Wj,k + Wj,rj )/2),

ϕU (t) = n−1 ∑n
j=1

∑rj −1
k=1 exp(it (Wj,k − Wj,rj )/2), ϕY (t) =

n−1 ∑n
j=1 Yj

∑rj −1
k=1 exp(it (Wj,k + Wj,rj )/2), and φU(t) =

[|ϕU(t)|2 + ρ|ϕU(t)|]/ϕU (−t). Then our regression estimator
is defined by

m̂2,n(x) =
∫

exp(−itx)K ft(th)ϕY (t)/φU (t) dt
∫

exp(−itx)K ft(th)ϕW (t)/φU (t) dt
, (11)

where, as before, the ridge parameter ρ is introduced to prevent
the denominator from getting too close to 0. In the case, where
the errors are symmetric, a simpler version of this estimator
takes φU(t) = ϕU(t) + ρ.

Proposition 1 establishes consistency of the estimator
m̂2,n(x) in the basic setting rj ≡ 2. The basic idea of the proof
is to show that the known error version of this estimator, defined
by

m̆2,n(x) =
∫

exp(−itx)K ft(th)ϕY (t)/φ̆U (t) dt
∫

exp(−itx)K ft(th)ϕW (t)/φ̆U (t) dt
,

with ϕW and ϕY as before and φ̆U (t) = n−1 ∑n
j=1 f ft

Uj,1
(t/2) ×

f ft
Uj,2

(t/2), is consistent and that the distance between m̂2,n and

m̆2,n tends to 0.

Proposition 1. Assume that Condition A holds for some
x ∈ R and take h and ρ such that h → 0, n1−γ h → ∞,

inf|t |≤1/h |φ̆U (t)|2 ≥ c · n−γ , and lnρ/ lnn → a for c > 0,
γ ∈ (0,1), a < −1/2. Then

m̂2,n(x)
P→ m(x) as n → ∞.

As for Case I, proving that the rates of convergence of m̂2,n

are the same as those of m̆2,n will require much technical calcu-
lations and assumptions. Note that the price to pay for dealing
with this very general unknown error scheme is that, because
we use averaged observations, some loss of convergence speed
may occur for ordinary smooth error densities, compared to the
rates derived in Theorem 2. (This is true even for the estimator
m̆2,n(x), for which the error densities are known.) One advan-
tage of our estimator is that it is relatively simple, however, it
would be interesting to see whether that, in the ordinary smooth
error case, there are better ways to estimate the unknown errors.

4. FINITE–SAMPLE PERFORMANCE

4.1 Data-Driven Procedure

The problem of selecting a data-driven bandwidth h is ex-
tremely difficult in the errors-in-variables problem (even in the
homoscedastic case), because the observations Xk are not avail-
able. In particular, even the cross-validation (CV) criterion,
which would select

hCV = arg min
h

n
∑

k=1

(

Yk − m̂−k
n (Xk)

)2
w(Xk) (12)

with w a weight function, where m̂−k
n denotes the estimator

obtained when leaving the kth observation out, cannot be cal-
culated. To the best of our knowledge, the only bandwidth
selector proposed in the literature to date is the approxima-
tion proposed in the homoscedastic case by Delaigle et al.
(2007a), which gives reasonable results when replicated data
are available but otherwise tends to select overly large band-
widths. When adapted to the heteroscedastic case, their band-
width selector hCV,1 is the value that minimizes the estimator
of the right side of (12) obtained when replacing e−itXk/h in
m̂−k

n (Xk) by e−itWk/hK ft(t)/f ft
Uk

(−t/h), which has asymptoti-
cally the same expected value. We propose to multiply hCV,1 by
an estimator of the shrinking factor cS = hCV/hCV,1 chosen by
ideas related to bootstrap methods. Because the shrinking factor
in the “original world” is not accessible, we create a “parallel
world” that mimics the original world and where everything is
calculable; we then replace cS by c̃S , the corresponding shrink-
ing factor of the parallel world.

The way in which we mimic the original world is related to
SIMEX ideas, because it consists in artificially adding noise to
the data, as we describe now. In the original world, the data are
of the type (Wj ,Yj ), j = 1, . . . , n, where Wj = Xj +Uj , Uj ∼
fUj

is a contaminated version of the unobservable Xj and the
target curve is m(x) = E(Y |X = x) = n−1 ∑n

j=1 E(Yj |Xj =
x). In the parallel world, we create data of the type (W ∗

j , Yj ),
j = 1, . . . , n, where Yj is unchanged from the original world
and W ∗

j = Wj +U∗
j , U∗

j ∼ fUj
is a contaminated version of the

observable Wj (with Wj unchanged from the original world).
The target curve is m̃(x) = n−1 ∑n

j=1 E(Yj |Wj = x), and the
parallel world versions of hCV and hCV,1, denoted by h̃CV and
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h̃CV,1, are obtained by replacing Wk by W ∗
k and Xk by Wk in

the respective criteria to minimize.
In most cases, the curves m and m̃ have sufficiently simi-

lar properties for the relation between h̃CV and h̃CV,1 to mimic
the relation between hCV and hCV,1. We propose estimating the
shrinking factor cS by c̃S = h̃CV/h̃CV,1, and our final band-
width selector is then ̂hCV = c̃S · hCV,1. Selected in this way,
̂hCV tends to 0 at the same speed as hCV (and thus has the appro-
priate rate of convergence to 0), and only the multiplicative con-
stant term is approximate. The implementation of the method
necessitates generation of a parallel sample of W ∗

1 , . . . ,W ∗
n by

adding a random error U∗
j ∼ fUj

to Wj for j = 1, . . . , n. To
avoid the particular effect of the generated sample W ∗

1 , . . . ,W ∗
n ,

we generate, say, B such parallel samples and take the average
of the B corresponding calculated c̃S ’s.

In practice, similar to the error-free case, for small sample
sizes, the denominator at (5) sometimes can get very close to
0 at some points, causing the estimator there to perform very
poorly. Usually this problem arises only at points located near
or beyond the smallest and largest observed values. In such
cases the problem can be avoided by changing the denominator
of m̂n into max( ̂fn(x),0) + ρ2, with ρ2 a small positive value.
This approach has been described by Carroll, Delaigle, and Hall
(2007) in the homoscedastic case, where it has been proved that
for appropriate choices of ρ2, the regularized estimator has the
same asymptotic properties. Similarly, this modification is ap-
plied to the denominators used in the CV criteria and their esti-
mators. In practice, we select ρ2 by CV in the parallel world. To
avoid the complication of selecting ρ2 and ̂hCV simultaneously,
we use the following method:

1. Take a grid of values of (ρ2, h̃CV) in the parallel world and
choose ρ̂2 as the first component of the value of (ρ2, h̃CV)

that minimizes the average of B CVs on that grid.
2. Using the value ρ̂2 found in step 1, select ̂hCV by using

the procedure described in the previous paragraph.

When calculating the final estimator m̂n, an adjustment that
improves the practical results is to add the value ρ̂2 only
when ̂fn gets too small. In our simulations, the denominator
of m̂n that we used was max( ̂fn(x),0) + ρ̂2 · 1{ ̂fn(x) ≤ ρ̂2,

x < q.025 or x > q.975}, where qp is the pth empirical quantile
of W .

In the case of unknown error distributions, we modify the
procedure in two ways (we describe only the case where two
replications are available per observation and the errors are
symmetric): (a) Define the bandwidth hCV,1 as the bandwidth
that minimizes the approximation of (12) obtained by replac-
ing e−itXk/h in m̂−k

n (Xk) by e−itW̄k/h/φU (t/h) and (b) gen-
erate the B samples of the parallel world differently. Here
the error densities are unknown, and we generate W ∗

i through
W ∗

i = W̄i + Ū∗
i , where each sample Ū∗

1 , . . . , Ū∗
n is drawn with

replacement from (Wi1 −Wi2)/2, . . . , (Wn1 −Wn2)/2. It would
be interesting for future research to see whether a better genera-
tion algorithm can be implemented, but our simulations indicate
that this simple algorithm already works well.

When the error densities are unknown, we also need to
select the ridge parameter ρ (again we restrict ourselves to
the symmetric error case), but we can avoid this by adapting
the procedure proposed by Delaigle et al. (2007a): Replace

φU(t) = ϕU(t) + ρ at the denominator of m̂2,n by ϕU(t)I (t ∈
A) + ϕP (t)I (t /∈ A), where A = {t s.t. ϕU(t) < c

√
logn/n}

and ϕP (t) is a parametric function defined by ϕP (t) = (1 +
AUt2)−BU , with AU and BU chosen so as to match the empir-
ical second and fourth moments of the error with those of φP ,
or if AU and/or BU is negative, take BU = 1 and AU to be half
the empirical variance of the error, which corresponds to φP

being a Laplace density. The interval A is chosen so as to cut
the estimator of ϕU before it becomes erratic. Our simulations
indicated that c = .025 works well in practice.

To increase the speed of computations, we binned the data
in 100 or 200 bins (see, e.g., Wand and Jones 1995) and used
a spline approximation of the function ϕU constructed from
400 points. Note that these approximations are used only to se-
lect the bandwidth; thus they have a relatively minor impact
on our final estimator. The functions KUi

were calculated nu-
merically using the fast Fourier transform (FFT). The code was
implemented in C, and the standard routines (i.e., FT, random
generation, spline approximation) were taken from Press, Flan-
nery, Teukolsky, and Vetterling (1992). The time needed to run
one iteration of the program depends on several factors (e.g.,
sample size, number of bins, size of grids), but in our simula-
tions, it ranged from 1 minute for small sample sizes (n ≈ 100)
to several minutes for larger sample sizes (n ≈ 1,000).

4.2 An Alternative Estimator

There exist parametric estimators that can be applied in the
context of heteroscedastic errors (see, e.g., Devanarayana and
Stefanski 2002; Cheng and Riu 2006). As usual, if the para-
metric assumption is correct, then such estimators perform bet-
ter than nonparametric estimators and have the advantage of
providing intuitive interpretation of the model and easily ac-
cessible inference on the estimated curve. On the other hand,
nonparametric estimators can be applied in much more gen-
eral contexts, but interpretation and inference on the estimated
model is much more complex. Note that the availability of non-
parametric methods is even more important in the error case
than in the error-free case, because, in contrast to the latter,
it often is impossible to formulate a parametric model for the
relation between X and Y by simple inspection of a scatter-
plot of the data on (W,Y ). In Figure 1, for example, we show
the (X,Y ) values and the (W,Y ) values for a sample of size
n = 250 contaminated by heteroscedastic Laplace errors with
variances var(Ui) = (1 + i/n) × .1 varX. The true regression
curve, shown in (a), is in fact curve (c) of Section 4.3, which is
very hard to guess by looking at the scatterplot of (W,Y ).

Devanarayana and Stefanski (2002) proposed a parametric
SIMEX regression estimator in the case in which the data
are contaminated by heteroscedastic normal errors, and Carroll
et al. (1999) proposed a nonparametric SIMEX estimator in the
context of homoscedastic normal errors. We generalize their
results and compare the numerical performance of our kernel
estimator with a nonparametric SIMEX estimator for general
heteroscedastic errors.

Note that in our case, the errors are not necessarily normal,
and thus we cannot use the refined generation algorithms devel-
oped in those two articles. In the known error case, we imple-
mented the procedure in the following way:
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(a) (b)

Figure 1. Scatterplot of the unobserved data values (X,Y ) (a) and the observed data values (W,Y ) (b) contaminated by Laplace errors. The
regression curve m is shown in (a).

1. For b = 1, . . . ,B and λ = 1,2,3,4, generate pseudosam-
ples Wb,λ = (Wi,b,λ)1≤i≤n of size n by Wi,b,λ = Wi +
∑λ

j=1 Ui,b,j,λ, where Ui,b,j,λ ∼ Ui are independent and
independent of Wi .

2. For each sample (W1,b,λ, Y1), . . . , (Wn,b,λ, Yn), calculate
the Nadaraya–Watson (NW) estimator m̂b,λ(x) at each x

of the grid of interest, using the usual cross-validation
bandwidth. Also calculate the NW estimator m̂0(x) based
on the original data set.

3. Set m̂λ = ∑B
b=1 m̂b,λ/B and, at each point x, use a

quadratic extrapolant to estimate m(x) by m̂−1(x).

We used the same procedure in the unknown error case, ex-
cept that we generated the data as described in the previous sec-
tion. We took B = 50. Although we tried several other ways to
generate the samples and select the bandwidth, the method we
present here is the one that gave the best results. It would be
interesting to see whether a more complex implementation of
SIMEX in a context as general as ours could be developed and,
if so, whether it could improve the results.

In general, the SIMEX estimator is a consistent estimator not
of the curve m, but rather of the curve obtained by extrapolation
of the theoretical curves mλ = n−1 ∑n

j=1 E(Yj |Wλ
j ), which, if

the error variances are not too large, can be a good approxi-
mation of m. Thus, in finite samples, if the error variances are
not too large, it can provide a good approximation of the target
curve and compete with consistent estimators, such as our ker-
nel method. On the other hand, if the approximation of m by
the extrapolating curve is too coarse, then the SIMEX method
is not as good.

4.3 Simulation Results

We applied our methodology on some simulated examples.
We generated samples (W1j , Y1j ), . . . , (Wnj ,Ynj ), with j = 1
(no replications, known error densities) or j = 1,2 (two repli-
cations, unknown error densities), according to model (3). We
used one of the following combinations of the distribution of X

and the regression function m: (a) X ∼ N(0,3), m(x) = x3 +
100 cosx (unbounded sinusoid); (b) X ∼ N(0,1.5), m(x) =
φ0,1.5(4x) + φ1,2(4x) + φ2,5(4x) (asymmetric); (c) X ∼ N(0,

1.5), m(x) = 5 sin(2x) exp(−16x2/50) (sinusoid); or (d) X ∼

N(.5, .065), m(x) = 3x + 20(2π)−1/2 exp{−100(x − 1
2 )2}

(mixture of a straight line and an exponential curve), where
φμ,σ is the density of a N(μ,σ 2) variable.

In each case, we applied two different error models: (A) U1,

. . . ,Un/2 ∼ N(0, σ 2
1 ) and Un/2+1, . . . ,Un ∼ Laplace(σ2), and

(B) fUi
are all normal or all Laplace, with varUi = σ 2(1 +

i/n). We took η ∼ N(0, σ 2
η ), where σ 2

η = .1 × var(|m|) and

var(|m|) = ∫ qm
.99

qm
.01

{|m| − E(|m|)}2/(qm
.99 − qm

.01), with E(|m|) =
∫ qm

.99
qm
.01

|m|/(qm
.99 −qm

.01) and qm
α is the αth quantile of |m| rescaled

to integrate to 1. We chose σ 2
η in this way rather than by

the usual approach that takes σ 2
η equal to some percentage of

supx |m(x)|, because curves (a) and (d) are unbounded.
For each of the foregoing examples, we generated 200

samples and calculated the corresponding 200 estimators and
their associated integrated squared error, ISE = ∫ b

a
{ĝ(x) −

m(x)}2 dx, with ĝ denoting an estimator of m and [a, b] equal
to the interval of x values shown on the presented graphs.
We summarize the results by showing 3 of the 200 estimated
curves, corresponding to the first (q1), second (q2), and third
(q3) quartiles of the 200 ISEs. In each graph, the target curve
is the darkest, solid curve. We calculated every NW estima-
tor using the standard normal kernel. Our estimator was cal-
culated using the kernel with characteristic function K ft(t) =
(1 − t2)3 · 1{|t | ≤ 1}, frequently used in contamination prob-
lems; the parameters were selected as described in the pre-
vious sections, taking B = 10 and using the weight function
w(x) = 1{a ≤ x ≤ b}, with a (resp. b) the .025th (resp. .975th)
empirical quantile of W or W ∗.

In some cases, our estimator and the SIMEX estimator gave
very similar results. For example, Figure 2 compares these two
estimators in the case of curve (a), for samples of size n = 100
or n = 1,000 generated under the error model (B) with un-
known Laplace errors and σ 2 = .2 varX. Each observation was
replicated once. In this case, even for large sample sizes, the
approximation error inherent to the SIMEX method (caused by
the replacement of the target curve by the extrapolating curve),
is of approximately the same importance as the estimating error
made by our estimator, and both methods work well.

Figure 3 shows estimators of curve (c) for samples of size
n = 250 generated by model (A). We show the results obtained
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(a) (b)

(c) (d)

Figure 2. Estimation of curve (a) from samples of size n = 250 [(a) and (b)] or n = 1,000 [(c) and (d)] under the error model (B) when the
error densities are unknown Laplace, using the SIMEX method [(a) and (c)] or the kernel method [(b) and (d)] ( q1; q2; q3).

for the SIMEX and our method in the case in which the error
densities are unknown and each observation is replicated once,
when varUj = .4 varX. Here the SIMEX approximation error
was larger, and we can see that the SIMEX procedure is at-
tempting to estimate the wrong curve. We added this curve, de-
noted by m∗, to the graph of the SIMEX results. We can see the
interest in using a consistent estimator like ours. To illustrate
the effect of estimating the error density, we also show the re-
sults obtained with our estimator and with the naive Nadaraya–
Watson estimator, when varUj = .2 varX, the error densities
are known, and no replication is available. Here we halved the
error variances, because taking the averages of replicated ob-
servations, as was done earlier, also amounts to dividing these
variances by 2. We see that in the finite sample, there is a small
price to pay for having to estimate the error densities. How-
ever, a comparison with the results for the NW estimator (i.e.,
the estimator that ignores the errors) shows very clearly that
the loss incurred by estimating the error densities is consider-
ably smaller than that incurred by ignoring the errors from the
analysis.

Finally, in Figure 4, we estimate curve (d) from samples of
size n = 250 generated by model (B) with Laplace errors. Fig-
ure 4(a) shows the results of our estimator in the case where
σ 2 = .2 varX and the unknown errors are estimated through
the two replications available for each observation; Figure 4(b)
shows the results for the naive NW estimator in the case where

σ 2 = .1 varX. Again, we see that the ignoring the contaminat-
ing errors results in a strongly biased estimator.

4.4 Real Data Example

We applied our method to a real data set from the Framing-
ham Study on coronary heart disease described by Carroll et al.
(2006). The data consist of measurements of systolic blood
pressure (SBP) obtained at two different examinations and the
incidence of coronary heart disease (CHD) in 1,615 males on
an 8-year follow-up from the first examination. At each exam-
ination, the SBP was measured twice and for each individual,
we take the average of these two measurements. Our goal is to
analyze the relation between SBP and CHD without imposing
any distribution to the error made by measuring the SBP and
without imposing homoscedasticity. We set Y equal to CHD (0
if no incidence and 1 otherwise) and Wj1 (resp. Wj2) equal to
the logarithm of the (average SBP measurement −50) at ex-
amination 1 (resp. examination 2) for the j th individual; the
transformation is as described by Carroll et al. (2006).

We compare the estimator m̂2,n with the SIMEX estimator
discussed in Section 4.2 and the naive NW estimator (which
ignores the error in the data) calculated with a cross-validation
bandwidth. In this case, because the regression curve is a prob-
ability curve, it is interesting to compare the results with the
logistic regression using regression calibration with the repli-
cates, as described by Carroll et al. (2006); we used their lin-
ear approximation. The estimated curves are shown at Figure 5.
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(a) (b)

(c) (d)

Figure 3. Estimation of curve (c) from samples of size n = 250 generated by model (A) when the error densities are unknown, using our
method [(a)] or the SIMEX method [(c)], or when the error densities are known, using our method [(b)] or the naive NW estimator [(d)] ( q1;

q2; q3; m∗).

The three nonparametric methods are roughly in agreement, in
the sense they indicate an increased risk of heart disease with
increasing SBP (see also Carroll et al. 2006). As in our simu-
lations, the NW estimator is smoother (probably oversmooth-
ing the data) than the other two nonparametric estimators, both
of which indicate a greater increase in the risk in the inter-
vals [4,4.6] and [4.8,5]. The similarity of these two estima-

tors, which both incorporate the errors but use quite different
techniques, gives us some confidence in their validity in this ex-
ample. The parametric logistic curve closely follows the other
three curves on the interval [4,4.6], but then increases much
more rapidly between 4.6 and 5. Of course, we do not know
the true curve, and it is impossible to know which estimator is
the best. However, nonparametric estimators have the advan-

(a) (b)

Figure 4. Estimation of curve (d) from samples of size n = 250 generated by model (B) with unknown Laplace errors using our method [(a)]
or using the naive NW estimator [(b)] ( q1; q2; q3).
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Figure 5. Estimation of the regression function E(CHD|
log(SBP − 50)) for the Framingham-study data, using the esti-
mator m̂2,n ( ), the SIMEX procedure of Section 4.2 ( ), the naive
NW estimator ( ) and the logistic calibrated method ( ).

tage that they are consistent without the need to specify any
model, whereas the logistic estimator can be consistent only if
the unknown regression truly follows a logistic model. In this
example, the big difference between this and the nonparametric
estimators suggests that the logistic model may not be appro-
priate on the interval [4.6,5]. It would be interesting for future
research to test whether the difference is significant and investi-
gate which of these estimators is most likely to reflect properties
of the true regression curve.

APPENDIX: PROOFS

The following lemma, which gives an upper bound for the mean
squared error (MSE) for the estimation of mfX at an arbitrary but
fixed x,

MSEn(fX(x)m(x)) = E| ̂fn(x)m̂n(x) − fX(x)m(x)|2,

is useful for proving Theorems 1 and 2.

Lemma A.1. Let Condition A hold. Then we have for estimator (5),

MSEn(fX(x)m(x)) = b2
n + vn,

where b2
n = | ∫ 1

h
K(

x−y
h

)(mfX)(y) dy − (mfX)(x)|2 and vn ≤
1

(2π)2 (‖τ2fX‖∞ + ‖m2fX‖∞) · ∫ |Kft(th)|2[∑n
k=1 |f ft

Uk
(t)|2]−1 dt .

Proof. The expression for the square of the bias term bn =
E[ ̂fn(x)m̂n(x)−fX(x)m(x)] follows easily from E(Yj exp(itWj )) =
f ft
Uj

(t)(mfX)ft(t). For the variance term vn = var[ ̂fn(x)m̂n(x)], us-

ing the independence between Yj |Xj and Uj , along with (A4) and
Parseval’s identity, we obtain

vn =
n

∑

j=1

var

{

Yj
1

2π

∫

exp(−itx)Kft(th)�j (t) exp(itWj ) dt

}

≤
n

∑

j=1

E

{

E(Y 2
j |Xj )

×
∣

∣

∣

∣

1

2π

∫

exp(−itx)Kft(th)�j (t) exp(itWj ) dt

∣

∣

∣

∣

2}

≤ 1

2π
(‖τ2fX‖∞ + ‖m2fX‖∞)

n
∑

j=1

∫

|Kft(th)|2|�j (t)|2 dt

= 1

2π
(‖τ2fX‖∞ + ‖m2fX‖∞)

×
∫

|Kft(th)|2
[

n
∑

k=1

|f ft
Uk

(t)|2
]−1

dt.

Note that Lemma A.1 focuses on estimation of m(x)fX(x). Setting
Yj = 1 almost surely and m ≡ 1, we immediately get the correspond-
ing result for the estimation of fX(x) by ̂fn(x).

Lemma A.2. Assume Condition A and also that ‖m‖∞ < ∞. Then,
for any integer γ > 0, if E|ηj |l ≤ Cl < ∞ ∀l ≤ 2γ , then we have

E| ̂fn(x)m̂n(x) − E ̂fn(x)m̂n(x)|2γ

= O(h−γ nγ ) ·
[

∫

|t |≤1/h

(

n
∑

k=1

∣

∣f ft
Uk

(t)
∣

∣

2

)−2

dt

]γ

.

Proof. Let Zj (t) = Yj exp(itWj ) − E(Yj exp(itWj )). We have

E| ̂fn(x)m̂n(x) − E ̂fn(x)m̂n(x)|2γ

= E

∣

∣

∣

∣

∣

n
∑

j=1

1

2π

∫

exp(−itx)Kft(th)Zj (t)�j (t) dt

∣

∣

∣

∣

∣

2γ

≤ O(1) ·
∑

j1

· · ·
∑

j2γ

∫

· · ·
∫ γ

∏

k1=1

∣

∣Kft(tk1h
)∣

∣

∣

∣�jk1

(

tk1

)∣

∣

×
2γ
∏

k2=γ+1

∣

∣Kft(tk2h
)∣

∣

× ∣

∣�jk2

(

tk2

)∣

∣I(#{j1,...,j2γ }≤γ )

[

sup
k

E|Yk |2γ
]

dt1 · · ·dt2γ

≤ O(1) ·
∑

j1

· · ·
∑

j2γ

I(#{j1,...,j2γ }≤γ )

2γ
∏

l=1

∫

|Kft(th)||�jl
(t)|dt

≤ O(1)h−γ ·
∑

j1

· · ·
∑

j2γ

I(#{j1,...,j2γ }≤γ )

×
[∫

|t |≤1/h

(

∑

k

∣

∣fUk
(t)

∣

∣

2
)−2

dt

]γ

≤ O(1)nγ h−γ ·
[∫

|t |≤1/h

(

∑

k

∣

∣fUk
(t)

∣

∣

2
)−2

dt

]γ

,

where we used the fact that E(Zj1 · · · Zj2γ
) = 0 if {j1, . . . , j2γ } con-

tains more than γ different elements because E(Zj ) = 0. Furthermore,
we applied the Cauchy–Schwarz inequality to the integrals.

Proof of Theorem 1

To prove part a, note that we are able to select h as stated in part a
due to condition (6) and the theorem of dominated convergence. The
bias term b2

n from Lemma A.1 may be written in Fourier representation
as

b2
n =

∣

∣

∣

∣

1

2π

∫

exp(−itx)[Kft(th) − 1](mfX)ft(t) dt

∣

∣

∣

∣

2
.

Then conditions (A2) and (A4) imply that b2
n tends to 0 as h → 0.

Because |Kft| is bounded, the variance vn also converges to 0 as a
direct consequence of the conditions of Theorem 1 combined with
Lemma A.1. Thus we have convergence of ̂fn(x)m̂n(x) to fX(x)m(x)

and ̂fn(x) to fX(x) in probability. By the usual technique of consid-
ering subsequences that converge almost surely, we derive that m̂n(x)
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has the weak limit fX(x)m(x)/fX(x) = m(x), where condition (A3)
is essential.

To prove part b, we consider

| ̂fn(x)m̂n(x) − fX(x)m(x)|
≤ | ̂fn(x)m̂n(x) − E ̂fn(x)m̂n(x)| + bn. (A.1)

As shown in part a, the fully deterministic term bn converges to 0 as
h → 0. For the first addend in (A.1), we have, for all ε > 0,

∞
∑

n=1

P
(| ̂fn(x)m̂n(x) − E ̂fn(x)m̂n(x)| > ε

)

≤ ε−2γ
∞
∑

n=1

E| ̂fn(x)m̂n(x) − E ̂fn(x)m̂n(x)|2γ

≤ ε−2γ
∞
∑

n=1

O(h−γ )nγ ·
[

∫

|t |≤1/h

(

n
∑

k=1

∣

∣f ft
Uk

(t)
∣

∣

2

)−2

dt

]γ

,

≤ ε−2γ
∑

n

O
(

n−(1−δ+κ)γ
)

n−γ (δ−1)

≤ O(1) ·
∞
∑

n=1

n−γ κ < ∞

if we take γ ≥ �1/κ� + 1; we have used Markov’s inequality,
Lemma A.2, and (7). Therefore, by the Borel–Cantelli lemma,

| ̂fn(x)m̂n(x)−E ̂fn(x)m̂n(x)| a.s.→ 0, which, combined with (A.1), im-

plies that ̂fn(x)m̂n(x)
a.s.→ fX(x)m(x). Using similar arguments, we

have that ̂fn(x)
a.s.→ fX(x).

Proof of Theorem 2

To prove part a, by Markov’s inequality, we derive the following
upper bound:

P
(|m̂n(x) − m(x)|2 > da

−2β
n

)

≤ P
(|m̂n(x) ̂fn(x) − m(x)fX(x)|2 > (dC2

8/16)a
−2β
n

)

+ P
(| ̂fn(x) − fX(x)|2 > [dC2

8/(16C2
7 )]a−2β

n

)

+ P
(| ̂fn(x) − fX(x)|2 > C2

8/4
)

≤ const · d−1a
2β
n

× {

E|m̂n(x) ̂fn(x) − m(x)fX(x)|2 + E| ̂fn(x) − fX(x)|2}

.

Applying Lemma A.1, (C2),(C3), (C5), and (8), we can verify part a.
To prove part b, we start by introducing the specific densities

f (x) = [1 − cos(x)]/(πx2) with the Fourier transform f ft(t) = (1 −
|t |) · χ[−1,1](t), the supersmooth Cauchy density sX(x) = 1/[π(1 +
x2)], sY (x) = (1/2) exp(−|x|), �Y (x) = (1/4) sign(x) exp(−|x|),
and �X(x) = a

−β
n cos(2anx)f (anx). As competing bivariate densi-

ties for (Xj ,Yj ), we give

f(X,Y ),θ (x, y) = sX(x)sY (y) + θ const�X(x)�Y (y),

where θ ∈ {0,1} and an as in (8). We obtain fX,θ (x) = ∫

f(X,Y ),θ (x,

y) dy = sX(x) and

mθ(x)fX,θ (x) =
∫

yf(X,Y ),θ (x, y) dy

= θ consta−β
n f (anx) cos(2anx).

From there, we can verify the smoothness assumptions on mfX

and fX , that is, (B1) and (B2).
Let

hj,θ (w,y) =
∫

f(X,Y ),θ (x, y)fUj
(w − x)dx

denote the density of the observation (Wj ,Yj ). Putting x = 0 for sim-
plicity, we have, for any estimator m̃(x) ≡ m̃n(x),

2 sup
(m,fX)∈F

P
(|m̃(0) − m(0)|2 ≥ Da

−2β
n

)

≥ P(m0,fX,0)

(|m̃(0) − m0(0)|2 ≥ Da
−2β
n

)

+ P(m1,fX,1)

(|m̃(0) − m1(0)|2 ≥ Da
−2β
n

)

≥
∫

· · ·
∫

min
{

h1,0(w1, y1) · · ·hn,0(wn, yn),

h1,1(w1, y1) · · ·hn,1(wn, yn)|}dw1 dy1 · · · dwn dyn, (A.2)

when setting D = infn{a2β
n |m0(0)−m1(0)|2/4}; it follows from there

that {|m̃(0) − m0(0)|2 < Da
−2β
n } and {|m̃(0) − m1(0)|2 < Da

−2β
n }

are disjoint. Considering m0(0) and m1(0), we note that D > 0. Thus
it remains to be shown that (A.2) is bounded away from 0. This corre-
sponds to

n
∏

j=1

∫ ∫

[hj,0(w,y)hj,1(w,y)]1/2 dw dy ≥ const > 0, (A.3)

where LeCam’s inequality (see, e.g., Devroye 1987, p. 7) has been
used.

Equivalent to (A.3), we write

n
∑

j=1

∣

∣

∣

∣

ln

(∫ ∫

[hj,0(w,y)hj,1(w,y)]1/2 dw dy

)∣

∣

∣

∣

≤ const.

We assume that n is sufficiently large. From the definition of f(X,Y ),θ ,
we derive hj,θ (w,y) ≥ const exp(−|y|)gj (w), where gj (w) =
∫

sX(x)fUj
(w − x)dx is a density. This gives us a positive lower

bound on all integrals occurring in (A.3). Combining this with the in-
equality | ln ξ | ≤ |(ξ − 1)/ξ | for all ξ ∈ (0,1], we obtain the inequality

n
∑

j=1

(

1 −
∫ ∫

[hj,0(w,y)hj,1(w,y)]1/2 dw dy

)

= O(1), (A.4)

which implies (A.3). Condition (A.4) follows from

n
∑

j=1

χ2(hj,0, hj,1) = O(1), (A.5)

which is therefore sufficient for (A.3), where χ2(f, g) = ∫

(f −
g)2/f dx denotes the chi-squared distance, according to the notation
of Fan (1991b).

To verify (A.5), we consider, for θ ∈ {0,1},

hj,0(w,y) = sY (y)

∫

sX(x)fUj
(w − x)dx

≥ sY (y)

∫

|x|≤d
sX(w − x)fUj

(x) dx

≥ sY (y)
1

2(1 + 2w2 + 2d2)

∫

|x|≤d
fUj

(x) dx

≥ c exp(−|y|) · 1

1 + w2
,

due to (C1), when selecting d sufficiently large and c sufficiently small.
By Parseval’s identity and the equality f ft′(t) = i(•f (•))ft(t), we see
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that (A.5) is satisfied if

n
∑

j=1

∫ ∫ ∣

∣

∣

∣

∫

�Y (y)�X(x)fUj
(w − x)dx

∣

∣

∣

∣

2
(1 + w2) exp(|y|) dw dy

≤ O(1) ·
n

∑

j=1

∫

exp(−|y|) dy

× 1

2π

∫

[∣

∣a
−β−1
n f ft((t ± 2an)/an)f ft

Uj
(t)

∣

∣

2

+∣

∣a
−β−2
n f ft′((t ± 2an)/an)f ft

Uj
(t)

∣

∣

2

+ ∣

∣a
−β−1
n f ft((t ± 2an)/an)f ft

Uj

′(t)
∣

∣

2]

dt

≤
n

∑

j=1

O(a
−2β−2
n ) ·

∫

|t |∈[an,3an]
(|f ft

Uj
(t)|2 + |f ft

Uj

′(t)|2)

dt

≤ O(a
−2β−1
n )

n
∑

j=1

(�ϕj,n(an))2 ≤ const, (A.6)

where we have used (C3). The inequalities (A.6), and thus (A.2), fol-
low from (8).

[Received November 2006. Revised July 2007.]
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