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1 Introduction

We consider nonparametric estimation of a conditional probability from group testing

data, where observations are pooled in groups before a detection test (with results

Y = 0 for negative and Y = 1 for positive) is applied. Pooling data in groups was

originally suggested by Dorfman (1943) for detecting syphilis in U.S. soldiers during

the Second World War, and has since been applied to a great many studies. With

this group screening technique, in order to detect a disease in a population, instead of

testing separately samples of blood or urine of each individual, the test is applied to

pooled samples of groups of several individuals, which permits to reduce the number

of tests to apply and hence to save time and money. Pooling observations in groups

is also employed to detect pollution (for example in water, milk, etc.), where samples

(e.g. of water or milk) are pooled together before being tested for contamination by a

toxic substance (see for example Nagi and Raggi, 1972, Wahed et al., 2006, Lennon,

2007 and Fahey et al., 2007).

This grouping method has stimulated a great deal of research activity, and one

of the interesting problems studied in the literature concerns the estimation of the

conditional probability p(x) = P (Y = 1|X = x), where X is an explanatory variable.

For example, if we are interested in the prevalence of a disease, X could be the age,

the weight, the absorption of fat etc., whereas pollution in water could be explained

by variables such as the size of surrounding crop areas or livestock. The problem is

not a standard regression estimation one because the variable Y is not observed for

each individual, as only the disease or pollution status of groups is available. Research

on this and related problems includes the work of Farrington (1992), Vansteelandt et

al. (2000), Xie (2001), Bilder and Tebbs (2009) and Chen et al. (2009). Other related

work includes Gastwirth and Hammick (1989), Chen and Swallow (1990), Gastwirth

and Johnson (1994), Hardwick et al. (1998) and Hung and Swallow (2000). However,

these papers suggest methods based on parametric models, where the shape of the
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regression curve is known in advance and only finitely many real-valued parameters

have to be estimated. In this paper, we construct a nonparametric procedure for

estimating p(x) from data pooled in groups which are not necessarily of equal size.

This paper is organised as follows. We introduce our nonparametric procedure for

estimating p in Section 2, and we investigate its theoretical asymptotic properties in

Section 3. Section 4 is devoted to numerical properties of the estimator. In Section 4.1

we suggest a data-driven selector of the bandwidth, a smoothing parameter required

to calculate the estimator. In Section 4.2 we illustrate the finite sample performance

of our method on simulated data, and in Section 4.3 we apply our procedure to data

from the National Health and Nutrition Examination Survey (NHANES). In Section

5 we show how to modify our estimator when the detection test is not perfectly

accurate. Finally, we discuss two extensions of our work in Section 6: the case where

the covariate is measured inaccurately, and the multivariate setting. Proofs of our

results are derived in a supplemental file available online from the JASA website.

2 Model and methodology

Let N be the total number of individuals in the study. The statistical model for group

testing procedures can be described as follows. First, the N individuals are divided

randomly into J groups of sizes nj, for j = 1, . . . , J . Then, the specimen (blood,

urine, water, etc.) that we want to test for contamination or infection are pooled

together in groups before the test is applied. In other words, the result, Yi,j = 0 or

1, of the test for the ith individual in the jth group is not observed, and instead we

observe the result Y ∗
j of the test carried out on the entire jth group. That is, we

observe

Y ∗
j = max

i=1,...,nj

Yi,j . (2.1)
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In addition, we observe an explanatory variable X on each individual, that is, we

observe Xi,j for i = 1, . . . , nj, j = 1, . . . , J . Here, X does not usually come from

a test and the Xi,j’s are not usually pooled. We assume that the (Xi,j, Yi,j)’s are

independent and identically distributed (i.i.d.). Since Yi,j = 0 or 1, Yi,j|Xi,j has a

Bernoulli distribution with parameter p(Xi,j), where p is a function taking values on

the interval [0, 1]. We wish to estimate the function p from the sample of observations

(Xi,j, Y
∗
j ), i = 1, . . . , nj, j = 1, . . . , J . This problem has been considered by other

authors before, but only in the case where p is estimated parametrically; see the

introduction for a list of references. Our goal is to take a nonparametric approach for

estimating p.

In order to do this, first note that if the observations (Xi,j, Yi,j), i = 1, . . . , nj,

j = 1, . . . , J , were available, we could estimate p nonparametrically by the local

polynomial regression estimator; see e.g. Fan and Gijbels (1996) for an introduction.

The idea of this technique is to approximate the regression curve of interest, here

p(x) = E(Y |X = x), locally at each point x by an ℓth order polynomial, and to

fit the curve locally at each x by weighted least squares. The locality is controlled

by a smoothing parameter h > 0 called the bandwidth, and the weights are values

of Kh(·) = h−1K(·/h), where K is a smooth and symmetric function called the

kernel. For ℓ ≥ 0 an integer, the ℓth order local polynomial estimator of p can

be written as p̂ℓ(x) = eT0 S−1T , where e0 = (1, 0, . . . , 0)T , S =
(
Sk,k′

)
0≤k,k′≤ℓ

and

T = (T0, . . . , Tℓ)
T , with, for k, k′ = 0, . . . , ℓ, Sk,k′ = (Nhk+k′)−1

∑J
j=1

∑nj

r=1 Kh(x −

Xr,j)(x−Xr,j)
k+k′ and Tk = (Nhk)−1

∑J
j=1

∑nj

r=1 Yi,jKh(x−Xr,j)(x−Xr,j)
k. See Fan

and Gijbels (1996).

Of course, in our case, we cannot calculate this estimator since we do not observe

the Yi,j’s. Instead of estimating p directly, we suggest estimating another function g

which is empirically accessible from the type of data we have, and from which we can
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reconstruct p. To derive such a function, we first note that

E(Y ∗
j |X1,j, . . . , Xnj ,j) = P (Y ∗

j = 1|X1,j, . . . , Xnj ,j)

= 1− P (Y1,j = 0, . . . , Ynj ,j = 0|X1,j, . . . , Xnj ,j)

= 1−
nj∏
i=1

P (Yi,j = 0|X1,j, . . . , Xnj ,j)

= 1−
nj∏
i=1

{1− p(Xi,j)}.

Using the notations Z∗
j = 1 − Y ∗

j and q = E{1 − p(X1,1)}, and taking, respectively,

the expectation and the conditional expectation given Xi,j, of the last expression, we

deduce that EZ∗
j = qnj and E(Z∗

j |Xi,j) = qnj−1{1− p(Xi,j)} for i = 1, . . . , nj. Hence

we have
J∑

j=1

nj∑
r=1

E
(
Z∗

j |Xr,j = x
) / J∑

j=1

njEZ∗
j = {1− p(x)}/q .

Let µ∗
Z = N−1

∑J
j=1 njEZ∗

j = N−1
∑J

j=1 njq
nj = qM/N , with M =

∑J
j=1 njq

nj−1,

and remember thatN is the sample size, that is, N =
∑J

j=1 nj. The above calculations

show that

p(x) = 1− q · g(x)/µ∗
Z , (2.2)

where

g(x) = N−1

J∑
j=1

nj∑
r=1

E
(
Z∗

j |Xr,j = x
)
= (M/N) ·

{
1− p(x)

}
.

Therefore, to estimate p, it suffices to construct estimators of g, q and µ∗
Z . Now,

the advantage of reformulating the problem in this way is that, contrary to p, the

function g depends directly on the data that we have, and this enables us to estimate

g by a simple nonparametric procedure that we shall describe shortly. We will also

see that we can estimate µ∗
Z and q from our data, and from there we will derive a

nonparametric estimator of p.

First we show how to estimate g nonparametrically from the data (Xi,j, Y
∗
j ),

i = 1, . . . , nj, j = 1, . . . , J , using a local polynomial technique. A priori, the task
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seems complex because our target function is an average of several regression curves.

Moreover, our sample is of a rather unusual type since pooled data are not indepen-

dent and not identically distributed, and, in each group, the X observations share the

same Y ∗. Despite these difficulties, we prove in the next section that the function g is

estimated consistently by the following simple modification of the standard formula

for ℓth order local polynomial estimators:

ĝ(x) = eT0 Ŝ
−1T̂ , (2.3)

where Ŝ =
(
Ŝk,k′

)
0≤k,k′≤ℓ

and T̂ = (T̂0, . . . , T̂ℓ)
T , with,

Ŝk,k′ =
1

Nhk+k′

J∑
j=1

nj∑
r=1

Kh(x−Xr,j)(x−Xr,j)
k+k′ ,

and T̂k =
1

Nhk

J∑
j=1

Z∗
j

nj∑
r=1

Kh(x−Xr,j)(x−Xr,j)
k ,

for k, k′ = 0, . . . , ℓ. To calculate this estimator in practice, we need to select the

bandwidth h and the kernel K. As usual in nonparametric techniques, the latter does

not matter much; essentially, we can take K equal to any smooth and symmetric

density. We will see the exact conditions imposed on the choice of K in the next

section. By contrast, the success of the estimator depends crucially on the value of

h, which has to be chosen with a lot of care. We describe how to do that in Section

4.1. Finally, to calculate the estimator, we also need to choose the order ℓ of the

polynomial. Although, it could in principle be any non negative integer, the most

commonly used values are ℓ = 0 or 1; see the discussion at the end of Section 3.

It remains to estimate the parameters µ∗
Z and q. For µ∗

Z , we can simply use the

unbiased estimator

µ̂∗
Z = N−1

J∑
j=1

njZ
∗
j . (2.4)

Estimating q seems more difficult since it depends on the unknown p. We suggest

using the maximum likelihood estimator. For this, first note that the (unobserved)
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Yi,j’s are Bernoulli(1− q). From there, we can deduce that the likelihood function for

the observed data, that is, the joint distribution of the independent non-identically

distributed variables Z∗
j , j = 1, . . . , J , is given by

L(z1, . . . , zJ ; q) =
J∏

j=1

{
zjq

nj + (1− zj)(1− qnj)
}
, z1, . . . , zJ ∈ {0, 1} .

The maximum likelihood estimator for q is obtained by solving the equation ∂ logL/∂q =

0 for q, and in Section A.1 of the supplemental file, we show that this is equivalent

to solving Φ(z1, . . . , zJ ; q) = 0, where

Φ(z1, . . . , zJ ; q) =
J∑

j=1

nj(zj − qnj)
/( nj−1∑

k=0

qk
)
.

Here we use the notation
∑nj−1

k=0 qk instead of (1− qnj)/(1− q) as the latter is numer-

ically more unstable in cases where q is close to 1, which arises frequently in disease

prevalence applications. In Section A.1 of the supplemental file, we show that, for

any z1, . . . , zJ ∈ {0, 1}, Φ(z1, . . . , zJ ; ·) has exactly one zero in the interval [0, 1].

Therefore we can define our estimator q̂ of q to be the unique zero of the function

Φ(Z∗
1 , . . . , Z

∗
J , ·) on the domain [0, 1].

Finally, combining the estimators of g, µ∗
Z and q we just discussed, we define our

nonparametric estimator of p by

p̂(x) = 1− q̂ · ĝ(x)/µ̂∗
Z . (2.5)

3 Asymptotic properties

In this section we investigate the theoretical asymptotic behaviour of our estimator. In

settings where more conventional samples are observed, this is usually done by exam-

ining properties of the estimator as the sample size increases. In our context, it is nat-

ural to derive the asymptotic behaviour of the estimator when the number of groups,
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J , tends to infinity, while the group sizes nj remain bounded. Indeed, in applications,

group sizes are often small compared to J ; see for example Xie (2001), where J = 9575

and nj ≡ 10. Moreover, the World Health Organization does not recommend using

nj > 6, although larger values of nj could be reasonable in cases of low prevalence; see

e.g. http://www.gsb.stanford.edu/news/research/healthcare_donors.shtml .

To derive asymptotic properties of our local polynomial estimator of order ℓ at a

point x, we impose the following assumptions:

Condition A

(A1) q ≥ q0 > 0 and supj∈N nj < ∞ .

(A2) The density fX of the Xi,j’s is bounded and continuous in a neighbourhood of

x, and is such that fX(x) > 0. Moreover, if ℓ is even, fX is continuously differentiable

in that neighbourhood.

(A3) p has β continuous derivatives in a neighbourhood of x and supk=0,...,β |p(k)(y)| ≤

B for all y located inside that neighbourhood, where B is a finite constant and where

β ≥ ℓ+ 1 if ℓ is odd and β ≥ ℓ+ 2 if ℓ is even.

(A4) K is a symmetric, bounded and continuous density and
∫
y2ℓ+4K(y) dy < ∞.

(A5) h → 0 and Nh → ∞ as N → ∞.

The first part of (A1) is natural in our applications as 1− q denotes the probability

that an individual in a population suffers from a disease (or that water samples are

contaminated by a pollutant), and in general the latter is significantly smaller than

1. Conditions (A2) to (A5) are standard in nonparametric regression. Intuitively

(A2) ensures that we have enough observations in the neighborhood of x for a local

estimator to make sense. Similarly, we need p to be smooth enough to be able to fit

locally around x a polynomial of order ℓ, whence condition (A3). Conditions (A4)

and (A5) are easy to satisfy since we can choose K and h.

Let µj =
∫
ujK(u) du, νj =

∫
ujK2(u) du, S =

(
Sj,k

)
0≤j,k≤ℓ

, S∗ =
(
S∗

j,k

)
0≤j,k≤ℓ
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and S̃ =
(
S̃j,k

)
0≤j,k≤ℓ

, where Sj,k = µj+k, S∗
j,k = νj+k and S̃j,k = µj+k+1, and

let µ = (µℓ+1, . . . , µ2ℓ+1)
T and µ̃ = (µℓ+2, . . . , µ2ℓ+2)

T . The next theorem describes

asymptotic properties of our estimator p̂(x).

Theorem 3.1. Under condition A and if N → ∞, the estimator p̂ at (2.5) satisfies∣∣p̂(x)− p(x)
∣∣2 = ASEP (x) +OP{(Nh)−3/2}+OP (N

−1h−1/2) ,

where ASEP (x) is a nonnegative random variable such that

E{ASEP (x)} = N2M−2{V (x) +B2(x)} · {1 + o(1)} ,

with V (x) = (Nh)−1eT
0S

−1S∗S−1e0{g(x)− g2(x)}/fX(x), and

B(x) =eT
0S

−1µ
1

(ℓ+ 1)!
g(ℓ+1)(x)hℓ+1 if ℓ is odd ;

B(x) = eT
0S

−1µ̃
1

(ℓ+ 2)!

[
g(ℓ+2)(x) + (ℓ+ 2)g(ℓ+1)(x)

f ′
X(x)

fX(x)

]
hℓ+2

− eT
0S

−1S̃S−1µ
1

(ℓ+ 1)!
g(ℓ+1)(x)

f ′
X(x)

fX(x)
hℓ+2 if ℓ is even.

This theorem shows that, asymptotically the squared error
∣∣p̂(x) − p(x)

∣∣2 equals

ASEP (x), the “asymptotic squared error”, plus a term that can asymptotically be

neglected in probability, and the mean of ASEP (x) is of larger order than the re-

mainder OP terms. Note that, in general, the dominating part of E{ASEP (x)} is

not equal to the asymptotic mean squared error of p̂. Indeed, for this to be true,

we need to ensure that the mean of the OP terms exists and is of lower order than

E{ASEP (x)}, which requires an extra regularization parameter, for example a ridge.

The arguments for proving this are quite complex but can be derived using calcula-

tions similar to those used in, for example, Delaigle and Meister (2011). However, it

is not very difficult to prove, using techniques similar to Delaigle et al. (2009), that,

even without this extra parameter, B (for bias) and V (for variance) are such that

g + B and V are the mean and variance of the asymptotic distribution of ĝ. Later,

8



abusing notations a little, we refer to V (x) +B2(x) as the asymptotic mean squared

error of ĝ.

As usual for local polynomial estimators, the expression of the bias is different

for ℓ even and ℓ odd. It is easy to prove that the optimal bandwidth, that is, the

bandwidth producing the smallest asymptotic “mean squared error”, is of order h ≍

N−1/(2ℓ+3) if ℓ is odd and h ≍ N−1/(2ℓ+5) if ℓ is even, and that, with such bandwidths,

|p̂(x)− p(x)|2 = OP

(
N−(2ℓ+2)/(2ℓ+3)

)
if ℓ is odd and OP

(
N−(2ℓ+4)/(2ℓ+5)

)
if ℓ is even.

Although this implies that the higher ℓ the faster the convergence rates, high values

of ℓ can only be used when p has enough derivatives. Since the smoothness of a

target curve is usually unknown in practice, in standard nonparametric estimation

problems it is common to use local polynomial estimators of order ℓ = 0 or 1. It is

also well known that, in finite sample size, taking ℓ higher often does not improve the

results. This is because, even though the order of the variance V does not depend on

ℓ, the constant term of V (i.e. the term that does not depend on N) increases with

ℓ. Although not discussed here in details, it is also well known that the local linear

estimator (ℓ = 1) behaves better than the local constant estimator (ℓ = 0) in cases

where the target curve (here p) is not continuous at the end of its support (see Fan

and Gijbels, 1996), and for this reason, the local linear estimator is usually preferred

to the local constant one.

The asymptotic “bias” of our estimator p̂(x), that is, the bias component of

ASEP (x), is equal to −(N/M)B(x). Using the fact that, for all integers k > 0,

g(k)(x) = −(M/N)p(k)(x), it is straightforward to see that the asymptotic “bias” of

p̂(x) can be written as B(x), with g replaced by p. We conclude that the bias of our

estimator is the same no matter what the pool sizes are. In particular, since, when

nj = 1, our estimator reduces to the standard regression estimator of p, the bias of

the estimator for grouped data is the same as the bias of the standard regression es-

timator constructed from non-pooled data. The asymptotic “variance” of p̂(x), that
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is, the variance component of ASEP (x), is equal to (N/M)2V (x). Simple calculations

show that this variance depends on the group sizes nj. In particular, the variance of

our estimator for grouped data differs from that of the standard regression estimator;

the variance of the latter is obtained by letting nj = 1. Nevertheless, the two vari-

ances are of the same order 1/(Nh), and it is only the multiplicative constant factor

that is larger for our estimator than for the standard regression estimator. It follows

from this discussion that the two estimators share the same rates of convergence,

and, under condition A, grouping the data does not lead to any deterioration of the

standard nonparametric rates.

4 Numerical properties

As discussed earlier, in standard regression problems it is common to use the local

linear estimator (ℓ = 1), and for the same reasons as there, in our context too, our

preference is to use ℓ = 1. Therefore, we only investigate numerical properties of our

local linear estimator.

4.1 Bandwidth selection

Bandwidth selection in the standard regression setting has been studied by many

authors. The methods we suggest here are similar to those suggested by Ruppert

et al. (1995). See also Fan and Gijbels (1996) and Simonoff (1996). Note that our

problem is more difficult because the data are grouped and because we have to deal

with heteroscedastic regression, which makes our variance term more complicated to

estimate. To choose h, we suggest minimising with respect to h the weighted “asymp-

totic mean integrated squared” expression AMISE =
∫
{V (x)+B2(x)}w(x) dx, where

w is a weight function and B and V are given in Theorem 3.1; remember that B and

V are the bias and variance resulting from the asymptotic distribution of ĝ. To put
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less emphasize on areas where we have few observations, we take w(x) = fX(x), as in

more standard regression problems. In the local linear case (ℓ = 1), this gives

AMISE = b µ2
2

h4

4
+ v

R(K)

Nh
,

where R(K) =
∫
K2, b =

∫
{g′′(x)}2fX(x) dx and v =

∫
g(x){1 − g(x)} dx. The

theoretical bandwidth obtained by minimising this expression w.r.t. h is given by

h∗ =
{
R(K)v/(µ2

2 b)
}1/5

N−1/5,

but it cannot be calculated in practice since it depends on b and v, which themselves

depend on g, g′′ and fX , which are unknown. Instead, we can only use

ĥ∗ =
{
R(K)v̂/(µ2

2 b̂)
}1/5

N−1/5,

where b̂ and v̂ are estimators of b and v. In what follows, we construct such estimators.

4.1.1 Estimation of v

We start by deriving a consistent nonparametric estimator of v. For j = 1, . . . , J , let

T ∗
j = µ̂∗

Z q̂
−njZ∗

j . If the groups all have the same size nj = n1, we estimate v by

v̂ =
1

n1

n1∑
i=1

J−1∑
j=1

T ∗
i,[j]

(
1− T ∗

i,[j+1]

)(
Xi,(j+1) −Xi,(j)

)
, (4.1)

where, for each i fixed, Xi,(1) < · · · < Xi,(J) are the order statistics of Xi,1 . . . , Xi,J

and T ∗
i,[j] denotes the response variable T ∗

k which corresponds to Xi,(j).

If the nj’s are not all equal, we proceed as follows. For i = 1, . . . ,maxj nj, let Ji

denote the number of groups of size larger or equal to i. To simplify the notation,

suppose, without loss of generality, that the groups are indexed in such a way that,

for all j < k, we have nj ≥ nk. Then, for each fixed i, calculate the order statistics

Xi,(1) < · · · < Xi,(Ji) of Xi,1 . . . , Xi,Ji , and let T ∗
i,[j] denote the response variable
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T ∗
k which corresponds to Xi,(j). For i = 1, . . . ,maxj nj, let v̂i =

∑Ji−1
j=1 T ∗

i,[j]

(
1 −

T ∗
i,[j+1]

)(
Xi,(j+1) −Xi,(j)

)
. We estimate v by

v̂ =

maxj nj∑
i=1

wiv̂i, (4.2)

where the wis are weights summing to one, whose value depends on the group sizes.

More precisely, since v̂i is less accurate when estimated from fewer observations, we

take wi large (resp., small) if Ji is large (resp., small). It can be proved that a choice

that optimizes asymptotic order is

wi =
√

Ji

/maxj nj∑
ℓ=1

√
Jℓ . (4.3)

Note that if all group sizes are equal, (4.2) reduces to (4.1). In section B.1 of the

supplemental file, we show that v̂i is a consistent estimator of v for each i such that

Ji → ∞ as N → ∞. Since, in addition, for each i such that Ji/J → 0 as N → ∞,

we have wi → 0, the estimator v̂ is consistent.

4.1.2 Parametric estimation of b

As we have just seen, we can estimate the variance term v nonparametrically, and

without using any additional bandwidth parameter. As in standard regression prob-

lems, estimating the bias term b nonparametrically is much more complex; we will

show how to do that in Section 4.1.3. However, a reasonable bandwidth can often be

obtained by estimating b with a simple parametric method. Even though the resulting

estimator of b is usually not consistent (since we do not know the right parametric

model), it produces a bandwidth of the right asymptotic order, which in turns pro-

vides a consistent estimator for g. In the nonparametric terminology, a bandwidth

based on such parametric estimation of the bias is called a rule of thumb (ROT).

We can estimate b parametrically by b̃ = N−1
∑J

j=1

∑nj

i=1{g̃
′′
(Xi,j)}2, where g̃′′ de-

notes the second derivative of a parametric estimator g̃ of g. For bandwidth selection
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purposes, to estimate a derivative, g(k) say, of a regression curve g parametrically, it

is quite standard to approximate g by a polynomial

g̃(x) =
ν∑

j=0

βj x
j, (4.4)

where the parameters βj are estimated from the data and where ν ≥ k. To make the

distinction with the local polynomial procedure, we call this the “global polynomial

procedure”.

We estimate the parameter β = (β0, . . . , βν)
T from the data as follows. Let

T = (T ∗
1 , . . . , T

∗
1 , . . . , T

∗
J , . . . , T

∗
J )

T , with T ∗
j as in Section 4.1.1 and where each T ∗

j

is repeated nj times. Then, let X be the N × (ν + 1) matrix with rows equal to(
1, Xi,j, . . . , X

ν
i,j

)
, for j = 1, . . . , J and i = 1, . . . , nj, and where the jth group of nj

rows corresponds to i = 1 . . . , nj. We estimate β by least squares, that is we take

β̂ = (X TX )−1X TT . (4.5)

See section B.2 of the supplemental file for properties of this estimator. To estimate

g′′, we take ν = 3, which gives g̃′′(x) = 2β̂2 + 6β̂3 x.

4.1.3 Nonparametric estimation of b

Next, we show how to estimate b nonparametrically. Here, unlike b̃, the resulting

estimator b̂ is consistent, but the procedure is more complex. One of the main diffi-

culties is that the estimator depends on a nonparametric estimator ĝ′′ of g′′, which

itself requires a smoothing parameter. In other words, with this method, in order to

calculate the bandwidth ĥ∗ for estimating p, we need to choose a second bandwidth

h2 for estimating b. In the literature, the resulting bandwidth ĥ∗ is called a plug-in

bandwidth (PI).

There are various ways to estimate g′′ nonparametrically, and we take an approach

for which it is relatively easy to derive a data-driven bandwidth selector. Let h2 > 0

13



and, for i = 1, . . . ,maxj nj, let S̃i =
(
S̃i,k,k′

)
0≤k,k′≤ℓ

and T̃i = (T̃i0, . . . , T̃iℓ)
T , where

S̃i,k,k′ =
1

Jih
k+k′
2

Ji∑
j=1

Kh2(x−Xi,j)(x−Xi,j)
k+k′ ,

and T̃i,k =
1

Jihk
2

Ji∑
j=1

T ∗
j Kh2(x−Xi,j)(x−Xi,j)

k ,

with T ∗
j and Ji as in Section 4.1.1. Using arguments similar to these used in standard

nonparametric regression problems, it is possible to show that for each i, a consistent

ℓth order local polynomial estimator of g′′ can be defined by ĝ′′i (x) = 2h−2
2 eT2 S̃

−1
i T̃i,

where ℓ ≥ 2 and e2 is the vector of length ℓ+1 defined by e2 = (0, 0, 1, 0 . . . , 0)T . We

suggest estimating b by

b̂ =

maxj nj∑
i=1

wi

Ji

Ji∑
j=1

{ĝ′′

i (Xi,j)}2 ,

with the weights wi as defined in (4.3). Note that, when the groups all have the same

size nj = n1, this estimator reduces to n−1
1

∑n1

i=1 J
−1

∑J
j=1{ĝ

′′
i (Xi,j)}2.

For reasons similar to those discussed in Section 3, when estimating a derivative,

g(k) say, in practice it is standard to choose ℓ = k + 1. Therefore, to estimate g′′ we

take ℓ = 3. Of course, this estimator depends on a bandwidth h2, which should be

chosen for b̂ to be a good estimator of b. In section B.3 of the supplemental file, using

arguments of Ruppert et al. (1995), we suggest taking this second bandwidth equal

to an estimator of

h∗
2 = C2(K)

(
v/|θ24|

)1/7(maxj nj∑
i=1

wi/Ji

)1/7

,

where C2(K) = (αKe
T
2 S

−1S∗S−1e2/e
T
2 S

−1µ)1/7 , with αK = 60 if θ24 > 0 and αK = 24

if θ24 < 0. For example, for a Gaussian kernel, C2(K) = {3/(8
√
π)}1/7 if θ24 < 0 and

C2(K) = {15/(16
√
π)}1/7 if θ24 > 0.

We estimate the bandwidth h∗
2 by replacing v by the estimator of Section 4.1.1

14



and θ24 by

θ̂24 =
1

N

J∑
j=1

nj∑
i=1

g̃′′(Xi,j)g̃
(4)(Xi,j),

where g̃′′ is the global polynomial estimator discussed in Section 4.1.2, and g̃(4) is the

fourth derivative of a fourth order global polynomial estimator of g. That is, we take

g̃ as in (4.4), with ν = 4, and then we put g̃(4)(x) = 24β̂4. In general θ̂24 is not a

consistent estimator of θ24. However, at this pilot stage, we are sufficiently far from

the original problem of estimating p, so that replacing unknown quantities by rough

approximations does not seriously impact the quality of the estimator of p.

4.1.4 Weighted versions

In practice, estimating the derivatives of a regression curve is not easy. Estimators

of the derivatives, especially if they are nonparametric, can be too variable near the

boundary. In standard regression problems, to overcome this issue, it is common

to replace estimators of quantities such as b and θ24 by weighted versions; see for

example Gasser et al. (1991). In our case, such weighted estimators can be defined

by b̂ = N−1
∑J

j=1

∑nj

i=1{ĝ′′(Xi,j)}2ω(Xi,j), b̃ = N−1
∑J

j=1

∑nj

i=1{g̃′′(Xi,j)}2ω(Xi,j) and

θ̂24 = N−1
∑J

j=1

∑nj

i=1 g̃
′′(Xi,j)g̃

(4)(Xi,j)ω(Xi,j) , where ω is a weight function.

For the PI method, we considered two weights, namely ω = ω0 and ω = ω1,

where ω0(x) = 1{q0.1, q0.9}(x) and ω1(x) = 1{q0.2, q0.8}(x), with qα denoting the α

quantiles of the Xij’s. We denote by PIω0 and PIω1 the two corresponding weighted

PI bandwidth selectors. For the ROT, using a weight to estimate b is less crucial,

and we considered the unweighted ROT and the ROT that uses the weight ω = ω0.

We denote these two versions of the ROT bandwidth selector by ROT and ROTω0 .
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Table 1: Simulation results for models (i) to (iv), when the Xi,j’s are uniform. The

numbers show 104× MISE (stdev) calculated from 200 simulated samples.

nj = 1 nj = 2 nj = 5 nj = 10

Model N MW ROT ROTω0 ROT ROTω0 ROT ROTω0

(i) 5.103 4.58(2.57) 6.22(3.44) 6.42(3.41) 12.6(6.93) 12.3(6.49) 22.5(13.1) 20.9(11.7)

104 2.47(1.34) 3.80(1.97) 4.06(2.08) 7.21(3.90) 7.53(3.90) 12.6(6.87) 12.6(6.45)

(ii) 5.103 3.52(2.83) 4.98(3.51) 4.44(3.34) 10.4(7.44) 9.22(7.03) 20.4(15.3) 18.0(14.0)

104 2.08(1.66) 2.95(1.83) 2.58(1.72) 5.16(3.29) 4.44(3.05) 9.33(6.68) 7.89(5.97)

(iii) 5.103 .557(.559) .561(.461) .595(.438) .921(.827) .932(.814) 1.72(1.66) 1.67(1.59)

104 .321(.312) .359(.221) .402(.213) .521(.376) .554(.364) .781(.631) .791(.610)

(iv) 5.103 1.59(1.11) 2.10(1.21) 2.21(1.22) 3.94(2.55) 4.12(2.55) 6.82(4.00) 7.06(4.06)

104 .858(.650) 1.30(.659) 1.50(.674) 2.31(1.20) 2.67(1.28) 4.19(2.39) 4.74(2.54)

Model N MW PIω0 PIω1 PIω0 PIω1 PIω0 PIω1

(i) 5.103 4.58(2.57) 6.32(3.33) 6.78(3.39) 12.0(6.70) 12.0(5.86) 22.5(13.7) 20.2(12.0)

104 2.47(1.34) 3.96(1.95) 4.22(2.04) 7.02(3.70) 7.63(3.65) 12.4(6.80) 11.9(6.04)

(ii) 5.103 3.52(2.83) 4.97(3.56) 4.38(3.30) 11.7(7.82) 9.72(7.23) 25.8(16.7) 21.1(14.8)

104 2.08(1.66) 2.77(1.80) 2.50(1.67) 5.57(3.54) 4.55(3.10) 11.5(7.33) 9.05(6.28)

(iii) 5.103 .557(.559) .632(.636) .591(.610) 1.47(1.17) 1.33(1.11) 3.37(2.38) 3.04(2.27)

104 .321(.312) .329(.278) .308(.265) .694(.516) .625(.491) 1.46(1.07) 1.28(1.00)

(iv) 5.103 1.59(1.11) 1.91(1.31) 1.84(1.24) 3.82(2.84) 3.60(2.73) 7.61(4.19) 6.90(3.95)

104 .858(.650) 1.14(.736) 1.11(.700) 2.04(1.24) 1.96(1.19) 4.13(2.45) 3.80(2.35)

4.2 Simulations

To study the practical performance of the estimator p̂ in (2.5), we applied it to samples

generated from the following models:

(i) p(x) = {sin(πx/2) + 1.2}/[20 + 40x2{sign(x) + 1}] and X ∼ U [−3, 3] or X ∼

N(0, 1.52);

(ii) p(x) = exp(−4 + 2x)/{8 + 8 exp(−4 + 2x)} and X ∼ U [−1, 4] or X ∼ N(2, 1.52);

(iii) p(x) = x2/8 and X ∼ U [0, 1] or X ∼ N(0.5, 0.52);

(iv) p(x) = x2/8 and X ∼ U [−1, 1] or X ∼ N(0, 0.752).

We chose these curves so as to get examples with various features. We considered

several values of N and nj. For each combination of p, N , nj and distribution

of X, we generated 200 random samples of size N =
∑J

j=1 nj from (X, Y ), where
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Table 2: Simulation results for models (i) to (iv), when the Xi,j’s are normal. The

numbers show 104× MISE (stdev) calculated from 200 simulated samples.

nj = 1 nj = 2 nj = 5 nj = 10

Model N MW ROT ROTω0 ROT ROTω0 ROT ROTω0

(i) 5.103 5.69(4.12) 13.4(6.24) 17.6(6.44) 17.2(8.98) 21.0(8.60) 25.6(14.8) 28.3(14.1)

104 3.38(2.08) 9.67(4.41) 14.5(5.29) 13.3(5.60) 17.7(6.05) 16.6(8.19) 20.4(8.37)

(ii) 5.103 2.52(2.26) 3.42(2.36) 3.41(2.26) 7.5(8.00) 6.61(7.23) 16.4(20.6) 13.8(18.1)

104 1.31(.955) 2.18(1.56) 2.41(1.65) 4.77(4.19) 4.51(3.83) 10.3(14.9) 8.84(13.1)

(iii) 5.103 .368(.331) 1.33(.763) 1.59(.833) 1.93(1.04) 2.21(1.10) 2.78(1.62) 3.07(1.66)

104 .202(.191) .851(.400) 1.06(.449) 1.26(.650) 1.50(.698) 1.83(.963) 2.11(.999)

(iv) 5.103 1.23(.768) 2.86(1.54) 3.07(1.60) 5.36(2.79) 5.61(2.82) 9.84(6.45) 10.1(6.38)

104 .693(.445) 1.82(.955) 2.23(1.06) 3.27(1.75) 3.78(1.84) 5.78(3.06) 6.37(3.13)

Model N MW PIω0 PIω1 PIω0 PIω1 PIω0 PIω1

(i) 5.103 5.69(4.12) 9.88(4.64) 11.3(4.92) 14.7(8.97) 16.0(8.80) 23.2(15.9) 23.6(15.2)

104 3.38(2.08) 6.87(3.00) 8.14(3.32) 10.6(4.53) 12.1(4.59) 13.5(7.40) 14.5(7.16)

(ii) 5.103 2.52(2.26) 3.33(2.31) 3.41(2.30) 7.14(7.79) 6.74(7.45) 17.7(21.3) 16.1(19.9)

104 1.31(.955) 2.27(1.59) 2.44(1.62) 4.65(4.39) 4.57(4.17) 10.5(15.7) 9.80(15.2)

(iii) 5.103 .368(.331) .663(.509) .701(.528) 1.18(.890) 1.21(.885) 2.24(1.83) 2.16(1.71)

104 .202(.191) .335(.228) .360(.239) .638(.456) .665(.471) 1.18(.913) 1.18(.890)

(iv) 5.103 1.23(.768) 2.30(1.40) 2.41(1.41) 4.74(2.79) 4.83(2.75) 9.24(6.92) 9.18(6.70)

104 .693(.445) 1.38(.822) 1.48(.847) 2.74(1.67) 2.84(1.67) 5.27(3.10) 5.30(3.06)

Y |X ∼ Bernoulli{p(X)}. Then we divided the data randomly into J groups, each

with nj observations, to produce 200 samples of size J from (X1j, . . . , Xnj ,j, Y
∗
j ),

following (2.1), and calculated the 200 corresponding estimators p̂ of p. For each, we

then calculated the integrated squared error ISE =
∫ b

a
{p̂(x) − p(x)}2 dx, where [a, b]

is the x-range of the figures. We then ordered the 200 estimators from the best to

the worst according to their ISE values. In the figures, we show the three estimators

corresponding to the first, second and third quartile values of these 200 ISEs. The

true curve p is shown in uninterrupted line. Throughout, we used the two versions of

the ROT and of the PI bandwidth selectors described in Section 4.1.4. We took the

kernel K equal to a standard normal density. Since p is a probability, in each case

we truncated our estimator p̂ to [0, 1]; this does not change asymptotic properties of

our estimator.
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Figure 1: 1st quartile (− − −), 2nd quartile (− ·− ·−) and 3rd quartile (· · · ) curves
for model (i) using ROTω0 , when X ∼ U [−3, 3] and nj = 10, with N = 5000 (left),

N = 10000 (center) and N = 20000 (right).

Before we discuss the results, it is important to realise that the information con-

tained in a sample of size N from our type of observations is not comparable to that

contained in a sample of size N from (X, Y ). The latter is considerably more infor-

mative as, for example, with our type of data we only observe J values of Y ∗, and

it is really J that plays the role of the traditional sample size. Moreover, the Y ∗’s

are only summary statistics of the unobserved Y ’s, and thus the problem we consider

is quite complex. Finally, we should note that, to our knowledge, there does not

exist in the literature any other nonparametric method for estimating p in the group

testing context. Therefore we cannot compare our method with any other procedure

since, as usual, it would not make sense to compare a nonparametric estimator with a

parametric one; the latter can only be applied when the shape of p is known, whereas

the former can be applied without such information on p.

We show the full simulation results for N = 5000 and 10000, with nj = 2, 5

or 10 in Table 1, where the Xi,j’s are uniform, and in Table 2, where the Xi,j’s are

normal. In each case, the numbers shown in the tables are 104 times the MISE and

the standard deviation of the ISE, both calculated from 200 samples. To quantify the

loss encountered by grouping the data, we also show the results for nj = 1, i.e. the
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Figure 2: 1st quartile (− − −), 2nd quartile (− ·− ·−) and 3rd quartile (· · · ) curves
for model (iv) using PIω1 , when X ∼ N(0.5, 0.52) and N = 5000, with nj = 2 (left),

nj = 5 (center) and nj = 10 (right).

ideal case where the data are not grouped. There, we used the standard local linear

estimator with Matt Wand’s R dpill bandwidth, denoted by MW in the tables. See

Wand and Ripley (2010). Overall, we see that when the Xi,j’s were uniform, the

ROT gave the best results, and when the Xi,j’s were normal, it is the PI method that

gave the best results. In general, our preference is to use the ROT method when the

data are relatively uniformly distributed over their range, and to use the PI method

otherwise. Our results also indicate that, overall, when the group sizes are small, the

best results are obtained by the ROT and the PIω0 , and when the group sizes are

larger, ROTω0 and PIω1 give the best results. This can be explained from the fact that

the estimator is more variable when group sizes are large, and hence methods giving

a larger bandwidth, such as these two, often work better in practice. Unsurprisingly,

the performance of our estimator degraded as the group size increased and the results

improved as the total sample size increased.

Next we depict these results by presenting the quartile estimated curves obtained

in several cases. Additional simulation results for unequal group sizes are provided in

Section C of the supplemental file. In Figure 1, we illustrate the effect of increasing

the sample size by showing the results for curve (i) when X ∼ U [−3, 3] and nj = 10
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Figure 3: Row 1: 1st quartile (− − −), 2nd quartile (−·−·−) and 3rd quartile (· · · )
curves for model (ii) using ROTω0 , when X ∼ U [−1, 4], with nj = 10 and N = 10000

(left), nj = 10 and N = 20000 (center) and nj = 20 and N = 20000 (right).

with N = 5000, N = 10000, and N = 20000. Figure 2 shows the deterioration of

the estimator when the group size increases; we report the results for curve (iv) when

X ∼ N(0.5, 0.52) with nj = 2, 5 or 10 and N = 5000. Finally, in Figure 3, we show

that when the sample size is large, the estimator also works well with very large group

sizes; we present the quartile curves for model (ii) with X ∼ U [−1, 4] and nj = 10 or

20, when N = 10000 or N = 20000.

4.3 Application to the NHANES study

In the group testing literature, real data illustration is usually based on a sample

for which the individual observations on (X, Y ) are available, and groups are created

artificially to compare the performance of group testing methods with the perfor-

mance of the ideal estimator based on non grouped sample of individual observations,

where nj = 1. The illustration provided in this section is of this type. We applied

our technique to data from the NHANES study, a very large nutrition and health

study carried out in the US. We used data from 1999-2000, which are available at

www.cdc.gov/nchs/nhanes/nhanes1999-2000/nhanes99_00.htm . These data were

collected between 1999 and 2000. The survey design was a stratified, multistage prob-
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ability sample of the civilian noninstitutionalized US population. For more details, see

www.cdc.gov/nchs/data/nhanes/nhanes_99_00/general_data_release_doc.pdf.

Our goal is to illustrate on these data the performance of our nonparametric estima-

tor. We estimated two conditional probabilities:

(a) pHBc(x) = P (YHBc = 1|X = x), where X was the age of the patient and YHBc was a

binary variable taking values 0 and 1 indicating, respectively, the absence or presence

of antibody to hepatitis B virus core antigen in the patient’s serum or plasma. Values

of YHBc were obtained by the ORTHO HBc ELISA test system. After removing the

individuals with missing values of X or YHBc, the sample size N was 7121 and the

age X ranged from 1 month to 84 years;

(b) pCL(x) = P (YCL = 1|X = x), where X was the age of the patient and YCL was a

binary variable taking values 0 and 1 indicating, respectively, the absence or presence

of genital Chlamydia trachomatis infection in the urine of the patient. Note that

C. trachomatis is responsible for many sexual transmittable diseases. Values of YCL

were obtained by the LCx C. trachomatis assay. After removing the individuals with

missing values of X or YCL, the sample size N was 2042 and the age X ranged from

12 to 40 years.

In both cases, we first calculated the local linear estimator of p based on the indi-

vidual observations of (X, Y ). We denote this estimator by p̂ideal; it is of much higher

quality than estimators calculated from grouped data, but it cannot be calculated

when the only available data are grouped. We take p̂ideal as our reference curve and

represent it by an uninterrupted curve in the figures. To assess the performance of

our estimator on these data, we artificially created groups of sizes nj from the original

data, where nj was equal to 2, 5 or 10. In each case we created 200 grouped samples

in this way, and calculated our estimator for these grouped data. To assess the loss

incurred by pooling the data, for each sample we calculated the integrated squared

difference ISD =
∫
{p̂− p̂ideal}2; in the graphs, we show the three estimators that we
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Figure 4: Nhanes study: 1st quartile (− − −), 2nd quartile (−·−·−) and 3rd quartile

(· · · ) curves, and ideal estimator p̂ideal (—) when Y = YHBc (row 1) or Y = YCL (row

2), and when nj = 2 (left), nj = 5 (center) or nj = 10 (right), using the ROTω0 .

call quartile curves, and which correspond to the first, second and third quartiles of

these 200 calculated ISDs. Since, in this case, the observations Xi,j are relatively

evenly widespread over their range, we used the ROTω0 bandwidth. The results are

shown in Figure 4, where we see that our estimator worked reasonably well, and

performed the best when estimating pHBc. This is because the hepatitis sample was

much larger than the Chlamydia sample. Unsurprisingly, and as already illustrated

by our simulated examples, we can see that the quality of our estimator degrades as

the group sizes nj increase.
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5 Test with imperfect accuracy

A detection test is not always perfectly accurate, and two types of errors can be

encountered: the test on a group is positive when no one in the group is positive,

and the test is negative when at least one member of the group is positive. If we let

Di,j be the true status (0/1) of the ith individual from the jth group and D∗
j be the

corresponding group status, then the probability of the first error is p1 ≡ P (Y ∗
j =

1|D∗
j = 0), and the probability of the second error is p2 ≡ P (Y ∗

j = 0|D∗
j = 1);

note that 1 − p1 and 1 − p2 are usually referred to as, respectively, the specificity

and sensitivity of the test. In that case, the function of interest is no longer p(x) =

P (Y = 1|X = x), but rather

p̆(x) = P (D = 1|X = x) = 1− q̆ğ(x)/µ̆∗
Z , (5.1)

where D is the true status of an individual, q̆ = E{1− p̆(X)}, µ̆∗
Z = N−1

∑J
j=1 njEZ̆∗

j ,

Z̆∗
j = 1−D∗

j and ğ(x) = N−1
∑J

j=1

∑nj

r=1 E
(
Z̆∗

j |Xr,j = x
)
.

As in Vansteelandt et al. (2000) and Xie (2001), we assume that p1 and p2 are

known and that p1 and p2 are unaffected by the group size nj. Assume that the result

of the test depends only on the true status, and that p1 and p2 are less than 0.5;

this would normally be the case since p1 and p2 are the probabilities of errors of the

test. Then it is not very hard to prove that P (D∗
j = 1|Xi,j) = (1− p2 − p1)

−1P (Y ∗
j =

1|Xi,j)− p1(1− p2 − p1)
−1 , that is,

ğ(x) = (1− p2 − p1)
−1g(x)− p2(1− p2 − p1)

−1 . (5.2)

See Vansteelandt et al. (2000) for an analogous formula in the parametric context.

We deduce an estimator ̂̆g(x) of ğ(x) by replacing the unknown g by ĝ of Section 2.

To estimate µ̆∗
Z , note that µ̆∗

Z =
(
µ∗
Z − p2

)
/(1 − p2 − p1) , which we can estimate bŷ̆µ∗

Z , obtained by replacing µ∗
Z in this equation by µ̂∗

Z defined in Section 2. We obtain

an estimator ̂̆q of q̆ by solving for q̆ the equation ̂̆µ∗
Z = M̆/Nq̆ = N−1

∑J
j=1 nj q̆

nj ,

where M̆ =
∑J

j=1 nj q̆
nj−1. Finally, we can estimate p̆ by ̂̆p(x) = 1− ̂̆q̂̆g(x)/̂̆µ∗

Z .
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Table 3: Perfect tests versus imperfect tests. The numbers show the mean (stdev) of

the ratio ISEI / ISEP calculated from 200 simulated samples.

N = 5000 N = 10000

Case nj = 2 nj = 5 nj = 10 nj = 2 nj = 5 nj = 10

Ex1 1.00 (.057) .997 (.073) .995 (.028) .997 (.047) .999 (.043) .999 (.036)

Ex2 1.19 (.617) 1.16 (.544) 1.23 (.770) 1.19 (.407) 1.14 (.438) 1.31 (.873)

Ex3 1.43 (.857) 1.34 (.827) 1.41 (1.05) 1.26 (.672) 1.20 (.586) 1.35 (.755)

Ex4 2.35 (2.10) 1.71 (3.90) 1.53 (1.19) 2.03 (2.12) 1.57 (1.85) 1.38 (.946)

Asymptotic properties of ̂̆p follow directly from Theorem 3.1. In particular, we

have
∣∣̂̆p(x)−p̆(x)

∣∣2 = ASEP (x) +OP{(Nh)−3/2}+OP (N
−1h−1/2) , where ASEP (x) is a

nonnegative random variable such that E{ASEP (x)} = N2M̆−2(1−p2−p1)
−2{V (x)+

B2(x)} · {1+ o(1)} , with B and V as in the theorem. In particular, since g(ℓ+1)(x) =

(1−p2−p1)ğ
(ℓ+1)(x) = −(M̆/N)(1−p2−p1)p̆

(ℓ+1)(x), then here too the bias component

of ASEP (x) is exactly equal to the bias of the standard regression estimator, and the

inaccuracy of the test only affects the variance of the estimator.

We applied our procedure to four examples where the test was not perfectly accu-

rate. In the first we took p1 = 0.0003 and p2 = 0 as in Vansteelandt et al. (2000); in

the second we took p1 = 0.004 and p2 = 0.077 as in Xie (2001), in the third we took

p1 = 0.01 and p2 = 0.1 and in the fourth we took p1 = 0.1 and p2 = 0.01. To choose

the bandwidth, we can use the exact same procedures as before. Indeed, the band-

width is used to compute the estimator of g, which is calculated in exactly the same

way as when the test is accurate. The fact that the Y ∗
i ’s do not actually represent

the true disease status has no impact on the estimation on g; it only impacts the way

in which we construct an estimator of p̆ from ĝ. The results of simulations for model

(ii) when X ∼ N(2, 1.52), using ROTω0 are shown in Table 3. The numbers show the

mean (stdev) of the ratio ISEI / ISEP calculated from 200 simulated samples, where

ISEP and ISEI denote the integrated squared error of the estimator for perfect and

imperfect tests, respectively. These results illustrate that the loss caused by imperfect

tests remains quite moderate.

24



6 Extensions

Our method can be extended to a variety of related problems which have been consid-

ered in the literature. In this section we introduce two possible generalisations: the

case where the explanatory variable is not observed with perfect accuracy, and the

case where several covariates are available. In both cases we show how to consistently

estimate the unknown curve. We leave details of implementation for future research.

6.1 Covariate measured inaccurately

A problem that often arises in practice is that the covariate X can only be observed

with non-negligible measurement error, which is often referred to as an errors-in-

variables problem. There, the only data we can observe are (Wi,j, Y
∗
j ), j = 1, . . . , J ,

i = 1, . . . , nj, where

Wi,j = Xi,j + δi,j , j = 1, . . . , J, i = 1, . . . , nj , (6.1)

and where the error variables δi,j are i.i.d. and independent of the Xi,j’s and of the

Yi,j’s. Errors-in-variables regression problems have received considerable attention

over the last two decades, see Carroll et al. (2006) for an introduction. Huang

(2009) and Huang and Tebbs (2009) considered the errors-in-variables problem for

parametric estimation of p with group testing data.

In this section we show how to construct a consistent nonparametric estimator

of p by combining our procedure in Section 2 with the local polynomial regression

method for contaminated data constructed in Delaigle et al. (2009). Throughout,

we assume for simplicity that the density fδ of the δi,j’s is known, as is commonly

done in the literature. This is not very restrictive as, when fδ is unknown, it can be

estimated, parametrically as well as nonparametrically, by replicated measurements,

and this does not change first order asymptotic properties of estimators. See Delaigle

et al. (2008) for details and conditions. It is easy to see by inspecting our estimator
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p̂ defined in Section 2 that the only quantity that needs to be modified is ĝ, as µ̂∗
Z

and q̂ depend only on the Y ∗
j ’s. Using the same ideas as in Delaigle et al. (2009), we

suggest taking

ĝ(x) = eT0 Ŝ
−1

eivT̂eiv , (6.2)

where Ŝeiv =
(
Ŝeivk,k′

)
0≤k,k′≤ℓ

and T̂eiv = (T̂ eiv0 , . . . , T̂ eivℓ )T , with

Ŝeivk,k′ =
1

Nh

J∑
j=1

nj∑
r=1

(−i)k+k′

2π

∫
e−it(x−Wr,j)/hϕ

(k+k′)
K (t)/ϕδ(t/h) dt

and T̂ eivk =
1

Nh

J∑
j=1

Z∗
j

nj∑
r=1

(−i)k

2π

∫
e−it(x−Wr,j)/hϕ

(k)
K (t)/ϕδ(t/h) dt ,

and where ϕK and ϕδ denote, respectively, the Fourier transform of K and fδ. Com-

bining our techniques of proofs with those of Delaigle et al. (2009), it can be proved

that, under a combination of our condition A and the conditions in Delaigle et al.

(2009), this estimator is consistent and has the same rates as the regression estimator

studied in Delaigle et al. (2009).

Our results of Section 5, where we considered tests with imperfect accuracy, can

be extended to this case too. To estimate p̆(x) defined at (5.1), we can use the

estimators of q̆ and µ̆∗
Z as those derived in Section 5, since these do not depend on the

mismeasured covariates. The only change concerns the estimator of ğ. To estimate ğ,

we take the formula at (5.2), where we replace g by the estimator ĝ defined at (6.2).

6.2 Multivariate setting

Our procedure can also be extended to the multivariate setting where, for the ith

individual of the jth group, we observe a vector Xi,j = (Xi,j,1, . . . , Xi,j,d)
T of d co-

variates. Here, for x = (x1, . . . , xd)
T , we have p(x) = E(Y |X = x) = 1− q · g(x)/µ∗

Z ,

where

g(x) = N−1

J∑
j=1

nj∑
r=1

E
(
Z∗

j |Xr,j = x
)
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and with q and µ∗
Z as in the univariate case. Since q̂ and µ̂∗

Z depend only on the Y ∗
j ’s,

they can be estimated as before, and the only difference with the univariate case comes

from estimating the function g. For the latter, since the local linear estimator is the

most widely used in practice, we extend to the multivariate context only our local

linear estimator. This extension is done in a way similar to the standard regression

context. See for example Wand and Jones (1995) and Fan and Gijbels (1996). More

precisely, we define ĝ(x) = eT0 Ŝ
−1T̂ , where e0 = (1, 0, . . . , 0)T is a vector of length

d+ 1, Ŝ =
(
Ŝk,k′

)
0≤k,k′≤d

and T̂ = (T̂0, . . . , T̂d)
T , with,

Ŝk,k′ =
J∑

j=1

nj∑
r=1

KH(x−Xr,j)(xk −Xr,j,k)
δk(xk′ −Xr,j,k′)

δk′ ,

and T̂k =
J∑

j=1

Z∗
j

nj∑
r=1

KH(x−Xr,j)(xk −Xr,j,k)
δk ,

for k, k′ = 0, . . . , d, and where, for each k, δk = 1{k > 0}. Here, H is a symmetric

positive definite d × d bandwidth matrix, K is a d-variate kernel, and we used the

standard notation KH(x) = |H|−1/2K(H−1/2x). For example, K could be the d-

dimensional standard normal density, and it is common to take H to be a diagonal

matrix. Like in the standard regression case, simplified multivariate estimators can

also be defined, using for example additive models or their variants. See Fan and

Gijbels (1996).

7 Conclusion

In large screening studies, data are often pooled in groups to help significantly reduce

cost and increase speed. We have shown how to construct a nonparametric estimator

of a conditional probability in this context. Our kernel method relies on a smoothing

parameter, and we have derived two automatic ways for choosing this parameter: a

simple rule of thumb and a more complex plug-in method. A numerical investiga-
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tion has shown that our curve estimator works well in practice. Finally, we have

suggested extensions of the procedure to multivariate settings and to cases where the

observations are measured with errors.

8 Supplemental Materials

Appendix: The proofs can be found in Sections A and B of the file Supplem.pdf

which is available online from the JASA website. This file also contains addi-

tional simulations for groups of unequal sizes, see Section C.

R code: R codes can be found in the files Equal.R and Unequal.R available from

the JASA website. Equal.R includes routines for calculating the estimator in

the case of equal group sizes; Unequal.R includes routines for calculating the

estimator in the case of unequal group sizes.
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