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Abstract: Estimating a curve nonparametrically from data measured with error is a

difficult problem that has been studied by many authors. Constructing a consistent

estimator in this context can sometimes be quite challenging, and in this paper we

review some of the tools that have been developed in the literature for kernel-based

approaches, founded on the Fourier transform and a more general unbiased score

technique. We use those tools to rederive some of the existing nonparametric density

and regression estimators for data contaminated by classical or Berkson errors, and

discuss how to compute these estimators in practice. We also review some errors

sometimes encountered in the area, and highlight a number of problems with an ex-

isting R package decon.
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1 Introduction

We consider nonparametric estimation of a density or a regression curve from data

observed with errors. Measurement errors arise in data coming from a wide variety of

applications (e.g. astronomy, nutrition, epidemiology and chemistry), because most

quantities are measured with error, for instance due to imperfect measurement de-

vices, inadequate reagent quality, or the impossibility to directly access the variables

of interest. For example, in nutrition studies the long term saturated fat intake of

patients is often approximated by the fat intake of one or two 24-hour recalls. Ig-

noring the errors present in the data when constructing estimators produces biased

estimators, and as a result the topic of nonparametric curve estimation with errors-

in-variables has received a great deal of attention over the last two decades. We

review the main techniques suggested in the literature, with a focus on kernel esti-

mators, which are by far the most popular and the most developed nonparametric

errors-in-variables techniques.

Measurement errors are often classified in two types, called classical errors and

Berkson errors. In the classical error case, the errors arise from an imprecise mea-

surement of a quantity. For example, imprecision can be due to the inaccuracy of a

measuring device (e.g. measurements in a lab), or the intrinsic difficulty in measur-

ing the quantity of interest (e.g. cholesterol level or systolic blood pressure). In the

Berkson error case, we do not observe directly the variable of interest, and measure

instead a proxy that is linearly related to it. This type of errors arise typically in

exposure studies, where, instead of measuring exposure of an individual to a toxic

substance, we are only able to measure exposure at some fixed stations. Classical

errors are those that have received the most attention in the literature; they are more

common in practice, and are often simpler to deal with. Roughly speaking, methods

that exist and are valid in the error-free case can be extended to the classical error

context, using arguments similar to those employed in the error-free case. The sit-
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uation is quite different for Berkson errors, where estimating densities is trivial, but

estimating a regression curve is much more challenging.

Deriving consistent estimators in the errors-in-variables setting can be rather sub-

tle, and arguments paralleling existing results in more standard contexts can some-

times lead to erroneous conclusions. We review some of the difficulties that can be

encountered in this process, and explain a general technique based on unbiased scores

which can be used to construct consistent estimators in a variety of settings. A key

to solving many errors-in-variables problems is often to take the Fourier transform

of the various functions involved. Once in the Fourier domain, equations generally

become much simpler to solve; for example, convolutions become products, which are

much easier to deal with.

We introduce the error models in section 2. In section 3, we explain techniques for

deriving consistent estimators, and illustrate these approaches by constructing errors-

in-variables density and regression estimators. Section 4 focuses on the practical

implementation of estimators, provides links for Matlab (MathWorks, Inc., 2012)

codes that compute the estimators, and points to a number of problems with the R

(R Development Core Team, 2011) package decon of Wang and Wang (2011). Finally,

in section 5 we expose some of the errors in reasoning that are sometimes encountered

in the area.

2 Error models

2.1 Introduction

In the standard nonparametric density estimation problem, we wish to construct a

nonparametric estimator of a density fX , using a sample of independent and identi-

cally distributed (i.i.d.) data X1, . . . , Xn, where Xi ∼ fX . In the standard nonpara-

metric regression problem, the goal is to estimate a regression curve m nonparamet-
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rically, using a sample (X1, Y1), . . . , (Xn, Yn) of i.i.d. observations modelled according

to

Yi = m(Xi) + ϵi, (2.1)

where Xi ∼ fX and, for all x, E(ϵi|Xi = x) = 0 and var(ϵi|Xi = x) < ∞.

In the errors-in-variables context, we wish to estimate the same quantities, but

instead of observing the Xi’s, we observe a contaminated version of them. In this

section we review the two main error types (classical and Berkson), and introduce a

model that combines both types of errors.

2.2 Classical errors

In the classical measurement error context, we are interested in estimating the density

fX of a variable X, but we only observe a sample of i.i.d. data W1, . . . ,Wn, where

Wi = Xi + Ui, (2.2)

with Xi ∼ fX , Ui ∼ fU , and where the Ui’s are i.i.d. and independent of the Xi’s.

The error density fU is traditionally assumed to be known, and for simplicity we

shall make that assumption throughout. When fU is unknown, it can be easily

estimated from replicated observations, with little impact on the conclusions drawn

in this paper; see Li and Vuong (1998) and Delaigle, Hall and Meister (2008). Let

ϕR(t) =
∫
eitxfR(x) dx denote the characteristic function of a generic random variable

R. We assume throughout, as is commonly done in the literature, that fU is symmetric

and that ϕU satisfies ϕU(t) ̸= 0 for all t. Estimating fX from the Wi’s at (2.2) is often

referred to as a deconvolution problem.

In the classical errors-in-variables regression context, we wish to estimate a regres-

sion curvem, but we only observe a sample (W1, Y1), . . . , (Wn, Yn) of i.i.d. observations

modelled according to

Yi = m(Xi) + ϵi, Wi = Xi + Ui, (2.3)
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Figure 1: Scatterplot of the data (Xi, Yi) (left) and (Wi, Yi) (right) in the classical

error case. The red curve is the standard local linear estimator of m computed from

the data (Xi, Yi) (left) or (Wi, Yi) (right). The true m is depicted by the black line.

where Xi ∼ fX , Ui ∼ fU , the Ui’s are i.i.d. and independent of the (Xi, ϵi)’s, and, for

all x and for i = 1, . . . , n, E(ϵi|Xi = x) = 0 and var(ϵi|Xi = x) < ∞. Moreover, the

Ui’s satisfy all the assumptions of model (2.2).

When the data are contaminated in this way, we cannot apply standard estimation

techniques designed for error-free data: when computed with contaminated data, they

produce biased estimators, which often perform rather poorly. To illustrate this, we

generated a sample (X1, Y1), . . . , (Xn, Yn) of size n = 200 from the model at (2.1), and

then, following (2.3), added normal errors Ui to the Xi’s, taking the noise to signal

ratio, var(U)/ var(X), equal to 20%. We then computed the standard local linear

estimator of m using the data (Xi, Yi) (see section 3.1), and then computed it again

using the data (Wi, Yi). The resulting estimators are shown in Figure 1, together with

scatterplots of both versions of the data. Clearly, the estimator computed from the

(Wi, Yi)’s is biased and oversmooths the data. This is typically the effect that errors

have on estimators, and when the data are contaminated, we need to use techniques

that can take the measurement error into account.
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2.3 Berkson errors

It is the dependence structure between X and W that determines the type of errors.

Classical errors typically arise when X is measured by an experimenter, who, by

measuring X incorrectly, adds a noise U to the true value of X. Berkson errors,

which were first considered by Berkson (1950), are of a completely different nature.

There, we are interested in a variable X, but can only observe i.i.d. data W1, . . . ,Wn,

where

Xi = Wi + Vi, (2.4)

with Xi ∼ fX , Vi ∼ fV , and the Berkson errors Vi are i.i.d. and independent of the

Wi’s. Although (2.4) can be written as Wi = Xi−Vi, which appears to be of the same

form as (2.2) with Ui = −Vi, −Vi cannot be treated as a classical error because it is

not independent of Xi. In the Berkson case, often the variable Wi is a proxy for Xi.

It is not a version of Xi corrupted by an error due to inaccurate measurements; rather

it is a variable genuinely different from, but linearly related to, Xi. Throughout we

make the usual assumption that fV is symmetric.

In the Berkson errors-in-variables regression context, we observe a sample of

i.i.d. data (W1, Y1), . . . , (Wn, Yn) modelled according to

Yi = m(Xi) + ϵi, Xi = Wi + Vi, (2.5)

where Xi ∼ fX , Vi ∼ fV , and the Vi’s are i.i.d. and independent of the Wi’s. We

assume throughout that ϵi is independent ofWi and Vi; moreover, E(ϵi) = 0, var(ϵi) <

∞ and the Vi’s satisfy all the assumptions of model (2.4).

As in the classical error case, applying standard estimators designed for error-free

data, to data contaminated by Berkson errors, leads to inconsistent, biased estimators.

This is illustrated in Figure 2, where we show scatterplots of data (Xi, Yi) and (Wi, Yi),

generated according to the model at (2.5), with a noise to signal ratio, var(V )/ var(X),

of 20%, and standard local linear estimators of m constructed from these data. As in
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Figure 2: Scatterplot of the data (Xi, Yi) (left) and (Wi, Yi) (right) in the Berkson

error case. The red curve is the standard local linear estimator of m computed from

the data (Xi, Yi) (left) or (Wi, Yi) (right). The true m is depicted by the black line.

section 2.2, the estimator based on the contaminated data is biased. More generally,

when data are observed with Berkson errors, standard estimators do not usually work

and we have to use methods especially designed for dealing with those errors.

2.4 Berkson and classical errors

In the Berkson model, the proxy itself can be observed with errors. In such cases, the

observed data are a sample (Z1, Y1), . . . , (Zn, Yn) modelled according to

Yi = m(Xi) + ϵi, Xi = Wi + Vi, Zi = Wi + Ui, (2.6)

where Xi ∼ fX , Vi ∼ fV , Ui ∼ fV , and the Berkson errors Vi are i.i.d., the classical

errors Ui are i.i.d., and the Ui’s and the Vi’s are independent, and independent of

the Wi’s and of the ϵi’s. We assume that ϵi is independent of Wi, E(ϵi) = 0 and

var(ϵi) < ∞. We also assume throughout that fU and fV are known and symmetric,

and ϕU(t) ̸= 0 for all t.
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3 Deriving consistent estimators

3.1 Error-free observations

Before showing how to derive density and regression estimators in those error settings,

we recall how these quantities can be estimated in the error-free case, where we

observe (X1, Y1), . . . , (Xn, Yn) coming from model (2.1). There exist a variety of

nonparametric methods which consistently estimate m, but here we focus on kernel-

based approaches. The simplest of these is the Nadaraya-Watson estimator

m̂(x) =
(nh)−1

∑n
j=1 YjK

(x−Xj

h

)
(nh)−1

∑n
j=1K

(x−Xj

h

) , (3.1)

where K is a smooth and symmetric function called kernel, and h > 0 is a smoothing

parameter called bandwidth. The denominator on the right hand side of (3.1) is

an estimator of fX(x), called kernel density estimator and denoted by f̂X(x); the

numerator is an estimator of m(x)fX(x).

More generally, the local polynomial estimator of m(x), of order p, is obtained by

fitting, locally around x, a polynomial of order p. It is defined by m̂(x) = β̂0,x, where

β̂0,x is obtained through the following minimisation problem:

(β̂0,x, . . . , β̂p,x) = argminβ0,...,βp

n∑
i=1

{
Yi −

p∑
j=0

βj (Xj − x)j
}2

K
(x−Xj

h

)
. (3.2)

It can be proved that the local polynomial estimator of order p = 0 corresponds to

the Nadaraya-Watson estimator. Another popular particular case is the local linear

estimator, which is obtained by taking p = 1.

3.2 Errors-in-variables: using Fourier transforms

3.2.1 Summary

Because of the additive structure of the errors in each of the models in (2.3), (2.4),

(2.5) and (2.6), progress can often be made by considering the problem in the Fourier
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domain. To illustrate this, in this section we show three examples of how the Fourier

transform can be used to easily construct estimators. Section 3.2.2 shows how to

estimate fX in the classical error case. In section 3.2.3 we derive of an estimator of

m in the Berkson error case. In section 3.2.4 we construct estimators of fX when the

data are contaminated by Berkson errors, or by a mixture of Berkson and classical

errors.

3.2.2 Estimating fX in the classical error model

Suppose we wish to estimate the density fX from data W1, . . . ,Wn coming from

the model at (2.2). It is easily proved that fW (w) = fX ∗ fU(w), where f ∗ g(x) =∫
f(x−u)g(u) du denotes the convolution product of two functions f and g. Therefore,

to express fX as a function of fW and fU , we need to deconvolve this convolution

equation, which, a priori, does not seem to be an easy task.

However, using standard arguments, it can be proved that ϕW (t) = ϕX(t)ϕU(t).

In other words, the convolution product in the original domain becomes a product in

the Fourier domain. Using the Fourier inversion theorem, if ϕX ∈ L1 (i.e. if |ϕX | is

integrable) we deduce that

fX(x) =
1

2π

∫
e−itxϕW (t)/ϕU(t) dt. (3.3)

Expression (3.3) suggests a simple procedure for estimating fX from W1, . . . ,Wn.

First, estimate ϕW (t) by the empirical characteristic function ϕ̂W (t) = n−1
∑n

j=1 e
itWj .

Then, plug ϕ̂W into (3.3). This, however, requires some modification because ϕ̂W (t) is

inaccurate in its tails, and is multiplied by 1/ϕU(t), which tends to infinity as |t| → ∞

(remember that ϕU is a characteristic function).

To prevent ϕ̂W (t) from having too much influence for |t| large, where it is unre-

liable, we can multiply it by a damping factor d(t), which tends to zero sufficiently
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fast as |t| increases, and take

f̂X(x) =
1

2π

∫
e−itxϕ̂W (t) d(t)/ϕU(t) dt.

The most popular approach is to take d(t) = ϕK(ht), where ϕK(t) =
∫
eitxK(x) dx

is the Fourier transform of a kernel K and h > 0 is a bandwidth. Interestingly, the

resulting estimator of ϕW (t), ϕ̃W (t) = ϕ̂W (t)ϕK(ht), is the Fourier transform of the

kernel density estimator of fW constructed from the Wi’s. An alternative approach

based on ridging was suggested by Hall and Meister (2007).

Plugging ϕ̃W into (3.3), and choosing K so that ϕK(h·)/ϕU(·) ∈ L1, we get

f̂X(x) =
1

2π

∫
e−itxϕ̂W (t)ϕK(ht)/ϕU(t) dt , (3.4)

which is the deconvolution kernel estimator of Carroll and Hall (1988) and Stefanski

and Carroll (1990); see also Diggle and Hall (1993) for results with the sinc kernel

K(x) = sinx/(πx). The estimator can be expressed as

f̂X(x) =
1

nh

n∑
j=1

KU

(x−Wj

h

)
, (3.5)

where

KU(x) =
1

2π

∫
e−itxϕK(t)/ϕU(t/h) dt. (3.6)

Under sufficient smoothness conditions on fX and appropriate conditions on the

kernel K, f̂X is a consistent estimator of fX ; see Carroll and Hall (1988) and Stefanski

and Carroll (1990). The errors have no effect on the bias of the estimator, which

is identical to that of the standard kernel density estimator in the error-free case.

However, the variance of f̂X is considerably larger than that of the standard kernel

density estimator. As a result, unlike the error-free case, the convergence rates of f̂X

are not driven only by the smoothness of fX , but also by the rate of decay of ϕU in

its tails. This can be understood from the definition of the estimator at (3.4), which

involves dividing by ϕU(t). If |ϕU(t)| decreases exponentially fast as |t| → ∞, then
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U is called a supersmooth error, and f̂X converges to fX at a logarithmic rate. If

|ϕU(t)| decreases polynomially fast as |t| → ∞, then U is called an ordinary smooth

error, and f̂X converges to fX at a polynomial rate. Its has been proved by Carroll

and Hall (1988) and Fan (1991,1993) that these rates are optimal. That is, one

cannot construct a nonparametric estimator that has faster convergence rates than

the deconvolution estimator.

3.2.3 Estimating fX and m in the Berkson error case

Suppose now that we want to estimate fX from data W1, . . . ,Wn modelled as in (2.4).

In this case, we have fX(x) = fW ∗ fV (x) =
∫
fV (x−w)fW (w) dw = E{fV (x−W )},

which can simply be estimated by f̂X(x) =
∑n

j=1 fV (x − Wj). This estimator is

unbiased and converges to fX at the fast parametric
√
n rate; see Delaigle (2007).

Estimating fX in the Berkson error case is thus considerably easier than in the classical

error case.

The situation is very different in the regression case, where the task is to estimate

the curvem from data (Wj, Yj) modelled according to (2.5). Since Yi = m(Wi+Vi)+ϵi,

we can write

g(w) ≡ E(Yi|Wi = w) =

∫
m(w + u)fV (u) du = m ∗ fV (w).

Assuming that ϕV (t) ̸= 0 for all t, that ϕm(t) =
∫
eitxm(x) dx is well defined, and

letting ϕg(t) =
∫
eitxg(x) dx, we deduce that ϕg(t) = ϕm(t)ϕV (t). If ϕm ∈ L1, the

Fourier inversion theorem implies that

m(x) =
1

2π

∫
e−itxϕg(t)/ϕV (t) dt.

Using the same ideas as in section 3.2.2, we can estimate m by

m̂(x) =
1

2π

∫
e−itxϕ̂g(t)ϕK(ht)/ϕV (t) dt,
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where ϕ̂g(t) denotes the Fourier transform (assuming it exists) of a standard non-

parametric estimator of g(w) = E(Y |W = w) constructed from the data (Wi, Yi).

In Delaigle, Hall and Qiu (2006), ĝ is constructed through a discrete Fourier series,

whereas Carroll, Delaigle and Hall (2007) use a local polynomial regression estima-

tor. See also Delaigle and Meister (2011) for a simpler approach in the particular

case where ϕ−1
V (t) is a polynomial. We refer to those papers for more details and for

specific conditions that guarantee that the estimators are well defined and consistent.

While it might have been thought that, like in the density case, the presence of

Berkson errors would make it possible to construct a
√
n rate nonparametric estimator

of m, the effect of those errors is completely different in the regression case. This can

be understood from the fact that the estimator m̂ involves dividing by ϕV (t). As a

result, the convergence rate of m̂ is of the same type as the rate of convergence of f̂X

in the classical error case, with a similar distinction of rates depending on whether V

is a supersmooth or ordinary smooth error.

3.2.4 Estimating fX in the model with both Berkson and classical errors

The same ideas as those employed in section 3.2.2 can be used for constructing an

estimator of fX from data Z1, . . . , Zn modelled according to (2.6). In this case, we

have fX(x) = fW ∗ fV (x) and fZ(x) = fW ∗ fU(x). In the Fourier domain, this

can be written as ϕX(t) = ϕW (t)ϕV (t) and ϕZ(t) = ϕW (t)ϕU(t), from which we

deduce that ϕX(t) = ϕZ(t)ϕV (t)/ϕU(t). As in the classical error case, ϕZ(t) can

be estimated by the empirical characteristic function of the observed data, that is

ϕ̂Z(t) = n−1
∑n

j=1 e
itZj . Using the Fourier inversion theorem, if ϕV /ϕU ∈ L1, we can

estimate fX(x) by

f̂X(x) =
1

2π

∫
e−itxϕ̂Z(t)ϕV (t)/ϕU(t) dt.

If ϕV /ϕU ̸∈ L1, we need to use a damping factor as in section 3.2.2. For example

12



(see Delaigle, 2007), we can take

f̂X(x) =
1

2π

∫
e−itxϕ̂Z(t)ϕV (t)ϕK(ht)/ϕU(t) dt.

Rates of convergence of this estimator are of the same type as those for the classical

error case. In particular, depending on whether |ϕV (t)/ϕU(t)| decreases exponentially

fast or algebraically fast as |t| → ∞, the convergence rates are of logarithmic or poly-

nomial order. However, the presence of Berkson errors Vi implies that the convergence

rates of f̂X are better than in the classical error setting, where Vi ≡ 0.

3.3 A general method based on unbiased scores

Adapting to the error case an estimator that exists in the error-free case can be much

more difficult than the three examples studied above, and in such cases, Fourier

transforms alone do not suffice to solve the problem. Different strategies have to

be used in different situations, but in the classical errors-in-variables model, there

exists an approach which can often be used to derive, from an estimator valid in the

error-free case, an estimator valid in the error case.

We consider the general problem of estimating a function g from data (W1, T1), . . . ,

(Wn, Tn), with Wi as at (2.2), and where the Ti’s represent data observed without

noise. For example, in the regression case described by the model in (2.3), Ti =

Yi. Suppose that, in the error-free case, g(x) can be estimated by an estimator

ĝ(x;X1, . . . , Xn, T1, . . . , Tn, h) that depends on the data (Xi, Ti) and on a parameter

h, for example a bandwidth. Suppose too that the bias and the variance of this

estimator tend to zero as n → ∞. To construct an estimator of g in the error case, a

possible approach is to determine a function g̃ which is such that

E[g̃(x;W1, . . . ,Wn, T1, . . . , Tn, h)|X1, . . . , Xn, T1, . . . , Tn]

= ĝ(x;X1, . . . , Xn, T1, . . . , Tn, h). (3.7)
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If g̃ satisfies this property, then g̃(x;W1, . . . ,Wn, T1, . . . , Tn, h) will be an estimator of

g(x) that has the same bias as ĝ(x;X1, . . . , Xn, T1, . . . , Tn, h), and thus will be asymp-

totically unbiased. Therefore, as long as the variance of g̃(x;W1, . . . ,Wn, T1, . . . , Tn, h)

tends to zero, this is a consistent estimator of g(x). In the errors-in-variables liter-

ature, a function g̃ that satisfies (3.7) is often referred to as an unbiased score for

ĝ; see Stefanski and Carroll (1987), Stefanski (1989) and Nakamura (1990) for early

references.

While the idea might seem simple, it remains to see how we can find the function

g̃. The answer depends on the problem at hand, but we detail here a procedure

that is often successful in the nonparametric context. In the error-free case, many

nonparametric estimators can be written as a combination of quantities of the form

n−1

n∑
j=1

M(x;Xj, Tj, h) (3.8)

for some function M and a bandwidth h. For example, in the regression case, the

Nadaraya-Watson estimator in (3.1) is a ratio of two such quantities: M(x;Xj, Tj, h) =

TjK{(x−Xj)/h} with Tj = Yj at the numerator, and with Tj = 1 at the denominator.

To construct an unbiased score for the quantity at (3.8), take

n−1

n∑
j=1

L(x;Wj, Tj, h),

where the function L is chosen so that it satisfies

E{L(x;Wj, Tj, h)|Xj, Tj} = M(x;Xj, Tj, h).

This equation can be quite difficult to solve, but it is often simpler when formulated

in the Fourier domain (here, as above, we assume that the Fourier transforms we

write are all well defined), that is, when written as∫
eitxE

{
L(x;Wj, Tj, h)|Xj, Tj

}
dx =

∫
eitxM(x;Xj, Tj, h) dx.
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3.4 Application of the unbiased scores method

In this section, to illustrate how the unbiased scores method of section 3.3 can be

used, we rederive the deconvolution kernel density estimator of section 3.2, and show

how to obtain the local polynomial estimator of Delaigle, Fan and Carroll (2009).

3.4.1 Estimating fX in the classical error model

Consider again the problem of estimating the density fX from data W1, . . . ,Wn com-

ing from the classical error model (2.2). In the error-free case, where we observe

X1, . . . , Xn, the kernel density estimator of fX is defined by

f̂X(x) =
1

nh

n∑
j=1

K
(x−Xj

h

)
.

To define an estimator in the classical error case, take

f̂X(x) =
1

nh

n∑
j=1

L
(x−Wj

h

)
, (3.9)

and choose the function L so that it satisfies

E
[
L
(x−Wj

h

)∣∣∣Xj

]
= K

(x−Xj

h

)
.

To determine L, we write the above equation in the Fourier domain:∫
eitxE

[
L
(x−Wj

h

)∣∣∣Xj

]
dx =

∫
eitxK

(x−Xj

h

)
dx.

Equivalently, assuming here and below that we can interchange integral and expec-

tation,

E
[ ∫

eitxL
(x−Xj − Uj

h

)
dx

∣∣∣Xj

]
=

∫
eitxK

(x−Xj

h

)
dx,

or again, making a change of variables,

E
[
eitXjeitUj

∫
eithvL(v) dv

∣∣∣Xj

]
= eitXj

∫
eithvK(v) dv.
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This implies that

ϕU(t)

∫
eithvL(v) dv =

∫
eithvK(v) dv,

which implies that ϕL(t) = ϕK(t)/ϕU(t/h). Using again the Fourier inversion theorem,

we deduce that L(x) = KU(x), with KU as in (3.6). Plugging L = KU into (3.9), we

find the deconvolution estimator derived in section 3.2.

3.4.2 Local polynomial regression in the classical error model

The same idea can be used to construct local polynomial estimators in the classical

error model at (2.3). In the error-free case (Fan and Gijbels, 1996), where the data

come from model (2.1), the local polynomial estimator of order p of m introduced

in section 3.1 can be written as m̂(x) = eT1 Ŝ
−1
n T̂n , where e1 = (1, 0, . . . , 0)T , Ŝn =

(Ŝn,k,k′)0≤k,k′≤p is a (p+ 1)× (p+ 1) matrix, with

Ŝn,k,k′ =
1

nhk+k′+1

n∑
j=1

K
(Xj − x

h

)
(Xj − x)k+k′ , k, k′ = 0, . . . , p , (3.10)

and where T̂n = (T̂n,0, . . . , T̂n,p)
T , with

T̂n,k =
1

nhk+1

n∑
j=1

YjK
(Xj − x

h

)
(Xj − x)k . (3.11)

To construct a consistent estimator of m that can be computed from data (Wi, Yi)

modelled according to (2.3), Delaigle, Fan and Carroll (2009) suggest taking m̃(x) =

eT1 S̃
−1
n T̃n , where S̃n and T̃n are defined as Ŝn and T̂n, except that the Ŝn,k,k′ ’s and

T̂n,k’s are replaced by unbiased scores S̃n,k,k′ and T̃n,k. As indicated by those authors,

to find these unbiased scores, for ℓ = 0, . . . , 2p, it suffices to find a function Lℓ that

satisfies

E
[
Lℓ

(Wj − x

h

)
(Wj − x)ℓ

∣∣∣Xj

]
= K

(Xj − x

h

)
(Xj − x)ℓ. (3.12)

In what follows we assume that we can interchange integration and expectation, and

derivative and integration, and that the expressions we write are all well defined. For

details and conditions, see Delaigle, Fan and Carroll (2009).
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Consider the Fourier version of (3.12):

E
[ ∫

eitxLℓ

(Wj − x

h

)
(Wj − x)ℓ dx

∣∣∣Xj

]
=

∫
eitxK

(Xj − x

h

)
(Xj − x)ℓ dx.

After a change of variable, this can be written as

E
[
eitXjeitUj

∫
e−ithvLℓ(v)v

ℓ dv
∣∣∣Xj

]
= eitXj

∫
e−ithvK(v)vℓ dv,

which implies that ϕ
(ℓ)
Lℓ
(−ht) = ϕ

(ℓ)
K (−ht)/ϕU(t). We deduce from the Fourier inversion

theorem that

Lℓ(x) = i−ℓx−ℓ 1

2π

∫
e−itxϕ

(ℓ)
K (t)/ϕU(t/h) dt.

The unbiased scores S̃n,k,k′ are obtained by replacing K{(Xj − x)/h}(Xj − x)k+k′

by Lk+k′{(Wj −x)/h}(Wj −x)k+k′ in the definition of Ŝn,k,k′ . As in Delaigle, Fan and

Carroll (2009), the unbiased scores T̃n,k′ are obtained similarly from T̂n,k. We also

refer to that paper for consistency of the resulting local polynomial estimators. Their

convergence rates are of the same type as the convergence rates of the estimator of

fX in the classical error case derived in section 3.2.2.

The local constant estimator, obtained by taking p = 0 in the above calculations,

can be written as

m̃(x) =
(nh)−1

∑n
j=1 YjKU

(x−Wj

h

)
(nh)−1

∑n
j=1KU

(x−Wj

h

) , (3.13)

withKU as in (3.6). It corresponds to the estimator proposed by Fan and Truong (1993).

These authors established optimality of this estimator.

3.5 Other methods in the classical error case

The functions m and fX can also be estimated by other nonparametric estimators.

These include the orthogonal series method of Hall and Qiu (2006) for cases where

the density fX is supported on a compact interval, and the wavelet estimators of Pen-

sky and Vidakovic (1999), Fan and Koo (2002) and Pensky (2002). Moreover, spline
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techniques have been considered by Mendelsohn and Rice (1982) in the density case,

and by Carroll, Maca and Ruppert (1999), Berry, Carroll and Ruppert (2002), Gan-

guli, Staudenmayer and Wand (2005) and Marley and Wand (2010) in the regression

case. Some other techniques have also been developed, which provide approximations

and are consistent only under the assumptions that the variance of U tends to zero

as n → ∞. These include the nonparametric SIMEX method of Staudenmayer and

Ruppert (2004) and the TAYLEX method of Carroll and Hall (2004).

4 Computing estimators

4.1 Numerical integration

Computing the estimators in practice requires particular care. Here we explain the

difficulties in the classical error case, but they are similar in the Berkson setting.

Calculating f̂X at (3.5) requires one to compute KU at (3.6). In most cases there

is no analytic expression for the integral at (3.6), which needs to be approximated

numerically. However, the integrand oscillates, sometimes quite heavily, which causes

standard fast numerical integration algorithms to fail. As indicated by Delaigle and

Gijbels (2007), one way to overcome this problem is to use the fast Fourier transform.

A simpler but more time consuming alternative is to approximate the integral at

(3.6) by the simple trapezoidal rule using a fine grid (fine enough to include enough

points in each cycle of oscillation). At the time of writing, Matlab code for computing

the density and regression estimators in the classical error case in this way is available

at the author’s webpage http://www.ms.unimelb.edu.au/~aurored/links.html.

If speed is an issue, one should preferably compute the integral using the fast Fourier

transform. In C, this can be done using the routine dftint from Press et al. (1992).

Although the deconvolution kernel KU integrates to 1, it is not a density, and

takes negative values in large parts of its domain. For an illustration, see Figure 3,
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Figure 3: The function KU when U has a Laplace distribution, K is the standard

normal density, and var(U)/h2 = 10 (left) or when K = K2, U is normal and

var(U)/h2 = 10 (right). The horizontal dotted line indicates 0 for reference.

where we depict KU when U has a Laplace distribution, K is the standard normal

density, and var(U)/h2 = 10, and when U has a normal distribution, K is the kernel

K2 defined in section 5.5 and var(U)/h2 = 12. As a result, in finite sample the

deconvolution kernel density estimator f̂X(x) at (3.4) often takes negative values at

points x where the true density fX(x) is close to zero. In such cases, it is common to

replace f̂X(x) by

f̃X(x) = f̂X(x) · 1{f̂X(x) > 0}
/∫

f̂X(y) · 1{f̂X(y) > 0} dy . (4.1)

This approach, which has been studied by Hall and Murison (1993), is standard in

the error-free case when density estimators are computed with higher order kernels.
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4.2 Choosing the bandwidth in the density case with classical

errors

It is easy to prove that the deconvolution kernel density estimator f̂X(x) at (3.4)

satisfies f̂W (x) = f̂X ∗ fU(x), where

f̂W (x) =
1

nh

n∑
j=1

K
(x−Wj

h

)
is the standard kernel density estimator of fW (x). Despite this relation, f̂X cannot

be computed with a bandwidth h of the size usually employed for computing f̂W , for

example the plug-in bandwidth hSJ of Sheather and Jones (1991).

Under the standard assumption that fX has two derivatives, the optimal band-

width for computing f̂W is of order n−1/5. However, the variance of f̂X is much larger

than that of f̂W , and it can even tend to infinity if we take h of order n−1/5. To com-

pute f̂X , we should use a larger bandwidth. Assuming again two derivatives, in the

ordinary smooth error case the optimal bandwidth is of order n−1/(2β+5), and in the

supersmooth case, we can take h of order (lnn)−1/β, where β is a parameter dictating

the rate of decay of |ϕU | to zero; see Fan (1991).

A data-driven choice of h that works well in practice is the 2-stage plug-in rule

suggested by Delaigle and Gijbels (2002, 2004); see section 4.4. At the time of writing,

Matlab codes for computing this bandwidth, as well as the cross-validation bandwidth

of Stefanski and Carroll (1990), are available at

http://www.ms.unimelb.edu.au/~aurored/links.html.

4.3 Choosing the bandwidth in the regression case with clas-

sical errors

In the regression context, for the same reasons as in the density case, we cannot

simply compute errors-in-variables regression estimators with the bandwidth that
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would be used with error-free data. In the classical error case, Delaigle and Hall

(2008) developed an effective SIMEX algorithm. At the time of writing, a Matlab

code for computing their bandwidth is available at

http://www.ms.unimelb.edu.au/~aurored/links.html.

As noted by those authors, in practice errors-in-variables regression estimators can

be numerically unstable. Let m̂ denote the local polynomial estimator of Delaigle,

Fan and Carroll (2009), or the local constant version of Fan and Truong (1993).

These estimators take the form m̂(x) = N(x)/D(x), where N and D are func-

tions that depend on the data. For example, in the local constant case, N(x) =

(nh)−1
∑n

j=1 YjKU{(x−Wj)/h} andD(x) = (nh)−1
∑n

j=1KU{(x−Wj)/h}. Of course,

estimators also have this form in the error-free setting, but a difficulty in the error

case is that the function KU vanishes at some points (see Figure 3). This implies that

in finite samples, D(x) can be too small at some points x, causing m̂(x) to be quite

poor. To overcome this difficulty, Delaigle and Hall (2008) suggested to change m̂ to

m̂(x) = N(x)/max{D(x), ρ},

where ρ > 0 is a ridge parameter.

However, sometimes, difficulties can also be caused by the numerator, and occa-

sionally, even if N and D are apparently neither too large nor too small, the ratio

|N |/|D| can still be unusually large; see Achilleos (2011) for practical illustrations of

this problem. One way to overcome this difficulty is to prevent the estimator from

taking aberrant values. Motivated by the correction at (4.1) in the density case,

which is applied because we know that a density should always be positive and in-

tegrate to one, Delaigle and Hall (2013) suggested an empirical band within which

one can reasonably expect a regression estimator to lie. Their idea is that, in most

regression problems, we can expect that m(x) ∈ [q0.05,x, q0.95,x], where qα,x denotes

the α-level quantile of the Yi’s whose Xi ∈ Ax, with Ax denoting a neighborhood

of x. To obtain a version of this that can be computed from the Wi’s, they take
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Ax = [x − σU , x + σU ], where σ2
U = var(U), and replace qα,x by the α-level quantile

of the Yi’s whose Wi ∈ Ax. Finally, they change m̂(x) into m̃(x) = m̂(x) · 1{m̂(x) ∈

[q0.05,x, q0.95,x]}+ q0.05,x · 1{m̂(x) < q0.05,x}+ q0.95,x · 1{m̂(x) > q0.95,x}.

4.4 Problems with the R package decon of Wang and Wang

(2011)

An R package decon developed by Wang and Wang (2011) aims at implementing

the deconvolution estimator and some data-driven bandwidth selectors. However, at

the time of writing, version 1.2-4 of this package suffers from a number of problems

which are also present in Wang and Wang (2011). We describe these problems in this

section, and number them by (1) to (4).

(1) In kernel density estimation, the rule of thumb bandwidth is another name

given to the well known normal reference bandwidth. In the errors-in-variables set-

ting, the normal reference bandwidth was introduced by Delaigle and Gijbels (2004).

It is obtained by minimising the asymptotic mean squared error of f̂X ,

AMISE(h) = (2πnh)−1

∫
|ϕK(t)|2|ϕU(t/h)|−2 dt+

h4

4
R(f ′′

X)µ
2
K,2,

where µK,2 =
∫
x2K(x) dx, and where R(f ′′

X) =
∫
{f ′′

X(x)}2 dx is estimated by assum-

ing that X ∼ N(µX , σ
2
X). That is, R̂(f ′′

X) = 0.375 σ̂−5
X π−1/2, with σ̂2

X = σ̂2
W − σ2

U and

where σ̂2
W is the empirical variance of the Wi’s. An advantage of this bandwidth is

that it is simple to calculate, but as in the error-free case, it is well known that it

rarely competes with more sophisticated bandwidths such as, for example, the plug-in

bandwidth. In particular, it tends to be too large and to oversmooth the data.

We show in section A.1 that, when the errors follow a Laplace(σ) distribution, K

is the standard normal kernel, and lower order terms of the AMISE are neglected,

the normal reference bandwidth is given by

ĥ = (5 σ4σ̂5
X)

1/9n−1/9. (4.2)
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In section 3.1 of Wang and Wang (2011), the authors discuss “the rule of thumb”

bandwidth for Laplace and normal errors, which is implemented by their function

bw.dnrd. In the Laplace case, their rule of thumb bandwidth is defined by ĥ =

(5σ4)1/9n−1/9; see equation (14) in Wang and Wang (2011). Comparing with the rule

of thumb bandwidth at (4.2), we can see that the term σ̂5
X is missing from their rule of

thumb bandwidth. In particular, their bandwidth does not depend on the data, and

cannot generally be expected to give good results. Likewise, in the normal error case,

their rule of thumb bandwidth (see formula (13) of Wang and Wang, 2011) does not

depend on the data and cannot generally be expected to give good practical results.

(2) The plug-in bandwidth was suggested by Delaigle and Gijbels (2002, 2004).

It is obtained by minimising the AMISE expression given above, where R(f ′′
X) is esti-

mated by
∫
{f̂ ′′

X(x)}2 dx, with f̂ ′′
X denoting the second derivative of the deconvolution

kernel estimator of fX , computed with a pilot bandwidth g. In order for the pro-

cedure to give good performance, this pilot bandwidth has to be chosen with a lot

of care, and Delaigle and Gijbels (2002) suggest a sophisticated 2-stage procedure.

In numerical work, a plug-in bandwidth computed in this way often gives the best

practical results among existing data-driven bandwidths.

Section 3.2 in Wang and Wang (2011) is titled “plug-in bandwidth”, but the

bandwidth derived there is the normal reference bandwidth of Delaigle and Gijbels

(2004) introduced in point (1). Likewise, the associated function bw.dmise in the

package decon is listed as a function computing the plug-in bandwidth, but it actually

computes the normal reference bandwidth.

(3) The bootstrap bandwidth was suggested by Delaigle and Gijbels (2004). In

general it performs similarly to, but is slightly worse than, the plug-in method. As for

the plug-in bandwidth described above, computing the bootstrap bandwidth requires

the choice of a pilot bandwidth g, and the success of the procedure depends on an

appropriate choice of g; see Delaigle and Gijbels (2004) for a practical 2-stage rule.

23



The package decon includes a function called bw.dboot1, which aims at computing

the bootstrap bandwidth. However, the details provided in section 3.3 in Wang and

Wang (2011) indicate that instead of using the 2-stage pilot bandwidth g, the authors

take g equal to the rule of thumb bandwidth. The latter does not have the correct

theoretical order of magnitude, and in our experience, in practice it does not usually

compete with the 2-stage pilot bandwidth. The package includes another bootstrap

bandwidth, computed by a function bw.dboot2, but it is not clear to us what exactly

this function is computing.

(4) Bandwidth for regression: in their package, Wang and Wang (2011) propose a

function DeconNpr, which computes the errors-in-variables local constant estimator.

Care is needed with that function too: the default bandwidth used by the function

DeconNpr is the bandwidth computed by the function bw.dboot1, thus a bandwidth

for density estimation, but not a bandwidth appropriate for regression estimation.

5 Common errors

We conclude this article by reviewing some of the invalid derivations that are some-

times encountered in the area.

5.1 Nadaraya-Watson estimator with classical errors

Suppose we observe data (W1, Y1), . . . , (Wn, Yn) modelled according to (2.3), and let

g(w) = E(Y |W = w) and η = Y − g(W ). It can be easily proved that E{g(W )|X =

x} = g ∗ fU(x). Thus, since Y = g(W ) + η, we have

m(x) = E(Y |X = x) = g ∗ fU(x) + E(η|X = x).

It is tempting to conclude from there that m(x) = g ∗ fU(x). If this were true, then

we could simply estimate m by m̂ = ĝ ∗ fU , where ĝ denotes a consistent estimator
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of g, for example the Nadaraya-Watson estimator (recall that g(w) = E(Y |W = w),

and so can be directly estimated from the observed contaminated data).

However, while it is true that E(η|W = w) = 0, we do not generally have that

E(η|X = x) = 0. Therefore, in general it is not true that m = g∗fU . A subtlety here,

which might explain some of the confusion, is that the residual ϵ in the model at (2.3),

and which satisfies E(ϵ|X) = 0, also satisfies E(ϵ|W ) = 0. The relation between m

and g can be shown to be g(w) = (mfX) ∗ fU(w)/fW (w); see appendix A.2.

5.2 Local polynomial estimators with classical errors

Suppose we observe data (W1, Y1), . . . , (Wn, Yn) modelled according to (2.3). The

local constant estimator at (3.13) can also be found by solving, at each x,

m̂(x) = argminβ0

n∑
i=1

(Yi − β0)
2KU

(x−Wj

h

)
. (5.1)

That is, the local constant estimator can be defined as in the error-free case discussed

in section 3.1, but replacing there Xj by Wj and K by KU (compare with (3.2)).

By analogy, it could be thought that, in the classical error case, a pth order local

polynomial estimator of m can be defined by m̂(x) = β̂0,x, where

(β̂0,x, . . . , β̂p,x) = argminβ0,...,βp

n∑
i=1

{
Yi −

p∑
j=0

βj (Wj − x)j
}2

KU

(x−Wj

h

)
. (5.2)

However, for p > 0 this does not provide a consistent estimator of m. A consistent

estimator was derived in section 3.4.2.

5.3 Nadaraya-Watson estimator with Berkson errors

Suppose we have observations (W1, Y1), . . . , (Wn, Yn) coming from the model at (2.5).

We have seen in section 3.2.4 that a consistent estimator fX can be defined by f̂X(x) =

n−1
∑n

j=1 fV (x−Wj). Motivated by this, and by analogy with the construction of the
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regression estimators at (3.1) and at (3.13), it may be thought that a good estimator

of m is

m̂(x) =
n−1

∑n
j=1 YjfV (x−Wj)

n−1
∑n

j=1 fV (x−Wj)
. (5.3)

However m̂ at (5.3) is not generally a consistent estimator of m. Indeed, the

numerator is not a consistent estimator ofm(x)fX(x), but rather of
∫∫

m(w+v)fV (x−

w)fW (w)fV (v) dv dw; see appendix A.3 for a proof. A consistent estimator of m was

introduced in section 3.2.3, and is (unfortunately) much more complex.

5.4 Nadaraya-Watson estimator with Berkson and classical

errors

Suppose we observe data (Z1, Y1), . . . , (Zn, Yn) modelled according to (2.6). Consider

first the particular situation where fU and fV are identical. In this case, the Zi’s

have the same distribution as the Xi’s, which implies that we can construct a kernel

density estimator of fX by taking

f̂X(x) =
1

nh

n∑
j=1

K
(x− Zj

h

)
.

Similarly as in section 5.3, motivated by this fact, it may be though that an

estimator of m can be defined by

m̂(x) =
(nh)−1

∑n
j=1 YjK

(x−Zj

h

)
(nh)−1

∑n
j=1K

(x−Zj

h

) .

However, as in section 5.3, this estimator is not consistent because the numerator is

not a consistent estimator of m(x)fX(x), but rather of
∫∫

m(w+v)fW (w)fV (v)fU(z−

w) dw dv. See appendix A.4 for a proof.
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5.5 Unboundedness of the function KU as n → ∞

Unlike the error-free case, where ∥K∥∞ is bounded by a constant independent of n,

in the classical error case, ∥KU∥∞ → ∞ as n → ∞. Indeed, we have

KU(0) =
1

2π

∫
ϕK(t)/ϕU(t/h) dt,

and following the arguments of Fan (1991), it can be proved that this quantity is

unbounded as n → ∞.

We conclude this section by a last note to indicate that kernels employed in the

error case are quite different from those used in the error-free setting. Especially in

the supersmooth error case, to guarantee that KU is well defined, the kernel is often

chosen so that its Fourier transform is compactly supported. For example, a kernel

that is often employed in numerical work is the kernel K2 whose Fourier transform is

equal to ϕK2(t) = (1−t2)3·1[−1,1](t). Unlike kernels often employed in the conventional

error-free setting, such kernels can take negative values (hence are not densities) and

are not compactly supported.
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A Technical details

A.1 Computing the rule of thumb bandwidth

In the case where the errors follow a Laplace distribution with scale parameter σ, and

K is the standard normal kernel, we have that

AMISE(h) =
1

2
√
πnh

+
σ2

2
√
πnh3

+
3σ4

8
√
πnh5

+
h4

4
R(f ′′

X).
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Neglecting smaller order terms, we can approximate the AMISE by

3 σ4

8
√
πnh5

+
h4

4
R(f ′′

X).

Minimising this quantity w.r.t. h, we find

h =
{ 15σ4

8
√
πnR(f ′′

X)

}1/9

,

and replacing R(f ′′
X) by 0.375 σ̂−5

X π−1/2, we deduce the following bandwidth

ĥ =
(5σ4σ̂5

X

n

)1/9

.

A.2 Details for section 5.1

We have

g(w) = E(Y |W = w)

= E{m(X)|W = w}+ E(ϵ|W = w)

=

∫
m(x)fX|W (x|w) dx

= f−1
W (w)

∫
m(x)fX(x)fW |X(w|x) dx

= f−1
W (w)

∫
m(x)fX(x)fU(w − x) dx

= (mfX) ∗ fU(w)/fW (w).

A.3 Details for section 5.3

We have

E
[
n−1

n∑
j=1

YjfV (x−Wj)
]
=E

[
m(Xj)fV (x−Wj)

]
=E

[
m(Wj + Vj)fV (x−Wj)

]
=

∫∫
m(w + v)fV (x− w)fW (w)fV (v) dv dw.

For the first equality, we used the independence of ϵj and Wj.
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A.4 Details for section 5.4

The numerator is a consistent estimator of

fZ(z)E(Y |Z = z) =fZ(z)E{m(X)|Z = z}

=fZ(z)E{m(W + V )|Z = z}

=fZ(z)

∫
m(w + v)fW,V |Z(w, v|z) dw dz

=

∫∫
m(w + v)fW,V,Z(w, v, z) dw dv

=

∫∫
m(w + v)fW (w)fV (v)fU(z − w) dw dv.
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