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1 Introduction

The topic of classifying functional data has received a great deal of attention over

the last decade. In the standard problem, a training sample (X1, Y1), . . . , (Xn, Yn) is

available, where, for each i = 1, . . . , n, Xi is a curve coming from one of G groups

and observed on a compact interval I0, and Yi is its group label (Yi = g if Xi comes

from group g, where g ∈ {1, 2, . . . , G}). Using the training sample, the goal is to

construct a classifier that can identify the group label of new curves whose group is

unknown. A variety of techniques have been suggested for classifying such functional

data. See for example Hall et al. (2001), Ferraty and Vieu (2003), Glendinning and

Herbert (2003), Vilar and Pertega (2004), Biau et al. (2005), Fromont and Tuleau

(2006), Huang and Zheng (2006), Leng and Müller (2006), López-Pintado and Romo

(2006), Rossi and Villa (2006), Cuevas et al. (2007), Wang et al. (2007), Berlinet et

al. (2008), Epifanio (2008), Song et al. (2008), Araki et al. (2009), Chamroukhi et

al. (2010) and Delaigle et al. (2012).

The majority of existing methods rely on the fact that the data are observed on

the same interval I0. In practice, functional data are usually observed only at a
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discrete number of points, and the curves on I0 are obtained by joining the discretely

observed points or by smoothing them using, for example, spline or kernel methods;

see Ramsay and Silverman (2005) and Ferraty and Vieu (2006) for introductions to

functional data analysis. A difficulty in applications is that the discrete points do

not always cover the same range of values; the associated functional curves can be

supported on quite different intervals, and standard methods of analysis cannot be

used.

In this paper we are interested in constructing classifiers for curves of this type.

More precisely, we consider classification of functions supported on a compact interval

I, in cases where the training sample consists of functions observed on other intervals,

which may differ among the training curves. This classification problem was studied

by James and Hastie (2001), but under somewhat restrictive parametric assumptions

(see our discussion in section 2.3). We wish to develop more flexible, nonparametric

techniques.

We propose several methods, depending on the nature of the curves, and make

three novel contributions. First, we suggest a nonparametric approach to extending

curves outside the interval where they were observed. Other extension methods were

suggested by James et al. (2000), James and Hastie (2001) and Yao et al. (2005),

but in contrast with our approach they rely on parametric distributional assumptions

(see our discussion in section 3.2). Our function extension methodology is partic-

ularly flexible, and reflects this advantage by enjoying lower error rates when used

to construct classifiers for both real and simulated data. It can be combined with

bagging (Breiman, 1996) to further reduce classification error.

Second, we introduce flexible ways of combining potential differences in shapes of

the curves from different populations, and potential differences between the endpoints

of the intervals where the curves were observed. Indeed, in at least some applications

the intervals themselves could contain information about the population where the

curves originated. We provide theory showing that this information is often not used
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effectively by conventional classifiers for functional data, and so should be introduced

explicitly in another form. In effect, earlier contributions to the problem of classifica-

tion from fragmentary functional data conditioned on the endpoints. The advantages

of using endpoints explicitly are also clear from our numerical work.

Thirdly, we show that the perfect classification property of the linear discriminant

classifier described by Delaigle and Hall (2012) can be extended from the context of

conventional functional datasets to the setting of fragments of functions. Delaigle and

Hall (2012) treated only the setting of differences in means, but in the more general

context studied here we show that, with a quadratic discriminant classifier, asymp-

totically perfect classification can occur when there are differences between the two

mean functions, or the two eigenvalue sequences, or the two eigenfunction sequences,

or when there are differences simultaneously in two or three of these features.

The paper is organised as follows. In section 2 we introduce the problem; recall

linear and quadratic discriminant classification procedures for standard functional

data, and introduce basic methodology in cases where the function fragments overlap

significantly. Section 3 details our methodology in cases where the function frag-

ments overlap relatively little; it involves the development of a new curve extension

algorithm. Section 4 introduces methods for combining data on interval endpoints;

section 5 outlines theoretical properties; section 6 shows how to choose the tuning

parameters and provides detail about implementation; and section 7 illustrates the

methods’ performance when applied to real and simulated data. The appendices give

technical detail behind the results in section 5, and discuss additional results.

2 Model and challenges

2.1 Definitions of data and classification problem

For simplicity we introduce our methods in the case where the data come from two

groups, or populations, i.e. when G = 2. Extensions to larger values of G are straight-
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Figure 1: Left: fragments of growth curves of 153 females. Right: curves of pulmonary
function for 252 US girls.

forward and will be discussed in section 7.2.2.

We observe training samples Xk = {(Xk1, Ik1), . . . , (Xknk
, Iknk

)}, for k = 0, 1,

where Xkj is a random function defined on a compact interval I0 but observed only

on a compact set Ikj ⊆ I0, and the Ikjs are not necessarily identical. In other words,

the observations are fragments of curves that remain after restricting to Ikj the full

curves Xkj(t) for t ∈ I0. We assume that, for k = 0, 1, the uncensored functions

Xk1, . . . , Xknk
, with support I0, come from population Πk, and are independent and

identically distributed (i.i.d.), but are observed only in censored form, i.e. restricted

to Ikj, where the censoring mechanism may be different for each pair (k, j). Given

a new function X, defined on the interval I0 but observed only on a set I ⊆ I0, we

wish to use the data pairs (Xkj, Ikj) to classify (X, I) as coming from Π0 or Π1.

Remark 1. The assumption that the “original” curves were all supported on the

same interval I0 is used only to imply that there is a distribution of curves on I0,

and that the distribution on Ikj corresponds to the distribution of curves supported

on I0, restricted to Ikj. In particular, curves observed on Ikj do not actually have to

have existed on I0 \ Ikj.

We consider two types of data. A first setting is that where the individual curves
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are each observed on quite different intervals, which overlap only a little. For exam-

ple, the left panel of Figure 1, depicting data from James and Hastie (2001), shows

observed fragments of growth curves of 153 females; see section 7.2.2 for a descrip-

tion. Observations of the same individual are represented by the symbol •, and have

been joined to form fragments of curves. A second, simpler setting is that where

the curves are observed on intervals that are different, but many of which overlap at

least partially. For example, the right panel of Figure 1 shows curves depicting the

evolution of lung function as a function of age, for 252 US girls; see section 7.2.3 for

more details. Observations of the same individual are again indicated by linked •

symbols to form fragments.

Such data differ from the so-called sparse functional data studied by, for example,

Yao et al. (2005). There it is typically assumed that the data come from n curves,

and that, for i = 1, . . . , n, the ith curve is observed only at a small number of points

Tij, where j = 1, . . . , Nj. The Njs are assumed to be i.i.d., and the Tijs are also

assumed to be i.i.d. Clearly, the data shown in neither panel of Figure 1 are of this

type, since the time points at which each individual is observed are not independent

of each other (in both datasets, they are planned yearly examinations), and what we

observe can be treated as fragments of each curve, rather than scattered, remote, and

somewhat disconnected, points from each curve.

2.2 Classifiers for standard functional data

To construct classifiers based on curve fragments it would be difficult to use highly

sophisticated methods, such as those based nonparametric regression estimators. In-

deed, since we observe only pieces of curves, those approaches would tend to in-

troduce too much noise to the classification decision. Therefore, as in James and

Hastie (2001), our procedures are based on linear discriminant (LD) and quadratic

discriminant (QD) classifiers. In a multivariate context, when the data are vectors Vi,

the QD (which coincides with the Bayes’ classifier if the data are normally distributed)
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ascribes a new observation V to Π0 if

S ≡ (V − V̄0)
TΣ̂−1

0 (V − V̄0) + log |Σ̂0| − (V − V̄1)
TΣ̂−1

1 (V − V̄1)− log |Σ̂1|+ w (2.1)

is negative, and to Π1 otherwise, where V̄k and Σ̂k are the empirical mean and variance

in group Πk, for k = 0, 1, and w = −2 log{π/(1 − π)}, with π denoting the prior

probability of Π0. The LD classifier is defined in the same way, except that Σ̂k, for

k = 0, 1, is replaced by Σ̂, an estimator of the common covariance.

A relatively conventional way of adapting the LD and QD methods to the standard

functional context, where the data curves are observed on the entire interval I0,

consists in applying these classifiers to finite dimensional projections obtained by

empirical spectral analysis, as we describe next; see also Delaigle and Hall (2012)

for the LD classifier. Write Ek for expectation when a data function X is drawn

from Πk, and let µk(t) = Ek{X(t)} and Kk(s, t) = Ek{X(s)X(t)} − µk(s)µk(t) be,

respectively, the mean and covariance in group k (here we assume that Ek(∥X∥20) <∞

for k = 0, 1, where ∥X∥20 =
∫
I0 X

2).

Consider a spectral decomposition of the covariance Kk(s, t) for (s, t) ∈ I0:

Kk(s, t) =
∞∑
j=1

θkj ϕkj(s)ϕkj(t) , (2.2)

where (θkj, ϕkj), for k = 0, 1 and j = 1, . . . , nk, are the respective (eigenvalue, eigen-

function) pairs for the transformation τk that takes a function ψ, defined on I0, to τkψ

defined by (τkψ)(s) =
∫
I0 Kk(s, t)ψ(t) dt. The sequence ϕk1, ϕk2, . . . is an orthonor-

mal basis for the class of square-integrable functions on I0, and terms in the series at

(2.2) are ordered so that θk1 ≥ θk2 ≥ . . ..

Let X be a new function defined on I0, which we wish to classify. A Karhunen-

Loève expansion of X(t)− µk(t), appropriate for t ∈ I0, is given by

X(t)− µk(t) =
∞∑
j=1

θ
1/2
kj ξkj ϕkj(t) , (2.3)

where ξkj = θ
−1/2
kj

∫
I0{X(t)−µk(t)}ϕkj(t) dt is the standardised jth principal compo-

nent score when X is interpreted as coming from Πk.
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Estimators of the mean and covariance functions of each group Πk are given by

X̄k(t) = n−1
k

nk∑
j=1

Xkj(t) , (2.4)

K̂k(s, t) = n−1
k

nk∑
j=1

{Xkj(s)− X̄k(s)} {Xkj(t)− X̄k(t)} . (2.5)

Empirical approximations (θ̂kj, ϕ̂kj) to (θkj, ϕkj) can be derived from an expansion

analogous to (2.2), for K̂k(s, t) rather than Kk(s, t):

K̂k(s, t) =

nk∑
j=1

θ̂kj ϕ̂kj(s) ϕ̂kj(t) ,

where θ̂k1 ≥ θ̂k2 ≥ . . . and ϕ̂k1, ϕ̂k2, . . . is an orthonormal sequence of functions. The

empirical counterpart of ξkj is ξ̂kj = θ̂
−1/2
kj

∫
I0{X(t)− X̄k(t)} ϕ̂kj(t) dt.

Motivated by the expansion in (2.3), in the functional context, a conventional

approach is to use a classifier based on (2.1), where the vectors V − V̄k are taken

to be the first j0 nonstandardised principal component scores θ
1/2
k1 ξk1, . . . , θ

1/2
kj0
ξkj0

coming from (2.3). Since these are uncorrelated and have variances θk1, . . . , θkj0 , then,

after replacing ξkj and θkj by their empirical versions, the following QD classifier for

functional data obtains: assign X to Π0 if the statistic

Tfun(X, I0 | j0, w) = T0(X, I | j0)− T1(X, I | j0) + w (2.6)

is negative, and to Π1 otherwise, where, for k = 0, 1,

Tk(X, I0 | j0) =
j0∑
j=1

(
ξ̂2kj + log θ̂kj

)
, (2.7)

and, as above, w = −2 log{π/(1− π)}. The subscript on Tfun denotes “function.”

The LD classifier is defined in the same way, except that it assumes that K0 =

K1 ≡ K, where K can be estimated by K̂(s, t) = n−1
∑

k=0,1

∑nk

j=1 {Xkj(s)− X̄k(s)}

{Xkj(t) − X̄k(t)} . Asymptotic properties of this LD classifier have been studied by

Delaigle and Hall (2012), who showed that, as n increases, it can reach near per-

fect classification performance. In section 5.1 we show that the QD classifier can
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reach asymptotic near perfect classification in more general settings, and in the more

complex case of fragmental observations treated in section 2.3.

2.3 Basic fragment classifier

In our context, since the curves are not observed on the entire interval I0, we cannot

apply the classifiers as described in section 2.2. We could instead apply them on the

interval I ⊆ I0 where the fragment of the curve X to classify was observed. The next

few paragraphs discuss simple ways of doing this. However, such procedures cannot

always be used, and below we explain why new methodology is required. In section

4 we shall also argue that, even in cases where the basic classifier can be applied,

it can be improved by incorporating information contained in the endpoints of the

intervals Ikj.

For s and t ∈ I, let nk(t) and nk(s, t) denote the numbers of indices j, for 1 ≤

j ≤ nk, such that t ∈ Ikj and (s, t) ∈ Ikj × Ikj, respectively, and Jk(s) and Jk(s, t)

are the respective sets of those indices. Given a new function X defined on I, and an

integer ν0 ≥ 1, write I ′ and I ′′ for subsets of I defined by

I ′ =
{
t ∈ I : min[n0(t), n1(t)] ≥ ν0

}
, (2.8)

I ′′ × I ′′ =
{
(s, t) ∈ I × I : min

[
n0(s, t), n1(s, t), n0(t, s), n1(t, s)

]
≥ ν0

}
, (2.9)

respectively. The sets I ′ and I ′′×I ′′ are the subsets of I and I ×I on which we can

compute, for each k, simple estimators of µk and Kk, respectively, using at least ν0

data. More precisely, for s ∈ I ′ and (t, u) ∈ I ′′ × I ′′, we can estimate µk and Kk by

X̄k(s) =
1

nk(s)

∑
j∈Jk(s)

Xkj(s) , (2.10)

K̂k(t, u) =
1

nk(t, u)

∑
j∈Jk(t,u)

{Xkj(t)− X̄k(t)} {Xkj(u)− X̄k(u)} . (2.11)

These standard estimators have mean square convergence rates of at least O(ν−1
0 ).

Alternatively, we can use smoothed versions of the estimators at (2.10) and (2.11),

for example Yao et al.’s (2005) local linear estimators constructed from the pooled

8



observations from all curves. Since it is a univariate smoother, the local linear mean

estimator and its data-driven smoothing parameter are simple and fast to compute.

However, the smooth covariance estimator is based on bivariate smoothing techniques,

which are often time consuming for our classification problem. Moreover, this smooth

covariance estimator is not guaranteed to be a covariance (the one at (2.11) is).

Therefore, and since smoothing is not crucial to classification performance (see our

numerical results in section 7), our preference is to use (2.11) to estimate covariances.

Then we can use the QD method described in section 2.2, but replacing I0 there

by the interval I ′′, and replacing X̄k and K̂k by the definitions given above. (In the

LD case, where we assume that K0 = K1 ≡ K, K can be estimated by K̂(s, t) =∑
k=0,1

∑
j∈Jk(s,t)

{Xkj(s) − X̄k(s)} {Xkj(t) − X̄k(t)}/
∑

k=0,1 nk(s, t) .) In particular,

here the scores ξ̂kj and the eigenvalues θ̂kj are obtained from a spectral decomposition

of K̂k on the interval I ′′. Moreover, θkj, ϕkj and ξkj are defined as in section 2.1, but

with I0 replaced everywhere by I ′′. Choice of j0 will be discussed in section 6.1.

We refer to this approach as the basic fragment classifier. Our main contributions

to this simple setting are:

• developing theory showing that it can lead to asymptotically perfect classifica-
tion in a variety of settings (see section 5.1);

• introducing a new method that can improve this basic classifier by using
explicitly the endpoints of the intervals Ikj (see section 4).

While the basic fragment classifier can be very effective for data of the type of

the pulmonary example in section 2.1, where the fragments are numerous and long,

it cannot be used with data of the type in the growth example in section 2.1, where

the fragments are short and scattered. Figure D.3 in Appendix D shows the observed

fragments of curves in each of the four groups. There, we can see that the fragments

within each group are sparse and overlap very little. Clearly, with such data, (2.10)

and (2.11) cannot give good estimators because too few fragments overlap at each

t. Moreover, to compute K̂k(s, t) reliably, we need to have a reasonable number of
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fragments overlapping the interval [s, t]. However, only when s and t are very close to

each other do some fragments overlap, which means that we can compute K̂k only on

short intervals I ′′. Moreover, even for short I ′′ we have access to only a few fragments

for computing K̂k(s, t) at each (s, t). Of course, the smoothed mean and covariance

versions of Yao et al. (2005) suffer from the same difficulties. In particular, their

method can estimate K(s, t) only on very short intervals I ′′, and even there, their

estimator is usually not accurate because it is computed from too few observations.

A solution was proposed by James and Hastie (2001), who proceed by modeling

the curves by splines with random coefficients; see also James et al. (2000). These

coefficients are assumed to follow a multivariate normal distribution, with mean de-

pending on the group. The number of parameters used is reduced through rank-based

constraints, and the parameters are fitted by maximum likelihood using the EM al-

gorithm, to be substituted finally into a version of the LD classifier (one that is not

based on spectral decomposition). A drawback of their approach is that it relies on a

number of parametric and other types of assumptions. These are perhaps necessary

when the data are sparse, in the sense that the observations for each curve are “re-

mote” points. Nevertheless, when the data can be treated as fragments it is possible

to construct classifiers that rely less on parametric assumptions.

Thus, it seems that new methodology is required for data of the type in the growth

example in section 2.1. In section 3 we take a new approach to this problem.

2.4 Correlated errors and classification

It might reasonably be thought that one could utilize the correlation information

in experimental errors for the purpose of estimation and classification, and thereby

gain improved performance. However, this expectation turns out to be particularly

difficult to realise, for at least two reasons. First, in the case of longitudinal data, for

example the datasets shown in either panel of Figure 1, the data are typically recorded

at relatively distant, and often irregularly spaced, time points, for example by medical
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personnel at a health clinic at the times of a patient’s annual visits there. In such

cases the errors are likely to be independent, not least because they are recorded so

far apart in time. Quite reasonably, this motivates the assumption of independent

errors, made by, for example, Yao et al. (2005) and James and Hastie (2001). In such

cases there is not much opportunity for achieving extra performance by modeling

error correlation.

Secondly, although in the case of machine recorded data, and some other data

types, experimental errors may be correlated, it can be particularly difficult to access

the information contained in that structure. For example, digital devices typically

manipulate data internally in sophisticated ways, often nonlinearly, before outputting

information, with the result that the noise in even so-called “raw” data is embedded

in the signal. Fortunately, many of the devices in question have relatively low noise

levels; this is typically the case for infrared spectroscopy, which is the source of the

chemometric data analysed in section 7.2.1. Therefore, in such cases there is little

practical opportunity for extracting useful information for classification by modeling

error correlation—either that information is very difficult to access, because process-

ing has embedded the errors nonlinearly in the signal, or the errors are so small as to

make them a minor source of information.

3 Curve classifier for short and scattered fragments

3.1 Introduction

In this section we introduce new methodology for data of the type of the growth

example in section 2.1, where the observed fragments are too scattered for it to be

possible to construct reasonable estimators of the group means and covariances using

conventional approaches such as those discussed in section 2.3. We suggest a two-

stage procedure: first, extend the fragments of curves to the interval I where we want

to perform classification; second, apply a classifier based on these extended curves.
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3.2 Extending curves

Methods for reconstructing, or predicting, missing parts of curves have been suggested

by several authors before, but because they were especially designed for sparsely ob-

served curves recorded at i.i.d. time points, so far the existing techniques have focused

on relatively strong parametric assumptions. As already discussed in section 2.3, in

James et al. (2000) and James and Hastie (2001) the curves are modeled by splines

with normally distributed random coefficients. These coefficients are determined by

their best linear unbiased predictors, under constraints that reduce the number of

parameters that have to be estimated. In Yao et al. (2005) the curves are expressed

through their Karhunen-Loève expansions, where the means and covariances are es-

timated by kernel smoothers. The eigenfunction estimators are computed from the

smoothed covariance estimators, and these eigenfunction estimators are used in con-

junction with normality assumptions to construct predictors of the principal com-

ponent scores for each curve. As already indicated in section 2.3, the mean and

covariance smoothers that they employ to estimate scores cannot perform well in the

context of short and sparse fragments, and therefore the associated curve predictors

cannot perform well either.

As a result, these methods can produce curves which do not necessarily share the

main features of the population, which in turn can affect classification performance.

In this section we suggest a new nonparametric approach to extending a curve. The

extension is obtained by adjoining small fragments of curves, each obtained by copying

a vertically translated version of a piece of one of the observed fragments Xi.

More formally, suppose we observe a curve Xshort on an interval Ishort = [ashort,

bshort], and we want to estimate the unobserved parts of the curve on an interval

Ilong = [along, blong] ⊃ Ishort, using n curves Xi, i = 1, . . . , n, observed on respective

intervals Ii = [ai, bi], such that Ishort ⊂ Ilong ⊆
∪n

i=1 Ii ⊆ I0. To construct the

extended curve Xext to the right of bshort, we proceed as follows:

1. For all t ∈ [ashort, bshort], let Xext(t) = Xshort(t). Let j = 1 and bext,j = bshort.
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2. For j = 1, 2, . . ., repeat the following steps while bext,j < blong:

(a) Find all the curve fragmentsXi for which the associated interval Ii = [ai, bi]
satisfies ai ≤ bext,j and bi > bext,j, and choose one of them (see details
below), Xi∗ say; in this notation, Xi∗ is observed on Ii∗ = [ai∗ , bi∗ ].

(b) Let bext,j+1 = min(bi∗ , blong, bext,j +∆), where ∆ > 0 is a tuning parameter.

(c) For each t ∈ [bext,j, bext,j+1], let Xext(t) = Xi∗(t)−Xi∗(bext,j) +Xext(bext,j).

The same algorithm is applied to the left of a, by adjoining small pieces one at a time

in the same way as above, but from right to left.

To apply the algorithm in practice we need to choose ∆. The role of ∆ is just to

prevent us from copying an overly long fragment of curve (this prevents a single curve

from having too much effect on the final reconstructed curve). Since our goal is to

use the extended curves for classification, in principle ∆ could be chosen to minimise

a cross-validation estimator of classification error. However, in many cases, this is

an unnecessary complication, and ∆ can simply be chosen by the experimenter so

that the pieces of curves used to construct Xext are sufficiently short, and, overall, a

fragment of length ∆ contains at most a small fraction of the strong features (mode,

change of concavity, etc) present on I0. In most cases where we are interested in

extending curves, the observed fragments are short and sparse anyway, and the in-

fluence of ∆ is limited. We suggest using the default value ∆ = |I0|/10, unless the

curves have rapidly changing features, in which case ∆ could be taken smaller. (Here

|I0| denotes the length of I0.)

We also need to determine a way of selecting the curve Xi∗ in step 2 (a). Suppose

that, in step 2(a), we have cj curve fragments Xi, i = c1, . . . , cj, for which ai ≤ bext,j

and bi > bext,j. We suggest two ways of choosing the curve Xi∗ .

The first approach consists in choosing Xi∗ at random among the cj available

fragments; each fragment is chosen with a probability pij = 1/cj. The idea here is to

construct a sample of extended curves which shares the main properties of a sample of

full curves coming from the underlying population, and which can therefore be used
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to estimate the mean and covariance functions that we need to compute discriminant

classifiers. Despite its simplicity, this approach can be particularly effective for classi-

fication in a variety of settings, for example when Xkj(t) = µk(t) + ∆kj(t) + Zkj,

where Zkj is a random variable, and where ∆kj is either weakly dependent, or

∆kj(t) = ηkj δkj(t) where ηkj is small and δkj is a fixed bounded process. This will be

illustrated in section 7 and can also be shown by theoretical analysis; see section 5.2.

The second, more sophisticated approach can be used when the curves within a

group have noticeable shape similarities, such as in the growth example in section

2.1. There, locally, the shape of a curve is similar to that of “nearby” curves. In

this case a fragment can be extended by using a translated version of the “nearest”

fragment. More formally, suppose we are interested in extending Xext to the right of

bext,j, and let D(Xi, Xext; bext,j) denote a distance measuring the similarity between

Xi and Xext near bext,j. For example, if, as in the case of the growth data, the

shapes of fragments depend (at least locally) on their location on the vertical axis,

we can take D(Xi, Xext; bext,j) = |Xi(bext,j)−Xext(bext,j)|. This distance can be used

in many practical applications, but it can be modified to take into account other

criteria, such as the derivative near bext,j. Here, in step 2(a) of the algorithm, we take

i∗ = argmini=c1,...,cj
D(Xi, Xext; bext,j). See Appendix B.1 for a more formal discussion

of this approach.

Remark 2. When the fragments are so sparse that there are parts of Ilong where no

curve fragment has been observed, the curves could be extended on those parts by

a parametric method of the type described in James and Hastie (2001), or by linear

extrapolation, or by the smooth mean estimator of Yao et al. (2005) shifted vertically.

3.3 Classifier based on extended curves

LetX, observed on I = [a, b] ⊆ I0, be the new curve fragment that we wish to classify.

For k = 0, 1 and j = 1, . . . , nk, let X̃kj denote the extended versions of Xkj obtained

using the algorithm described in section 3.2, taking there Ilong ⊇ I and where, to
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construct X̃kj, we use only the observed fragments from group k. As we extend a

curve further from the original interval Ikj = [akj, bkj] on which its fragment Xkj was

observed, the extension becomes more unreliable. Therefore, we suggest estimating

the mean and covariance functions of each group Πk by giving to each curve X̃kj a

weight wkj depending on a measure of the distance between the intervals Ikj and I.

Specifically, let hk > 0 be a bandwidth and L a kernel function, and define

wkj = L
(
∥I − Ikj∥int/h̃k

)/ nk∑
ℓ=1

L
(
∥I − Ikℓ∥int/h̃k

)
,

where h̃k = (b−a)hk and ∥I−Ikℓ∥int = (b−bkj) ·1{bkj < a}+{b−bkj+max(a, ajk)−

a} · 1{a ≤ bkj ≤ b}+ {max(a, akj)− a} · 1{bkj > b} . We take

X̄k(t) =

nk∑
j=1

wkj X̃kj(t) , K̂k(s, t) =

nk∑
j=1

wkj {X̃kj(s)− X̄k(s)} {X̃kj(t)− X̄k(t)} ,

and use the classification procedure described in section 2.2, i.e. the method based

on Tfun(X, I0 | j0, w) in (2.6) but replacing there I0 by the interval I where the curve

X is observed, and replacing X̄k and K̂k by the definitions given above. The choice

of tuning parameters will be discussed in section 6.1.

With the random version of the algorithm described in section 3.2, the function

extension method includes elements of the bootstrap, in that random sampling from

the data is used to select the curve fragments that are chosen when extendingXkj from

Ikj to a larger interval containing I. Therefore the extended versions of Xkj and Ikj

could quite reasonably be denoted by X∗
kj and I∗

kj, and for different versions, say NB

versions, of the set of revised training data (X∗
kj, I∗

kj) we can potentially have different

classification decisions. These decisions can be combined by assigning the new pair

(X, I) to whichever population received the majority out of these NB decisions. This

is the bagging method introduced by Breiman (1996), and it can improve performance

in complex statistical problems by reducing the impact of stochastic variability.
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4 Using interval endpoints

The classifiers can be improved by noting that the endpoints of the intervals them-

selves may contain valuable information about the population from which the curves

originated. For example, they may represent the ends of a time period in a person’s

life when certain health-related measurements have been found necessary, and the

beginning or end of that period may convey important information about the classi-

fication problem. However, this information is largely ignored by classifiers based on

curves, such as the basic one in section 2.3 and the more sophisticated one in section

3.3, since these use only the information contained in the interval I. To exploit the

information potentially contained in the endpoints, we suggest combining curve-based

classifiers with classifiers based explicitly on the endpoints of the intervals.

4.1 Classifier based on endpoints

First we introduce a classifier based solely on the endpoints of the intervals Ikj where

the curves were observed. Write Ikj = [Akj, Bkj], let

Āk =
1

nk

nk∑
j=1

Akj , B̄k =
1

nk

nk∑
j=1

Bkj , σ̂2
Ak =

1

nk

nk∑
j=1

(Akj − Āk)
2 ,

σ̂2
Bk =

1

nk

nk∑
j=1

(Bkj − B̄k)
2 , γ̂k =

1

nk

nk∑
j=1

(Akj − Āk) (Bkj − B̄k)

denote the means, variances and covariances of the interval endpoints, and let Σ̂k =

(σ̂2
Ak, σ̂

2
Bk; γ̂k) be the corresponding 2× 2 covariance matrix.

To classify a new data curve X observed on the interval I = [A,B], using only

the endpoints of the intervals I and Ikj, we can use the QD which ascribes X to Π0 if

Sint(I |w) is negative, and to Π1 otherwise, where Sint(I |w) is defined by S in (2.1),

with V there replaced by (A,B). The subscript on Sint denotes “interval.” Since

(A,B) is of dimension only 2, here we choose w from the data (see section 6.2). For

the same reason, if n were large then we could also use more sophisticated classifiers

such as nonparametric Bayes methods; see section C.1 in Appendix C.
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4.2 Combined classifier based on curves and endpoints

Each of the curve classifiers in sections 2.3 and 3.3, and the endpoint classifier in

section 4.1, can be combined into a single approach that takes into account both curve

shapes and endpoint locations. We link the two approaches in a flexible way which

allows us to choose the emphasis adaptively. Our idea is to use the classifier based on

Tfun, unless the decision of the classifier based on Sint is sufficiently authoritative, in

which case we use the latter. (Here, Tfun denotes the version of the statistic at (2.6)

computed either as in section 2.3 or as in section 3.3.) Specifically, we define a new

discriminating statistic T by

T (X, I | j0, w1, w2, α0, α1) =


Sint(I |w2) if Sint > q̂S,α1

Sint(I |w2) if Sint < q̂S,α0

Tfun(X, I | j0, w1) otherwise ,

(4.1)

where w1 = −2 log{π/(1 − π)}, 0 ≤ w2 < ∞, and, for k = 0, 1, q̂S,αk
denotes the

empirical quantile αk of the distribution of Sint conditional on (−1)k+1Sint ≥ 0. See

section 6.4 for a detailed description of the calculation of these quantiles. (Here and

below, Sint is defined as in section 4.1.)

Our suggested combined classifier is only one of the many possible ways of com-

bining two classifiers. Formula (4.1) responds to experience gained applying various

methods to real and simulated datasets, where we discovered that using Tfun alone

was often best in the majority of cases, but not always in a substantial majority. In

the remaining cases, Sint should be used alone. Compromise classification criteria,

for example based on π Sint + (1 − π)Tfun where π ∈ (0, 1) was chosen to optimise a

cross-validation estimator of classification error, usually performed more poorly than

the method at (4.1).

The choice of parameters will be discussed in section 6.3. We assign X to Π0 or

Π1 according as T (X, I | j0, w1, w2, α0, α1) is negative or positive, respectively. In the

event that other covariate information is available, for example information about the

reason for parts of function curves being missing, it could be introduced explicitly to

17



the classifier using methods similar to those employed to include endpoint informa-

tion. If the data curves were reduced to more than one fragment then the number

of fragments could be treated in this way. In particular, covariate information of

these types can be incorporated using the method employed to address information

contained in endpoints.

The operation of adjoining, to a classifier C1, say, based on the curves (and im-

plicitly on the endpoints), another classifier C2 based explicitly on the endpoints,

thereby obtaining a new classifier C3 represented by the statistic at (4.1), does not

damage the perfect classification property if C1 enjoyed that feature. In particular,

C3 has the perfect classification property.

In practice we suggest using cross-validation to estimate consistently the error

rates of different classifiers, and thus to compare those methods. In this way we can

compare, for example, the error rate of the classifier based on T (X, I | j0, w1, w2, α0,

α1), at (4.1), with that of the method based on Tfun(X, I | j0, w1) alone, and adopt the

technique with least estimated error. This adaptive approach allows us to experiment

with a small number of different methods without risking anything more than a minor

loss of performance. Consistency of standard leave-one-out cross-validation, when

used to estimate error rates of methods such as the centroid classifier or Fisher’s

linear or quadratic discriminant, is straightforward although tedious to establish.

5 Theoretical properties

5.1 Asymptotically perfect classification of basic classifier

In this section we show that the basic QD classifier in section 2.3 can achieve asymp-

totic near-perfect performance. Excepting degenerate cases, this level of accuracy is

not possible for conventional data, for example in the context of vector valued data.

However, in the context of functional data there is potential for asymptotically per-

fect classification, by exploiting any of the ways in which the distribution of X can
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differ from one population to another.

A perfect classification property was established by Delaigle and Hall (2012) for

the LD classifier, in the case where the curves are all observed on the same interval

I0. Below we show that this property holds in a much wider variety of settings,

and when the curves are observed only on parts of I0. Three different sources of

difference are readily accessible if we use a classifier based at least in part on the

version Tfun(X, I | j0, w), used in section 2.3, of the quantity Tfun(X, I0 | j0, w) at (2.6),

i.e. with all estimators computed as in section 2.3, and I0 replaced by I. These are

differences between (i) the means µ0 and µ1, (ii) the eigenvalue sequences θ01, θ02, . . .

and θ11, θ12, . . ., and (iii) the eigenfunction sequences ϕ01, ϕ02, . . . and ϕ11, ϕ12, . . .. We

shall show in section B.2 in Appendix B that any of the differences (i), (ii) and (iii)

can produce classifiers that result in classification error converging to zero as n0 and

n1 diverge.

For simplicity, in Theorem 1 below we treat only data on the function fragments

X, not on the interval endpoints, since, except in pathological cases, the endpoints

alone cannot enable perfect classification. We take I0 = [0, 1] and base classification

on the criterion Tfun(X, I | j0, w), and we put the prior probability π equal to 1/2,

which assumption is made commonly in practice and will be imposed in our numerical

work. Specifically, we assign (X, I) to Π0 if

T (X, I | j0) =
j0∑
j=1

(
1∑

k=0

(−1)k
1

θ̂kj

[ ∫
I′′
{X(t)− X̄k(t)} ϕ̂kj(t) dt

]2
+ log

θ̂0j

θ̂1j

)
(5.1)

is negative, and to Π1 if T (X, I | j0) is positive. Here, all estimators are computed as

in section 2.3.

Define δkj = θ
−1/2
kj

∫
I(µ0 − µ1)ϕkj and

Vk1k2j = θ
−1/2
k1j

∫
I

{
X(k2) − Ek2

(
X(k2)

)}
ϕk1j , (5.2)

where X(k) denotes a random function drawn from population Πk, and k1, k2 ∈ {0, 1}.

In particular, Vkkj is, for each j, a standardised principal component score and has

19



zero mean and unit variance. Finally, let Q1(k1, k2 | j0) =
∑

j≤j0
{V 2

k1k1j
− V 2

k2k1j
+

log(θk1j/θk2j)} and Q2(k1, k2 | j0) =
∑

j≤j0
{(−1)k1 Vk2k1j δk2j + δ2k2j}.

The following theorem summarises the main properties of the QD classifier in

section 2.3. It describes in detail the large-sample properties of error rate, including

but not confined to cases where error rate is asymptotically zero. The conditions of

the theorem are given and discussed in section B.2 in Appendix B, and a proof is

given in section B.3 there.

Theorem 1. Assume (B.6) and (B.7) in section B.2 in Appendix B; base the classifier

on the sign of T (X, I | j0); and take ν0, in the definitions of I ′ and I ′′ at (2.8) and

(2.9), to diverge and to be no larger than a sufficiently small constant multiple of n.

Then there exists a sequence of integers j(n), diverging to infinity, such that:

(I) For k = 0, 1, if (X, I) is drawn from Πk, if j0 ≤ j(n) diverges as n → ∞, and if

the limit of either −Q1(k, 1−k | j0) or Q2(k, 1−k | j0) equals +∞, then the probability

that X is correctly classified converges to 1 as n→ ∞.

(II) More generally, if X is drawn from Πk, the probability of correct classification

equals

P
{
Q1(k, 1− k | j0)−Q2(k, 1− k | j0) < 0

∣∣∣ X, I}+ o(1) , (5.3)

uniformly in 1 ≤ j0 ≤ j(n), as n→ ∞.

Taking expectations in (5.3) for k = 0, 1, multiplying by π0 = π and π1 = 1−π, re-

spectively, and adding, we deduce that the error rate err(j0) ≡ P{(X, I) misclassified},

of the classifier based on T (X, I | j0), defined at (5.1), satisfies

err(j0) =
1∑

k=0

πk P
{
Q1(k, 1− k | j0)−Q2(k, 1− k | j0) ≥ 0

}
+ o(1) ,

uniformly in 1 ≤ j0 ≤ j(n), as n→ ∞. Moreover, the error of the classifier converges

to zero if j0 → ∞ and P{Q1(0, 1 |∞) − Q2(0, 1 |∞) = −∞} = P{Q2(1, 0 |∞) −

Q1(1, 0 |∞) = +∞} = 1 .
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5.2 Theory for function extension

In the next two paragraphs we outline one of the settings where the random func-

tion extension of section 3.2 can be particularly effective for classification. Then, we

provide theory for this case; see Theorem 2 below. Other examples can also be de-

veloped, for instance the one introduced in section 3.2. In Appendix B.1, we describe

models where the nonrandom version of our extension procedure performs well.

Let |I| be the length of I and let Xk = µk +∆k denote a random function drawn

from Πk, where µk = Ek(Xk) and the random process ∆k has zero mean. One of the

settings where random extension helps improve classification performance is when ∆k

is weakly dependent. In that setting and under mild conditions, for regular functions

ψ, the variance of quantities such as N ≡
∫
I ∆k ψ increases at a strictly slower rate

than |I|2, and often approximately in proportion to |I|, as |I| increases. Therefore

the “noise,” N , typically satisfies N = op(|I|). On the other hand, if |µ1−µ2| remains

reasonably large across most of I, then the “signal,” s ≡
∫
I (µ1 − µ2)

2, increases like

|I| rather than o(|I|) as I grows. Both N and s arise in expansions of classifiers such

as LD and QD, and hence, using those expansions, we can conclude that noise has a

proportionately smaller impact on the classifier, relative to the signal, if I is larger.

When classifying a new data function supported on I, if we do not have access to

a method such as random function extension, we can be forced to restrict attention to

a significantly smaller interval than I where a number of fragments are available. (If

n is small, this interval can even be empty and classification is not possible without

extending curves.) For the reasons given in the previous paragraph, that restriction

can lead to reduced performance. Put simply, classification on larger intervals results

in lower levels of classification error; see the discussion following Theorem 2, below.

Next we develop theory demonstrating this property. Showing this in the most

general setting would require long and complex arguments. To make our point firmly,

and keep our arguments transparent, we make four simplifications, which will be cap-

tured in technical assumptions (5.4)–(5.6):
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• We assume that the populations differ only in terms of means, and not in terms
of covariance, or of endpoint distribution. The influence of endpoints will be
studied separately in section 5.3.

• We assume that µ1 is a simple translation of µ0; say, µ0 − µ1 ≡ d , where d is a
fixed, positive constant.

• We use a simplified version of the classifiers in section 4.1, namely the centroid-
based classifier.

• When estimating the means µk from the extended curves, we do not weight the
extended curves according to the amount by which they were extended. Using
weights improves the estimated means, and hence the classifier’s performance,
but handling theory in that case requires longer arguments.

Similar results can be derived for the more sophisticated classifiers of section 4.1

which make explicit use of covariance, with or without bagging, but at the expense

of longer and more complex arguments, and with stronger assumptions than those

imposed here, including the weak dependence discussed earlier in this section. Nev-

ertheless, the results derived below should help the reader understand why random

function extension improves a classifier’s performance.

Let Xk have the distribution of a function drawn from Πk, before its support is

censored. (Therefore the support of Xk equals I0.) Following the discussion in the

previous paragraph, we assume that:

the distributions of Xk − E(Xk), for k = 0 and 1, do not depend on k,
and in particular are identical to the distribution of a process Z;

(5.4)

the process Z satisfies E
{
sup
t∈I0

Z(t)2
}
<∞ . (5.5)

Next we stipulate the censoring mechanism that produces the intervals Ikj = [Akj, Bkj].

Define I0 = [0, 1], let ϵ > 0, let Jϵ be a diagonal strip down I0 × I0:

Jϵ = (I0 × I0) ∩
∪

−∞<u<∞

(
{u} × [u− ϵ, u+ ϵ]

)
,

and, following the discussion in the previous paragraph again, assume that:

(Akj, Bkj) is statistically independent of Xkj and has a continuous distri-
bution on [0, 1]× [0, 1], with a continuous density bounded away from 0
on Jϵ for some ϵ > 0, and not depending on j or k.

(5.6)
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Given a, b ∈ (0, 1), with a < b, let I = [a, b]. Condition (5.6) implies that, with

probability converging to 1 as n0 and n1 diverge, the support of each interval Ikj can

be extended from Ikj to I using random function extension.

Let X be a function drawn from Π0 or Π1, initially supported on I0 and then cen-

sored to I. We wish to classify this curve as coming from one of the two populations.

Without loss of generality, X was from Π0. Then, ∆ ≡ X −E(X) = X − µ0 and has

the distribution of Z, introduced above. Following the discussion in the before last

paragraph, we consider the classifier that assigns X to Π0 if D(X) > 0, and to Π1

otherwise, where

D(X) =

∫
I
(X − X̄∗

1 )
2 −

∫
I
(X − X̄∗

0 )
2 (5.7)

and, X̄∗
0 and X̄∗

1 are the respective means of the training datasets when, where pos-

sible, the functions Xkj are extended so that they are supported on intervals at least

as large as I.

In the setting delineated above, Theorem 2 describes the probability of committing

an error when classifying X. Its proof is given in section B.4 in Appendix B.

Theorem 2. Assume that (5.4)–(5.6) hold. Then, if either the censored training data

are extended to I using random function extension, or if there is no censoring and

the training data are all observed on I0, the following property holds:

P{D(X) ≤ 0} → P

(
d < − 2

|I|

∫
I
∆

)
(5.8)

as n0, n1 → ∞.

Theorem 2 tells us two things. First, random function extension, as a way of reme-

dying problems caused by the censoring of support intervals, achieves the same level

of asymptotic classification error that would be attained if there were no censorship.

Second, the theorem implies that a smaller level of error is attained by random func-

tion extension than would be achieved if we did not use that methodology and instead

worked with a smaller interval, contained in I. To appreciate the latter point, note
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that since d > 0 then the minimum value of the right-hand side of (5.8) is zero,

and that that minimum typically equals the limit of the right-hand side as |I| in-

creases. (For example, this holds if Z is a stationary Gaussian process satisfying

cov{Z(0), Z(t)} → 0 as |t| → ∞, |I|−1
∫
I ∆ → 0 in probability as |I| → ∞.) In

particular, larger intervals I result in lower levels of classification error.

5.3 Theory for classification using endpoints

In this section we show theoretically that specifically adjoining information about

interval endpoints can lead to superior performance, relative to allowing endpoint

information to “speak for itself” when it is incorporated implicitly along with the

censored data function that is to be classified. Now, this comparison between two

methods is complicated by the need to ensure that it is not confounded by the manner

in which censored training data are extended to I0, and to avoid that difficulty we

shall assume that the function extension step is undertaken perfectly; as we noted

in section 2, there are several competing approaches to implementing it. Therefore,

although each function fragment Xkj in the training sample was observed only on an

interval Ikj ⊆ I0, we shall suppose that the fragments were restored to at least I.

To further simplify our analysis we assume that:

(a) prior to their support interval being censored, the random func-
tions in Πk, for k = 0 and 1, were Gaussian processes supported on I0

and with respective covariance functions γk(t1, t2) = covk{X(t1), X(t2)}
(with γk(t, t) bounded away from zero and infinity on I) and means
µk(t) = Ek{X(t)}; and (b) if the pair (X, I) is drawn from Πk, then the
joint distribution of the endpoints (A,B) of the interval I = [A,B] has
density fk, independently of X, where k = 0 or 1.

(5.9)

Assumption (5.9)(a) is imposed only because it is a convenient way of excluding

pathological cases, for example where functions drawn from the two populations might

take different, constant values on the interval I0; this would complicate our discussion

below. The assumption of independence in (5.9)(b) is also made only for convenience,

and, like (5.9)(a), it could be relaxed.
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For additional simplicity we suppose that classification is based on the statistic

D(X) at (5.7). Define

Tk(X) =

∫
I
(X − µk) (µ0 − µ1) (5.10)

and d =
∫
I(µ0−µ1)

2/2, and let Pk denote probability measure under the assumption

that X came from Πk.

Theorem 3. If (5.9) holds, if the training data are reconstructed perfectly on I as

discussed three paragraphs above, and if classification is based on D(X) defined at

(5.7), then the probability of misclassifying X, drawn randomly from Π0 and Π1 with

respective prior probabilities π0 and π1, but censored to an interval I as indicated in

(5.9), converges to

π0 P0{T0(X) < −d}+ π1 P1{T1(X) > d} (5.11)

as the training sample sizes diverge.

Theorem 3 describes the error rate of a classifier that is based directly on the

pair (X, I) and which uses endpoint information only implicitly. How does this level

of error compare with that which would be obtained if we were to use endpoint

information explicitly? It is clear that in some instances, for example where the

densities f0 and f1 in (5.9)(b) are identical, we cannot improve on the error rate at

(5.11) by adjoining endpoint information. Of course, this is not a problem; as noted

at the end of section 4.2, by using cross-validation to compare the performances of

different classifiers, we can choose among them without risking more than a minor

loss of performance. Moreover, there are occasions when much is to be gained by

using endpoint information explicitly, as we demonstrate below. In those cases, too,

when constructing the combined classifier, cross-validation assesses consistently the

advantages and disadvantages of using endpoints explicitly, relative to using them

only implicitly.

To indicate the attractiveness of treating endpoint information explicitly we con-

sider a simple endpoint classifier, Sint, based for example on Fisher’s linear or quadratic
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discriminant. For these two classifier types, and several others, as the distributions

with densities f0 and f1 become increasingly concentrated around the pairs (a0, b0)

and (a1, b1), respectively (where ak < bk for k = 0, 1, and (a0, b0) ̸= (a1, b1)), the

error rate of the interval-based classifier decreases to 0. (In the case of Fisher’s linear

or quadratic discriminant, this is a simple corollary of the fact that the variances of

the respective distributions of the endpoint pair (A,B) both decrease to zero.) That

is, as the two distributions of (A,B), in the respective cases of Π0 and Π1, become

increasingly more concentrated around the distinct pairs (a0, b0) and (a1, b1), respec-

tively, the limit as n0, n1 → ∞ of the probability that the endpoint classifier based

on Sint commits an error, converges to 0. At the same time, the error rate at (5.11)

remains bounded away from zero. (To appreciate why, note that taking I = [a0, b0]

or I = [a1, b1] in the definition of Tk at (5.10), for either choice of k, does not reduce

the error to zero.) It is straightforward to show from these properties that, since we

use consistent quantile estimators q̂S,αk
in formula (4.1), the limit (as training sample

sizes increase) of the probability that the classifier based on T (X, I | j0, w1, w2, α0, α1),

at (4.1), is strictly less than that of the classifier based on Tfun(X, I | j0, w1) alone, if

the densities f0 and f1 are sufficiently concentrated.

The change between cases where the explicit use of interval endpoints has no

asymptotic effect, and instances where it has a marked asymptotic effect, occurs

smoothly, and in particular there is a wide variety of settings where the explicit use

of endpoints has a noticeable but not extreme effect. In each setting the strength of

the case for using endpoints explicitly can be assessed using cross-validation, and so

the asymptotic error, when endpoints are taken into account, will not be less than that

for a conventional approach that does not make explicit use of endpoints. It should

also be noted that we have considered here only one instance, or reason—sufficiently

high concentration of endpoint distributions about specific disjoint endpoints—for it

to be attractive to include endpoint data explicitly in the classifier. There are other

occasions too where using explicit endpoint data is advantageous, because it reduces
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error rate.

6 Choice of parameters

6.1 Methods in sections 2.3 and 3.3

We select j0 by cross-validation (CV) to minimise the error rate of the classifier,

as follows. Let J∗ (respectively, J∗
kj1

) be the minimum of the number of nonzero

eigenvalues of K̂0 and K̂1 on the interval I (respectively, of K̂0,−j1 and K̂1,−j1 on Ikj1 ,

where K̂k,−j1 are leave-one-out estimators; see section C.3 in Appendix C). For each

j0, let nk,j0 denote the number of curves Xkj1 for which J∗
kj1

≥ j0. Also, let Jmax be

the largest j0 ≤ J∗ such that n0,j0 + n1,j0 ≥ n/2. For the basic method in section 2.3

we choose j0 between 1 and Jmax to minimise

êrrfun(j0) =
1∑

k=0

πk
nk,j0

nk∑
j1=1

I
{
(−1)k Tfun,−j1(Xkj1 , Ikj1 | j0, w1) > 0

}
I
(
J∗
kj1

≥ j0) ,

(6.1)

where π0 = π, π1 = 1 − π, and Tfun,−j1(X, I | j0, w1) is either the QD at (2.7) or

its LD analogue, constructed without using the j1th observation. See section C.3 in

Appendix C for precise definitions. As in Delaigle and Hall (2012), in case of multiple

local minima we search for the global minimum among the first two local minima.

For the QD method in section 3.3 we suggest taking hk to be the rth empirical

quantile of ∥I −Ikℓ∥int/(b− a), for ℓ = 1, . . . , nk, where 0 ≤ r ≤ 1 (the same for each

k) is chosen by CV, together with j0, by minimising êrrfun in (6.1) with respect to

j0 and r simultaneously (of course, in this case êrrfun depends on r through X̄k and

K̂k). For each r we resolve the issue of multiple local minima with respect to j0 as

above. For the LD method (see section C.2 in Appendix C), we take h to be the rth

empirical quantile of ∥I − Ikℓ∥int/(b− a), for ℓ = 1, . . . , nk and k = 0, 1.

As indicated in section 2.2, we take w = −2 log{π/(1− π)}, where π is the prior

probability of Π0. In principle, we could choose w by CV, as we shall do in section 6.2

for the simpler method based on endpoints. However, the curve classifiers (especially
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the version in section 3.3) already involve other parameters, so we prefer to fix w.

6.2 Method in section 4.1

If the distribution of (A,B) were normal then the best classification performance

would be obtained by taking w = −2 log{π/(1− π)}, since the classifier then would

correspond then to Bayes’ rule. In more general cases, better classification could be

obtained by choosing w by CV to minimise the error rate of the classifier. Therefore,

we suggest selecting w to minimise

êrrint(w) =
π

n0

n0∑
j1=1

I
{
Sint,−j1(I0j1 |w) > 0

}
+

1− π

n1

n1∑
j1=1

I
{
Sint,−j1(I1j1 |w) ≤ 0

}
,

where Sint,−j1( · |w) denotes the leave-one-out version of Sint( · |w) in section 4.1; see

section C.3 in Appendix C for precise definitions.

6.3 Method in section 4.2

To choose j0, w1, w2, α0 and α1 we could use CV, minimising the error rate of

the classifier based on T (X, I | j0, w1, w2, α0, α1). While this would work if n were

sufficiently large, for n smaller this approach can run the risk of focusing too much

on the training sample, and its generalisation to more than two populations would be

computationally very intensive. Therefore we use a sequential procedure, as follows.

Since our main classifier is based on Tfun, defined in section 2.2, but where the

means and covariances are calculated as in section 2.3 or 3.3, we choose j0 and w1 (as

well as h0 and h1 for the method in section 3.3) as if we were using the classifier Tfun

alone, that is, as described in section 6.1.

In view of the way in which we use the weight w2 in (4.1) to refine the classifier

based on Tfun, rather than choose w2 to optimise performance of the classifier based

on Sint, we suggest selecting w2 so that |Sint| is large when the classifier based on

Sint makes a correct decision, and small otherwise. To implement this in practice, we
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choose w2 to maximise the following CV criterion:

CVint(w2) = Distc(w2)
/
Distw(w2) , (6.2)

where the subscript c stands for “correct,” w stands for “wrong,” and, letting Sint,−j1

denote the leave-one-out version of Sint in section 4.1 (see section C.3 in Appendix C),

Distc(w2) =
1∑

k=0

πk
nk

nk∑
j1=1

|Sint,−j1(Xkj1 , Ikj1 |w2)| I
{
(−1)k Sint,−j1(Xkj1 , Ikj1 |w2) < 0

}
,

Distw(w2) =
1∑

k=0

πk
nk

nk∑
j1=1

|Sint,−j1(Xkj1 , Ikj1 |w2)| I
{
(−1)k Sint,−j1(Xkj1 , Ikj1 |w2) ≥ 0

}
.

Finally, with j0, w1 and w2 fixed, we choose α0 and α1 by CV to minimise the

error rate of the classifier T (X, I | j0, w1, w2, α0, α1). That is, we choose α0 and α1 to

minimise êrr(α0, α1), where êrr(α0, α1) is equal to

1∑
k=0

πk
nk,j0

nk∑
j1=1

I
{
(−1)k T−j1(Xkj1 , Ikj1 | j0, w1, w2, α0, α1) > 0

}
I
(
J∗
kj1

≥ j0) , (6.3)

with nk,j0 and J∗
kj1

as in (6.1), and T−j1 defined as was T in (4.1), but with Tfun and

Sint replaced by Tfun,−j1 and Sint,−j1 .

6.4 Other details of implementation

To calculate the quantiles q̂S,αk
in section 4.2, first, we compute the n statistics

Sint,−j1(Xkj1 , Ikj1 |w2), for j1 = 1, . . . , nk and k = 0, 1. For k = 0, 1, we take q̂S,αk

to be the αk-level empirical quantile of Sint calculated from the sample of values for

which (−1)k+1Sint,−j1(Xkj1 , Ikj1 |w2) is positive. We use leave-one-out versions in the

CV criterion in (6.3).

Although the value of ν0 in section 2.3 can influence performance, it is not a

crucial parameter. It is only a lower bound to the number of curves used to calculate

means and covariances, and is mostly useful for n small (as n increases, the number

of curves observed on most parts of I usually increases); and we prefer not to choose

it by CV. In our numerical work we took ν0 = 3, because we had a low number of

curves and short fragments.

29



7 Numerical properties

7.1 Simulated examples

We simulated data Xik(Tj,ik), for k = 0, 1, i = 1, . . . , nk and j = 1, . . . , Nik. In each

case, Xik(Tj,ik) was generated from three models:

Xik(Tj,ik) = mk(Tj,ik) + Zik f(Tj,ik, Zik) + ϵikj , (7.1)

Xik(Tj,ik) = mk(Tj,ik − Sik) + {Uik + Vik sin(Tj,ik/Wik)}

× {Zik + sin(Tj,ik 10
−3π)}+ ϵikj , (7.2)

Xik(Tj,ik) = mk(Tj,ik) + Uik + Vik sin(Tj,ik/Wik + Zik) , (7.3)

where f(t, u) = 0.02 {(3t+ 100) (u+ 1)}1/2 and with the mks taken to be one of:

mk(t) = sin(t/ck)/{(0.1 t− dk)
2 + 1}, with c0 = 15, c1 = 12, d0 = 5, d1 = 4, (7.4)

mk(t) = logit−1{(t− ck)/dk}, with (c0, d0) = (50, 20) and (c1, d1) = (40, 12) (7.5)

or (c1, d1) = (50, 5), where logit−1(x) = ex/(1+ex). In model (7.1), the groups means

µk are equal to mk, and in models (7.2) and (7.3), µk = mk + δk for some function δk

that can easily be obtained by taking the expectation of Xik(t), but whose expression

is cumbersome, whence our implicit definition of µk. Except otherwise stated, we

took the variables Nik, Sik, Tj,ik, Uik, Vik, Wik, Zik and ϵikj (or the subset of them

appearing in each model) to be totally independent, and we generated them according

to different settings.

In each setting, we generated B = 200 pairs of test and training samples, and

applied, to the test sample, the classifiers constructed from the training sample. In

the training sample, for several values of nk, we generated nk curves from group k, for

k = 0, 1. As before we use the notation n = n0+n1. In the test sample, we generated

100 curves which came with equal probability from Π0 or from Π1. Tables 1 and 2

report the percentage of test curves that were correctly classified, averaged over the

B test samples, for various classifiers.
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Table 1: Percentage of correctly classified observations for the simulated data of
section 7.1.1, in settings (1) to (8), using the methods in §3.3 or §4.2, or the procedure
of James and Hastie (2001) (JH).

(1) (2) (3) (4)
n §3.3 §4.2 JH §3.3 §4.2 JH §3.3 §4.2 JH §3.3 §4.2 JH
70 80.3 79.3 72.3 84.9 89.7 73.5 61.0 60.1 61.7 67.0 87.0 63.1
100 83.5 82.8 72.9 88.1 92.4 73.2 63.2 62.5 62.8 69.4 88.6 63.5

(5) (6) (7) (8)
n §3.3 §4.2 JH §3.3 §4.2 JH §3.3 §4.2 JH §3.3 §4.2 JH
70 66.5 65.6 60.5 70.8 69.7 72.1 78.2 87.9 68.4 70.2 68.8 61.2
100 69.0 67.9 62.0 74.4 73.9 72.0 81.2 90.2 69.9 73.7 73.0 61.5

7.1.1 Comparison of methods for short fragments

First we consider the most challenging case, where the fragments are short, as in

section 3. There, the only available methods are those based on curve extension with

(section 4.2) or without (section 3.3) the use of endpoints, and the procedure of James

and Hastie (2001). Since the fragments are short and not very numerous, we use the

LD version of the curve-based classifier. We generated short fragments from eight

settings, denoted by (1) to (8) and described in section A.2 in Appendix A. These

examples were to chosen to illustrate several aspects of the classification problem:

• In settings (1), (3), (5), (6) and (8), the distributions of the endpoints of the
intervals do not differ among the groups, whereas in settings (2), (4) and (7),
the endpoints contain valuable information for classification.

• The curves mk in (7.4) (settings (1)–(5)) have pronounced features, whereas
those in (7.5) (settings (6)–(8)) are monotone, as in the growth example.

• In model (7.1) (setting (1), (2), (6) and (7)), it is easily seen that the shape
of fragments depends heavily on their vertical location, hence we can apply
the nonrandom extension algorithm. This is not the case for models (7.2) and
(7.3) (settings (3)–(5) and (8)), where we apply the random extension algorithm.

For the training sample sizes, we took (n0, n1) = (30, 40) or (45, 55) in settings

(1) to (5), and (n0, n1) = (35, 35) or (50, 50) in settings (6) to (8). Table 1 reports

the average percentage of correctly classified test curves, for the curve classifier of

section 3.3 based on extended curves, for the combined classifier of section 4.2 which

also uses endpoint information, and for the method of James and Hastie (2001).

For the latter, we need to choose three tuning parameters: the number of knots
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q, and two parameters (p and h) used for reducing dimension. Choosing all three by

CV appears to be too time consuming. Therefore, we took h = 1 as in James and

Hastie (2001), and p = q − 1. This choice of p resulted from experimentation with

several examples; we cannot guarantee that it is always the best choice, but it seems

to be a reasonable compromise between numerical problems and good performance.

In settings (1)–(5) we chose q by minimising a CV estimate of classification error. In

settings (6)–(8), numerical problems prevented us from choosing q by CV, and we

chose the value (q = 3 or 4) that gave the best results over the B simulations.

For the methods of sections 3.3 and 4.2, we chose the tuning parameters as in

section 6. When we used the random extension procedure of section 3.2, we also

used the bagging approach described at the end of section 3.3, with NB = 25. That

is, we randomly extended the training curves 25 times, applied the full classification

procedure for these 25 versions, and assigned the new fragment to the population

chosen the most frequently out of the 25 replicates.

The results are reported in Table 1. In most cases, our approach outperformed

that of James and Hastie (2001), although the latter worked reasonably well. We

can see that including endpoint information can be very valuable for classification,

sometimes improving performance by 20%, without degrading it much otherwise.

7.1.2 Comparison of methods for long fragments

In the simpler case of long fragments, we can apply several classifiers: the basic

procedure of section 2.3 with (see section 4.2) or without incorporating endpoint

information, and the method of James and Hastie (2001). Recall that our main

methodological contribution in this setting is the idea of incorporating endpoint in-

formation, and our main goal in this section is to illustrate the improvements it can

bring. Comparison with James and Hastie’s (2001) approach is given for illustration.

It is also of interest here to compare performance of the classifiers when the means are

estimated using the empirical estimator or by the smooth version of Yao et al. (2005).
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Table 2: Percentage of correctly classified observations for the simulated data of
section 7.1.2, in settings (1) to (4), using the method of §2.3 with empirical means
(A) or Yao et al.’s (2005) means (B), the method of §4.2 with empirical means (C)
or Yao et al.’s (2005) means (D) or the procedure of James and Hastie (2001) (E).

n A B C D E A B C D E A B C D E A B C D E
(1) (2) (3) (4)

40 70.7 72.6 69.0 70.8 65.7 71.1 72.8 80.6 81.2 65.6 67.9 67.8 66.8 66.8 65.0 69.0 69.2 80.2 80.1 66.1
80 72.1 73.6 71.1 72.3 68.0 73.6 75.1 83.6 83.6 66.9 71.3 71.0 70.4 70.3 71.0 71.2 71.8 82.1 82.5 71.6

For brevity we focus on the LD classifier; for QD versions, see section 7.2.3.

We generated long fragments from four settings, denoted by (1) to (4) and de-

scribed in section A.3 in Appendix A. These examples were chosen to illustrate two

pairs of contrasting settings:

• curves with a lot of features (settings (3) and (4)) or simpler curves as in the
pulmonary example (settings (1) and (2));

• endpoints which contain information for classification (settings (2) and (4)) or
are not informative for classification purposes (settings (1) and (3)).

In each case the training samples were of size n = n0+n1, where n0 = n1 = 20 or 40,

and the 100 test samples came with equal probability from Π0 or Π1. Table 2 reports

the mean percentages of correctly classified observations for the basic LD classifier in

section 2.3 (using the empirical means or the smooth means of Yao et al., 2005), the

combined classifier of section 4.2 (again using either version of the mean estimator),

and the procedure of James and Hastie (2001). As in section 7.1.1, for the three

tuning parameters required for James and Hastie’s (2001) method, we took h = 1

and p = q − 1, where, in settings (3) and (4), q was chosen by CV, and in settings

(1) and (2) q was chosen as for settings (6)–(8) in section 7.1.1.

The results indicate that smoothing is not crucial when computing the mean of

the basic classifier: it can either improve or worsen classification a little. In most

cases, the basic classifier performed a little better than the method of James and

Hastie (2001). A significant advantage of the former is that it is fully data-driven

and fast to compute. The combined classifier of section 4.2 boosted performance

significantly when the endpoints contained valuable information, without degrading
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Table 3: Percentage of correctly classified observations for the Wheat data using the
method in section 2.3.

n
Full curves Case (a) Case (b) Case (c) Case (d)

LD QD LD QD LD QD LD QD LD QD
30 95.7% 94.9% 95.6% 93.9% 92.4% 91.7% 91.3% 90.8% 94.2% 90.2%
50 99.5% 97.9% 97.9% 97.4% 95% 94.9% 93.9% 94.4% 96.8% 96.1%
80 99.9% 98.7% 98.9% 98.2% 97.5% 97.7% 97% 98.3% 97% 97.5%

it much otherwise.

7.2 Real data examples

7.2.1 Illustration of the perfect classification property

We illustrate the near perfect classification property discussed in section 5.1, through

the wheat data described by Kalivas (1997). The data Xi, for i = 1, . . . , 100, consist

of the first derivatives of near infrared spectra of 100 wheat curves, measured at 700

equispaced wavelengths, denoted by 1 through 700. As in Delaigle and Hall (2012),

we put in Π0 the 41 observations whose moisture level is more than 15, and put

the other 59 curves in Π1. Delaigle and Hall (2012) showed that, in this example,

the LD classifier applied to the full (non fragmented) curves, reaches near perfect

classification.

To examine the impact that observing only fragments of curves has on the clas-

sifier, we kept only a fragment [Ai, Bi] of the ith curve, for i = 1, . . . 100, where we

generated the Ais randomly, and took Bi = min(Ai+δi, 700) with δi chosen randomly.

We did this in four ways, denoted by (a) through (d) and described in section A.1 in

Appendix A. Examples of fragments from cases (c) and (d) are shown in Figures D.1

and D.2 in Appendix D.

In all cases we created such fragments B = 100 times and divided the data into a

training sample of size n = 30, 50 or 80, and a test sample of size 100− n. For each

pair of samples created this way, we calculated the LD and QD classifiers of section

2.3 from the training sample, which we applied to the curves in the test sample.

Table 3 reports the mean percentage (averaged over the B test samples) of correctly

classified test curves. We also show the near perfect results obtained with the LD and
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QD applied to the full curves. It can be seen that, from cases (a) to (d), the intervals

become more scattered, but classification performance remains excellent. For small

n, LD slightly outperforms QD, but as n increases, the opposite tends to be true,

especially in more complex settings.

7.2.2 Short fragments: the growth data

The growth dataset described by Bachrach et al. (1999) consists of measurements of

growth through spinal bone mineral density, for individuals from four ethnic groups

(referred to as Asians, Blacks, Hispanics and Caucasians), taken at ages ranging from

8 to 25 years. For each individual, only 2 to 4 measurements were taken, and only over

a period of a few years. Growth curves are usually smooth and monotone, and since

the measurements per individual are taken close in time, the linearly joined obser-

vations give good approximations to fragments of curves. We base our classification

procedure on the Xis, where Xi is the approximate fragment for the ith individual.

We use the same subset of n = 153 female individuals as James and Hastie (2001),

comprised of n1 = 35 Asians, n2 = 43 Blacks, n3 = 27 Hispanics and n4 = 48

Caucasians. In each group, these fragments of curves do not overlap much (see Figure

D.3 in Appendix D). Therefore we use the method of section 3. Moreover, some of

the group sizes are quite small, and therefore we use the LD version of the classifier.

The classifiers introduced in the previous sections for the case of two groups can

be extended to the case of G > 2 groups (G = 4 for these data) in the standard way.

Specifically, we calculate the group means for each group, extend the definition of the

discriminant Tk in (2.7) to k = 1, . . . , G, and classify a new observation as coming

from the group having the smallest value of Tk. We choose the bandwidths h and

h1, . . . , hG as in section 6.1, which amounts to choosing only one parameter r.

As in James and Hastie (2001) we applied the classifier to each of the 153 obser-

vations, taking each time the training sample to consist of the remaining 152 observa-

tions. We took each prior probability π1, . . . , π4 equal to 1/4. Proceeding in this way,
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our procedure in section 3.3 classified 67 individuals correctly. Our combined classi-

fier, based on the curves and the endpoints, increased this number to 73. Indeed, for

these data, useful classification information appears to be available in the endpoints,

since the number of correct classifications, using LD based on the endpoints alone is

59, thus significantly higher than would be expected from random guessing. Using

James and Hastie’s (2001) method with p = 2 and h = 1, as recommended there; and

with q chosen by CV; we correctly classified 61 observations.

7.2.3 Long fragments: the forced expiratory volume data

In a pollution study reported by Dockery et al. (1983), 13 379 children from six US

cities were examined for several years. We use the subset of 300 girls described by

Fitzmaurice et al. (2004). For each girl the data consist of yearly measurements

of age, height and log(FEV1), where FEV1 is the forced expiratory volume in one

second, a measure of pulmonary function. Not all girls started in and dropped from

the study at the same age, and for each girl we have access to only a fragment of the

curve Xi(t), where t denotes age and Xi(t) denotes log(FEV1) at age t. Let Ii be the

age interval during which the ith girl was observed.

We kept only the 252 girls who were examined at least twice, and divided the data

into two groups of equal size. We did this in two ways called settings (1) and (2), and

described in section A.4 in Appendix A. To assess performance in both cases, as in

section 7.2.1 we randomly split the data B = 200 times into a training sample of size

n = 50, 100 or 200, and a test sample of size 252−n, and calculated the percentage of

correctly classified observations as in section 7.2.1. As can be seen from Figure D.4 in

Appendix D, the observed fragments are long and overlap significantly in each group.

Therefore we can use the basic classifier of section 2.3, where, as in the simulated

examples, we can use the empirical mean or the smooth mean of Yao et al. (2005).

We tried to use the method of James and Hastie (2001), but were unable to make it

work with these data because of numerical problems.
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Table 4: Percentage of correctly classified observations for the FEV data using LD
or QD classifiers with empirical mean or with smooth means of Yao et al. (2005), the
latter being indicated by a subscript sm.

§2.3 §4.1 §4.2 §2.3 §4.2
setting n LD LDsm LD LDsm QD QDsm QD QDsm

(1)
50 64.3 65.2 56.7 67.1 67.8 62.1 63.1 64.7 65.4
100 64.6 65.4 57.7 67.0 67.8 63.0 64.1 66.1 67.0
200 65.7 65.8 58.2 68.7 68.7 65.7 66.7 68.8 69.7

(2)
50 62.7 62.3 69.6 69.1 70.0 59.5 58.9 67.6 67.8
100 62.5 62.4 71 70.4 72.1 59.7 59.7 69.4 69.9
200 64.6 63.7 72.8 73.8 75.8 59.3 59.5 71.8 72.5

The proportion of correctly classified observations is reported in Table 4; for the

methods in sections 2.3 and 4.2 we show the results of the LD and QD versions, using

both the empirical mean or the smooth mean of Yao et al. (2005). In setting (1),

the endpoints are much less informative then the curves, and the combined classifier

in section 4.2 does not improve on the classifier in section 2.3, but does not degrade

it much either. In setting (2), the endpoints are much more informative than the

curves, and the combined classifier improves significantly on the classifier in section

2.3. In general, LD outperformed QD, which is often the case in practice unless n is

rather large or the covariances of the two groups differ significantly. In setting (1),

using a smooth mean improved classification a little, but degraded it in setting (2).

To choose which of the methods in sections 2.3 to 4.2 to use, one can be guided by

a comparison of the CV estimates of classification error for each method. Since the

method in section 4.2 is more complex, in general one can use the method in section

2.3, unless the CV error for the classifier in section 4.2 is significantly smaller, in

which case we use the latter. For example, in setting (1) the CV error of the classifier

in section 4.2 was only 2% smaller than that of the classifier in section 2.3, whereas

in setting (2), it was 10% smaller.

Appendices

Appendices are given in the supplementary file.
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NOT FOR PUBLICATION APPENDICES FOR THE

PAPER: CLASSIFICATION USING CENSORED

FUNCTIONAL DATA

A More details on simulation settings

A.1 Settings for section 7.2.1

The four settings considered in section 7.2.1 are:

(a) for Xi in Π0 (respectively, Π1), Ai ∼ U [1, 50] (respectively, Ai ∼ U [1, 100]), and

for each i, δi ∼ U [600, 700];

(b) for Xi in Π0 (respectively, Π1), Ai ∼ U [1, 150] (respectively, Ai ∼ U [100, 250]),

and δi ∼ U [200, 300] (respectively, δi ∼ U [150, 250]);

(c) for each i, Ai ∼ U [100, 250] and δi ∼ U [150, 250];

(d) for each i, Ai ∼ U [100, 450] and δi ∼ U [150, 250].

A.2 Settings for section 7.1.1

The eight settings considered in section 7.1.1 are:

(1) Model (7.1) withmk in (7.4), Zik ∼ U [−2/3, 2/3],Nik ∼
[
U [5, 10]

]
, T1,ik ∼ U [1, 95]

and ϵikj ∼ N(0, 10−4). For j > 1, Tj,ik = Tj−1,ik + Uj,ik, where Uj,ik ∼ U [0.75, 1.25].

(2) Same as (1), except that Ni0 ∼
[
U [5, 10]

]
, Ni1 ∼

[
U [8, 20]

]
, T1,i0 ∼ 0.5 fU [1,30] +

0.5fU [31,95], and T1,i1 ∼ U [1, 80].

(3) Model (7.2) with mk in (7.4), Sik ∼ U [−5, 10], Uik ∼ U [−1, 1], Vik ∼ U [0.02, 0.05],

Wik ∼ U [2, 3], Zik ∼ U [0.1, 0.5], ϵikj|Tj,ik ∼ N
(
0, {0.005 log(Tj,ik + 2)}2

)
, Nik ∼[

U [5, 10]
]
, T1,ik ∼ U [1, 95], and for j > 1, Tj,ik = Tj−1,ik + 1.

(4) Same as (3) but with Ni0 ∼
[
U [5, 10]

]
, Ni1 ∼

[
U [8, 20]

]
, T1,i0 ∼ 0.5 fU [1,30] +

0.5fU [31,95], and T1,i1 ∼ U [1, 80].

(5) Model (7.3) with mk in (7.4), Uik ∼ U [−1, 1], Vik ∼ U [0.025, 0.05], Wik ∼ U [2, 3],

Zik ∼ N(0, 0.04), Nik ∼
[
U [5, 10]

]
, T1,ik ∼ U [1, 95], and for j > 1, Tj,ik = Tj−1,ik + 1.
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(6) Same as (1), but with mk in (7.5), where (c1, d1) = (40, 12).

(7) Same as (2), but with mk in (7.5), where (c1, d1) = (40, 12).

(8) Model (7.2) with mk in (7.5), where (c1, d1) = (50, 5), Sik ∼ U [−5, 10], Uik ∼

U [−0.75, 0.75], Vik ∼ U [0.02, 0.05], Wik ∼ U [2, 3], Zik ∼ U [0.1, 0.5], ϵikj|Tj,ik ∼

N
(
0, {0.005 log(Tj,ik/2 + 2)}2

)
, Nik ∼

[
U [7, 10]

]
, T1,ik ∼ U [1, 95], and for j > 1,

Tj,ik = Tj−1,ik + 1.

A.3 Settings for section 7.1.2

The four settings in section 7.1.2 are:

(1) Model (7.1), with µk as in (7.5), where (c1, d1) = (50, 5) and Zik ∼ U [−2/3, 2/3],

Nik ∼
[
U [5, 14]

]
, T1,ik ∼ U [1, 40] and ϵikj ∼ N(0, 0.15). For j > 1, Tj,ik = Tj−1,ik +

Uj,ik, where Uj,ik ∼ U [5.5, 8.5].

(2) Same as (1), but with Ni0 ∼
[
U [5, 10]

]
, Ni1 ∼

[
U [7, 14]

]
, T1,i0 ∼ U [1, 50], and

T1,i1 ∼ U [1, 30].

(3) Same as (1), but with µk as in (7.4), where c0 = 5, c1 = 4.8, d0 = 5, d1 = 4.9,

and with ϵikj ∼ Exp(3.5)− 1/3.5, where Exp(λ) denotes the exponential distribution

with mean 1/λ.

(4) Same as (3), but with Ni0 ∼
[
U [5, 10]

]
, Ni1 ∼

[
U [7, 14]

]
, T1,i0 ∼ U [1, 50], and

T1,i1 ∼ U [1, 30].

A.4 Settings for section 7.2.3

In setting (1) we created the groups according to height at the age value (10.7) that

belongs to the largest number of the intervals Ii. In particular, Π0 was comprised of

girls whose height at age 10.7 was less than 1.41, and Π1 contained the other girls. In

setting (2), we put into group Π0 the girls whose height at the start of the study was

less than 1.27, and we put the others into group Π1.
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B Theoretical discussion

B.1 Theoretical discussion relating to function extension

Here we describe models where the nonrandom approach (i.e. the second approach in

section 3.2, where the curve is extended by its “nearest” fragment) performs well in

reconstructing missing parts of curves. Our discussion is under the assumption that

the closeness of a fragment to the curve being extended is measured by the vertical

distance D introduced in section 3.2. Since we apply the extension method groupwise,

it suffices to treat cases where all curves come from a single population.

We start with a simple model where the curves are all vertical translations of one

another. There, if Xi denotes the ith observed random function, we have Xi(t) =

µ(t) + Vi, where µ denotes the mean function of the population and the Vis are

i.i.d. random variables. In this model our curve extension procedure results in perfect

reconstruction. To explain this point, let us suppose that Xi1 and Xi2 are observed on

intervals Ii1 = [ai1 , bi1 ] and Ii2 = [ai2 , bi2 ], respectively, and that ai2 < bi1 < bi2 . Then,

if we use Xi2 to extend Xi1 from [ai1 , bi1 ] to [ai1 , bi2 ], and align Xi1(t) and Xi2(t) at

t = bi1 , we obtain the extended function Xext
i1

which is defined, for t ∈ [bi1 , bi2 ], by

Xext
i1

(t) = Xi1(bi1)−Xi2(bi1) +Xi2(t) . (B.1)

The latter function equals Xi1(t), exactly, on t ∈ [bi1 , bi2 ].

More general models can be based on other approaches to curve extension, for

example matching on the basis of gradients, but here we focus on vertical distance

D, which is often relevant in practice. For many datasets, including the growth ex-

ample depicted in Figure 1, the variation of random functions about their mean, for

a given population, is captured well by treating the functions as approximate vertical

translations, or scale multiples, of one another. To reflect this we model Xi by

Xi(t) = µ(t) + Vi g(t) +Wi(t) , (B.2)

where the random variable Vi and the random process Wi have zero mean, the Vis
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are i.i.d., the Wis are i.i.d., and µ and g are deterministic functions. Moreover, we

assume that Wi(t) is small in size relatively to Vi g(t). A simple way to model this

mathematically is to assume that g is bounded away from zero, that the distribution of

Vi does not depend on n, and thatWi = δ Ui for a fixed process Ui and a quantity δ =

δ(n) that decreases to zero slowly as n→ ∞. Of course, in practice δ is fixed, but its

finite-sample smallness can be modeled asymptotically by allowing δ to decrease to 0.

Suppose we extend to [ai1 , bi2 ] the function Xi recorded on Ii = [ai1 , bi1 ] ⊂ I0,

using a fragment Xi2 recorded on Ii2 = [ai2 , bi2 ], where ai2 < bi1 < bi2 . The function

extension, Xext
i1

(t) = Xi1(bi1)−Xi2(bi1) +Xi2(t), is given, for t ∈ [bi1 , bi2 ], by

Xext
i1

(t) = Xi1(t) + (Vi2 − Vi1) g(t)− (Vi2 − Vi1) g(bi1)

+Wi1(bi1)−Wi2(bi1) +Wi2(t)−Wi1(t) .

More generally, suppose we extend X to the right ℓ times, in the same manner, via

intervals Iij = [aij , bij ] for 1 ≤ j ≤ ℓ+1, where aij+1
< bij < bij+1

for 1 ≤ j ≤ ℓ. Then

it can be shown that, for t ∈ [biℓ , biℓ+1
],

Xext
i1

(t) =Xi1(t) + (Viℓ+1
− Vi1) g(t)−

ℓ∑
j=1

(Vij+1
− Vij) g(bij)

+
ℓ∑

j=1

{Wij(biℓ)−Wiℓ+1
(bij)}+Wiℓ+1

(t)−Wi1(t) . (B.3)

Recall that the random process Wi(t) = OP (δ) is small. Since the Wis are inde-

pendent for 1 ≤ i ≤ n, then the series

ℓ∑
j=1

{Wij(biℓ)−Wi+1(bij)}+Wiℓ+1
(t)−Wi1(t) , (B.4)

appearing on the right-hand side of (B.3), is also small; more precisely, if ℓ is bounded

then it is OP (δ).

Note too that the successive Xijs are chosen by minimising D, in order that

|Xij+1
(bij) − Xext

i1
(bij)| be as small as possible. Since the Wis are of order δ where
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δ → 0, then (B.2) entails that Xi2 is chosen so that Vi2 is as close as possible to

Vi1 , modulo a small amount of variation arising from the term Wi1(bi1) −Wi2(bi1);

that i3 is chosen so that Vi3 is as close as possible to Vi2 , modulo a small variation

arising from Wi2(bi2)−Wi3(bi2); and so on. Therefore, noting that adjacent values of

the variables Vi are distant Op(n
−1) apart, except in the tails (here we are assuming

that the Vis have a common continuous distribution), the quantities

Vi2 − Vi1 , Vi3 − Vi2 , . . . , Viℓ+1
− Viℓ (B.5)

are also small, and in fact equal Op(δ+n
−1). Hence, provided again that ℓ is bounded,

Viℓ+1
−Vi1 will also equal Op(δ+n

−1). Of course, Viℓ+1
−Vi1 is the sum of the quantities

in (B.5), and so, using again the assumption that ℓ is fixed, Viℓ+1
− Vi1 = Op(δ +

n−1). For all these reasons, formula (B.3) implies that Xext
i1

(t) is approximately equal

to Xi1(t).

The theory outlined above can be extended in several ways, for example by gen-

eralising the model at (B.2). One generalisation is to replace the product Vi g(t) by

the more complex form g(t |Zi), where Zi is a random variable, g( · | θ) is a function

that depends monotonically and smoothly on a scalar parameter θ. Analogues of the

results discussed above can be derived in this case. Results such as these show that,

in cases of practical interest, function extension can come close to recovering the true

functions Xi, even though their support intervals were only fragments of the origi-

nal interval I0, and therefore lead to classification performance that approaches that

which would have been obtained if there had been no censorship.

In practice, when n is small and ℓ is large or δ is not small enough, noise can

accumulate as we extend a fragment to a larger and larger interval. However, since,

our mean and covariance estimators put less weight on fragments that require more

extension (see section 3.3), this noise does not have too much influence on classification

performance. This can be proved rigorously, but requires longer arguments.

5



B.2 Conditions for Theorem 1

We assume that:

(a) for k = 0, 1, n/nk is bounded as n→ ∞;
(b) Ek{X(t)4} is bounded uniformly in k = 0, 1 and t ∈ I;
(c) the ratio θ0j/θ1j is bounded away from zero and infinity as j → ∞;
(d) for both k = 0 and k = 1 there are no ties in the sequence θk1, θk2, . . .;
(e) for (k1, k2) = (0, 1) and (1, 0) the series Q1(k1, k2 | j0) either converges
in probability to Q1(k1, k2 |∞) as j0 → ∞, in which case Q1(k1, k2 |∞) is
assumed to be finite with probability 1, or diverges to −∞ in probability as
j0 → ∞, in the sense that, ∀C > 0, P{Q1(k1, k2 | j0) ≤ −C} → 1 as j0 → ∞;
(f) for (k1, k2) = (0, 1) and (1, 0) the series Q2(k1, k2 | j0) either converges
in probability to Q2(k1, k2 |∞) as j0 → ∞, in which case Q2(k1, k2 |∞) is
assumed to be finite with probability 1, or diverges to +∞ in probability as
j0 → ∞, in the sense that, ∀C > 0, P{Q2(k1, k2 | j0) > C} → 1 as j0 → ∞;
(g) if, for (k1, k2) = (0, 1) or (1, 0), and ℓ = 1 or 2, Qℓ(k1, k2 |∞) is finite
with probability 1, then the distribution of Qℓ(k1, k2 | j0) is continuous for
j0 = 1, 2, . . . ,∞;
(h) the bivariate distributions of the interval endpoints, for data from Π0

and Π1, are continuous with respective probability densities f0 and f1, the
supports of which are identical.

(B.6)

To avoid having to give a model describing the relationship between the functions

and the respective intervals on which they are defined, we impose the following sim-

plifying assumption; it can be dispensed with at the cost of a longer proof:

for k = 0, 1 the pairs (Akj, Bkj), representing the endpoints of the intervals
Ikj = [Akj, Bkj] for 1 ≤ j ≤ nk, are independent and identically distributed
and are independent too of the independent and identically distributed func-
tions Xkj, for 1 ≤ j ≤ nk, defined on the interval I0.

(B.7)

Conditions (B.6)(a)–(d) are conventional, and (B.6)(g) is mild, for example hold-

ing when X is a Gaussian process. Condition B.6(h) eliminates pathological cases,

where we could construct a classifier based solely on the interval endpoints and for

which the probability of correct classification would converge to 1 geometrically fast

as sample size increased. Assumptions (B.6)(e) and (B.6)(f) hold quite generally, and

lead to perfect classification when (i) the two means, or (ii) the two eigenvalue se-
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quences, or (iii) the two eigenfunction sequences, are sufficiently different, or when

there are sufficient differences in two or three of the features (i)–(iii). More detail is

given below, where for simplicity we treat cases where just one of (i)–(iii) holds.

Case (i): Differences between mean functions alone. For simplicity we assume

here that θkj = θj and ϕkj = ϕj, not depending on k. Then Q1(k1, k2 | j0) ≡ 0

for (k1, k2) = (0, 1) or (1, 0), and moreover, δkj = δj ≡ θ
−1/2
j

∫
I(µ0 − µ1)ϕj, a se-

quence of constants not depending on k. It follows that if s(δ) ≡
∑

j≥1 δ
2
j < ∞

then, for (k1, k2) = (0, 1) or (1, 0), the random variable Q2(k1, k2 |∞) is finite with

probability 1, whereas if
∑

j≥1 δ
2
j = ∞ then Q2(k1, k2 | j0) → +∞ in probability as

j0 → ∞. (Here we have used the fact that principal component scores are uncor-

related, and so var{Q2(k1, k2 | j0)} =
∑

j≤j0
δ2j .) In summary, (B.6)(e) and (B.6)(f)

hold with Q1(k1, k2 |∞) and Q2(k1, k2 |∞) always being well defined and finite with

probability 1, if s(δ) <∞ but Q2(k1, k2 | j0) → ∞ otherwise.

Case (ii): Differences between eigenvalue sequences alone. Here, to simplify our

analysis we assume that ϕkj = ϕj, not depending on k, and µ0 = µ1. However, we

allow the eigenvalue sequences to differ, and in particular we write θ1j = θ0j (1−cj)−1

where the cjs are constants. To simplify our argument we suppose too that the ratio

θ1j/θ0j is bounded away from zero and infinity. Then Q2(k1, k2 | j0) ≡ 0,

Q1(0, 1 | j0) =
j0∑
j=1

{cj + log(1− cj)}+
j0∑
j=1

cj
θ0j

(1− E0)

{∫
I
(X − µ1)ϕj

}2

, (B.8)

Q1(1, 0 | j0) =
j0∑
j=1

{
1− (1− cj)

−1 − log(1− cj)
}

+

j0∑
j=1

1− (1− cj)
−1

θ1j
(1− E1)

{∫
I
(X − µ0)ϕj

}2

, (B.9)

where in the first instance X is drawn from Π0, and in the second, from Π1. Observe

too that

each of the series
∑

j {cj + log(1− cj)} and
∑

j {1− (1− cj)
−1 − log(1− cj)}

converges if
∑

j c
2
j < ∞, and diverges to −∞ in asymptotic proportion to∑

j≤j0
c2j otherwise.

(B.10)
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Now, the random variables
∫
I(X − EX)ϕj are uncorrelated, and in numerical

work are often taken to be independent; they are always independent if X is Gaussian.

Therefore, in a great many cases the second series on the far right-hand side of (B.8),

and on the far right-hand side of (B.9), converges if and only if its mean square is

finite, and in particular if and only if t(c) ≡
∑

j≥1 c
2
j < ∞, and is of smaller order

than
∑

j≤j0
c2j otherwise. Combining this property with (B.10) we deduce that, in

such instances, (B.6)(e) and (B.6)(f) hold with Q2(k1, k2 |∞) being well defined and

finite with probability 1, Q1(k1, k2 |∞) being finite with probability 1 if t(c) < ∞

holds, and Q1(k1, k2 | j0) → −∞ in probability if t(c) = ∞.

Case (iii): Differences between eigenfunction sequences alone.We assume here that

the differences are only in terms of the eigenfunction sequences, and the eigenvalue

sequences and the means are the same for both populations. Many examples in this

setting can be treated as in case (ii). For instance, if we initially take the set of eigen-

functions ϕ1, ϕ2, . . . to be the same for both populations, and perturb the sequence

of eigenvalues in one population to obtain those in another, then, after we have re-

ordered the (eigenvalue, eigenfunction) pairs so that the eigenvalues are arranged in

decreasing order, as is conventional before indexing the pairs, we have a setting that

can be viewed as one where the eigenvalue sequence is common to both populations

but the eigenfunction sequences differ. Since our treatment of case (ii) above did not

require the eigenvalues for either population to be arranged in decreasing order, it

therefore applies also to the present setting, with the same conclusions being drawn;

see the last sentence in case (ii). Many other instances can be treated with only a

little more effort, for example those where the eigenvalue sequences are identical and

the function spaces generated by the pairs (ϕk,2j−1, ϕk,2j), for j ≥ 1, are identical

for both populations but the eigenfunctions ϕk,2j−1 and ϕk,2j differ for k = 0, 1 and

each j ≥ 1. In these settings the conclusions noted in the last paragraph of case (ii)

continue to apply.
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B.3 Proof of Theorem 1

Step 1: Showing that I ′ and I ′′ can be taken equal to I. Assumption (B.6)(h) implies

that, if (a, b) is in the interior of the support of f0 or f1, then it is in the interior of

the support of both and hence, for some ϵ1, ϵ2 > 0, the values of nk(t) and nk(s, t),

defined immediately below (2.11), satisfy

P
{
min
k=0,1

min
a−ϵ1<t<b+ϵ1

nk(t) > ϵ2 n
}
→ 1 ,

P
{
min
k=0,1

min
a−ϵ1<s<t<b+ϵ1

nk(s, t) > ϵ2 n
}
→ 1 .

as n→ ∞. Therefore, if ν0 diverges and is no larger than ϵ2n then P (I = I ′ = I ′′) →

1. This property allows us to work below with I rather than I ′ or I ′′.

Step 2: Deterministic approximation to Tfun(x, I | j0, 0), at (2.6). Given a function

g1 that is square-integrable on I, and a function g2 of two variables that is square

integrable on I × I, define ∥g1∥2 =
∫
I g

2
1 and |||g2|||2 =

∫
I

∫
I g

2
2. It is known (see

Theorem 1 of Hall and Hosseini-Nasab, 2006) that

sup
j≥1

∣∣θ̂j − θj
∣∣ ≤ ∆̂ ,

∥∥ϕ̂j − ϕj

∥∥ ≤ 81/2 ∆̂
/
δj , (B.11)

where ∆̂ = |||K̂ − K||| and δj = min1≤k≤j (θk − θk+1). Since Ek{X(t)4} is bounded

uniformly in k = 0, 1 and t ∈ I (see (B.6)(b)) then E{K̂(s, t) − K(s, t)}2 → 0 for

each (s, t) ∈ I, and therefore, ∆̂ → 0 in probability. This property, (B.11) and the

fact that there are no ties among the eigenvalue sequences (see (B.6)(d)) imply that

there exist a sequence of positive integers j(n), increasing to infinity, and a sequence

of positive numbers ϵ(n) ≤ 1
2
, decreasing to zero, such that

j(n) ≤ ϵ(n)−1 , min
k=0,1

min
1≤j≤j(n)

θkj ≥ ϵ(n) , max
k=0,1

∥µk − X̄∥ = Op

{
ϵ(n)4

}
(B.12)

and P (En) → 1 as n→ ∞, where En is the event defined by

En = max
k=0,1

max
1≤j≤j(n)

(∣∣θ̂kj − θkj
∣∣+ ∥∥ϕ̂kj − ϕkj

∥∥) ≤ ϵ(n)4 .
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Then, if En obtains and 1 ≤ j0 ≤ j(n),

j0∑
j=1

∣∣ log θ̂kj − log θkj
∣∣ ≤ j0∑

j=1

∣∣∣∣ log(1− ∣∣∣∣ θ̂kj − θkj
θkj

∣∣∣∣)∣∣∣∣ ≤ j(n)∑
j=1

∣∣∣ log {1− ϵ(n)3
}∣∣∣

= O
{
ϵ(n)2

}
, (B.13)

and also,

max
k=0,1

max
1≤j≤j(n)

∣∣θ̂−1
kj − θ−1

kj

∣∣ ≤ max
k=0,1

max
1≤j≤j(n)

|θ̂kj − θkj|
(θkj − |θ̂kj − θkj|) θkj

≤ ϵ(n)4

{ϵ(n)− ϵ(n)4} ϵ(n)
≤ 2 ϵ(n)2 , (B.14)

and moreover, if g is a square-integrable function of one variable,∫
I
|g|
∣∣ϕ̂kj − ϕkj

∣∣ ≤ ∥g∥
∥∥ϕ̂kj − ϕkj

∥∥ ≤ ∥g∥ ϵ(n)4 . (B.15)

Recall the definition of Tfun(x, I | j0, 0) at (2.6), and put

T 0
k (X, I | j0) =

j0∑
j=1

(
ξ2kj + log θkj

)
=

j0∑
j=1

(
1

θkj

[ ∫
I
{X(t)− µk(t)}ϕkj(t) dt

]2
+ log θkj

)
,

T 0
fun(X, I | j0, 0) = T 0

0 (X, I | j0)− T 0
1 (X, I | j0) ,

where (θkj, ϕkj) and ξkj are as defined in section 2.3. Combining (B.12)–(B.15) we

deduce that if En holds and j0 ≤ j(n) then:∣∣∣Tfun(X, I | j0, 0)− T 0
fun(X, I | j0, 0)

∣∣∣
≤ j(n) max

k=0,1
max

1≤j≤j(n)

[∣∣θ̂−1
kj − θ−1

kj

∣∣ (∥∥X − X̄k

∥∥∥∥ϕ̂kj

∥∥)2
+ ϵ(n)−1

∣∣∣∣ ∫
I

{(
X − X̄k

)
ϕ̂kj −

(
X − µk

)
ϕkj

}∣∣∣∣
×
∣∣∣∣ ∫

I

{(
X − X̄k

)
ϕ̂kj +

(
X − µk

)
ϕkj

}∣∣∣∣]+Op{ϵ(n)}

10



≤ ϵ(n)−1 max
k=0,1

max
1≤j≤j(n)

{
2 ϵ(n)2

(∥∥X − X̄k

∥∥ ∥∥ϕ̂kj

∥∥)2
+ ϵ(n)−1

(∥∥X − X̄k

∥∥∥∥ϕ̂kj − ϕkj

∥∥+ ∥∥X̄k − µk

∥∥ ∥ϕkj∥
)

×
(∥∥X − X̄k

∥∥ ∥∥ϕ̂kj

∥∥+ ∥X − µk∥ ∥ϕkj∥
)}

+Op{ϵ(n)}

= Op

{
ϵ(n)1/3

}
,

where the latter bound holds uniformly in functions X, defined on I, for which ∥X∥ ≤

ϵ(n)−1/3. (We have used the fact that, for all j and k, ∥ϕkj∥ = ∥ϕ̂kj∥ = 1.) Hence, for

all ϵ > 0,

max
k=0,1

P
{∣∣∣Tfun(X, I | j0, 0)− T 0

fun(X, I | j0, 0)
∣∣∣ > ϵ

∣∣∣ I ; (X, I) ∈ Πk

}
→ 0 (B.16)

as n → ∞, where, here and below, the notation P{. . . | I; (X, I) ∈ Πk} denotes

probability measure conditional on the event that (X, I) was drawn from population

Πk, and also conditional on the interval I. Note too that, by (B.7), X is independent

of I.

Step 3: Expanding T 0
fun(x, I | j0, 0). If (X, I) is drawn from Π0 then T 0

fun(X, I | j0, 0)

can be expanded as follows:

T 0
fun(X, I | j0, 0) = U1(X, I | j0)− U2(X, I | j0) , (B.17)

where

U1(X, I | j0) =
j0∑
j=1

[
1

θ0j

{∫
I
(X − µ0)ϕ0j

}2

− 1

θ1j

{∫
I
(X − µ0)ϕ1j

}2

+ log(θ0j/θ1j)

]
= Q1(0, 1 | j0) ,

U2(X, I | j0) =
j0∑
j=1

1

θ1j

[
2

{∫
I
(X − µ0)ϕ1j

}{∫
I
(µ0 − µ1)ϕ1j

}

+

{∫
I
(µ0 − µ1)ϕ1j

}2
]
= Q2(0, 1 | j0) .

11



Therefore, noting (B.6)(e) and (B.6)(f),

U1(X, I | j0) →

{
Q1(0, 1) if Q1(0, 1) is finite with probability 1

−∞ otherwise
(B.18)

U2(X, I | j0) →

{
Q2(0, 1) if Q2(0, 1) is finite with probability 1

+∞ otherwise
(B.19)

where the convergence is in probability.

On the other hand, if X is drawn from Π1 then T 0
fun(X, I | j0, 0) can be expanded

as follows:

T 0
fun(X, I | j0, 0) = U3(X, I | j0) + U4(X, I | j0) , (B.20)

where

U3(X, I | j0) =
j0∑
j=1

[
1

θ0j

{∫
I
(X − µ1)ϕ0j

}2

− 1

θ1j

{∫
I
(X − µ1)ϕ1j

}2

+ log(θ0j/θ1j)

]
= −Q1(1, 0 | j0) ,

U4(X, I | j0) =
j0∑
j=1

1

θ0j

[
2

{∫
I
(X − µ1)ϕ0j

}{∫
I
(µ1 − µ0)ϕ0j

}

+

{∫
I
(µ1 − µ0)ϕ0j

}2
]
= Q2(1, 0 | j0) .

Therefore, in view of (B.20),

U3(X, I | j0) →

{
−Q1(1, 0) if Q1(1, 0) is finite with probability 1

∞ otherwise
(B.21)

U4(X, I | j0) →

{
Q2(1, 0) if Q2(1, 0) is finite with probability 1

∞ otherwise
(B.22)

where the convergence is in probability.

Step 4: Completion. It follows from (B.16) that the criterion T (X, I | j0), at (5.1),

satisfies

max
k=0,1

P
{∣∣∣T (X, I | j0)− T 0(X, I | j0)

∣∣∣ > ϵ
∣∣∣ I ; (X, I) ∈ Πk

}
→ 0 (B.23)

12



for all ϵ > 0.

Part (I) of Theorem 1 follows on combining (B.17), (B.18), (B.19) and (B.23),

and part (II) follows on combining (B.17), (B.21), (B.22), and (B.23). The uniformity

claimed in Theorem 1 is trivial if Q1(0, 1) or Q2(0, 1) is infinite (when sampling from

Π0), or if Q1(1, 0) or Q2(1, 0) is infinite (in the case of sampling from Π1); and, when

those quantities are finite, the uniformity follows from the convergences in the first

cases of (B.18), (B.19), (B.21) and (B.22).

B.4 Proof of Theorem 2

We treat only the case where the support intervals of the censored training data are

extended to I using random function extension. Let n = min(n0, n1) and define the

event

Ek =
{
I ⊆

nk∪
j=1

Ikj

}
.

It follows from (5.6) that P (Ek) → 1 as n → ∞. Conditional on Ek being true, let

X∗
kj denote a particular version of the extension of Xkj to an interval that contains I,

and define X̄∗
k = n−1

k

∑
j X

∗
kj and ∆̄∗

k = n−1
k

∑
j (X

∗
kj − µk). Since Ek holds then the

supports of both X̄∗
k and ∆̄∗

k include I, and moreover, E{∆̄∗
k(t)

2 I(Ek)} → 0 uniformly

in t ∈ I, where I(Ek) denotes the indicator function of Ek. Therefore,∫
I

{
(∆̄∗

k)
2 + |∆̄∗

k| |∆|+ |∆̄∗
k| |d|

}
→ 0 (B.24)

in probability as n→ ∞.

Recall that (X, I) came from Π0, and note that∫
I
(X − X̄∗

k)
2 =

{∫
I(∆− ∆̄∗

0)
2 if k = 0∫

I(∆− ∆̄∗
1 + d)2 if k = 1 .

Hence, noting the definition of D(X) at (5.7),

D(X) =

∫
I
(∆̄∗

1 − ∆̄∗
0) (∆̄

∗
1 + ∆̄∗

0 − 2∆) + 2

∫
I
(∆− ∆̄∗

1) d+

∫
I
d2

13



= 2

∫
I
∆ d+

∫
I
d2 + op(1) , (B.25)

where the last identity follows from (B.24). Since d > 0 is fixed then (5.8) follows

from (B.26).

B.5 Proof of Theorem 3

Under the assumptions imposed in the theorem, if X̄k represents the mean of the

training data from Πk, with their support restored to I0; if µk is the corresponding

population mean; and if X is drawn from Πk; then the statistic D(X), at (5.7),

assumes the form

D(X) =

∫
I
(X − X̄1)

2 −
∫
I
(X − X̄0)

2 =

∫
I
(X − µ1)

2 −
∫
I
(X − µ0)

2 +Op

(
n−1/2

)
= Tk(X) + dk +Op

(
n−1/2

)
. (B.26)

The theorem follows directly from (B.26).

C Other classifiers

C.1 Classifier for section 4.1

Since the vectors (Akj, Bkj) are only of dimension two, if sample size were large

enough we could also use the more sophisticated nonparametric form of the Bayes

classifier. Specifically, for k = 0 and 1, let f̂k be a nonparametric kernel estimator of

the bivariate density fk of the joint distribution of the endpoints of I = [A,B] when

X is drawn from Πk, based on the data (Akj, Bkj), for 1 ≤ j ≤ nk. That is,

f̂k(s, t) =
1

nkh1h2

nk∑
j=1

K

(
s− Akj

h1
,
t−Bkj

h2

)
, (C.1)

where K is a bivariate kernel function integrating to one, and h1 > 0 and h2 > 0 are

two bandwidths. The nonparametric Bayes classifier assigns X to Π0 if

Sint(I |w) = log f̂1(A,B)− log f̂0(A,B) + w (C.2)

14



is negative, and to Π1 otherwise, with w as in section 4.1. (Here Sint is as defined in

section 4.1.)

C.2 Classifier for section 3.3

The linear discriminant version of the method in section 3.3 amounts to replacing

there each occurrence of K̂k by K̂, where

K̂(s, t) =
∑
k=0,1

nk∑
j=1

w̃kj {X̃kj(s)− X̄k(s)} {X̃kj(t)− X̄k(t)} . (C.3)

Here we take

w̃kj =
L
(
∥I − Ikj∥int/{(b− a)h}

)∑
k=0,1

∑nk

ℓ=1 L
(
∥I − Ikℓ∥int/{(b− a)h}

) ,
where h is a bandwidth. As for h0 and h1, we let h be the rth empirical quantile of

∥I −Ikℓ∥int/(b− a), for k = 0, 1 and ℓ = 1, . . . , nk, where 0 ≤ r ≤ 1 is the same for h,

h0 and h1 and is chosen by CV as described in section 3.3. Moreover, we replace each

occurrence of θ̂kj and ϕ̂kj by θ̂j and ϕ̂j, the empirical eigenvalues and eigenfunctions

of K̂. The rest of the procedure remains unchanged.

C.3 Leave-one-out quantities

C.3.1 Classifier based on Tfun

Analogously to the definitions at (2.6) and (2.7), if we leave out X0j1 or if we leave

out X1j1 , respectively, then Tfun,−j1(X, I | j0, w) is defined by, respectively,

Tfun,−j1(X, I | j0, w) = T0,−j1(X, I | j0)− T1(X, I | j0) + w

Tfun,−j1(X, I | j0, w) = T0(X, I | j0)− T1,−j1(X, I | j0) + w,

where

Tk,−j1(X, I | j0) =
j0∑
j=1

(
1

θ̂kj,−j1

[ ∫
I′′
{X(t)− X̄k,−j1(t)} ϕ̂kj,−j1(t) dt

]2
+ log θ̂kj,−j1

)
,

15



and, letting nk,−j1(t) and nk,−j1(s, t) denote the numbers of elements in the sets

Jk(t) \ {j1} and Jk(s, t) \ {j1}, respectively, and assuming that nk,−j1(s), nk,−j1(t)

and nk,−j1(s, t) are all strictly positive,

X̄k,−j1(t) =
1

nk,−j1(t)

∑
j∈Jk(t)\{j1}

Xkj(t) ,

with θ̂k1,−j1 ≥ θ̂k2,−j2 ≥ . . . and ϕ̂k1,−j1 , ϕ̂k2,−j1 , . . . coming from the spectral decom-

position

K̂k,−j1(s, t) =
∞∑
j=1

θ̂kj,−j1 ϕ̂kj,−j1(s) ϕ̂kj,−j1(t)

of

K̂k,−j1(s, t) =
1

nk,−j1(s, t)

∑
j∈Jk(s,t)\{j1}

{Xkj(t)− X̄k,−j1(t)} {Xkj(s)− X̄k,−j1(s)} .

C.3.2 Classifier based on Sint

Recall the definition of Sint in section 4.1. In the quadratic discriminant case, let

Āk,−j1 =
1

nk − 1

∑
j : j ̸=j1

Akj , B̄k,−j1 =
1

nk − 1

∑
j : j ̸=j1

Bkj ,

σ̂2
Ak,−j1

=
1

nk − 1

∑
j : j ̸=j1

(Akj − Āk,−j1)
2 , σ̂2

Bk,−j1
=

1

nk − 1

∑
j : j ̸=j1

(Bkj − B̄k,−j1)
2 ,

γ̂k,−j1 =
1

nk − 1

∑
j : j ̸=j1

(Akj − Āk,−j1) (Bkj − B̄k,−j1).

Then if we leave out X0j1 , we define

Sint,−j1(I |w) =(A− Ā0,−j1 , B − B̄0,−j1) Σ̂
−1
0,−j1

(A− Ā0,−j1 , B − B̄0,−j1)
T + log |Σ̂0,−j1 |

− (A− Ā1, B − B̄1) Σ̂
−1
1 (A− Ā1, B − B̄1)

T − log |Σ̂1|+ w,

and if we leave out X1j1 , we define

Sint,−j1(I |w) =(A− Ā0, B − B̄0) Σ̂
−1
0 (A− Ā0, B − B̄0)

T + log |Σ̂0|

− (A− Ā1,−j1 , B − B̄1,−j1) Σ̂
−1
1,−j1

(A− Ā1,−j1 , B − B̄1,−j1)
T

− log |Σ̂1,−j1 |+ w.
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Figure D.1: Wheat curves, case (c). Left panel: the fragment curves in Π0 (top) and
Π1 (bottom); right panel: shifted fragment curves in Π0 (top) and Π1 (bottom).

D Additional figures

The left panels of Figures D.1 and D.2 show a typical example of 100 fragments

of wheat curves obtained in cases (c) and (d), respectively (see section 7.2.1). The

right panels show the same curves, but to make the endpoints of the fragments more

apparent we have translated each curve vertically by a small amount.

Figure D.3 shows, for each ethnic group, the growth curves introduced in section

7.2.2. Figure D.4 shows the curves of the FEV data by group, in Cases I and II

introduced in section 7.2.3.
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Figure D.2: Wheat curves, case (d). Left panel: the fragment curves in Π0 (top) and
Π1 (bottom); right panel: shifted fragment curves in Π0 (top) and Π1 (bottom).
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Figure D.3: Growth curves of 153 females from four ethnic groups: Asians (top left),
Blacks (top right), Hispanics (bottom left) and Caucasians (bottom right).
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Figure D.4: Curves of log(FEV1) for 252 US girls. Left: Curves for group Π0; right:
curves for group Π1; top: case I, bottom: case II.
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