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Abstract: Contemporary problems involving sparse, high dimensional feature selec-

tion are becoming rapidly more challenging through substantial increases in dimension.

This places ever more stress on methods for analysis, since the effects of even moderately

heavy tailed feature distributions become more significant as the number of features di-

verges. Data transformations have a significant role to play, reducing noise and enabling

an increase in dimension, and for this reason they are used increasingly widely. In this

paper we examine the performance of a typical transformation of this type, and study

the extent to which it preserves the main attributes that lead to reliable feature selec-

tion. We show both numerically and theoretically that, in the presence of heavy tailed

data, the size of the dimension for which effective variable selection is possible can be

increased dramatically, from a low-degree polynomial function of sample size to one that

is exponentially large.

Keywords: Correlation; feature selection; heavy tail; nonparametric statistics; Studen-

tising; variable selection.
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1 Introduction

The future of genomic data analysis promises data vectors whose length, p, is not in

the thousands or tens of thousands, as is common today, but in the millions or tens

of millions. To appreciate the relevance of these numbers, note that there are likely

between p = 20,000 and 25,000 human protein-coding genes, but, apparently, between

p = 106 and 3 × 106 SNPs, or single-nucleotide polymorphisms, in the human genome.

Data on SNPs, rather than on genes, are becoming common, and the availability of such

high dimensional vectors means that methods have to be effective when p is much larger

than the sample size, n.

In this paper we consider feature ranking in such very high dimensional problems. It

has been proved in that context that if distributions are sufficiently light-tailed, standard

methods work for p exponentially large as a function of n. However, genetic data are

often very noisy, and can contain unusually large observations. In other words, such data
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are often not sufficiently light-tailed, which is a serious issue in very high dimensional

settings because, as the number of features diverges, the influence of even moderately

heavy tailed feature distributions becomes more significant. Therefore, techniques more

appropriate to heavy-tailed distributions have to be employed.

In this setting it is increasingly common to borrow tools from the more conventional

low dimensional robust literature. In particular, practitioners commonly employ simple

data transformation methods. In the present paper we provide a theoretical account

of the performance of such transformation methods, pointing especially to the extent

of their advantages in ultra high dimensional settings. We show that they can provide

substantial improvements when some or all of the components have heavy-tailed distribu-

tions. For example, we show that standard feature ranking methods, whose performance

degrades when p is an exponentially large function of n, recover their capacity to deal

with ultra high dimensional, noisy data when used in conjunction with an appropriate

data transformation. The theoretical results in section 3 demonstrate these advantages

for ranking methods based on either differences of means or on correlation. In the former

setting, a standard approach consists of ranking components according to Student’s t

scores calculated for each component. Although Studentising helps combat heavy tailed

noise, we show that transforming the variables has even more to offer. Moreover, when

the distributions are light tailed and do not contain outliers, transforming the data does

not have a serious negative impact on feature ranking. In section 4 we illustrate some

of the main issues using two real datasets.

2 Transformation methods

2.1 Feature ranking based on correlation

Suppose we observe independent and identically distributed data pairs (Xi, Yi), for 1 ≤
i ≤ n, where Xi = (Xi1, . . . , Xip) is a p-vector, Yi is a scalar, and we are interested in the

relation between Yi and Xi. For example, Yi might be a score variable for a disease, and

Xi a vector whose indices represent p genes or parts of a chromosome, and the interest

could be in uncovering indices that are relevant to the disease, and in constructing a

model for the relationship between these and Yi. Methods for model building include the

lasso (Tibshirani, 1996), non-convex penalisation (Fan and Li, 2001) and the Dantzig
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selector (Candes and Tao, 2007).

Fan and Lv (2008) suggest preceding model building by a massive dimension re-

duction step, using “correlation learning” where the p components of Xi are ranked

according to the values of |ρ̂j|, with, for j = 1, . . . , p, ρ̂j = ξ̂j/(σ̂Xj σ̂Y ) denoting an

empirical estimator of the theoretical correlation ρj = corr(X1j, Y1) = ξj/{σ2
Xj σ

2
Y }1/2 .

Here we have used the notation ξj = cov(X1j, Y1), σ
2
Xj = var (X1j), σ

2
Y = var (Y1),

ξ̂j =
1

n

n∑
i=1

(Xij Yi − X̄j Ȳ ) , σ̂2
Xj =

1

n

n∑
i=1

(
X2

ij − X̄2
j

)
, σ̂2

Y =
1

n

n∑
i=1

(
Y 2
i − Ȳ 2

)
, (2.1)

where X̄j = n−1
∑

i Xij and Ȳ = n−1
∑

i Yi. Correlation learning assigns empirical

rank ȷ̂k the jth component, where ȷ̂1, . . . , ȷ̂p denotes the permutation of 1, . . . , p such

that |ρ̂ȷ̂1 | ≥ . . . ≥ |ρ̂ȷ̂p |. For each k, ȷ̂k is an estimator of the theoretical rank jk, where

j1, . . . , jp is a permutation of 1, . . . , p such that |ρj1 | ≥ . . . ≥ |ρjp|. Dimension reduction

is performed by removing components with low absolute empirical correlations. See also

Lv and Fan (2009) and Fan and Lv (2010).

In some analyses of genomic data, practitioners report the results of robust Wilcoxon

rank tests as well as, or instead of, Student’s t statistics; see Li and Fine (2010). This

approach is relatively robust, and immune to heavy tail problems, although the results

to which it leads are perhaps a little more difficult to interpret since they address differ-

ences between the distributions of noisy approximations to (for example) gene expression

levels, rather than differences between means.

2.2 Data transformation for correlation ranking

A difficulty with the correlation learning methodology discussed in section 2.1 is that

empirical correlations are sensitive to aberrations caused by heavy-tailed distributions

of the explanatory vectors Xi or experimental errors ϵi. As a result, ranking based on

correlations can be quite poor in the presence of heavy tails, since empirical correlations

fluctuate so heavily that many of those corresponding to a theoretical correlation of zero

take higher values than those for which the theoretical counterpart is nonzero. To reduce

the fluctuations of empirical correlations, a common approach is to transform the data,

replacing Xij and Yi by

Uij = Ψ(Xij) , Zi = Ψ(Yi) , (2.2)
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respectively, when computing the correlation coefficient. Here we take Ψ to be a uni-

formly bounded, monotone function, for example a distribution function. Then we

replace ρj by the new correlation coefficient computed from the transformed data:

ωj = cov(U1j, Z1)/{var (U1j) var (Z1)}1/2 , (2.3)

of which an estimator is ω̂j = ζ̂j/(τ̂Uj τ̂Z) where

ζ̂j =
1

n

n∑
i=1

(Uij Zi − Ūj Z̄) , τ̂ 2Uj =
1

n

n∑
i=1

(
U2
ij − Ū2

j

)
, τ̂ 2Z =

1

n

n∑
i=1

(
Z2

i − Z̄2
)
. (2.4)

The components are ranked in the order ȷ̂1, . . . , ȷ̂p determined by |ω̂ȷ̂1 | ≥ . . . ≥ |ω̂ȷ̂p |.
The estimator ω̂j is effectively the correlation estimator discussed in section 8.3 of

Huber (1981). Khan et al. (2007) discuss a similar approach for calculating correlation

in the context of the LARS method of Efron et al. (2004), a technique of the same type

as the lasso, where one of the ingredients needed is correlation. However, they treat only

numerical aspects, and only in cases where p < n.

Our goal here is quite different. We wish to prove, both theoretically and numeri-

cally, that in ultra high dimensional problems, where p is much larger than n, standard

correlations fail to rank components correctly, whereas transformed correlations perform

well. Note that it is really the conjunction of heavy-tails and high dimension that causes

poor performance of correlation ranking, since in the case of heavy-tailed distributions,

when p is large, with high probability many of the p empirical correlations are very far

from their true values. Section 3 will shed light on the impact of heavy tails on rank-

ing a very high number of components through empirical correlations, and prove that

transforming data can greatly improve ranking.

To illustrate in practice that it is ultra high dimension that, when associated with

heavy tails, causes the difficulties, we simulated data (Xi1, . . . , Xip, Yi), i = 1, . . . , n,

from the model Yi =
∑6

j=1Xij + ϵi, where distributions of the ϵis and of the Xis were,

respectively, 0.98F1 + 0.02F2 and 0.98F1 + 0.02F3, with F1, F2 and F3 denoting the

distributions of, respectively, a U [−10, 10], a U [−150,−100], and a U [15, 25]. Here, the

Yis depend only on Xi1, . . . , Xi6, and a small proportion of the data take unusually large

values. For several values of n and p we generated 200 samples of size n from this model,

and then ranked the p components Xi1, . . . , Xip according to their absolute empirical

correlations with Yi, as described in section 2.1, and according to their transformed

versions described above, where Ψ was as described in section 4. From the 200 samples
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Table 1: Median and quartile ranks of Xi1 to Xi6 obtained by empirical correlation rank-

ing (first block of four rows) and by transformed empirical correlation ranking (second

block of four rows), when ranking p = 20000 components .

X1 X2 X3 X4 X5 X6

n Q2 Q1–Q3 Q2 Q1–Q3 Q2 Q1–Q3 Q2 Q1–Q3 Q2 Q1–Q3 Q2 Q1–Q3

50 712 75–3291 809 168–3600 474 45–2707 906 172–4786 672 120–3531 750 86–3638

75 236 32–1880 192 36–1394 282 30–1750 236 24–2038 190 17–1632 331 37–1951

100 91 7–806 152 15–854 110 10–836 88 9–795 145 14–776 98 9–575

200 6 3–49 7 3–56 7 2–31 10 3–59 6 3–33 6 2–56

50 174 28– 996 317 45–1394 137 14– 920 344 57–1429 262 42–1116 242 29–1570

75 48 5–202 39 5–199 40 5–244 68 7–388 25 5–175 44 5–288

100 8 3–56 15 4–76 12 3–71 8 2–37 10 3– 93 7 2–68

200 4 2–6 4 2–5 4 2–5 3 2–6 3 2–5 3 2–5

we then calculated the median (Q2) and first and third quartiles (Q1 and Q3) of ranks

assigned to Xi1 to Xi6 (their true ranks are 1). We show the results in Table 1 for several

values of n, when p = 20000.

As we can see, it is when n is too small that occasional outliers cause empirical

correlation ranking to fail to identify Xi1, . . . , Xi6 as being some of the most important

components. When n is larger, the method does not rank them perfectly, but is able to

rank them highly (a rank is high when close to 1). Clearly, the transformed correlation

approach is able to rank highly Xi1, . . . , Xi6 for smaller values of n. In this simple

example the observations contain only moderate outliers, but the differences between the

two methods are even more striking for higher values of p and when the distributions are

more heavily tailed; see Delaigle and Hall (2011) for a more extensive simulation study.

Section 3 will give a theoretical account of these empirical findings.

Note that for simplicity we focus on the simple correlation ranking method, but of

course, variable transformation can be used to reduce the effect of heavy tailed dis-

tributions in variants of the correlation approach, such as for example the generalised

correlation technique of Hall and Miller (2009). Conclusions similar to those drawn in

this paper can be derived in such settings too.

2.3 Feature ranking based on mean differences

Transforming data prior to ranking can also be used in other contexts, such as the

one based on mean differences. Suppose we observe a sample of size n of independent
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p-vectors coming from two populations ΠX and ΠY . That is, we observe X1, . . . , Xn1

from ΠX , and Y1, . . . , Yn2 from ΠY , where n1 + n2 = n, Xi = (Xi1, . . . , Xip) and Yi =

(Yi1, . . . , Yip). For example, Xij and Yij could represent expression levels for the jth gene

of the ith individual coming from population ΠX (a population of individuals suffering

from a particular medical condition) and ΠY (a population from which the condition is

absent), respectively. It is often of interest in such problems to identify the components

of the p-vectors for which the two populations differ the most. This is often done by

detecting the components that have the largest mean differences. Let

E(Xi1j) = µ1j and E(Yi2j) = µ2j, for 1 ≤ ik ≤ nk, k = 1, 2 and 1 ≤ j ≤ p, (2.5)

and let j1, . . . , jp be a permutation of 1, . . . , p such that µ2j1 − µ1j1 ≥ . . . ≥ µ2jp − µ1jp .

When ranking is based on mean differences, the ℓth component is assigned rank jℓ.

In practice the means µkj are unknown and the ranks are estimated empirically from

the data, for example by replacing the theoretical means by their empirical counterparts,

and ranking the components according to the values of the raw differences,

Dj = Ȳj − X̄j, (2.6)

where X̄j = n−1
1

∑
i Xij, Ȳj = n−1

2

∑
i Yij.

Like the correlation approach, this ranking method is very sensitive to random fluc-

tuations. To some extent this sensitivity can be corrected by ranking values taken by

Student’s t statistics Tj, corresponding to two-sample t-tests of the null hypothesis H0j

that µ2j = µ1j, against the alternative H1j that µ2j > µ1j; that is, ranking

Tj = (Ȳj − X̄j)
/(

n−1
1 S2

1j + n−1
2 S2

2j

)1/2
, (2.7)

for 1 ≤ j ≤ p, where S2
1j and S2

2j are conventional variance estimators computed from

the data X1j, . . . , Xnj and Y1j, . . . , Ynj, respectively. Based on these t statistics, the

components are ranked empirically by taking ȷ̂1, . . . , ȷ̂p to be the permutation of j1, . . . , jp

such that Tȷ̂1 ≥ . . . ≥ Tȷ̂p . Adopting this technique, the most influential feature; for

example, in a genomic context, the most influential gene; is the one for which H0j is

rejected most resoundingly in favour of H1j. See also Lyons-Weiler et al. (2003), Xie et

al. (2004), Papana and Ishwaran (2006) and Yang et al. (2009) for other motivations of

the Student’s t approach.

Student’s t statistics Tj are less influenced than the raw differences Dj by statistical

fluctuations when the dataXij or Yij are relatively heavy tailed; see for example Delaigle,

6



Hall and Jin (2011). However they can still be affected significantly, and in consequence,

ȷ̂1, . . . , ȷ̂p defined above can be poor estimators of the true ranks j1, . . . , jp. Moreover, this

approach runs counter to the notion that it should emphasise location differences. To see

why, note that if j = jsmall and j = jlarge denote indices for which σ2
j = n−1

2 var (Y1j) +

n−1
1 var (X1j) is particularly small, or particularly large, respectively, then the feature

with index jsmall is likely to be ranked well ahead of that with index jlarge even if the

mean difference µ1j − µ2j takes much the same value in both cases. Thus, a ranking

of the Tjs generally fails to adequately reflect the sizes of the differences µ1j − µ2j; in

important cases those values are distorted by standardising for scale. This focus on

differences between population means reflects the fact that, in most applications of t

statistics, one generally has in mind not just the difference between two sample means,

but rather the implications, conveyed by that difference, for the difference between the

means of the respective populations.

Variants of t statistics have been suggested in the literature. See for example Efron

et al. (2001), Smyth (2004), Wu (2005) and Opgen-Rhein et al. (2007). However, the

main goal of these methods is to improve estimators of the variances σ2
j by borrowing

strengths across similar components. In particular, they do not necessarily address the

problems that concern us. For an illustration on some simulated examples, see Delaigle

and Hall (2011).

The discussion above motivates methodology that focuses more sharply on the mag-

nitudes of differences between means, yet also alleviates problems that arise when the

data Xij, and/or Yij, have heavy tails. Let Uij = Ψ(Xij) and Vij = Ψ(Yij), where Ψ is

a uniformly bounded, monotone increasing function. Here, the components are ranked

by ranking values of empirical mean differences calculated from these transformed data.

That is, with the transformation approach,

ȷ̂1, . . . , ȷ̂p is the permutation of 1, . . . , p for which V̄ȷ̂1 − Ūȷ̂1 ≥ . . . ≥ V̄ȷ̂p − Ūȷ̂p , (2.8)

where Ūj = n−1
1

∑
i Uij, V̄j = n−1

2

∑
i Vij. To appreciate that this approach is well

founded, let us elaborate on the model (2.5) by assuming that

Xij = µ1j + ϵ1ij, Yij = µ2j + ϵ2ij and, for any given i and j, the errors ϵkij
for k = 1, 2 are identically distributed. (2.9)

(Note that the quantities µkj here need not be means, and in particular, in contrast

to cases where t statistics are ranked, no finite moments need be assumed.) Then,
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E{Ψ(Yij)} ≥ E{Ψ(Xij)}, or E{Ψ(Yij)} ≤ E{Ψ(Xij)}, according as µ2j ≥ µ1j, or

µ2j ≤ µ1j, respectively. These properties persist if the inequalities are taken to be

strict, provided that Ψ is strictly monotone increasing on the real line. The assumption

of identical distribution of errors, imposed in (2.9), is not a necessary condition for pre-

serving the order of expectation in each case, for example when the means take only a

finite number of distinct values, but it is perhaps the simplest sufficient condition.

Therefore, in the circumstances described by (2.9),

the expected value of V̄j − Ūj is of the same sign as µ2j − µ1j, and the

expected value is a monotone increasing function of µ2j and a monotone

decreasing function of µ1j.
(2.10)

Moreover, since the variables Uij and Vij are uniformly bounded then their associated

large deviation probabilities are particularly small, even when the errors ϵkij in (2.9) are

heavy-tailed. This property and (2.10) underpin the attractiveness of feature ranking

based on values of V̄j − Ūj. Note that, since the transformation Ψ is uniformly bounded,

the expected value referred to in (2.10) is always well defined even if the data are very

heavy tailed.

Transforming data before calculating a mean is not new, but our goal is to investigate

the advantages of such a transformation approach when used to rank a very high number

of components in the presence of heavy tails. As in the correlation context, the negative

impact of heavy tails for ranking means, without transforming the data, makes itself felt

mostly when p is extremely large, since the probability of incorrect ranking increases

with p. See section 3 for a theoretical study.

To illustrate numerically the problems due to the conjunction of high dimension

and heavy tails, we generated 200 samples from (Xi1, . . . , Xip) and (Yi1, . . . , Yip), where,

Xij − µj ∼ F and Yij ∼ F , with F a symmetric stable distribution with characteristic

function ϕ(t) = exp(−|t|1.5). Here, only the first six components are relevant, as we took

µj = 1{j ≤ 6}. We ranked all p components using each of the three methods described

above: the method based on the raw differences at (2.6), the one based on Student’s t

differences at (2.7), and the transformation approach discussed above, with Ψ is as in

section 4. From the 200 samples we then calculated the median, first and third quartiles

of ranks assigned to Xi1 to Xi6 (their true ranks are 1). We show the results in Table 2

for the three methods, when p = 20000 and for several values of n.

As in the correlation context we see that it is when n is very small compared to p that
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Table 2: Median and quartile ranks of Xi1 to Xi6 obtained by empirical mean ranking,

when ranking p = 20000 components. First block of four lines: using (2.6); second block:

using (2.7); third block: using V̄j − Ūj at (2.8).

X1 X2 X3 X4 X5 X6

n Q2 Q1–Q3 Q2 Q1–Q3 Q2 Q1–Q3 Q2 Q1–Q3 Q2 Q1–Q3 Q2 Q1–Q3

50 1696 941–4085 1664 819–3140 1896 951–4672 1856 1042–3596 1448 793–3139 1692 908–3343

75 1442 698–3052 1378 786–2275 1382 796–3307 1344 717–2753 1318 663–2483 1492 736–3251

100 1169 694–2126 1099 676–1963 934 602–1760 1042 599–1739 1064 722–2514 1128 689–2377

200 684 446–1180 730 468–1254 694 471–1341 702 472–1386 791 506–1230 718 439–1132

50 410 50–4017 310 20–2420 627 53–4492 562 62–2595 478 39–2326 594 102–3389

75 243 7–3089 151 21–1249 380 18–2827 254 16–1890 292 14–2428 340 20–2818

100 167 9–1305 87 6–1168 81 6–892 85 5–788 108 9–1670 126 10–1670

200 11 2–515 17 3–639 11 2–280 7 2–304 25 3–615 14 3–315

50 28 5–133 36 7–157 48 6–240 39 6–165 37 4–188 35 7–240

75 6 2–40 7 3–36 6 2–27 6 2–38 6 2–41 10 2–43

100 5 2–13 4 2–9 4 2–6 4 2–6 5 2–12 4 2–8

200 3 2–5 3 2–5 4 2–5 3 2–5 4 2–5 3 2–5

the method based on (2.6) fails to identify these six components as being important, but

the method does rank them increasingly highly as n increases. Ranking from Student’s

t differences at (2.7) already improved the results, but the transformation method gave

even better results. See Delaigle and Hall (2011) for a more extensive simulation study

with more complex settings, and see section 3 for a theoretical study of the empirical

properties discussed here.

Of course, transforming the variables does not necessarily imply that all the compo-

nents will be better ranked than by Student’s t. However, the transformation approach

often manages to detect components that were neglected because of heavy tailedness,

and likewise can avoid false positive results caused by the same issue. Our main goal is

not to rank all the components perfectly, but to identify the most important ones, that

is those with highest ranks.

Remark 1. The expected value in (2.10) is not necessarily a monotone function of µ2j −
µ1j. This need not cause difficulties, because in many settings the levels of monotonicity

described in (2.10) are adequate. However, the problem can be eradicated by adjusting

the methodology slightly. Specifically, define Wi0i1j = Ψ(Yi1j −Xi0j) for 1 ≤ i0 ≤ n1 and

1 ≤ i1 ≤ n2, and put

W̄j =
1

n1n2

n1∑
i0=1

n2∑
i1=1

Wi0i1j .

9



Then, if the errors ϵkij in (2.9) have distributions that do not depend on i, E(W̄j) is

a monotone increasing function of µ2j − µ1j and is strictly monotone if Ψ is strictly

increasing. This property motivates the following alternative method:

define ȷ̂1, . . . , ȷ̂p to be the permutation of 1, . . . , p for which W̄ȷ̂1 ≥ . . . ≥ W̄ȷ̂p . (2.11)

We prefer the method based on (2.8), since it is considerably faster to implement in

practice.

Remark 2. The transformation we use is monotone, although nonlinear, and this is a

critical asset when using it for the purpose of ranking. Of course, the scale and units

of the data change in a nonlinear way when transformed, and that should be borne in

mind if we use the transformed data for a purpose other than ranking. This issue is not

as important in the case of ranking based the correlation coefficient, which is scale and

unit free and is itself a somewhat arbitrary measure of association.

3 Theoretical properties

In this section we study theoretical properties of the transformed feature ranking ap-

proaches discussed in section 2. We start with a general result in sections 3.1 and

3.2, where we prove that overall, without any restriction on the tails of the data, the

empirical rankings based on variable transformation accord with their theoretical coun-

terpart even when p is much larger than n. Next, in section 3.3 we show that this nice

property is not shared by standard methods based on untransformed data. Together,

these results illustrate the extent to which transforming the data effectively addresses

heavy-tailedness in ultra-high dimensional feature selection. We first state, and prove,

our theoretical results in the case of correlation, since this is more awkward than the

context of means since correlation involves a random denominator. Subsequently, we

consider the case of the mean.

3.1 Performance of the transformation method based on cor-

relation

Suppose we observe independent and identically distributed vectors (Xi, Yi), for 1 ≤ i ≤
n, where Xi = (Xi1, . . . , Xip) is a p-vector and Yi is a scalar. Note that we do not make
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any assumptions on the dependence structure of the components of the feature vectors

Xi = (Xi1, . . . , Xip). Our first result, Theorem 3.1 below, shows that the variable trans-

formation method is able to rank features in accordance with the values of the estimable

but unknown correlation coefficients ωj, defined at (2.3), even if the distributions of the

Xijs and/or the Yis are heavy-tailed.

We choose the function Ψ, which we use to define our transformed variables Uij and

Zi in terms of Xij and Yi at (2.2), so that following properties are satisfied:

Ψ is uniformly bounded and monotone increasing; (3.1)

var (U1j) and var (Z1) are bounded away from zero uniformly in 1 ≤ j ≤ p,

as n → ∞. (3.2)

For example, we can take Ψ to be the distribution function of a symmetric, unimodal,

continuous distribution with unit variance and zero mean. Consider taking Ψ = Φ, the

standard normal distribution. For x not too large we have

Φ(x) ≈ 1
2
+ (2π)−1/2 x (3.3)

and for x larger than about 2 or smaller than −2 the value of Φ(x) is virtually 0 or 1,

respectively. Since transformed feature ranking methods produce identical results if Ψ

is replaced by
√
2π (Ψ− 1

2
) throughout, we see that Ψ is virtually the identity for x not

too large, although with “barriers” in both tails that prevent x from taking values that

are too large positive or too large negative. This explains intuitively why this approach

is more resistant to problems caused by heavy tails than a method based directly on the

data, or equivalently, one that takes Ψ to be linear. (Note that the approximation at

(3.3) is used only as an aid to intuition, and is not employed anywhere in our analysis.)

Apart from (3.2), the only condition we assume on the distributions is the following:

The data pairs (X1, Y1), . . . , (Xn, Yn) are independent and identically

distributed; the common distribution is allowed to depend on n. (3.4)

This condition clearly does not impose any restrictive tail behaviour on the distributions.

Assumption (3.2) ensures that computing the correlation at (2.3) does not involve di-

viding by quantities that can become arbitrarily close to zero as n → ∞. Finally, we

allow p to be exponentially large compared to n. Let λn denote a sequence diverging to

infinity as n → ∞, and satisfying λn = o(n1/2). We assume that:
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p = O{exp(C λ2
n)} for a constant C > 0, where C depends on sup |Ψ| and

on the lower bounds in (3.2). (3.5)

Remark 3. It is straightforward to treat cases where location and scale corrections are

made empirically, using, for example, the median and standardised interquartile range,

respectively. Under mild additional assumptions those quantities have the properties

that, for each ϵ > 0, they are within ϵ of the respective true values uniformly in 1 ≤ i ≤ p,

if p satisfies (3.5). Similar remarks apply to the results in section 3.2.

Remark 4. The normal N(0, σ2) distribution function is attractive to use in practice,

since it is symmetric and involves only one user-chooseable parameter. However, there

may in some cases be advantages in using a distribution function where shape, as well

as scale, can be adjusted. Examples include Student’s t distribution functions, where

both scale and shape, through the number of degrees of freedom, ν say, can be adjusted.

The value of ν should be interpreted in the continuum.

For the statement of Theorem 3.1 below, recall that ȷ̂1, . . . , ȷ̂p are defined by |ω̂ȷ̂p | ≥
. . . ≥ |ω̂ȷ̂p |. Given constants c1 and c2 satisfying 0 < c1 < c2 < ∞, let J1 and J2 be the

respective subsets of {1, . . . , p} for which |ωj| ≤ c1 n
−1/2 λn and |ωj| ≥ c2 n

−1/2 λn. Note

particularly that (3.4) does not require the components Xij of Xi to be independent or

uncorrelated.

Theorem 3.1. If (3.1)–(3.5) hold then, with probability converging to 1 as n → ∞, all

the indices from J2 are listed in the sequence ȷ̂1, . . . , ȷ̂p before any of the indices from J1.

The implications of the theorem are perhaps most readily seen by considering a case

where the indices 1, . . . , p can be divided into m + 2 distinct classes I0, I1, . . . , Im+1,

corresponding to increasingly large values of |ωj|. Here m is fixed. In this setting the

theorem implies, among other properties, that for each pair (k1, k2) satisfying 0 ≤ k1 <

k2 ≤ m + 1, with probability converging to 1 as n → ∞ all the indices from Ik2 are

listed in the sequence ȷ̂1, . . . , ȷ̂p ahead of all those from Ik1 ; and moreover that, if the

corresponding values of |ωj| are at least as large as n−b for some b < 1
2
, the sizes of these

classes can be exponentially large before the claimed result breaks down. The latter issue

is important, since, without imposing severe conditions on the tails of the distributions

of the data, only polynomially large p is permitted if feature ranking using conventional

correlation is employed. This point will be discussed in more detail in Theorems 3.3
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and 3.4 of section 3.3, where we shall show, respectively, that only polynomially large p is

permissible if feature ranking is based on conventional correlation, but that exponentially

large p is possible if variable transformation methods are employed.

To be more specific about the classes I0, I1, . . . , Im+1 of indices, define these sets by

asking that j ∈ Im+1 if and only if |ωj| > c, where c > 0 is fixed; that j ∈ Ik (for

1 ≤ k ≤ m) if and only if |ωj| ∈ [ck1 n
−bk , ck2 n

−bk ], where 0 < ck1 < ck2 < ∞ and

1
2
> b1 > . . . > bm > 0; and that j ∈ I0 if and only if ωj = 0. Theorem 3.1 implies

that if p = O{exp(C n1−2b1)} then, with probability converging to 1, all the indices from

Jk+1 are listed in the sequence ȷ̂1, . . . , ȷ̂p before any of the indices from Jk, and that this

result holds for 0 ≤ k ≤ m. More general properties, in the case where m = m(n) is

permitted to diverge with n, can be derived using result (5.1) in section 5.

3.2 Performance of the transformation method based on mean

differences

Analogous results hold for the feature ranking methods defined at (2.8) and (2.11). To

give details of those properties we recall that in the cases represented by (2.8) and (2.11),

the data are in the form of independent p-vectors Xi1 = (Xi11, . . . , Xi1p)

and Yi2 = (Yi21, . . . , Yi2p) coming from two populations, where 1 ≤ ik ≤ nk

and nk denotes the size of the sample from population k.

(3.6)

Condition (3.1) on Ψ is unchanged; (3.2) is replaced by the assumption that:

var {Ψ(X1j)} and var {Ψ(Y1j)} are uniformly bounded away from zero, if

we are ranking features as at (2.8); var {Ψ(Y1j − X1j)} is bounded away

from zero, if we are ranking according to (2.11); (3.7)

and (3.5) is unchanged. The following theorem describes properties of the ranking

method. Its proof is almost identical to that of Theorem 3.1, hence we omit it.

Theorem 3.2. Under (3.1) and (3.5)–(3.7), with probability converging to 1 as n → ∞,

all the indices from J2 are listed in the sequence ȷ̂1, . . . , ȷ̂p, defined by (2.11), before any

of the indices from J1, where J1 and J2 are defined in section 3.1.
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3.3 Failure of feature ranking based on untransformed data

Next we show that feature ranking based on untransformed data is not effective when

feature distributions can produce random variables taking relatively large values. For

brevity, and because it is technically more difficult owing to the random denominator,

we treat only the case of correlation, but similar results hold for the case of mean

differences. Since our result is negative, and establishing it in generality would not

confer significantly greater authority, we make simplifying assumptions that lead to

a short, transparent proof. The problems that we describe here are present even more

forcefully if we replace the independence and identical distribution assumption, of (3.10)

below, by one where non-stationarity and correlation are present between components,

since this reduces effective sample size.

In particular, we suppose we observe independent and identically distributed data

vectors (Xi, Yi), for 1 ≤ i ≤ n, generated by a linear model,

Yi = α+

p∑
j=1

βj Xij + ϵi , (3.8)

where α, β1, . . . , βp are scalar parameters, the experimental errors ϵi are identically dis-

tributed, and the ϵis are independent of the Xijs. For simplicity we take the error ϵi in

(3.8) to be identically zero. If feature selection methods based on conventional correla-

tion are ineffective in this case then they will not perform well when error is present.

Also for simplicity we assume that the intercept term in the model equals zero, and there

are just two nonzero coefficients βj, these being β1 = 1 and β2 = n−b, where 0 < b < 1
2
.

Therefore the model at (3.8) reduces to:

Yi = Xi1 + n−bXi2 . (3.9)

We take sample size, n, to be the index of our asymptotic theory, and interpret dimen-

sion, p, as a function of n.

We assume that the design variables Xij involve occasional outliers of size na, dis-

tributed as follows:

First simulate independent and identically distributed random variables

Qij, where the common, nondegenerate distribution is compactly sup-

ported, has zero mean and does not depend on i, j or n; and then, for each

j, choose a value of i randomly (independently of the Qijs) and uniformly

between 1 and n, and replace Qij by na.

(3.10)
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If we were to assume that the distribution of the Xijs was regularly varying at infinity

with exponent a−1, for example Student’s t distribution with a− 1 degrees of freedom,

then for each fixed k the k largest values of X1j, . . . , Xnj would be of size na as n → ∞.

Since k here can be arbitrarily large, the problems experienced by feature ranking meth-

ods would be more serious than those that we shall describe in Theorem 3.3 below. On

the other hand, if rather than assume that an outlier is present in each design sequence

Xj, we were to suppose that it is present with probability πn where πn → 0 at rate n−c,

say, as n → ∞, then the problems caused by outliers would be less conspicuous, but

variable selection by feature ranking would still fail if p was of larger order than n1+c.

Under the model described by (3.10) the variance of eachXij equals (1−n−1) {var (Q)+

n2a−1}, and to prevent this quantity diverging to infinity we assume, in Theorem 3.3 be-

low, that a < 1
2
. On the other hand, taking a too small means that the outliers na

have relatively little input, and so, since Theorem 3.3 seeks to identify cases where the

outliers cause problems, we also place a lower bound on a in the theorem.

Recall that feature ranking by correlation orders the indices 1, . . . , p as ȷ̂1, . . . , ȷ̂p,

where |ρ̂ȷ̂p | ≥ . . . ≥ |ρ̂ȷ̂p |. Now, under the linear model at (3.8), if the vector compo-

nents Xi1, . . . , Xip are independent, then we have ρj = βj (σ
2
Xj)

1/2/(σ2
Y )

1/2. Moreover, if

Xi1, . . . , Xip are also independent of the errors ϵi and

βj = 0 for j > q, βj ̸= 0 for 1 ≤ j ≤ q (3.11)

then

ωj = 0 if j > q, and is nonzero for 1 ≤ j ≤ q. (3.12)

A proof is given in section 5.4. Hence, the actual correlations are ρ1 = (1 + n−2b)−1/2,

ρ2 = n−b (1 + n−2b)−1/2 and ρj = 0, for j ≥ 3, and an ideal ranking of features in

terms of the estimated correlations ρ̂j should at least preserve the order of the first two

components among the ρjs. That is, it should have ȷ̂1 = 1 and ȷ̂2 = 2 with probability

converging to 1 as n → ∞. Theorem 3.3, below, shows that if p is of sufficiently larger

order than n then this property fails in respect of the second component, although it

holds for the first.

Theorem 3.3. Assume model (3.9) for the response variables Yi, and model (3.10) for

the design sequence Xi, where
1
4
< a < 1

2
and 1−2a < b < 2 (1−2a) in (3.9) and (3.10);

and that, as n → ∞, p/n → ∞ and p = O{exp(C n4a−1)}, for a constant C > 0
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depending on the distribution of Q in (3.10). Then P (ȷ̂1 = 1) → 1 and P (ȷ̂2 = 2) → 0

as n → ∞.

This proves that standard correlation learning is rather ineffective in the case of

heavy-tailed distributions. In contrast, we have already proved in Theorem 3.1 that

correlation learning based on variable transformation performs particularly well. To

simplify comparison with the negative result of Theorem 3.3, in the next theorem we

give a more detailed, positive, result for transformation-based correlation learning under

the simple model treated in Theorem 3.3. In particular, we show that P (ȷ̂1 = 1) and

P (ȷ̂2 = 2) both converge to 1 as n → ∞, when we define ȷ̂1, . . . , ȷ̂p by |ω̂ȷ̂p | ≥ . . . ≥ |ω̂ȷ̂p |,
where ω̂j = ζ̂j/(τ̂Xj τ̂Y ) and the quantities on the right-hand side of this equation are

given by (2.4).

Theorem 3.4. Assume the conditions of Theorem 3.3, except that the upper bound

on p there is replaced by p = O{exp(C n1−2b)}, where again C > 0 depends on the

distribution of Q. Suppose too that the function Ψ used to transform the data is bounded

and strictly monotone increasing, and has two bounded derivatives. Then both P (ȷ̂1 = 1)

and P (ȷ̂2 = 2) converge to 1 as n → ∞.

It is readily seen that Theorems 3.3 and 3.4 have a non-null intersection. That is, in the

context of the models described by (3.9) and (3.10), the transformation approach leads

to correct rankings in cases where relatively conventional methods produce incorrect

results.

4 Real-data illustrations

The simulation results reported in section 2 illustrate the theoretical properties of sec-

tion 3 on simple examples, but simulations in more complex settings can be found in

Delaigle and Hall (2011). In this section we show for some real-data examples that our

theoretical results in section 3 translate into significant improved ranking by using the

transformation approach. To apply the transformation procedure we need to choose the

function Ψ. In section 3.1 we gave intuitive arguments suggesting that Ψ could be taken

to be the standard normal distribution. Of course, for these intuitive arguments to be

valid we need to rescale the data in some way before applying the transformation Ψ,

as we need the non-aberrant data values to be located roughly between −2 and 2. Our
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theory is also valid when we do this; see remark 3 in section 3.1. We do not rescale the

data in the same way for the methods based correlation and mean differences, so below

we give details for these approaches separately.

For the correlation-based method we take Uij = Ψ{(Xij −mj)/sj} and Zi = Ψ{(Yi−
m)/s}, where mj and sj are, respectively, the sample median and standardised in-

terquartile range of Xij, and m and s are defined in the same way for Yi. Note that,

since correlation is invariant under changes of scale and location, and heavy-tailedness

properties are also unaffected by such changes, the theoretical results in section 3.1 are

unchanged if we replace Xij and Yi there by, respectively, (Xij − aj)/bj and (Yi − a)/b,

where a, b, aj and bj are bounded nonzero constants. See remark 3 in section 3.1 for the

case of empirical location and scale.

For the mean-based method founded on (2.8) in section 2.3 we take Uij = Ψ{(Xij −
mj)/sj} and Vij = Ψ{(Yij −mj)/sj}, where mj is the minimum of the sample medians

of Xij and Yij, and sj is the standardised interquartile range of the pooled sample of

Xij and Yij (with j fixed). Note that we cannot center the components Xij and Yij to

their respective medians, since our goal is precisely to detect differences in location. In

this case, too, rescaling the data can be accommodated by our theory; see remark 3 in

section 3.1.

4.1 Cardiomyopathy microarray data

Our first application concerns the ranking of genes according to their influence on over-

expression of a G-protein-coupled receptor (Ro1) in mice. See Segal et al. (2003) and

Hall and Miller (2009) for a more detailed description of the data. Here, Yi is the mea-

surement of Ro1 on the ith mouse, and (Xi1, . . . , Xip) are the expression levels of p genes

for the ith mouse. The sample size was n = 30, and p = 6319 genes were observed. We

ranked the genes using both the untransformed correlations ρ̂j and the transformed cor-

relations ω̂j. Out of the 50 genes ranked highest by the transformed correlation method,

40 were not ranked in the top 50 by the untransformed correlation approach. In Figure

1 we show scatterplots of the (Xij, Yi)s and of the (Uij, Zi)s for the first 16 of these

40 genes. Above each scatterplot we indicate the rank assigned by the untransformed

correlation method for each gene in the left panel, and the rank assigned when we used

the transformation based approach in the right panel. In each scatterplot we also show
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rank=56 rank=126 rank=52 rank=412

rank=346 rank=134 rank=192 rank=94

rank=407 rank=620 rank=414 rank=59

rank=112 rank=541 rank=1143 rank=55

rank=7 rank=9 rank=10 rank=11

rank=12 rank=14 rank=15 rank=16

rank=17 rank=18 rank=19 rank=20

rank=21 rank=22 rank=23 rank=24

Figure 1: Ro131 study: scatterplots of the first 16 genes selected by the variable trans-

formation approach, which were not ranked among the top 50 by the untransformed

correlation method. Left group of 16: scatterplots of the (Xij, Yi)s for those 16 genes;

right group of 16: scatterplots of the (Uij, Zi)s, where Uij = Ψ(Xij) and Zi = Ψ(Yi).

The oblique lines are the least squares lines.

the least squares regression line.

For a number of the 16 genes the least squares lines, and thus the empirical correla-

tions, for the untransformed data appear to be too highly influenced by outliers. As a

result, some of the genes were ranked by the untransformed correlation approach much

lower than they arguably should have been. This is particularly striking for the genes

ranked 346, 192, 407, 620 and 1143 by untransformed correlation, which were ranked

12, 15, 17, 18 and 23 after transforming the data. For other genes, such as the genes

originally ranked 55 and 126, transforming the variables did not seem particularly useful.

As we noted in section 2.3, transforming the data does not necessarily improve the rank

of each gene, but it manages to identify influential genes that were wrongly disqualified

because of outliers.

4.2 Affymetrix spike-in data

We used the transformed mean ranking approach to the Affymetrix spike-in data de-

scribed by Cope et al. (2004). This dataset contains two groups with n = 12 observa-

tions in each group, and p = 12626 genes. It is available from http://strimmerlab.
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Figure 2: Scatterplot of gene 1597 at for the Affymetrix data.

org/data.html. In Cope et al. (2004), a comparison with benchmark data permitted

the identification of 16 genes believed to be differentially expressed (that is, for which

the mean differences between the two groups were significantly different from zero). We

applied the method in section 2.3 to these data, and found that we needed to keep the

47 highest values of |V̄j − Ūj| in order to select these 16 known genes. By compari-

son, the method based on Student’s t scores needed to keep 155 components, and the

method based on the untransformed means |Ȳj − X̄j| had to keep 100. We also tried

the shrinkage method of Opgen-Rhein et al. (2007), and had to keep 54 components in

order to include all 16 identified genes. The method of Efron et al. (2001) needed 61

components, and the other methods needed even more. The better performance of the

transformation based procedure comes from the fact that many components have one or

more outliers. For example, the scatterplot of the observations of gene 1597 at in Figure

2 shows that the data on gene 1597 at (which, of the 16 genes, was the most difficult to

pick up for most methods) contain an outlier, and this is precisely the setting in which

our method can bring considerable improvements. Note that our method did not rank

all the 16 known genes higher than the other methods, but managed to pick them all

more efficiently, by keeping fewer components.

5 Technical arguments

5.1 Proof of Theorem 3.1

It follows from Bernstein’s inequality that, if W,W1, . . . ,Wn are independent random

variables for which P (|W | ≤ C1) = 1, E(W ) = 0 and E(W 2) = 1, and if we define

S = n−1/2
∑

i Wi, then for each C2 > 0 there exists C3 > 0, depending only on C1 and

C2, such that P (|S| > x) ≤ 2 exp(−C3 x
2) for all x ∈ (0, C2 n

1/2]. Applying this result

19



to W = {W ′−E(W ′)}/(varW ′)1/2, where W ′ equals Uij, U
2
ij, Zi, Z

2
i or Uij Zi, it can be

deduced that

P
(
n1/2 |ω̂j − ωj| > x

)
≤ 2 exp

(
− C4 x

2
)
,

for all x ∈ (0, C2 n
1/2], where C4 > 0 depends only on sup |Ψ| and C2. Therefore, if

p = O{exp(C5 λ
2
n)} for C5 > 0 sufficiently small, then, for all C6 > 0,

P
(
max
1≤j≤p

|ω̂j − ωj| > n−1/2 C6 λn

)
→ 0 . (5.1)

Result (5.1) implies Theorem 3.1.

5.2 Proof of Theorem 3.3

Under the model at (3.9) the correlation estimator ρ̂j, defined below (2.1), is given by

ρ̂j =
(
âj1 + n−b âj2

) (̂
bj b̂Y

)−1
(5.2)

for 1 ≤ j ≤ p, where b̂Y = {n−1
∑

i (Yi − Ȳ )2}1/2,

âjk =
1

n

n∑
i=1

Xij ŵik , b̂j =

{
1

n

n∑
i=1

(Xij − X̄j)
2

}1/2

, ŵik = Xik − X̄k .

Let Ejk denote the event that the values of na are in the same position in the sequences

Xj and Xk, and write Ẽjk for the complement of Ejk. For each C1 > 1 there exists C2 > 0

such that for all j ̸= k and all d ∈ (0, 1
2
),

P
(∣∣n1/2 âjk

∣∣ > C1 n
d
∣∣ Ẽjk) = O

{
exp

(
− C2 n

2d
)}

, (5.3)

while if 1
4
< a < 1

2
then for each C1 > 0 there exists C2 > 0 such that, for j ̸= k and all

d ∈ (0, 2a− 1
2
],

P
(∣∣n1/2 âjk − n2a−(1/2)

∣∣ > C1 n
d
∣∣ Ejk) = O

{
exp

(
− C2 n

2d
)}

. (5.4)

(If j ̸= k then the left-hand sides of (5.3) and (5.4) do not depend on j and k. Each of

(5.3)–(5.5) is proved using Bernstein’s inequality.)

Note too that âjj = b̂2j , and that we may assume without loss of generality that the

common distribution of the variables Xij that do not equal na has unit variance. Then,

if C1 > 1, there exists C2 > 0 such that, for all j and d = 2a− 1
2
,

P
(
n1/2

∣∣̂bj − 1
∣∣ > C1 n

d
)
= O

{
exp

(
− C2 n

2d
)}

. (5.5)
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(The left-hand side of (5.5) does not depend on j.) Furthermore,

P (Ejk) = n−1 . (5.6)

Note too that, by (5.2),

b̂Y ρ̂1 = b̂1 + n−b â12 b̂
−1
1 , b̂Y ρ̂2 = â12 b̂

−1
2 + n−b b̂2 , b̂Y ρ̂j =

(
âj1 + n−b âj2

)
b̂−1
j , (5.7)

where the last equation will be used for j ≥ 3.

Using (5.3), (5.4) and (5.5), each with d = 2a − 1
2
, it can be deduced that âjk =

Op(n
−(1/2)+2a−(1/2)) = Op(n

−(1−2a)) and b̂j = 1 + Op(n
−(1−2a)), uniformly in 1 ≤ j ≤ p

and in k = 1, 2. (The choice d = 2a − 1
2
is responsible for the exponent 2d = 4a − 1 in

the formula p = O{exp(C n4a−1)} in the statement of Theorem 4.1.) Hence, using (5.7),

we obtain b̂Y ρ̂1 = 1+Op(n
−(1−2a)), b̂Y ρ̂2 = Op(n

−(1−2a)+n−b) and b̂Y ρ̂j = Op(n
−(1−2a))

uniformly in 3 ≤ j ≤ p. Therefore the following property holds:

P
[
|ρ̂1| > max{|ρ̂2|, . . . , |ρ̂p|}

]
→ 1 . (5.8)

The same arguments show that

b̂Y ρ̂j = âj1 + op
(
n−b

)
uniformly in 3 ≤ j ≤ p , (5.9)

and that

b̂Y ρ̂2 = â12 b̂
−1
2 + n−b b̂2 = n−(1−2a) I(E12) +Op

(
n−2(1−2a)

)
+ n−b +Op

(
n−b−(1−2a)

)
= n−(1−2a) I(E12) + n−b {1 + op(1)} = n−b {1 + op(1)} ,

where the second last identity follows from the fact that, by assumption, b < 2(1− 2a),

and the last identity since P (E12) = n−1 → 0. Therefore the following property holds:

b̂Y ρ̂2 = n−b {1 + op(1)} . (5.10)

Results (5.3) and (5.4) imply that, for a constant C3 > 0,

P
(∣∣n1/2 âjk − n2a−(1/2) I(Ejk)

∣∣ > C1

)
= O

{
exp

(
− C3 n

2d
)}

.

This result, and the fact that n−1/2 = o(n2a−1) (by assumption, a > 1
4
), imply that if

d = 2a− 1
2
and

p = o
{
exp

(
C n2d

)}
, (5.11)
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where the constant C here and in the statement of the theorem satisfies C < C3, then

âj1 = n2a−1 I(Ej1) + op
(
n2a−1

)
uniformly in 3 ≤ j ≤ p . (5.12)

Conditional on the dataset X1 = {X11, . . . , Xn1}, the events Ej1, for 3 ≤ j ≤ p, are

independent and satisfy P (Ej1 | X1) = n−1. Therefore if p/n → ∞ then P (E31 ∪ . . . ∪
Ep1) → 1. Combining this property with (5.12) we deduce that if (5.11) holds then for

each ϵ > 0,

P
{
âj1 > (1− ϵ)n2a−1 for at least one j in the range 3 ≤ j ≤ p

}
→ 1 . (5.13)

Property (5.8) implies that P (ȷ̂1 = 1) → 1. Properties (5.9) and (5.13), and the

inequality 1− 2a < b assumed in Theorem 3.3, imply that for each ϵ > 0,

P
{
b̂Y ρ̂j > (1− ϵ)n2a−1 for at least one j in the range 3 ≤ j ≤ p

}
→ 1 ,

which, together with (5.10) and the property 1− 2a < b, implies that P (ȷ̂2 = 2) → 0.

5.3 Proof of Theorem 3.4

Put Uij = Ψ(Xij) and Zi = Ψ(Yi) where Yi is as at (3.9), and define

ãj =
1

n

n∑
i=1

Zi w̃ij , b̃j =

{
1

n

n∑
i=1

(Uij − Ūj)
2

}1/2

, w̃ij = Uij − Ūj , (5.14)

b̃Z = {n−1
∑

i (Zi−Z̄)2}1/2 and ω̂j = ãj/(b̃j b̃Z). Without loss of generality, the common

distribution of the variables Ψ(Xij) when Xij does not equal n
a has unit variance. (This

property is achievable by simple rescaling of Ψ, since Ψ is strictly monotone and, by

(3.10), Xij given that Xij ̸= na has nonzero variance.) Result (5.15) below replaces both

(5.3) and (5.4) in the present setting, and (5.16) replaces (5.5). Both are derived using

Bernstein’s inequality, treating separately the instance where Xij = na (for each j, this

is true for exactly one i) and the contrary case. For each C1 > 1 there exists C2 > 0

such that, for all d ∈ (0, 1
2
),

sup
1≤j≤p

P
{∣∣n1/2 (1− E) ãj

∣∣ > C1 n
d
}
= O

{
exp

(
− C2 n

2d
)}

, (5.15)

sup
1≤j≤p

P
(
n1/2

∣∣b̃j − 1
∣∣ > C1 n

d
)
= O

{
exp

(
− C2 n

2d
)}

. (5.16)
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For a given value of i let Ej denote the event that j is an index for which Xij ̸= na.

Then if E1 ∩ E2 holds,∣∣∣Ψ(Yi)−
{
Ψ(Xi1) + n−bXi2Ψ

′(Xi1)
}∣∣∣ ≤ C n−2b , (5.17)

where C denotes a constant. (Here we have used the assumption that Ψ is twice differ-

entiable.) Therefore,

cov{Ψ(Yi),Ψ(Xij) | E1 ∩ E2 ∩ Ej}

= n−b cov
{
Xi2,Ψ(Xij)

∣∣∣ E1 ∩ E2 ∩ Ej
}
E
{
Ψ′(Xi1)

∣∣∣ E1 ∩ E2 ∩ Ej
}
+O

(
n−2b

)
, (5.18)

uniformly in i and j ≥ 2.

If j = 2 then, since Ψ is strictly monotone increasing, cov{Xi2,Ψ(Xij) | E1 ∩ E2} > 0

and E{Ψ′(Xi1) | E1 ∩ Ej} > 0, and so

γ ≡ cov{Xi2,Ψ(Xi2) | E1 ∩ E2}E{Ψ′(Xi1) | E1} > 0 .

It follows from (5.17) that

cov{Ψ(Yi), Ui1 | E1 ∩ E2} = var (Ui1 | E1) +O
(
n−b

)
. (5.19)

In view of (5.18),

cov{Ψ(Yi), Ui2 | E1 ∩ E2} = n−b γ +O
(
n−2b

)
, (5.20)

and, more simply,

cov{Ψ(Yi), Uij} = 0 for 3 ≤ j ≤ p . (5.21)

Results (5.15) and (5.19), and the fact that (by assumption) var {Ψ(Xij)} = 1 when

Xij ̸= na (i.e. Xij = Qij, as in (3.10)), imply that for each C1 > 0 there exists C2 > 0

such that

P
{
|ã1 − 1| > C1

(
nd−(1/2) + n−b

)}
= O

{
exp

(
− C2 n

2d
)}

(5.22)

whenever d ∈ (0, 1
2
).

By (5.15), (5.20) and (5.21), for each d ∈ (0, 1
2
) and each C1 > 0 we can choose

C2 > 0 such that

P
{∣∣ã2 − n−b γ

∣∣ > C1

(
nd−(1/2) + n−b

)}
= O

{
exp

(
− C2 n

2d
)}

, (5.23)

sup
3≤j≤p

P
{
|ãj| > C1

(
nd−(1/2) + n−b

)}
= O

{
exp

(
− C2 n

2d
)}

. (5.24)
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In progressing from (5.19)–(5.21) to (5.22)–(5.24) we used the fact that, for each j,

there is just one i in the sequence i = 1, . . . , n for which Xij = na, and that, by the

definition of ãj at (5.14), and since P (|Zi w̃ij| ≤ 2 supΨ2) = 1, this i (which is randomly

chosen without regard for the values of Xij that do not equal na) contributes no more

than 2n−1 supΨ2 to the value of ãj. That contribution is of strictly smaller order than

n−b in (5.22) and (5.24).

Combining (5.16) and (5.22)–(5.24) we deduce that, taking d = 1
2
− b and assuming

that p = O{exp(C n1−2b)} for C > 0 sufficiently small, we have, as n → ∞, b̃Z ω̂1 =

1 + op(1), b̃Z ω̂2 = n−b γ + op(n
−b) where γ > 0, and b̃Z ω̂j = op(n

−b) uniformly in

3 ≤ j ≤ p. These three properties imply that P (ȷ̂1 = 1) and P (ȷ̂2 = 2) converge to 1 as

n → ∞, as claimed in the theorem.

5.4 Proof that (3.8) and (3.11) imply (3.12)

Note that under (3.8) and (3.11) and the independence assumption above (3.11), we

have, trivially, ρj = 0 if j > q, and is nonzero for 1 ≤ j ≤ q. This result will be

useful in the proofs. To prove (3.12), it suffices to show that if Ψ is uniformly bounded

then the covariance between Ψ(Yi) and Ψ(Xij) vanishes when βj = 0, and if in ad-

dition Ψ is strictly monotone then the covariance is nonzero when βj ̸= 0. The first

of these results is trivial since, under (3.8) and the independence assumption, ρl = 0,

Ψ(Yi) and Ψ(Xij) are independent if βj = 0. To derive the second result it suffices to

show that if random variables V1 and V2 are independent, if V1 is essentially bounded

and nondegenerate, and if functions Ψ1 and Ψ2 are strictly monotone increasing and

bounded, then γ ≡ cov[Ψ1{Ψ2(V1) + V2}, V1] > 0. The function Ψ3 = Ψ2( · + EV1) is

monotone if Ψ2 is, and in this notation γ = cov[Ψ1{Ψ3(V1 − EV1) + V2}, V1 − EV1],

so without loss of generality E(V1) = 0, in which case, since V1 and V2 are indepen-

dent, γ = E[Ψ1{Ψ2(V1)+V2}V1] = E(E[Ψ1{Ψ2(V1)+V2}V1 |V2]) = E(cov[Ψ1{Ψ2(V1)+

V2}, V1 |V2]) = E{Ψ4(V2)}, where Ψ4(v) = E(cov[Ψ1{Ψ2(V1) + V2}, V1 |V2 = v]). That

is, γ = E{Ψ4(V2)}. Therefore it suffices to consider the case where V2 is identically

constant. In this case we can absorb V2 into the definition of Ψ1, and so it is suf-

ficient to take V2 = 0. Therefore we must show that when Ψ1 and Ψ2 are strictly

monotone increasing and Ψ1 is bounded, cov[Ψ1{Ψ2(V1)}, V1] > 0, or equivalently, if

Ψ3 is strictly monotone increasing and bounded (and V1 is essentially bounded and
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not degenerate) then γ1 ≡ cov{Ψ3(V1), V1} > 0. To appreciate that this inequality

holds, let V be a random variable distributed as V1 and independent of V1. Note that

{Ψ3(V1) − Ψ3(V )} (V1 − V ) ≥ 0 and is strictly positive whenever V1 ̸= V . Therefore,

E[{Ψ3(V1) − Ψ3(V )} (V1 − V )] > 0. Since E(V1) = E(V ) = 0 then the left-hand side

here equals 2 cov{Ψ3(V1), V1}.
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