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1 Introduction

Donoho and Jin (2004) developed higher-criticism methods for hypothesis testing

and signal detection. Their methods are founded on the assumption that the test

statistics are independent and, under the null hypothesis, have a known normal

distribution. However, in some applications of higher criticism, for example to

more elaborate hypothesis testing problems and to classification, these assumptions

may not be tenable. For example, we may have to estimate the distributions from

data, by pooling information from components that have “neighbouring” indices,

and the assumption of independence may be violated.

Taken together, these difficulties place obstacles in the way of using higher-

criticism methods for a variety of applications, even though those techniques have

potential performance advantages. We describe the effects that distribution approx-

imation and data dependence can have on results, and suggest ways of alleviating

problems caused by distribution approximation. We show too that thresholding,

where only deviations above a particular value are considered, can produce distinct

performance gains. Thresholding permits the experimenter to exploit the greater

relative accuracy of distribution approximations in the tails of a distribution, com-

pared with accuracy towards the distribution’s centre, and thereby to reduce the

tendency of approximation errors to accumulate. Our theoretical arguments take

sample size to be fixed and the number of dimensions, p, to be arbitrarily large.

Thresholding makes it possible to use rather crude distribution approximations.

In particular, it permits the approximations to be based on relatively small sample

sizes, either through pooling data from a small number of nearby indices, or by using

normal approximations based on averages of relatively small datasets. Without

thresholding, the distribution approximations used to construct higher-criticism

signal detectors and classifiers would have to be virtually root-p consistent.

We shall provide theoretical underpinning for these ideas, and explore them

numerically; and we shall demonstrate that higher criticism can accommodate sig-

nificant amounts of local dependence, without being seriously impaired. We shall

further show that, under quite general conditions, the higher-criticism statistic can
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be decomposed into two parts, of which one is stochastic and of smaller order than

pε for any positive ε, and the other is purely deterministic and admits a simple,

explicit formula. This simplicity enables the effectiveness of higher criticism to be

explored quite generally, for distributions where the distribution tails are heavy,

and also for distributions that have relatively light tails, perhaps through being

convolutions of heavy-tailed distributions. These comments apply to applications

to both signal detection and classification.

In the contexts of independence and signal detection, Donoho and Jin (2004)

used an approach alternative to that discussed above. They employed delicate,

empirical-process methods to develop a careful approximation, on the
√

log log p

scale, to the null distribution of the higher-criticism statistic. It is unclear from

their work whether the delicacy of the log-log approximation is essential, or whether

significant latitude is available for computing critical points. We shall show that

quite crude bounds can in fact be used, in both the dependent and independent

cases. Indeed, any critical point on a scale that is of smaller order than pε, for each

ε > 0, is appropriate.

Higher-criticism methods for signal detection have their roots in unpublished

work of Tukey; see Donoho and Jin (2004) for discussion. Optimal, but more

tightly specialised, methods for signal detection were developed by Ingster (1999,

2001, 2002) and Ingster and Suslina (2003), broadly in the context of techniques for

multiple comparison (see e.g. the methods of Bonferroni, Tukey (1953) and Scheffé

(1959)), for simultaneous hypothesis testing (e.g. Efron (2004) and Lehmann et

al. (2005)) and for moderating false-discovery rates (e.g. Benjamini and Hochberg

(1995), Storey et al. (2005) and Abramovich et al. (2006)). Model-based approaches

to the analysis of high-dimensional microarray data include those of Tseng et

al. (2001), Huang et al. (2003), Fan et al. (2005b) and Fan and Fan (2007). Re-

lated work on higher criticism includes that of Meinshausen and Rice (2006) and

Cai, Jin and Low (2007). Higher-criticism classification has been discussed by

Hall et al. (2008), although this work assumed that test statistic distributions are

known exactly. Applications of higher criticism to signal detection in astronomy

include those of Jin et al. (2004), Cayón et al. (2005, 2006), Cruz et al. (2007)
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and Jin (2006). Hall and Jin (2006) discussed properties of higher criticism under

long-range dependence.

Our main theoretical results are as follows. Theorem 3.1, in section 3.1, gives

conditions under which the higher-criticism statistic, based on a general approxi-

mation to the unknown test distributions, can be expressed in terms of its “ideal”

form where the distributions are known, plus a negligible remainder. This result

requires no assumptions about independence. Theorem 3.2, in section 3.2, gives

conditions on the strength of dependence under which the higher-criticism statistic

can be expressed as a purely deterministic quantity plus a negligible remainder.

Theorem 3.3, in section 3.3, describes properties of the deterministic “main term”

in the previous result. Discussion in sections 3.3 and 4 draws these three results

together, and shows that they lead to a variety of properties of signal detectors and

classifiers based on higher criticism. These properties are explored numerically in

section 5.

2 Methodology

2.1 Higher-criticism signal detection

Assume we observe independent random variables Z1, . . . , Zp, where each Zj is

normally distributed with mean µj and unit variance. We wish to test, or at least

to assess the validity of, the null hypothesis H0 that each µj equals νj , a known

quantity, versus the alternative hypothesis that one or more of the µj are different

from νj . If each νj equals zero then this context models signal detection problems

where the null hypothesis states that the signal is comprised entirely of white noise,

and the alternative hypothesis indicates that a nondegenerate signal is present.

A higher-criticism approach to signal detection and hypothesis testing, a two-

sided version of a suggestion by Donoho and Jin (2004), can be based on the statistic

hc = inf
u :ψ(u)>C

ψ(u)−1/2

p∑
j=1

{I(|Zj − νj | ≤ u)−Ψ(u)} , (2.1)

where Ψ(u) = 2 Φ(u) − 1 is the distribution function of |Zj − νj | under H0, Φ is

the standard normal distribution function, ψ(u) = pΨ(u) {1 − Ψ(u)} equals the

variance of
∑
j {I(|Zj − νj | ≤ u)−Ψ(u)} under H0, and C is a positive constant.
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The statistic at (2.1) provides a way of assessing the statistical significance of

p tests of significance. In particular, H0 is rejected if hc takes too large a negative

value. This test enjoys optimality properties, in that it is able to detect the presence

of nonzero values of µj up to levels of sparsity and amplitude that are so high and

so low, respectively, that no test can distinguish between the null and alternative

hypotheses (Donoho and Jin, 2004).

2.2 Generalising and adapting to an unknown null distribution

When employed in the context of hypothesis testing (where the νjs are not necessar-

ily equal to zero), higher-criticism could be used in more general settings, where the

centered Zjs are not identically distributed. Further, instead of assuming that the

νjs are prespecified, they could be taken equal to the jth component of the empirical

mean of a set of nW identically distributed random p-vectors W1, . . . ,WnW , where

Wi = (Wi1, . . . ,Wip) has the distribution of (Z1, . . . , Zp) under the null hypothesis

H0. Here, H0 asserts the equality of the mean components of the vector Z, and of

the vectors W1, . . . ,WnW , whose distribution is known except for the mean which

is estimated by its empirical counterpart. There, we could redefine hc by replacing,

in (2.1), νj by W̄.j = n−1
W

∑
j Wij and Ψ by the distribution ΨWj , say, of |Zj−W̄.j |

under the null hypothesis. This gives, in place of hc at (2.1),

hcW = inf
u∈UW

ψW (u)−1/2

p∑
j=1

{I(|Zj − W̄.j | ≤ u)−ΨWj(u)} , (2.2)

where

ψW (u) =
p∑
j=1

ΨWj(u) {1−ΨWj(u)} (2.3)

and, given C, t > 0, UW = UW (C, t) is the set of u for which u ≥ t and ψW (u) ≥
C. Here t denotes a threshold, and the fact that, in the definition of UW , we

confine attention to u > t, means that we restrict ourselves to values of u for which

distribution approximations are relatively accurate; see section 4.2 for details.

Further, in practical applications it is often unrealistic to argue that Ψ (re-

spectively, ΨWj), is known exactly, and we should replace Ψ in (2.1) and in ψ

(respectively, ΨWj in (2.2) and in ψW ) by an estimator Ψ̂ of Ψ (respectively, Ψ̂Wj
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of ΨWj). This leads to an empirical approximation, ĥc = ĥc(C, t), to hc:

ĥc = inf
u∈Û

ψ̂(u)−1/2

p∑
j=1

{
I(|Zj − νj | ≤ u)− Ψ̂(u)

}
,

where ψ̂(u) = p Ψ̂(u) {1− Ψ̂(u)} and Û = Û(C, t) is the set of u for which u ≥ t and

ψ̂(u) ≥ C, and to an empirical approximation ĥcW = ĥcW (C, t), to hcW :

ĥcW = inf
u∈ÛW

ψ̂W (u)−1/2

p∑
j=1

{
I(|Zj − W̄.j | ≤ u)− Ψ̂Wj(u)

}
, (2.4)

where

ψ̂W (u) =
p∑
j=1

Ψ̂Wj(u)
{

1− Ψ̂Wj(u)
}

(2.5)

and ÛW = ÛW (C, t) is the set of u for which u ≥ t and ψ̂W (u) ≥ C. Here t denotes

a threshold, and the fact that, in the definition of UW , we confine attention to u > t,

means that we restrict ourselves to values of u for which distribution approximations

are relatively accurate; see section 4.2 for details.

Estimators of ΨWj are, broadly speaking, of two types: either they depend

strongly on the data, or they depend on the data only through the way these have

been collected, for instance through sample size. In the first case, Ψ̂Wj might,

for example, be computed directly from the data, for example by pooling vector

components for nearby values of the index j. (In genomic examples, “nearby” does

not necessarily mean close in terms of position on the chromosome; it is often more

effectively defined in other ways, for example in the sense of gene pathways.)

Examples of the second type come from an important class of problems where

the variables Wij are obtained by averaging other data. For example, they can

represent Studentised means, Wij = N
1/2
Wj ŪWij/SWij , or Student t statistics for

two-sample tests, Wij = N
1/2
Wj (ŪWij,1 − ŪWij,2)/(S2

Wij,1 + S2
Wij,2)1/2, where, for

i = 1, . . . , nW and j = 1, . . . , p, ŪWij,k and S2
Wij,k, k = 1, 2 denote respectively

the empirical mean and empirical variance of NWj independent and identically

distributed data; or statistics computed in a related way. See e.g. Lönnstedt and

Speed (2001), Storey and Tibshirani (2003), Fan et al. (2004) and Fan et al. (2005a).
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In such cases, if Zj and W1j , . . . ,Wnj were identically distributed, Zj−W̄.j would be

approximately normally distributed with variance τW = 1+n−1
W , and Ψ̂Wj would be

the distribution function of the normal N(0, τW ) distribution, not depending on the

index j, and depending on the data only through the number nW of observations.

See section 3.3 for theoretical properties for this type of data.

Formula (2.5), giving an empirical approximation to the variance of the se-

ries on the right-hand side of (2.4), might seem to suggest that, despite the in-

creased generality we are capturing by using empirical approximations to the dis-

tribution functions ΨWj , we are continuing to assume that the vector components

Wi1, . . . ,Wip are independent. However, independence is not essential. By choosing

the threshold, t, introduced earlier in this section, to be sufficiently large, the in-

dependence assumption can be removed while retaining the validity of the variance

approximation at (2.5). See section 4.2.

2.3 Classifiers based on higher criticism

The generality of the higher-criticism approximation in section 2.2 leads directly

to higher-criticism methods for classification. To define the classification problem,

assume we have data, in the form of independent random samples of p-dimensional

vectors X = {X1, . . . , XnX} from population ΠX , and Y = {Y1, . . . , YnY } from

population ΠY , and a new, independent observation, Z, from either ΠX or ΠY . (In

our theoretical work the sample sizes nX and nY will be kept fixed as p increases.)

We wish to assign Z to one of the populations. In the conventional case where p

is small relative to sample size, many different techniques have been developed for

solving this problem. However, in the setting in which we are interested, where p

is large and the sample size is small, these methods can be ineffective, and better

classification algorithms can be obtained by using methods particularly adapted to

the detection of sparse signals.

Let Xij , Yij and Zj denote the jth components of Xi, Yi and Z, respec-

tively. Assume that µXj = E(Xij) and µY j = E(Yij) do not depend on i, that

the distributions of the components are absolutely continuous, and that the distri-

butions of the vectors (Xi11 − µX1, . . . , Xi1p − µXp), (Yi21 − µY 1, . . . , Yi2p − µY p)
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and (Z1 − E(Z1), . . . , Zp − E(Zp)) are identical to one another, for 1 ≤ i1 ≤ nX

and 1 ≤ i2 ≤ nY .

In particular, for each i1, i2 and j the distributions of Xi1j and Yi2j differ

only in location. This assumption serves to motivate methodology, and is a con-

venient platform for theoretical arguments. Of course, many other settings can be

addressed, but they are arguably best treated using their intrinsic features. In-

stances of particular interest include those where each component distribution is

similar to a Studentised mean. A particular representation of this type, involving

only location changes, will be discussed extensively in section 3.3. Other variants,

where non-zero location also entails changes in shape, can be treated using similar

arguments, provided the shape-changes can be parametrised.

With W denoting X or Y we shall write VWj for a random variable having the

distribution of Zj − W̄.j , given that Z is drawn from ΠW . If nX = nY then the

distribution of VWj depends only on j, not on choice of W . Let X̄.j = nX
−1
∑
i Xij

and define Ȳ.j analogously. Let ΨWj be the distribution function of |VWj |, and put

∆Wj(u) = I(|Zj − W̄.j | ≤ u)−ΨWj(u).

If Z is from ΠW then, for each j, |Zj − W̄.j | has distribution function ΨWj ,

and so, for each fixed u, ∆Wj(u) has expected value zero. On the other hand, since

the distributions of Xij and Yij may differ in location, then, if Z is not from ΠW ,

P (|Zj − W̄.j | ≤ u) may take a lesser value than it does when Z is from ΠW , with

the result that the expected value of ∆Wj(u) can be strictly negative. Provided an

estimator of ΨWj is available for W = X and W = Y , this property can be used

to motivate a classifier. In particular, defining ĥcX and ĥcY as at (2.4), we should

classify Z as coming from ΠX if ĥcX ≥ ĥcY , and as coming from ΠY otherwise.

3 Theoretical properties

3.1 Effectiveness of approximation to hcW by ĥcW

We start by studying the effectiveness of the approximation by ĥcW to hcW , where

hcW and ĥcW are defined as at (2.2) and (2.4), respectively (arguments similar to

those given here can be used to demonstrate the effectiveness of the approximation
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by ĥc to hc). To embed the case of hypothesis testing in that of classification,

we express the problem of hypothesis testing as one where the vector Z comes

from a population ΠZ , equal to either ΠX or ΠW , and where the data vectors

W1, . . . ,WnW come from ΠW , with ΠW = ΠZ under H0, ΠW = ΠT otherwise, and

(ΠZ ,ΠT ) denoting one of (ΠX ,ΠY ) or (ΠY ,ΠX). We assume throughout section 3

that each Ψ̂Wj is, with probability 1, a continuous distribution function satisfying

Ψ̂Wj(x) → 0 as x ↓ 0 and Ψ̂Wj(x) → 1 as x ↑ ∞. We also make the following

additional assumptions.

Condition A

(A1) The threshold, t = t(p), varies with p in such a manner that: For each C > 0
and for W = X and Y , supu∈UW (C,t) ψW (u)−1/2

∑
j |Ψ̂Wj(u)−ΨWj(u)| = op(1) .

(A2) For a constant u0 > 0, for each of the two choices of W , and for all sufficiently
large p, ψW is nonincreasing and strictly positive on [u0,∞); and the probability
that ψ̂W is nonincreasing on [u0,∞) converges to 1 as p→∞.

The reasonableness of (A1) is taken up in section 4.2, below. The first part

of (A2) says merely that ψW inherits the monotonicity properties of its component

parts, ΨWj (1−ΨWj). Indeed, if ΨWj is the distribution function of a distribution

that has unbounded support, then ΨWj (1 − ΨWj) is nonincreasing and strictly

positive on [u0,∞) for some u0 > 0, and (A2) asks that the same be true of ψW =∑
j ΨWj (1−ΨWj). This is of course trivial if the distributions ΨWj are identical.

The second part of (A2) states that the same is true of the estimator, ψ̂W , of ψW ,

which condition is satisfied if, for example, the observations represent Studentised

means.

The next theorem shows that, under sufficient conditions, ĥcW is an effective

approximation to hcW . Note that we make no assumptions about independence of

vector components, or about the population from which Z comes. In particular,

the theorem is valid for data drawn under both the null and alternative hypotheses.

Theorem 3.1. Let 0 < C1 < C2 < C3 < ∞ and 0 < C < C3, and assume that

ψW (t) ≥ C3 for all sufficiently large p. If (A1) and (A2) hold then, with W = X
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or Y ,

ĥcW (C, t) = {1 + op(1)} inf
u∈ÛW (C,t)

ψW (u)−1/2

×
p∑
j=1

{
I(|Zj − W̄.j | ≤ u)−ΨWj(u)

}
+ op(1) , (3.1)

hcW (C1, t) + op(1) ≤ {1 + op(1)} ĥcW (C2, t) + op(1)

≤ {1 + op(1)} hcW (C3, t) + op(1) . (3.2)

We shall see in the next section that, in many cases of interest, when Z is not

drawn from ΠW , the higher-criticism statistic hcW tends, with high probability, to

be negative and does not converge to zero as p→∞. Our results in the next section

also imply that, when Z comes from ΠW , the last, added remainders op(1) on the

far right-hand sides of (3.1) and (3.2) are of smaller order than the earlier quantities

on the right. Together, these properties justify approximating hcW by ĥcW .

3.2 Removing the assumption of independence

We now study the properties of higher-criticism statistics in cases where the com-

ponents are not independent. To illustrate the type of dependence that we have

in mind, let us consider the case where Z is drawn from ΠW , and the variables

Vj = Zj − W̄.j form a mixing sequence with exponentially rapidly decreasing mix-

ing coefficients. The case where the mixing coefficients decrease only polynomially

fast, as functions of p, can also be treated; see Remark 3.3.

To give a specific example, note that the cases of moving-average processes or

autoregressions, of arbitrary (including infinite) order, fall naturally into the setting

of exponentially fast mixing. Indeed, assume for simplicity that the variables Vj
form a stochastic process, not necessarily stationary, that is representable as

Vj =
∞∑
k=1

αjk ξj−k ,

where the αjk’s are constants satisfying |αjk| ≤ const. ρk for all j and k, 0 < ρ < 1,

and the disturbances ξj are independent with zero means and uniformly bounded
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variances. Given c ≥ 1, let ` denote the integer part of c log p, and put

V ′j =
∑̀
k=1

αjk ξj−k .

Then, by Markov’s inequality,

P (|Vj − V ′j | > u) ≤ u−2E

( ∞∑
k=`+1

αjk ξj−k

)2

= O
(
u−2 ρ2`

)
,

uniformly in u > 0, c ≥ 1 and integers j. By taking u = p−C for C > 0 arbitrarily

large, and then choosing c ≥ 3
2 C | log ρ|−1, we deduce that the approximants V ′j

have the following two properties: (a) P (|Vj −V ′j | ≤ p−C) = 1−O(p−C), uniformly

in 1 ≤ j ≤ p; and (b) for each r in the range 2 ≤ r ≤ p, and each sequence

1 ≤ j1 < . . . < jr ≤ p satisfying jk+1 − jk ≥ c log p + 1 for 1 ≤ k ≤ r − 1, the

variables V ′jk , for 1 ≤ k ≤ r, are stochastically independent.

The regularity condition (B1), below, captures this behaviour in greater gener-

ality. There, we let VWj , for 1 ≤ j ≤ p, have the joint distribution of the respective

values of Zj−W̄.j when Z is drawn from ΠW . At (B2), we also impose (a) a uniform

Hölder smoothness condition on the respective distribution functions χWj of VWj ,

(b) a symmetry condition on χWj , and (c) a restriction which prevents the upper

tail of ΨWj , for each j and W , from being pathologically heavy.

Condition B

(B1) For each C, ε > 0, and each of the two choices of W , there exists a sequence
of random variables V ′Wj , for 1 ≤ j ≤ p, with the properties: (a) P (|VWj − V ′Wj | ≤
p−C) = 1−O(p−C), uniformly in 1 ≤ j ≤ p; and (b) for all sufficiently large p, for
each r in the range 2 ≤ r ≤ p, and each sequence 1 ≤ j1 < . . . < jr ≤ p satisfying
jk+1−jk ≥ pε for 1 ≤ k ≤ r−1, the variables V ′Wjk

, for 1 ≤ k ≤ r, are stochastically
independent.

(B2) (a) For each of the two choices of W there exist constants C1, C2 > 0, the
former small and the latter large, such that |χWj(u1)− χWj(u2)| ≤ C2 |u1 − u2|C1 ,
uniformly in u1, u2 > 0, 1 ≤ j ≤ p < ∞ and W = X or Y ; (b) the function
GWj(u, v) = P (|VWj + v| ≤ u) is nonincreasing in |v| for each fixed u, each choice
of W and each j; and (c) max1≤j≤p {1−ΨWj(u)} = O(u−ε), for W = X,Y and for
some ε > 0.
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Part (b) of (B2) holds if each distribution of VWj is symmetric and unimodal.

As explained in the previous section, in both the hypothesis testing and clas-

sification problems we can consider that W = X or Y , indicating the population

from which we draw the sample against which we check the new data value Z. Let

µZ = µX if Z is from ΠX , and µZ = µY otherwise, and define νWZj = µZj − µWj ,

hcWZ(C, t) = sup
u∈UW (C,t)

ψW (u)−1/2

p∑
j=1

{
P (|VWj | ≤ u)− P (|VWj + νWZj | ≤ u)

}
.

(3.3)

In view of (B2)(b), the quantity within braces in the definition of hcWZ is

nonnegative, and so hcWZ ≥ 0. Theorem 3.2 below describes the extent to which

the statistic hcW , a random variable, can be approximated by the deterministic

quantity hcWZ .

Theorem 3.2. Let C > 0 be fixed, and take the threshold, t = t(p), to satisfy

t ≥ 0 and ψW (t) ≥ C, thus ensuring that UW (C, t) is nonempty. Let hcW and

hcWZ denote hcW (C, t) and hcWZ(C, t), respectively. If (B1) and (B2) hold then

for each ε > 0,

hcW = −{1 + op(1)} hcWZ +Op
(
pε
)
. (3.4)

An attractive feature of (3.4) is that it separates the “stochastic” and “deter-

ministic” effects of the higher-criticism statistic hcW . The stochastic effects go into

the term Op(pε). The deterministic effects are represented by hcWZ . When the

data value Z is from the same population ΠW as the dataset with which it is com-

pared, each νWZj = 0 and so, by (3.3), hcWZ = 0. Property (3.4) therefore implies

that, when Z is from ΠW , hcW = Op(pε) for each ε > 0. In other cases, where

Z is drawn from a population different from that from which come the data with

which Z is compared, hcWZ is generally nonzero. In such instances the properties

of hcW can be computed by relatively straightforward, deterministic calculations

based on hcWZ . In particular, when W 6= Z, if hcWZ is of order larger than pε for

some ε > 0 (see (3.8) below), then it follows directly that the probability of rejecting

the null hypothesis, in the hypothesis testing problem, or of correct classification,

in the classification problem, converges to 1. See, for example, section 3.3.
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Remark 3.1: Sharpening the term Op(pε) in (3.4). If, as in the problem treated

by Donoho and Jin (2004), the distribution functions ΨWj are all identical and

the variables Xi1j1 and Yi2j2 , for 1 ≤ i1 ≤ nX , 1 ≤ i2 ≤ nY and 1 ≤ j1, j2 ≤ p,

are completely independent, then a refinement of the argument leading to (3.4)

shows that the Op(pε) term there can be reduced to Op(
√

log p). Here it is not

necessary to assume that the common distributions are normal. Indeed, in that

context Donoho and Jin (2004) noted that the Op(pε) term in (3.4) can be replaced

by Op(
√

log log p).

Remark 3.2: Relaxing the monotonicity condition (B2)(b). Assumption (B2)(b)

asks that GWj(u, v) = P (|VWj+v| ≤ u) be nonincreasing in |v| for each u. However,

if the distributions of Xij and Yij are identical for all but at most q values of j then

it is sufficient to ask that, for these particular j, it be possible to write, for each

ε > 0,

GWj(u, v) = HWj(u, v) + o
{
pε q−1 ψW (u)1/2

}
,

uniformly in 1 ≤ j ≤ p, u ≥ t and W = X and Y , where each HWj has the

monotonicity property asked of GWj in (B2)(b).

Remark 3.3: Mixing at polynomial rate. The exponential-like mixing rate implied

by (B1) is a consequence of the fact that (a) and (b) in (B1) hold for each C, ε > 0.

If, instead, those properties apply only for a particular positive pair C, ε, then (3.4)

continues to hold with pε there replaced by pη, where η > 0 depends on C, ε from

(B1), and decreases to zero as C increases and ε decreases.

3.3 Delineating good performance

Theorem 3.2 gives a simple representation of the higher-criticism statistic. It implies

that, if Z is drawn from ΠQ where (W,Q) = (X,Y ) or (Y,X), and if hcWZ exceeds

a constant multiple of pε for some ε > 0, then the probability that we make the

correct decision in either a hypothesis testing or classification problem, Z converges

to 1 as p → ∞. We shall use this result to determine a region where hypothesis

testing, or classification, are possible. For simplicity, in this section we shall assume

that each µXj = 0, and µY j = 0 for all but q values of j, for which µY j = ν > 0

and ν = ν(p) diverges with p and does not depend on j. The explicit form of
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hcWZ , at (3.3), makes it possible to handle many other settings, but a zero-or-ν

representation of each mean difference permits an insightful comparison with results

discussed by Donoho and Jin (2004).

In principle, two cases are of interest, where the tails of the distribution of VWj

decrease polynomially or exponentially fast, respectively. However, in the polyno-

mial case it can be proved using (3.3) that the hypothesis testing and classification

problems are relatively simple. Therefore, we study only the exponential setting.

In this context, and reflecting the discussion in section 2.2, we take the distribution

of VWj to be that of the difference between two Studentised means, standardised

by dividing by
√

2, and the distributions of Xij and Yij to represent translations of

that distribution. See (C1) and (C2) below. Alternatively we could work with the

case where Xij is a Studentised mean for a distribution with zero mean, and Yij

is computed similarly but for the case where the expected value is shifted by ±ν.

Theoretical arguments in the latter setting are almost identical to those given here,

being based on results of Wang and Hall (2007).

Condition C

(C1) For each pair (W, j), where W = X or Y and 1 ≤ j ≤ p, let UWjk, for
1 ≤ k ≤ NWj , denote random variables that are independent and identically dis-
tributed as UWj , where E(UWj) = 0, E(U4

Wj) is bounded uniformly in (W, j),
E(U2

Wj) is bounded away from zero uniformly in (W, j), and NWj ≥ 2. Let VWj

have the distribution 2−1/2 times the difference between two independent copies of
N

1/2
Wj ŪWj/SWj , where ŪWj and SWj denote respectively the empirical mean and

variance of the data UWj1, . . . , UWjNWj
. Take µXj = 0 for each j, µY j = 0 for all

but q = q(p) values of j, say j1, . . . , jq, and |µY j | = ν for these particular values
of j.

(C2) The quantity ν in (C1) is given by ν =
√

2w log p, and the threshold, t, satisfies
B ≤ t ≤

√
2s log p for some B, s > 0, where 0 < w < 1 and 0 < s < min(4w, 1).

The setting described by (C1) is one where a working statistician would, in prac-

tice, generally take each distribution approximation Ψ̂Wj(u) to be simply P (|ξ| ≤
u), where ξ has the standard normal distribution. The signal detection boundary

in this setting is obtained using a polynomial model for the number of added shifts:

for some 1
2 < β < 1 , q ∼ const. p1−β (3.5)
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(Donoho and Jin, 2004). The boundary is then determined by:

w ≥

{
β − 1

2 if 1
2 < β ≤ 3

4

(1−
√

1− β)2 if 3
4 < β < 1 .

(3.6)

The inequality (3.6) is also sufficient in hypothesis testing and classification

problems where the data are exactly normally distributed. Likewise it is valid if

we use a normal approximation and if that approximation is good enough. The

question we shall address is, “how good is good enough?” The following theorem

answers this question in cases where NWj diverges at at least a logarithmic rate, as

a function of p. The proof is given is given in Appendix A.2.

Theorem 3.3. Assume (C1), (C2), (3.5), that w satisfies (3.6), and that, for W =

X or Y and 1 ≤ j ≤ p, NWj , given in (C1), satisfies

N−1
Wj (log p)4 → 0 . (3.7)

Suppose too that Z is from ΠQ, where (W,Q) = (X,Y ) or (Y,X). Then, for

constants B, η > 0,

hcWZ ≥ B pη . (3.8)

Condition (3.7) confirms that the samples on which the coordinate data are

based need be only logarithmically large, as a function of p, in order for the higher-

criticism classifier to be able to detect the difference between the W and Q popu-

lations.

4 Further results

4.1 Alternative constructions of hcW and ĥcW

There are several other ways of constructing higher-criticism statistics when the

distribution functions ΨWj depend on j and have to be estimated. For example,

omitting for simplicity the threshold t, we could re-define ĥcW as:

ĥcW = p1/2 inf
u : pu(1−u)≥C

{u (1−u)}−1/2

p∑
j=1

[
I
{
|Zj − W̄.j | ≤ Ψ̂−1

Wj(u)
}
−u
]
. (4.1)
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If Z were drawn from ΠW then the random variable K =
∑
j I{|Zj − W̄.j | ≤

Ψ−1
Wj(u)} would have exactly a binomial Bi(p, u) distribution. The normalisa-

tion in formula (4.1) for ĥcW reflects this property. However, replacing K by

K̂ =
∑
j I{|Zj − W̄.j | ≤ Ψ̂−1

Wj(u)}, as in (4.1), destroys the independence of the

summands, and makes normalisation problematic. This is particularly true when,

as would commonly be the case in practice, the estimators Ψ̂Wj are computed from

data Wij1 for values of j1 that are local to j. In such cases the estimators Ψ̂Wj

would not be root-p consistent for the respective distributions ΨWj .

If the distribution of |Zj − W̄.j | were known up to its standard deviation, σWj ;

and if we had an estimator, σ̂Wj , of σWj for each W and j; then we could construct

a third version of ĥcW :

ĥcW = inf
u :φW (u)≥C

φW (u)−1/2

p∑
j=1

{
I
(
|Zj − W̄.j |/σ̂Wj ≤ u

)
− ΦWj(u)

}
,

where ΦWj denotes the distribution function of |Zj − W̄.j |/σWj under the assump-

tion that Z is drawn from ΠW , and φW (u) =
∑
j ΦWj (1−ΦWj). Again, however,

the correlation induced through estimation, this time the estimation of σWj , makes

the normalisation difficult to justify.

In some problems there is good reason to believe that if the marginal means

of the populations ΠX and ΠY differ, then the differences are of a particular sign.

For example, it might be known that µXj ≥ µY j for all j. In this case we would

alter the construction of the higher-criticism statistics hcW and ĥcW , at (2.2) and

(2.4), to:

hcos
W = inf

u∈Uos
W

ψos
W (u)−1/2

p∑
j=1

{
I(Zj − W̄.j ≤ u)−Ψos

Wj(u)
}
, (4.2)

ĥc
os

W = inf
u∈Ûos

W

ψ̂os
W (u)−1/2

p∑
j=1

{
I(Zj − W̄.j ≤ u)− Ψ̂os

Wj(u)
}
, (4.3)

respectively, where

ψos
W (u) =

p∑
j=1

Ψos
Wj(u)

{
1−Ψos

Wj(u)
}
, ψ̂os

W (u) =
p∑
j=1

Ψ̂os
Wj(u)

{
1− Ψ̂os

Wj(u)
}
,
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Ψ̂os
Wj(u) is an empirical approximation to the probability Ψos

Wj(u) = P (Zj−W̄.j ≤ u)

when Z is drawn from ΠW , Uos
W = Uos

W (C, t) is the set of u for which u ≥ t,

ψos
W (u) ≥ C, Ûos

W is defined analogously, and the superscript “os” denotes “one-

sided.” When using ĥc
os

W we would classify Z as coming from ΠX if ĥc
os

X ≥ ĥc
os

Y ,

and as coming from ΠY otherwise.

Remark 4.1: Adapting Theorems 3.1 and 3.2. Theorems 3.1 and 3.2 have direct

analogues, formulated in the obvious manner, for the one-sided classifiers hcos
W and

hcos
W introduced above. In particular, the one-sided version of hcWZ , at (3.3), is

obtained by removing the absolute value signs there. The regularity conditions

too differ in only minor respects. For example, when formulating the appropriate

version of (A1) we replace Ψ̂Wj , ΨWj , ψ̂W and ψW by Ψ̂os
Wj , Ψos

Wj , ψ̂
os
W and ψos

W ,

respectively. Part (b) of (B2) can be dropped on this occasion, since its analogue in

the one-sided case follows directly from the monotonicity of a distribution function.

4.2 Advantages of incorporating the threshold

By taking the threshold, t, large we can construct the higher-criticism statistics

hcW and ĥcW , at (2.2) and (2.4), so that they emphasise relatively large values of

|Zj − W̄.j |. This is potentially advantageous, especially when working with ĥcW ,

since we expect the value of u at which the infimum at (2.4) is achieved also to be

large.

The most important reasons for thresholding are more subtle than this argu-

ment would suggest, however. They are founded on properties of relative errors in

distribution approximations, and on the fact that the divisor in (2.2) is ψ1/2
W , not

simply ψW . To see why this is significant, consider the case where the distribution

functions ΨWj are all identical, to Ψ say. Then ψW = pΨ (1 − Ψ), which we esti-

mate by ψ̂W = p Ψ̂ (1 − Ψ̂), say. In order for the effect of replacing each ΨWj(u)

(appearing in (2.2)) by Ψ̂Wj(u) (in (2.4)) to be asymptotically negligible, we require

the quantity

ψW (u)−1/2

p∑
j=1

∣∣Ψ̂Wj(u)−ΨWj(u)
∣∣ =

p1/2|Ψ̂(u)−Ψ(u)|
Ψ(u)1/2{1−Ψ(u)}1/2

to be small. Equivalently, if u is in the upper tail of the distribution Ψ, we need
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the ratio
p1/2 |Ψ̂(u)−Ψ(u)|
{1−Ψ(u)}1/2

(4.4)

to be small.

If the approximation of Ψ by Ψ̂ (or more particularly, of 1 − Ψ by 1 − Ψ̂)

is accurate in a relative sense, as it is (for example) if Ψ is the distribution of a

Studentised mean, then, for large u,

ρ(u) ≡ |Ψ̂(u)−Ψ(u)|
1−Ψ(u)

(4.5)

is small for u in the upper tail as well as for u in the middle of the distribution.

When u is in the upper tail, so that 1 − Ψ(u) is small, then, comparing (4.4) and

(4.5), we see that we do not require ρ(u) to be as small as it would have to be in

the middle of the distribution. By insisting that u ≥ t, where the threshold t is

relatively large, we force u to be in the upper tail, thus obtaining the advantage

mentioned in the previous sentence.

Below, we show in more detail why, if thresholding is not undertaken, that is,

if we do not choose t large when applying the higher-criticism classifier, substantial

errors can occur when using the classifier. They arise through an accumulation of

errors in the approximation Ψ̂Wj ≈ ΨWj .

Commonly, the approximation of ΨWj by Ψ̂Wj can be expressed as

Ψ̂Wj(u) = ΨWj(u) + δp αWj(u) + o(δp) , (4.6)

where δp decreases to zero as p increases and represents the accuracy of the approx-

imation; αWj is a function, which may not depend on j; and the remainder, o(δp),

denotes higher-order terms. Even if αWj depends on j, its contribution cannot be

expected to “average out” of ĥcW , by some sort of law-of-large-numbers effect, as

we sum over j.

In some problems the size of δp is determined by the number of data used to

construct Ψ̂Wj . For example, in the analysis of gene-expression data, Ψ̂Wj might

be calculated by borrowing information from neighbouring values of j. In order for

this method to be adaptive, only a small proportion of genes would be defined as
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neighbours for any particular j, and so a theoretical description of δp would take

that quantity to be no smaller than p−η, for a small constant η > 0. In particular,

assuming that Ψ̂Wj was root-p consistent for ΨWj , i.e. taking η as large as 1
2 , would

be out of the question.

In other problems the coordinate data Xij and Yij can plausibly be taken as

approximately normally distributed, since they are based on Student’s t statistics.

See sections 2.2 and 3.3 for discussion. In such cases the size of δp is determined by

the number of data in samples from which the t statistic is computed. This would

also be much less than p, and so again a mathematical account of the size of δp
would have it no smaller than p−η, for η > 0 much less than 1

2 .

Against this background; and taking, for simplicity, Ψ = ΨWj , α = αW and

δp = p−η; we find that ψ̂W ∼ ψW = pΨ (1−Ψ) and
∑
j (Ψ̂Wj −ΨWj) = p1−η α+

o(p1−η). These results, and (4.6), lead to the conclusion that, for fixed u, the

argument of the infimum in the definition of ĥcW , at (2.4), is given by

A(u) ≡ ψ̂W (u)−1/2

p∑
j=1

{
I(|Zj − W̄.j | ≤ u)− Ψ̂Wj(u)

}
= {1 + o(1)}ψW (u)−1/2

p∑
j=1

{
I(|Zj − W̄.j | ≤ u)−ΨWj(u)

}
− p(1/2)−η γ(u) + o

(
p(1/2)−η) , (4.7)

where γ = α {Ψ (1−Ψ)}−1/2.

Assume, again for simplicity, that Z is drawn from ΠW . Then, for fixed u,

the series on the right-hand side of (4.7) has zero mean, and equals Op(p1/2). In

consequence,

A(u) = Op(1)− p(1/2)−η γ(u) + op
(
p(1/2)−η) . (4.8)

Referring to the definition of ĥcW at (2.4), we conclude from (4.8) that for fixed u,

ĥcW ≤ Op(1)− p(1/2)−η γ(u) + op
(
p(1/2)−η) . (4.9)

If u is chosen so that γ(u) > 0 then, since η < 1
2 , the subtracted term on the

right-hand side of (4.9) diverges to −∞ at a polynomial rate, and this behaviour is
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readily mistaken for detection of a value of Z that does not come from ΠW . (There,

the rate of divergence to zero can be particularly small; see section 3.3 and Donoho

and Jin (2004).) This difficulty has arisen through the accumulation of errors in

the distribution approximation.

5 Numerical properties in the case of classification

We applied the higher-criticism classifier to simulated data. In each case, we gen-

erated nW = 10 vectors of dimension p = 106, from ΠW = ΠX or ΠY ; and one

observation Z from ΠY . We generated the data such that, for i = 1, . . . , nW and j =

1, . . . , p; and with W denoting X or Y ; Wi,j = (ŪWij,1− ŪWij,2)/
√

(S2
U,1 + S2

U,2)/NU +

µW where, for k = 1 and 2, ŪWij,k was the empirical mean and S2
U,k was the empirical

variance of: (1) in the case of independence, NU = 20 independent and identically

distributed random variables, having the distribution function of a N(0, 1) variable,

a student T10 or a χ2
6 random variable; and (2) in the case of dependence, NU = 20

random variables of the type VWi,j,k, where, for i = 1, . . . , nW and j = 1, . . . , p,

VWi,j,k =
∑L
`=0 θ

` εWi,j−`,k, with θ = 0.8 and εWi,j,k ∼ N(0, (1 + θ2)−1) denoting inde-

pendent variables.

We set µX,j = 5(j− 1)/(p− 1) and, in compliance with (C2), (3.5), (3.6), took

µX = µY for all but q = 〈p1−β〉 randomly selected components, for which µYj =

µX,j +
√

2w log p, where 〈·〉 denotes the integer-part function; and we considered

different values of β ∈ ( 1
2 , 1) and w ∈ (0, 1

2 ). Reflecting the results in sections 3.1

and 3.3, we estimated the unknown distribution function of the observed data as

the standard normal distribution function. In all cases considered, we generated 500

samples in the manner described above, and we repeated the classification procedure

500 times. Below we discuss the percentages of those samples which led to correct

classification.

Application of the method necessitated selection of the two parameters t and

C defining UW . In view of condition (A2), we reformulated UW as UW = [t1, t2],

and we replaced choice of t and C by choice of t1 and t2. If we have sufficient

experience with the distributions of the data, t1 and t2 can be selected ‘theoretically’

to maximise the percentage of correct classifications.
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In the tables below we compare the results obtained using three methods: the

higher-criticism procedure for the optimal choice of (t1, t2), referring to it as HCT ;

higher criticism without thresholding, i.e. for (t1, t2) = (−∞,∞), to which we refer

as simply HC; and the thresholded nearest-neighbour method, NNT (see e.g. Hall et

al. 2008), i.e. the nearest-neighbour method applied to thresholded data Wj I{Wj >

t}, where W denotes X, Y or Z and the threshold, t, is selected in a theoretically

optimal way using the approach described above for choosing (t1, t2).

It is known (Hall et al., 2008) that, for normal variables, when the distribution

of the observations is known, classification using HCT is possible if w and β are

above the boundary determined by (3.6), but classification using NNT is possible

only above the more restricted boundary determined by w = 2β − 1. Below, we

show that these results hold in our context too, where the distribution of the data

is known only approximately (more precisely, estimated by the distribution of a

standard normal variable). We shall consider values of (β,w) that lie above, on or

below the boundary w = 2β − 1, including values which lie between this boundary

and that for higher criticism. Tables 1 and 2 summarise results for the independent

case (1), when the observations were averages of, respectively, Student T10 variables

and χ2
6 variables. In all cases, including those where classification was possible

for both methods, we see that the thresholded higher-criticism method performs

significantly better than the thresholded nearest-neighbour approach. The results

also show very clearly the improvement obtainable using the thresholded version of

higher criticism.

Table 1: Percentage of correct classifications if case (1) with T10 variables, using
the optimal values of t, t1 and t2.

w = 0.2 w = 0.3 w = 0.4 w = 0.5

β NNT HCT HC NNT HCT HC NNT HCT HC NNT HCT HC

0.5 99.8 100 95.8
0.6 77.4 86.4 83.0 86.2 97.4 89.6 94.0 100 94.0
0.65 63.8 72.8 70.6 74.4 85.4 73.4 77.2 97.8 82.6
0.7 63.2 70.6 62.2 67.6 86.0 64.6 69.8 96.8 75.8
0.75 59.0 72.8 58.2 65.2 86.2 66.6
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Table 2: Percentage of correct classifications if case (1) with χ2
6 variables, using the

optimal values of t, t1 and t2.

w = 0.2 w = 0.3 w = 0.4 w = 0.5

β NNT HCT HC NNT HCT HC NNT HCT HC NNT HCT HC

0.5 99.8 100 97.6
0.6 75.8 85.4 78.6 86.2 98.4 89.0 93.6 100 91.8
0.65 66.2 70.2 68.0 69.8 86.2 72.4 80.6 98.2 79.2
0.7 64.4 74.8 64.2 68.4 88.4 64.4 75.0 97.0 69.8
0.75 60.0 73.8 56.0 64.2 85.4 59.4

Table 3: Percentage of correct classifications if case (1) with normal variables (line
1), case (2) with L = 1 (line 2) or L = 3 (line 3), using the optimal values of t, t1
and t2.

w = 0.2 w = 0.3 w = 0.4 w = 0.5

β NNT HCT HC NNT HCT HC NNT HCT HC NNT HCT HC

0.5 99.8 100 94.0
98.0 100 93.8
95.6 100 93.6

0.6 77.2 83.4 79.2 85.2 98.0 88.6 93.0 100 95.2
73.0 83.2 80.0 81.8 97.2 85.6 90.0 100 92.4
67.4 82.0 77.2 75.6 97.6 84.0 85.6 100 92.0

0.65 63.6 70.2 65.6 71.0 83.8 74.2 79.4 97.3 82.4
61.8 72.0 68.4 68.2 84.0 72.4 76.0 97.8 82.8
58.2 67.8 64.4 62.6 83.0 72.0 73.2 96.4 79.2

0.7 64.2 70.2 65.0 69.0 83.0 66.4 72.8 95.2 75.6
59.6 69.6 57.4 63.6 84.2 67.2 71.2 95.0 76.6
59.4 70.8 63.6 63.0 82.8 63.8 66.4 94.4 70.2

0.75 59.4 69.2 60.8 62.0 85.4 63.2
59.0 71.4 59.2 59.8 85.0 62.6
54.0 71.4 57.4 60.4 80.8 62.6

In Table 3 we compare the results of the independent case (1), where the data

were Studentised means of independent N(0, 1) variables and so had Student’s t

distribution; and the dependent case (2), where the observations were Studentised

means of correlated normal variables with either L = 1 or L = 3. Here we see

that as the strength of correlation increases, the nearest-neighbour method seems
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to deteriorate more rapidly than higher criticism, which, as indicated in section 3.2,

remains relatively unaffected by lack of independence.

If previous experience with data of the type being analysed is not sufficient

to permit effective choice of threshold using that background, then a data-driven

selection needs to be developed. We implemented a cross-validation procedure,

described in Appendix A.1.

6 Technical arguments

6.1. Proof of Theorem 3.1. Since ψW (u) ≥ C for each u ∈ UW (C, t) then (A1)

implies that ψW (u)−1
∑
j |Ψ̂Wj(u) − ΨWj(u)| = op(1) uniformly in u ∈ UW (C, t),

and hence that ψ̂W (u)/ψW (u) = 1 + op(1), uniformly in u ∈ UW (C, t). Call this

result R1. That property and (A2) imply that with probability converging to 1 as

p→∞, UW (C3, t) ⊆ ÛW (C2, t) ⊆ UW (C1, t); call this result R2. (Since ψW (t) ≥ C3

then t ∈ UW (C3, t), and so the latter set is nonempty.) Results R1, R2 and (A1)

together give (3.1). Property R2 and (3.1) imply (3.2).

6.2. Proof of Theorem 3.2. Let V ′Wj be as in (B1). Since, in the case where Z is

drawn from ΠW , VWj , for 1 ≤ j ≤ p, have the joint distribution of Zj − W̄.j , for

1 ≤ j ≤ p, then for Z from either ΠX or ΠY we may write Zj − W̄.j = VWj +νWZj ,

where νWZj = µZj − µWj . Substituting this representation for Zj − W̄.j into the

definition of hcW at (2.2), and defining ∆Wj = VWj − V ′Wj , we see that

hcW = inf
u∈UW

ψW (u)−1/2

p∑
j=1

{I(|V ′Wj + ∆Wj + νWZj | ≤ u)−ΨWj(u)} . (6.1)

Given D > 0 and v = 0 or ±1, define

hc′WZ(v) = inf
u∈UW

ψW (u)−1/2

p∑
j=1

{
I
(
|V ′Wj + νWZj | ≤ u+ v p−D

)
−ΨWj(u)

}
,

hc′′WZ = inf
u∈UW

ψW (u)−1/2

p∑
j=1

{
I(|V ′Wj + νWZj | ≤ u)− P (|V ′Wj | ≤ u)

}
.

Let EW denote the event that |∆Wj | ≤ p−D for each 1 ≤ j ≤ p. In view of (B1)(a),

for all C3 > 0 , P (EW ) = 1−O
(
p−C3

)
. (6.2)
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Now, with probability 1,

hc′WZ(−1) ≤ hc′WZ(0) ≤ hc′WZ(1) and

hc′WZ(−1) ≤ hcW ≤ hc′WZ(1) if EW holds ,
(6.3)

where we used (6.1) to obtain the second set of inequalities. Furthermore,

0 ≤ hc′WZ(1)− hc′WQ(−1)

≤ sup
u∈UW

ψW (u)−1/2

p∑
j=1

I
(
u− p−D < |V ′Wj + νWZj | ≤ u+ p−D

)
≤ sup
u∈UW

ψW (u)−1/2

p∑
j=1

I
(
u− 2p−D < |VWj + νWZj | ≤ u+ 2p−D

)
, (6.4)

where the first inequality holds with probability 1 and the second holds almost

surely on EW .

Let 1 ≤ j1 ≤ p, and take C4 > 0. Using (B1) and (B2) it can be shown that

the probability that there are no integers j2 6= j1 with 1 ≤ j2 ≤ p and∣∣∣|VWj1 + νZj1 | − |VWj2 + νZj2 |
∣∣∣ ≤ C4 p

−D , (6.5)

is bounded below by 1 − C5 p
1−DC1 uniformly in j1, where C5 > 0 and C1 is the

constant in (B2)(a). Adding over 1 ≤ j1 ≤ p, and choosing D > 2C−1
1 , we deduce

that:

The probability that there is no pair (j1, j2) of distinct indices such that
|VWj1 +νQj1 | and |VWj2 +νQj2 | are closer than C4 p

−D, converges to zero
as p→∞.

(6.6)

If, in the case C4 = 4, the inequality (6.5) fails for all distinct integer pairs

(j1, j2) with 1 ≤ j1, j2 ≤ p, then the series on the far right-hand side of (6.4) can

have no more than one nonzero term. That term, if it exists, must equal 1. In this

case the far right-hand side of (6.4) cannot exceed supu∈UW ψW (u)−1/2, which in

turn is bounded above by a constant, C6 = C−1/2. Hence, (6.4) and (6.6) imply

that

P
{

0 ≤ hc′WZ(1)− hc′WZ(−1) ≤ C6

}
→ 1 . (6.7)
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Combining (6.2), (6.3) and (6.7) we deduce that

P
{
|hcW − hc′WZ(0)| ≤ C6

}
→ 1 . (6.8)

Observe too that, uniformly in u,∣∣P (|V ′Wj | ≤ u)−ΨWj(u)
∣∣ ≤ ∣∣ΨWj

(
u+ p−D

)
−ΨWj

(
u− p−D

)∣∣+ P (EW )

≤ C7

(
4p−D

)C1 + P (EW ) = O
(
p−DC1

)
,

where we have used (B2) and (6.2). Hence,

|hc′′WZ −hc′WZ(0)| ≤ sup
u∈UW

ψW (u)−1/2

p∑
j=1

∣∣P (|V ′Wj | ≤ u)−ΨWj(u)
∣∣ = O

(
p−DC1

)
.

Combining this result and (6.8) we deduce that if C8 > 0 is chosen sufficiently large,

P
(
|hcW − hc′′WZ | ≤ C8

)
→ 1 . (6.9)

Next we introduce further notation, defining ΨWZj(u) = P (|VWj+νWZj | ≤ u),

Ψdash
Wj (u) = P (|V ′Wj | ≤ u) , Ψdash

WZj(u) = P (|V ′Wj + νWZj | ≤ u) ,

ψWZ =
p∑
j=1

ΨWZj (1−ΨWZj) , ψdash
WZ =

p∑
j=1

Ψdash
WZj

(
1−Ψdash

WZj

)
,

φWZ =
p∑
j=1

(ΨWj −ΨWZj) , ωWZ = ψW + φWZ ,

hc(3)
WZ = sup

u∈UW
ωWZ(u)−1/2

∣∣∣∣ p∑
j=1

{
I(|V ′Wj + νWZj | ≤ u)−Ψdash

WZj(u)
}∣∣∣∣ ,

hc(4)
WZ = sup

u∈UW
ψW (u)−1/2

p∑
j=1

{
P (|V ′Wj | ≤ u)− P (|V ′Wj + νWZj | ≤ u)

}
= sup
u∈UW

ψW (u)−1/2

p∑
j=1

{
Ψdash
Wj (u)−Ψdash

WZj(u)
}
.

The remainder of the proof develops approximations to hc(3)
WZ and hc(4)

WZ .

Using (B1)(a) and (B2)(a) it can be shown that, uniformly in u,∣∣ψWZ − ψdash
WZ

∣∣ = O(p1−DC1)→ 0 , (6.10)
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provided D > C−1
1 . Also, if D > C−1

1 then a similar argument can be used to show

that, with hcWZ defined as at (3.3),∣∣hc(4)
WZ − hcWZ

∣∣→ 0 . (6.11)

By (B2)(b), 0 ≤ ΨWZj ≤ ΨWj ≤ 1, from which it follows that

ΨWj (1−ΨWj) + ΨWj −ΨWZj

= ΨWZj (1−ΨWZj) + (ΨWj −ΨWZj) (2−ΨWj −ΨWZj)

≥ ΨWZj (1−ΨWZj)

for each j. Adding over j we deduce that ωWZ ≥ ψWZ . Combining this result with

(6.10), and noting that ωWZ(u) ≥ ψW (u) > C for u ∈ UW = UW (C, t), we deduce

that, for a constant C9 > 0,

for all u ∈ UW , ψdash
WZ (u) ≤ C9 ωWZ(u) . (6.12)

Write 〈·〉 for the integer-part function. Given ε ∈ (0, 1), use (B1)(b) to break

the sum inside the absolute value in the definition of hc(3)
WZ , taken over 1 ≤ j ≤ p,

into 〈pε〉 series, each consisting only of independent terms. Let SWZk(u), for 1 ≤
k ≤ 〈pε〉, denote the kth of these series. Now, E{SWZk(u)} = 0 and, for u ∈ UW ,

var{SWZk(u)} ≤ ψdash
WZ (u) ≤ C9 ωWZ(u) , (6.13)

where the variance is computed using the expression for SWZk(u) as a sum of

independent random variables, and the second inequality comes from (6.12).

Employing (6.13), and noting again the independence property, standard ar-

guments can be used to show that for each choice of C10, C11 > 0,

max
1≤k≤〈pε〉

P

{
sup
u∈UW

ωWZ(u)−1/2 |SWZk(u)| > pC10

}
= O

(
p−C11

)
. (6.14)

In particular, using Rosenthal’s inequality, Markov’s inequality and the fact that

ωWZ(u) ≥ ψW (u) ≥ C for u ∈ UW , we may show that for all B1, B2 > 0,

max
1≤k≤〈pε〉

sup
u∈UW

P
{
|SWZk(u)| > ωWZ(u)1/2 pB1

}
= O

(
p−B2

)
.
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Therefore, if VW = VW (p) denotes any subset of UW that contains only O(pB3)

elements, for some B3 > 0, then for all B1, B2 > 0,

max
1≤k≤〈pε〉

P

{
max
u∈VW

ωWZ(u)−1/2 |SWZk(u)| > pB1

}
= O

(
pB3−B2

)
= O

(
p−B4

)
,

(6.15)

where B4 = B2 − B3. Since B3 and B4 both can be taken arbitrarily large, then,

using the monotonicity of the function g(u) = I(v ≤ u), and also properties (B1)

and (B2), it can be seen that maxu∈VW in (6.15) can be replaced by supu∈UW ,

giving (6.14). In this context, condition (B2)(c) ensures that, with an error that is

less than p−B5 , for any given B5 > 0, the distribution ΨWj can be truncated at a

point pB6 , for sufficiently large B6; and, within the interval [0, pB6 ], the points in

VW can be chosen less than p−B7 apart, where B7 > 0 is arbitrarily large.

Result (6.14) implies that

P

{
max

1≤k≤〈pε〉
sup
u∈UW

ωWZ(u)−1/2 |SWZk(u)| > pC10

}
= O

(
pε−C11

)
,

from which it follows that P (hc(3)
WZ > pε+C10) = O(pε−C11). Since ε, C10 and C11

are arbitrary positive numbers then we may replace ε here by zero, obtaining: for

each C10, C11 > 0,

P
(
hc(3)
WZ > pC10

)
= O

(
p−C11

)
. (6.16)

It can be deduced directly from the definitions of hc′′WZ , hc(3)
WZ and hc(4)

WZ that:

|hc′′WZ + hc(4)
WZ | ≤ hc(3)

WZ sup
u∈UW

{
ωWZ(u)
ψW (u)

}1/2

= hc(3)
WZ sup

u∈UW

{
1 +

φWZ(u)
ψW (u)

}1/2

.

Combining this result with (6.9), (6.11) and (6.16); and noting that

hcWZ = sup
u∈UW

φWZ(u)
ψW (u)1/2

,

and, since ψW (u) ≥ C for u ∈ UW ,

sup
u∈UW

{
1 +

φWZ(u)
ψW (u)

}1/2

≤
(
1 + C−1/4

)
sup
u∈UW

{
1 +

φWZ(u)
ψW (u)1/2

}1/2

;
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we deduce that for each ε > 0,

hcW + hcWZ = Op

{
pε
(
1 + hcWZ

)1/2}
. (6.17)

Theorem 3.2 follows directly from (6.17).
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APPENDIX

A.1. Description of the cross-validation procedure. If previous experience with

data of the type being analysed is not sufficient to permit effective choice of thresh-

old using that background, then a data-driven selection needs to be developed.

This, however, is a challenging task, as the sample sizes are typically very small.

As a first practical method, we implemented a cross-validation (CV) procedure

where the basic idea was as follows. Create nX + nY cross-validation samples

(XCV,k,YCV,k, ZCV,k) = (W(−j), T ,Wj), k = j + nX I(W = Y ), j = 1, . . . , nW ,

(W,T ) = (X,Y ) or (Y,X), where W(−j) denotes the sample W with the jth obser-

vation Wj left out; apply the classification procedure to each CV sample, and then

choose (t1, t2) to give a large number of correct classifications, but not too large so
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as to avoid ‘overfitting’ the data. We experimented with different ways of avoiding

the overfitting problem, and found that the following gave quite good results.

(a) Here we describe how to choose the grid on which we search for (t1, t2). One of

the problems in our context is that p is so large that removing one of the data values,

as is done in cross-validation, has substantial impact on the range of the observed

data. Therefore, and since we expect t2 to be related to the extreme observed values,

it would not be appropriate to choose a grid for (t1, t2) and keep it fixed over each

iteration of the algorithm. Instead, at each step k, where k = 1, . . . , nX + nY , of

the algorithm we define the grid in terms of a set of K ∈ [2, 2p− 1] order statistics

U(i1) < U(i2) < . . . < U(iK) of the vector U = (|ZCV,k − X̄CV,k|, |ZCV,k − ȲCV,k|).
(To make notations less heavy, we omit the index k from U .) We keep fixed the

vector I = (i1, . . . , iK) of K indices. At each step we define our grid for (t1, t2)

as U(I) × U(I), where U(I) denotes (U(i1), . . . , U(iK)). The indices 1 ≤ i1 < i2 <

. . . < iK ≤ 2p are chosen such that the last, say, K − S order statistics V(iS+1) <

V(iS+2) < . . . < V(iK) of the vector V = (|Zk− X̄k|, |Zk− Ȳk|) consist of the extreme

values of V , and the first S order statistics V(i1) < V(i2) < . . . < V(iS) are uniformly

distributed over the interval [V(1), V(iS+1−1)].

(b) For k = 1, . . . , nX + nY , apply the HC procedure to the kth cross-validation

sample, for each (t1, t2) in the grid U(I) × U(I).

(c) For each 1 ≤ j, k ≤ K, let Cj,k denote the number of correct classifications out of

the nX+nY cross-validation trials at (b), obtained by taking (t1, t2) = (U(ij), U(ik)).

Of course, since t1 must be less than t2, we set Cj,k = 0 for all j > k.

(d) Taking V as in (a), construct the vector t∗2 of all values V(ik) for which supj Cj,k ≥
M ′ = supj,k Cj,k−(nX +nY )/10. The factor (nX +nY )/10 was chosen heuristically

and it is introduced to avoid overfitting the data. Take t2 as the component of t∗2,

say V(i`), for which #{j s.t. Cj,` ≥M ′} is the largest — in case of non uniqueness,

take V(i`) as the largest such component. Then take t1 as the average of all V(ij)’s

such that Cj,` ≥M ′.

In most cases this method gave good results, with performance lying approx-

imately midway between that using the theoretically optimal (t1, t2) or no thresh-
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olding, i.e. (t1, t2) = (−∞,∞), respectively.

A.2. Proof of Theorem 3.3. For simplicity, we denote NWj by N . Recall that χWj

denotes the distribution of VWj , i.e. the distribution of Zj − W̄.j when Z is drawn

from ΠW . It can be proved from results of Wang (2005) that, under (C1), uniformly

in values of u > 0 that satisfy u = o(N−1/6), and uniformly in W and in 1 ≤ j ≤ p,

χWj(u) = Φ(u) +O
[
N−1/2 |u|3

{
1− Φ(u)}

]
,

where Φ denotes the standard normal distribution function. An analogous result

for u ≤ 0 also holds. Hence for u > 0 satisfying u = o(N−1/6), we have uniformly

in W and in 1 ≤ j ≤ p,

P (|VWj | ≤ u) = 2 Φ(u)− 1 +O
[
N−1/2 u3

{
1− Φ(u)}

]
. (A.1)

Similarly it can be shown that, uniformly in j = j1, . . . , jq, the latter as in (C1),

P (|VWj ± ν| ≤ u) = Φ(u+ ν) + Φ(u− ν)− 1

+O
[
N−1/2 (u+ ν)3

{
1− Φ(|u− ν|)}

]
. (A.2)

Let aWQ(u) denote the series in the definition of hcWQ, at (3.3). Combining

(A.1) and (A.2) we deduce that, if Q 6= W ,

aWQ(u) = q
{

2 Φ(u)− Φ(u+ ν)− Φ(u− ν)
}

+O
[
N−1/2 q (u+ ν)3

{
1− Φ(|u− ν|)}

]
, (A.3)

ψW (u) = 2p {2Φ(u)− 1} {1− Φ(u)}+O
[
N−1/2 p u3 {1− Φ(u)}

]
= {1 + o(1)} 2p {2Φ(u)− 1} {1− Φ(u)} , (A.4)

uniformly in u ∈ UW (C, t). To obtain the second identity in (A.4) we used the

properties t ≥ B > 0 and N−1/2 (log p)3/2 → 0, from (C2) and (3.7) respectively.

Take u =
√

2v log p where 0 < v = v(p) ≤ 1, and recall that ν =
√

2w log p,

where w and s are as in (C2). It can be shown, borrowing ideas from Donoho and

Jin (2004), that

2 Φ(u)− Φ(u+ ν)− Φ(u− ν) = g1(p) p−(
√
v−
√
w)2 , (A.5)

{2Φ(u)− 1} {1− Φ(u)} ∼ C1 (log p)−1/2 p−v , (A.6)
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where, here and below, gj denotes a function that is bounded above by C2 and

below by C3 (log p)−1/2, and C1, C2, C3 denote positive constants. To derive (A.5),

write 2 Φ(u)− Φ(u+ ν)− Φ(u− ν) as

{1− Φ(u+ ν)}+ {1− Φ(u− ν)} − 2 {1− Φ(u)} ,

and use conventional approximations to 1−Φ(z), for moderate to large positive z,

and, when u− ν < 0, to Φ(−z), for z in the same range.

In view of (A.5) and (A.6),

2 Φ(u)− Φ(u+ ν)− Φ(u− ν)
[2p {2Φ(u)− 1} {1− Φ(u)}]1/2

= g2(p) (log p)1/4 pb1 , (A.7)

where b1 = 1
2 (v − 1)− (

√
v −
√
w)2. Similarly,

N−1/2 (u+ ν)3 {1− Φ(|u− ν|)}
[p {1− Φ(u)}]1/2

= O
{
N−1/2 (log p)7/4 pb1

}
. (A.8)

Using (A.3), (A.4), (A.7) and (A.8) we deduce that, provided N−1 (log p)4 → 0,

aWQ(u)
ψW (u)1/2

∼ q g2(p) (log p)1/4 pb1 = g3(p) (log p)1/4 pb2 , (A.9)

where b2 = 1
2 (v + 1)− β − (

√
v −
√
w)2.

Since s, in the definition of t =
√

2s log p, satisfies 0 < s < min(4w, 1), we can

take

v =
{

4w if 0 < w < 1
4

1− c(log p)−1 log log p if 1
4 ≤ w < 1 ,

where c > 1
2 , and have

u =
√

2v log p = min
(
2ν,
√

2 log p− 2c log log p
)
∈ U(C, t) .

For this choice of v, b2 = 2η where η > 0, and it follows from (A.9) that

hcWQ ≥
aWQ(u)
ψW (u)1/2

≥ C4 p
η .

Result (3.8) follows.


