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Abstract: Nonparametric estimation of a density from contaminated data is a diffi-
cult problem, for which convergence rates are notoriously slow. We introduce para-
metrically assisted nonparametric estimators which can dramatically improve on per-
formance of standard nonparametric estimators when the assumed model is close to
the true density, without degrading much the quality of purely nonparametric esti-
mators in other cases. We establish optimal convergence rates for our problem, and
discuss estimators that attain these rates. The very good numerical properties of the
methods are illustrated via a simulation study.
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1 Introduction

Nonparametric estimation of a density fX in the case of measurement error models

has been studied widely. For an excellent introduction to measurement error mod-

els, see Carroll et al. (2006). One of the most popular estimation techniques is the

deconvolution kernel method of Carroll and Hall (1988) and Stefanski and Carroll

(1990). See also Liu and Taylor (1989), Fan (1991a,b), Diggle and Hall (1993), Fan

(1993) and Masry (1993). Although this estimator is nonparametrically optimal, its

convergence rates can be quite slow for some types of errors, and its practical per-

formance is not completely satisfactory. Moreover, even when critical information

about the target density is given, the information cannot readily be incorporated

to improve performance. A semiparametric spline method has been considered by

Hazelton and Turlach (2010), where the ratio of fX and the contaminated density is

modelled parametrically. However, their estimator is not consistent unless their para-

metric assumption is correct. As a result, while it can work well when their 5-knot

spline model is a good approximation to the true ratio, it can perform significantly
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worse than standard deconvolution estimators in other cases. Carroll et al. (2011)

propose an estimator that includes qualitative constraints (e.g. unimodality), but

their method is computationally involved and can offer only modest improvements;

for example, it does not improve convergence rates of conventional nonparametric

estimators. In this paper, we consider estimation of a density fX based on error con-

taminated data, especially when fX is known or believed to be close to a parametric

family of densities f( · | θ) where θ is a vector-valued parameter. We wish to construct

an estimator that is consistent even when the parametric assumption is incorrect.

Consistently estimating fX in a partially parametric setting has been considered

before in the literature, but, to our knowledge, only in the context of zero mea-

surement error; see Olkin and Spiegelman (1987), Hjort and Glad (1995), Jones et

al. (1995) and Hjort and Jones (1996).

Even in an error-free context, a convincing case for existing methods has arguably

not been made in the literature. The existing treatment, especially from a theoretical

viewpoint, has not focused on cases where the density fX is close, as a function, to the

density f( · | θ), for example in the sense that the supremum of the difference between

derivatives of fX and f( · | θ) is small. In order for our theoretical analysis to have

the correct focus we have to quantify what we mean by “small,” and the simplest

way of doing that is to ask that it converge to zero as sample size increases. (Looking

ahead to section 3, this corresponds to taking η, in (3.8), to decrease to zero as n

diverges.) If the difference does not decrease with increasing n then, in asymptotic

terms, there are relatively few advantages to borrowing from a parametric model,

since the convergence rate remains unaltered.

Specifically, we take up the problem in cases where measurement error is present,

and show that in this more difficult and more general setting the convergence rate can

be improved significantly, to an optimal extent. The use of performance enhancing

methods in this context has substantial potential advantages because the performance

of conventional estimators is relatively poor.
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We propose three consistent density estimators which incorporate this informa-

tion and can produce order-of-magnitude improvements in the convergence rate of

standard deconvolution methods when f( · | θ) is not too far from fX , without de-

grading the rates otherwise. On the theoretical side, we demonstrate that asymptotic

improvements in convergence rates are generally possible when the distance between

fX and the assumed parametric model decreases with sample size. We prove that, if

this distance tends to zero, then pronounced rate improvements can be obtained using

our suggested estimators, and those improvements result in asymptotically optimal

performance.

2 Model and Methodology

We observe independent data W1, . . . ,Wn, identically distributed as

W = X + U , (2.1)

where X and U are independent and the density fU of U is known and is symmetric

about 0. We wish to estimate fX , the density of X.

Let h > 0 and K denote a bandwidth and kernel function, respectively, and write

ϕK(t) =
∫
eitxK(x) dx for the Fourier transform of K, where i =

√
−1. (Throughout

this paper, we use ϕf to denote the Fourier transform of a function f .) The decon-

volution kernel estimator of fX , introduced by Carroll and Hall (1988) and Stefanski

and Carroll (1990), is given by

f̂dec(x) =
1

nh

n∑
j=1

KU

(
x−Wj

h

)
where KU(u) =

1

2π

∫
e−itu

ϕK(t)

ϕU(t/h)
dt . (2.2)

(Here and throughout we assume that ϕU never vanishes and that the integral in (2.2)

is well defined.) This nonparametric estimator is consistent under mild conditions and

has optimal nonparametric convergence rates; see Carroll and Hall (1988) and Fan

(1991a). However, because of the intrinsic difficulty of nonparametric deconvolution,
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these rates can be quite slow, which is reflected by somewhat disappointing finite

sample performance.

Nevertheless, in some cases we may have some (correct or incorrect) parametric

information about fX . Clearly, in such instances we could improve the estimator if

we could modify it in a way that incorporates the parametric guess only when it

is correct, or close to being correct. Let f( · | θ) denote a parametric model for the

density of X, where θ ∈ Θ is a finite-dimensional parameter. In the next sections,

we construct parametrically assisted estimators that can improve the performance of

f̂dec when fX is approximately of the form f( · | θ), and do not significantly degrade

its quality otherwise.

2.1 The ratio estimator

First we consider an extension to the measurement error case of the method of Hjort

and Glad (1995), developed in the error-free case. There, X1, . . . , Xn are observed

without error, and the authors modify the standard kernel density estimator f̌X(x) =

(nh)−1
∑n

j=1 K{(x−Xj)/h} of fX by taking f̄X(x | θ) = n−1 f(x | θ)
∑n

j=1 Kx(Xj | θ, h) ,

where Kx(u | θ, h) = K{(x− u)/h}/{hf(u | θ)} .

To adapt f̄X to the error context, where we observe only W1, . . . ,Wn, we suggest

using an estimator of the form

f̂rat(x | θ) = f(x | θ) 1
n

n∑
j=1

Lx(Wj | θ, h) , (2.3)

where the function Lx, which needs to be determined, is such that

E
{
Lx(Wj | θ, h) |Xj

}
= Kx(Xj | θ, h) . (2.4)

Indeed, with Lx constructed in this way, our estimator is guaranteed to have the same

bias as the error-free estimator f̄X . While the idea is simple, the difficulty is to find a

function Lx that satisfies (2.4). However, as Delaigle et al. (2009) suggested, decon-

volution problems are often easier to solve when considered in the Fourier domain. In
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Appendix A.1 we compute the Fourier version of (2.4), and prove that the solution

can be written as

Lx(u | θ, h) =
1

2π

∫
e−itu ϕKx( · | θ,h)(t)/ϕU(t) dt , (2.5)

where ϕKx( · | θ,h) denotes the Fourier transform of the function Kx( · | θ, h).

In practice, θ would typically be estimated from the data, to minimise an estimator

of a distance between fX and f( · | θ), or to maximise a likelihood. Let θ̂ denote a

value of θ computed from the data W1, . . . ,Wn. Our estimator of fX , based on θ̂, is

defined by

f̂rat(x | θ̂) = f(x | θ̂) 1
n

n∑
j=1

Lx(Wj | θ̂, h) . (2.6)

In section 3 we prove that f̂rat has optimal convergence rates in a variety of settings,

when the parametric assumption f( · | θ) is reasonably accurate; our proof is also

valid in the error-free case, where our results are also new. We shall see too that the

improvements of f̂rat over the standard deconvolution estimator f̂dec, defined at (2.2),

are in terms of reduced bias, and that it asymptotically has the same variance as f̂dec.

Remark 1. Using the technique employed to derive Lx in (2.5), the work of Naito

(2004), which introduces a general class of multiplicatively adjusted density estima-

tors that includes estimators suggested by Hjort and Jones (1996), based on local

likelihood ideas, as well as the approach of Hjort and Glad (1995), can be generalised

to the case of measurement error. There f̂rat, defined at (2.3), would be altered to

f̂α(x | θ̂, h) = f(x | θ̂) ξα(x | θ̂, h), where

ξα(x | θ, h) =
n−1

∑
j Lα,x(Wj | θ, h)∫

f(u | θ)Kα,x(u | θ, h) du
,

Lα,x(u | θ, h) =
1

2π

∫
e−itu ϕKα,x( · | θ,h)(t) /ϕU(t) dt ,

Kα,x(u | θ, h) = h−1K{(x− u)/h} f(u | θ)1−α ,

and α is a user-chooseable parameter. Similar extensions are possible for the density

versions of parametrically guided regression estimators suggested by Fan, Wu and
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Feng (2009). However, we feel that the latter approach loses some of its appeal when

developed in the setting of density estimation, since there the density approximation

being used as the “start” is often not itself a density, and so some of the motivation

is lost. Of course, this is not an issue in the setting of regression, but in the context

of density estimation it extends to measurement error problems.

2.2 The bias corrected estimator

Despite its good theoretical properties, in practice the estimator f̂rat suffers from a

number of drawbacks, such as the difficulty of implementation (no analytic formula)

and numerical problems caused by division by f(u | θ); see section 4.3. As an alter-

native to reducing the bias of f̂dec when f( · | θ) is close to fX , without increasing it

much otherwise, we suggest instead subtracting from f̂dec a parametric estimator of

its bias. Since Bias(f̂dec) = fX ∗ Kh − fX , where Kh = h−1K(x/h) and ∗ denotes

convolution, this means that we suggest using the estimator

f̂bco(x | θ) = f̂dec(x)− {f( · | θ) ∗Kh}(x) + f(x | θ) (2.7)

in cases where θ is fixed. When θ is estimated from the data, as θ̂, we take f̂bco(x | θ̂) =

f̂dec(x)−{f( · | θ̂)∗Kh}(x)+f(x | θ̂). This estimator is much simpler to compute than

f̂rat, and, as we shall see in section 5, it works particularly well in practice. In addition,

it shares the optimality property of f̂rat; see section 3.

2.3 The weighted estimator

As an alternative we could also adapt the error-free estimator of Olkin and Spiegelman

(1987) to the measurement error case. In their error-free context, they suggest using

the estimator wf(x | θ) + (1 − w)f̌X(x), where f̌X is the standard error-free kernel

estimator of fX , and w ∈ [0, 1] is a parameter which ideally is close to 1 when f( · | θ)

is close to fX , and close to zero otherwise. In practice, Olkin and Spiegelman (1987)

suggest choosing w and θ by maximum likelihood (ML).

6



For w and θ fixed, their estimator is straightforward to adapt to the measurement

error context:

f̂wgt(x | θ) = w f(x | θ) + (1− w) f̂dec(x) , (2.8)

and in principle we could, like them, choose w and θ by maximum likelihood. Of

course, in the measurement error context, since the Xis are not available, ML should

be based on the density g(x | θ) = {fX( · | θ) ∗ fU}(x) corresponding to the contami-

nated dataW1, . . . ,Wn. However, working with the density of theWis instead of that

of the Xis increases considerably the variability of ML estimators, especially when

the error variance is large (see section 4.1).

We experimented with this ML approach for choosing w and found it gave poor

results. Let ∥ · ∥2 denote the L2-norm. In our errors-in-variables context, we suggest

instead choosing w from the data by taking

ŵ = ∥Fn − F̌W∥2
/
{∥Fn − F̌W∥2 + ∥Fn −G( · | θ̂)∥2} , (2.9)

where θ̂ is the ML estimator of θ, G(w | θ̂) =
∫ w
−∞ g(x | θ̂) dx, F̌W (w) =

∫ w
−∞ f̌W (x) dx,

with f̌W denoting the standard kernel estimator of fW constructed from the Wis, and

Fn the empirical cdf of W . Here we compute f̌W with a bandwidth hw of the same

order as the deconvolution bandwidth (it can be proved that this choice is optimal,

but f̂wgt does not generally enjoy optimal convergence rates; see section 3).

3 Theoretical Properties

3.1 Error types and convergence rates of standard deconvo-
lution estimator

As in other nonparametric deconvolution problems, the rates of convergence of the

estimators introduced in section 2 depend on the rate of decay of the tails of the

characteristic function ϕU . Two classes of error are usually considered in the non-

parametric deconvolution literature: ordinary smooth errors and supersmooth errors;
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see Fan (1991a). If ϕU never vanishes then the distribution of U is ordinary smooth,

of order α > 0, when

d0 (1 + |t|)−α ≤ |ϕU(t)| ≤ d1 (1 + |t|)−α for all t , (3.1)

for constants d0 > 0 and d1 > 0; and the distribution is supersmooth, of order α > 0, if

d0 (1+ |t|)α1 exp
(
−|t|α

/
γ
)
≤ |ϕU(t)| ≤ d1 (1+ |t|)α2 exp

(
−|t|α

/
γ
)

for all t , (3.2)

for constants d0 > 0, d1 > 0, γ > 0, α1 and α2.

As a prelude to summarising the properties of the standard deconvolution estima-

tor f̂dec, defined at (2.2), we introduce the following standard assumptions:

(A1) fX has β bounded derivatives on the real line, IR;

(A2) K is real valued and symmetric,
∫
(1 + |u|β) |K(u)| du < ∞,

∫
K = 1, and∫

ujK(u) du = 0 for j = 1, . . . , β − 1;

(A3) when ϕU satisfies (3.1),
∫
{|t|α|ϕK(t)|+ |t|2α|ϕK(t)|2} dt <∞, and when ϕU sat-

isfies (3.2), ϕK(t) =
(
1− t2

)κ
I(−1 ≤ t ≤ 1), where κ > 0.

Under (A1)–(A3), it is well known (see Fan, 1991a) that, in the ordinary smooth

case (3.1), for each x ∈ IR,

if we take h ≍ n−1/(2α+2β+1), then f̂dec(x)− fX(x) = Op(n
−β/(2α+2β+1)); (3.3)

and, in the supersmooth case (3.2), for each x ∈ IR,

if h = c (lnn)−1/α with c > (2/γ)1/α, then f̂dec(x)− fX(x) = Op{(lnn)−β/α}. (3.4)

3.2 Parametric model

To derive convergence rates for our estimators we need to impose conditions on the

parametric model. In this section we state and discuss our assumptions, of which the

most basic is:

fX is in a class F of densities that are uniformly bounded. (3.5)
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To make our analysis realistic we shall permit fX to depend on n, but take F , in (3.5),

and the model f( · | θ) to be fixed. See Appendix A.6 for discussion. For definiteness

we assume that Θ is a nondegenerate, closed ball in IRp, although of course other

shapes are possible.

The estimator θ̂, computed from data drawn from the distribution with density

fX , rather than with density f( · | θ) for some θ, should be viewed as an approximation

to a particular value, θ1 say, of θ. Since fX may depend on n then θ1 can too. We

shall assume that θ̂ comes from Θ and differs from θ1 by only Op(n
−1/2):

lim supn→∞ supfX∈F PfX (∥θ̂ − θ1∥ > C n−1/2) → 0 as C → ∞, where θ1 ∈ Θ

can depend on n and fX , and moreover, PfX (θ̂ ∈ Θ) = 1.
(3.6)

Here PfX denotes the probability measure P when the data have density fX , and ∥ · ∥

is the conventional Euclidean norm in p-variate space. For example, if the family

f( · | θ) contains the density fX and θ̂ is computed by maximum likelihood, then θ1 is

the true value of θ, and (3.6) states merely that the maximum likelihood estimator is
√
n-consistent.

Since fX and θ1 can depend on n, so too can the function

ψ = fX − f( · | θ1) , (3.7)

which necessarily satisfies
∫
ψ = 0. We can also view θ1 as a function of ψ, using the

notation θ1(ψ). The simplest case is that where ψ does not depend on n, in which case

θ1 = θ1(ψ) is also fixed. The theory developed by Hjort and Glad (1995) addresses this

case, although those authors treat only the error-free case. Of significantly greater

interest, because it goes to the heart of the motivation for using a parametric model

to assist a nonparametric estimator, is the setting where ψ in (3.7), or an appropriate

derivative of it, converges to zero as n diverges.

To reflect this, recall that in section 1 we stressed that, to make a convincing

theoretical case for the advantages of using a parametric start, we would have to

treat cases where the difference between derivatives of the densities fX and f( · | θ)
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becomes small as n increases. In (3.8) below we assume that the difference between

the highest order derivatives is of order η = η(n); as we have just indicated, the

most interesting case is that where η = o(1). See also Appendix A.5, where we

discuss related conditions imposed in section 3.6. We could ask that the left-hand

side of the first identity in (3.8) equal O(η), but that turns out to be an unnecessary

strengthening of the assumption when deriving the upper bounds in (3.9) and (3.10):

sup
0≤j≤ℓ0

sup
x∈IR

|ψ(j)(x)| = O(1) and sup
x∈IR

|ψ(ℓ0)(x)| = O(η) , (3.8)

where η = η(n) = O(1). When η = o(1) the density fX is demonstrably close to

the model, and it is reasonable to ask whether, and in what manner, the size of η

is reflected in the convergence rates of estimators. A similar problem, although in a

different setting, was explored by Eguchi and Copas (1998).

3.3 Convergence rates for the bias corrected estimator

To study theoretical properties of the bias corrected estimator f̂bco, given by (2.7),

with θ there replaced by the estimator θ̂, we assume that (A2) and (A3) hold, and

that:

(A4) supx∈IR supθ∈Θ ∥∂f(x | θ)/∂θ∥ <∞.

If (3.5) and (3.6) hold, if ψ satisfies (3.8) with ℓ0 = β (this replaces condition (A1) of

section 3.1), if (A2)–(A4) hold, and if θ̂ = θ1 +Op(n
−1/2), then it can be proved (see

Appendix A.2) that when ϕU satisfies (3.1), i.e. the distribution of U is in the ordinary

smooth class of errors (see section 3.1), and we take h ≍ min{1,(nη2)−1/(2α+2β+1)},

then for each x ∈ IR we have

f̂bco(x | θ̂)− fX(x) =

{
Op(n

−1/2) if η = O(n−1/2)

Op

{
(η2α+1/nβ)1/(2α+2β+1)

}
if n1/2η → ∞ ;

(3.9)

and when ϕU satisfies (3.2), i.e. the distribution of U is in the supersmooth class of

errors (again, see section 3.1), if h = min{1, c [ln(nη2)]−1/α}, with c > (2/γ)1/α, then
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for each x ∈ IR we have

f̂bco(x | θ̂)− fX(x) =

{
Op(n

−1/2) if η = O(n−1/2)

Op

[
η {ln(nη2)}−β/α

]
if n1/2η → ∞ .

(3.10)

Comparing (3.9) and (3.10) with (3.3) and (3.4), we conclude that f̂bco(x) con-

verges to fX(x) at a rate (sometimes considerably) faster than the standard rate in

this measurement-error problem. For finite sample size, as long as the parametric

model f( · | θ) is a reasonable approximation to the true density fX (i.e. η is relatively

small), it can be expected that the estimator f̂bco will improve on f̂dec. In section

3.6 we complete the picture by showing that these convergence rates are optimal. In

Appendix A.2 we derive the bias and variance of our estimator (see (A.1)–(A.3)).

These show that the improvements offered by f̂bco over f̂dec are in terms of bias; the

two estimators have the same asymptotic variance.

3.4 Convergence rates for the weighted estimator

Broadly similar results can be derived for the estimator f̂wgt, defined at (2.8). Specif-

ically, let us assume that (3.5), (3.6), (3.8) for ℓ0 = 0, and (A1)–(A4), hold. If ŵ is

given by (2.9), where F̌W is computed using a bandwidth hw, then it can be proved

that, when ϕU satisfies (3.1) and we take hw ≍ n−1/(2α+2β+1), and when ϕU satisfies

(3.2) and hw = c (lnn)−1/α, with c > (2/γ)1/α, we have: ŵ = Op

{
hβw/(η∨n−1/2+hβw)

}
and 1− ŵ = Op

{
(η ∨ n−1/2)/(η ∨ n−1/2 + hβw)

}
.

Hence, under (3.1), if we compute f̂dec with a bandwidth h ≍ n−1/(2α+2β+1) and

under (3.2), if we take h = c (lnn)−1/α with c > (2/γ)1/α, then, for each x ∈ IR

f̂wgt(x | θ̂)− fX(x) =

{
Op(η ∨ n−1/2) if η ≤ hβ

Op(h
β) if η > hβ .

(3.11)

It is straightforward to show that, except in pathological cases where biases are of

unusually small order, the convergence rates at (3.11) cannot be improved using other

choices of ŵ. Note that the convergence rate in the second part of (3.11) is the rate

of f̂dec (see (3.3)–(3.4)), and is slower than that of f̂bco unless η does not tend to
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zero. In particular, f̂wgt is not optimal, as will be reflected by our numerical results

in section 5.

3.5 Convergence rates for the ratio estimator

Next we show that the convergence rates of the estimator f̂rat are identical to those

for f̂bco. However, we shall see later that f̂bco often enjoys better performance in

practice. This is due at least partly to the inherent construction of f̂rat, which involves

one random variable divided by another. Fluctuations of the random variable in the

denominator cause problems that are particularly difficult to remove. Related to this,

the convergence rates for the estimator f̂rat are awkward to derive, and so we shall

give details only in the case of ordinary smooth errors.

To frame our regularity conditions we put

gk(x | θ) =
{
∂k

∂uk
f(x | θ)

f(x− u | θ)

}
u=0

,

and we define the function ω in terms of the remainder in a short Taylor expansion:

f(x | θ)
f(x− u | θ)

=
r+1∑
k=0

uk

k!
gk(x | θ) + ω(u, x | θ)ur+1 , (3.12)

where the integer r ≥ 0 is fixed. Put γh,x(u | θ) = ω(hu, x | θ)ur+1K(u) and let

γ
(ℓ)
h,x(u | θ) be the ℓth partial derivative of γh,x(u | θ) with respect to u. Write ϕ

(k)
K for

the kth derivative of ϕK .

We make the following assumptions, where I denotes a compact interval on which

we wish to estimate fX :

(B1) fX satisfies (3.5) and ψ satisfies (3.8) for ℓ0 = 0, . . . , β;

(B2) K satisfies (A2),
∫
(1+ |t|)α+1 |ϕ(k)

K (t)| dt <∞ and
∫
{(1+ |t|)α |ϕ(k)

K (t)|}2 dt <∞

for k = 0, . . . , r, where, here and below, the fixed integer r is as in (3.12);

(B3) h = h(n) satisfies h = O(n−c), for some c ≥ 0; h ≍ 1 if c = 0; and nh2α+1 → ∞

if c > 0;

(B4) f(x | θ) is bounded away from zero uniformly in x ∈ I and θ ∈ Θ;
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(B5) for k = 1, . . . , r, each first derivative of gk(x | θ), with respect to θ, is bounded

uniformly in x ∈ I and θ ∈ Θ;

(B6) γ
(ℓ)
h,x(u | θ) exists for ℓ = 1, . . . , s, and

∫
|γ(ℓ)h,x(u | θ)| du is bounded uniformly in

0 ≤ h ≤ C1, x ∈ I, θ ∈ Θ and ℓ = 0, s, where s > α+ 1 is an integer and C1 > 0 is a

finite constant.

These conditions are discussed in Appendix A.4, where we also give examples illustrat-

ing (B6). Assume (3.1), (3.6) and (B1)–(B6), and take h ≍ min{1, (nη2)−1/(2α+2β+1)}.

Under these conditions, if r is large enough so that hr−s+1 = O{(η2α+1/nβ)1/(2α+2β+1)},

then for each x ∈ I we have

f̂rat(x)− fX(x) =

{
Op(n

−1/2) if η = O(n−1/2)

Op{(η2α+1/nβ)1/(2α+2β+1)} if n1/2η → ∞ .
(3.13)

A derivation of (3.13) in the case n1/2η → ∞ is given in section B.2 of the supple-

mentary file. A proof in the case η = O(n−1/2) is relatively straightforward, and so is

omitted.

The estimator f̂rat(x) has properties similar to f̂bco: it converges to fX(x) at a

faster rate than the standard deconvolution estimator as soon as η = η(n) → 0 (see

(3.13)), and the improvements offered by f̂rat over f̂dec are principally in terms of

lower bias (see section B.2). Moreover, in a variety of settings and up to terms that

are asymptotically negligible, f̂rat and the standard deconvolution estimator f̂dec have

identical standard deviation; see section B.2.

3.6 Optimality

The statistically challenging aspect of this problem is accommodating the function ψ

in (3.7), rather than estimating the parameter θ in the model f( · | θ). Indeed, a value

of θ having the property that f( · | θ) approximates fX typically can be estimated root-

n consistently. To address optimality it is sufficient to take the model density f( · | θ)

to be a fixed density f0, not depending on θ, and to consider estimating fX = f0 + ψ
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at a fixed point x0. We assume that:

f(x | θ) ≡ f0(x), not depending on θ, where f0(x) is bounded away from zero
for x in a neighborhood of x0.

(3.14)

In order for our main result to be relevant to an account of optimality for smooth

densities fX , it should address properties that hold uniformly in a class of functions

ψ which includes cases of greatest statistical difficulty. This class will be denoted by

Ψn, and enjoys the following properties; here and below, C2, C3, . . . denote positive

constants:

defining s(ψ) = max0≤j≤β supx |ψ(j)(x)|, where β ≥ 1, we have
supψ∈Ψn

s(ψ) ≤ C2 η for each n, and in particular, each ψ ∈ Ψn has β
derivatives; and

∫
|ψ| < ∞,

∫
ψ = 0, and f0 + ψ is a proper probability

density function whenever ψ ∈ Ψn and θ1(ψ) ∈ Θ.

(3.15)

Moreover, we assume that η = η(n) satisfies

C3 n
−1/2 ≤ η ≤ C4 . (3.16)

See Appendix A.5 for a discussion of these conditions.

It can be proved that the upper bounds to convergence rates, given earlier at

(3.9) and (3.13), hold uniformly over ψ ∈ Ψn, for each x ∈ I. In particular, with

f̂ denoting either f̂bco or f̂rat, the second parts of each of (3.9) and (3.13) can be

extended to:

lim
C→∞

lim sup
n→∞

sup
ψ∈Ψn

P
{∣∣f̂(x | θ̂)− fX(x)

∣∣ > C
(
η2α+1

/
nβ

)1/(2α+2β+1)
}
= 0 (3.17)

for each x ∈ I. Let S denote the set of all measurable functions of the dataW1, . . . ,Wn

(S represents the class of all possible estimators of fX(x0) that can be computed from

the data).

The following result implies that, in the context of ordinary-smooth errors, no esti-

mator can converge at a rate faster than the upper bound at (3.17); see Appendix A.3

for a proof. Note that the conditions on the derivatives of ϕU imposed in Theorem 1

14



slightly restrict the class of ordinary smooth errors; these conditions are the same

as those imposed in Fan’s (1991a) Theorem 5, and are used to control terms that

depend on ϕ′′
U . These, and similar conditions on ϕU appearing in Theorem 2 below,

can be replaced by another set of conditions, for example those used in Delaigle and

Meister’s (2008) Theorem 2.1.

Theorem 1. Assume that the error distribution satisfies |ϕ(j)
U (t)| ≤ C5 (1 + |t|)−j−α

for j = 0, 1, 2, where α > 0. If fX = f0 + ψ, where f0 satisfies (3.14), and if (3.16)

holds and C4 there is sufficiently small, then there exist two candidates ψ1, ψ2 for ψ,

each depending on n and each satisfying (3.15), such that

lim
C→∞

lim sup
n→∞

inf
ϕ(W1,...,Wn)∈S

sup
ψ∈{ψ1,ψ2}

PfX

{∣∣ϕ(W1, . . . ,Wn)− fX(x0)
∣∣

> C
(
η2α+1

/
nβ

)1/(2α+2β+1)
}
= 0 . (3.18)

Together, (3.17) and (3.18) show that the rates given at (3.9) and (3.13), for the

ordinary smooth error case, are optimal.

Finally in this section we state a version of Theorem 1 in the supersmooth case.

Theorem 2. Assume that maxj=0,1,2 |ϕ(j)
U (t)| ≤ C6 (1 + |t|)α3 exp(−|t|α/γ), where

α, γ > 0 and α3 are constants. If fX = f0+ψ, where f0 satisfies (3.14), and if (3.16)

holds and C4 there is sufficiently small, then there exist two candidates ψ1, ψ2 for ψ,

each depending on n and each satisfying (3.15), such that

lim
C→∞

lim sup
n→∞

inf
ϕ(W1,...,Wn)∈S

sup
ψ∈{ψ1,ψ2}

PfX

[∣∣ϕ(W1, . . . ,Wn)− fX(x0)
∣∣

> C η
{
log

(
1 + nη2

)}−β/α
]
= 0 .

4 Details of implementation

4.1 Maximum likelihood estimator of θ

To choose θ from the data, a natural approach is to maximise the likelihood of the

contaminated observations W1, . . . ,Wn. Under the parametric assumption that fX =

15



f( · | θ), the parametric form of the density fW of the Wjs is given by fW ( · | θ) =

f( · | θ)∗ fU . Therefore, the ML estimator of θ is given by θ̂ML = argmaxθ∈Θ
∑n

j=1 log∫
f(Wj − u | θ)fU(u) du , and can be computed by the EM algorithm. In theory, θ̂ML

has the usual n−1/2 convergence rate under mild conditions, but because fW ( · | θ)

is obtained by convolution of f( · | θ) and fU , its variance is larger than that of the

ML estimator based on error-free data. In particular, the smoother the errors (i.e.,

the faster ϕU tends to zero in the tails), the larger the variance of θ̂ML. In practice,

this means that if the errors are supersmooth or the variance of U is large, then θ̂ML

can be too variable unless n is large, and this can significantly affect performance of

function estimators.

4.2 Minimum distance estimator of θ

Another possibility is to use the Minimum Distance (MD) estimator studied by Cao et

al. (1995), and defined, in their error-free setting, by θ̂MD = argminθ∈ΘD{f̌X , f( · | θ)},

where D is a distance, for example the L2-norm, and f̌X is the standard error-free

kernel estimator of fX . In our errors-in-variables setting, we could apply their method

to the data Wi, taking θ̂ to minimise D{f̌W , f( · | θ) ∗ fU}, where f̌W is the standard

error-free kernel estimator of fW computed from the Wis. In theory, this estimator

has n−1/2 convergence rates when the bandwidth used to compute f̌W is sufficiently

small, but in practice, we found that, for small n, it had difficulties estimating the

variance components of f( · | θ) in cases where f( · | θ) was a mixture. These difficulties

come from the fact that the fluctuations of f( · | θ), when θ varies, are smoothed out

in the convolution f( · | θ) ∗ fU , which makes it hard to properly identify peaks in

f( · | θ).

To overcome this problem, in the errors-in-variables context, we define the MD

estimator by

θ̂MD = argmin
θ∈Θ

∫ {
f̂dec(x)− f(x | θ)

}2
dx, (4.1)

where, on this occasion, f̂dec denotes the deconvolution estimator of fX computed

16



with the sinc kernel, defined via ϕK(t) = I{−1 ≤ t ≤ 1}. It can be proved that

when f̂dec in (4.1) is computed with this kernel and an appropriate bandwidth, θ̂MD

converges to θ at a n−1/2 rate as long as fX is sufficiently smooth relative to fU .

To apply this method, we need to choose a bandwidth for computing f̂dec in (4.1).

We can easily compute a good bandwidth hf for estimating fX by f̂dec with the

sinc kernel, using for example the normal reference (NR) bandwidth hNR for this

kernel (see section C.3 in the supplementary file). However, a good bandwidth hθ for

estimating θ through f̂dec is not necessarily close to hf .

Let c = hθ/hf . We suggest estimating hθ by ĥθ = ĉ hNR, where we compute the

estimator ĉ of c by the following bootstrap method:

1. Generate B bootstrap samples of size n from f( · | θ̂P ) ∗ fU , conditionally on

W1, . . . ,Wn, where θ̂P is a pilot estimator of θ obtained by minimising the right

hand side of (4.1), with f̂dec computed using a second order kernel and the

plug-in bandwidth of Delaigle and Gijbels (2002, 2004).

2. For b = 1, . . . , B, compute the NR bandwidth hNR,b of section C.3, using the

bth bootstrap sample. For each c on a grid, and for b = 1, . . . , B, estimate θ̂P

by

θ̂∗b (c hNR,b) = argmin
θ∈Θ

∫ {
f̂ ∗
dec,b(x; c hNR,b)− f(x | θ)

}2
dx,

where f̂ ∗
dec,b(x; c hNR,b) denotes the deconvolution estimator computed from the

bth bootstrap sample, using the bandwidth c hNR,b and the sinc kernel.

3. Choose ĉ = argmincB
−1

∑
1≤b≤B{θ̂∗b (c hNR,b)− θ̂P}2.

In step 1, we use a second order kernel and a bandwidth slightly larger than the

optimal bandwidth for estimating θ, because it leads to an estimator θ̂P that is not

too variable, which in turns prevents the estimator of the bandwidth from being too

variable.
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4.3 Computing the ratio estimator

In general, there is no closed form for the Fourier transform ϕKx of Kx, which needs to

be approximated by numerical integration, although in the particular case where U

has a Laplace distribution, or the distribution of a sum of Laplace random variables,

Lx can be written explicitly as a linear combination of derivatives of Kx (see section

C.1 in the supplementary file).

This makes this estimator rather unattractive, despite its good asymptotic prop-

erties. Another difficulty when computing f̂rat is that it involves dividing by f(u | θ),

which causes problems when f(u | θ) is too small, even when the estimator can be

written explicitly. To avoid this, we can replace a too small denominator by a small

ridge parameter. In our numerical work we developed such a procedure in the par-

ticular Laplace error case; see section C.1 in the supplementary file for details. As

we shall see in section 5.2, this gave good results, but more generally, given that our

other estimators are simpler to calculate, and perform very well in practice, it seems

too cumbersome to develop an effective version of f̂rat for each possible combination

of error and kernel.

4.4 Choice of the bandwidths and the kernel

Except for step 2 in the bootstrap algorithm of section 4.2, to compute f̂dec we used

a second order kernel and the plug-in bandwidth of Delaigle and Gijbels (2004). As

usual in the deconvolution kernel literature, in the ordinary smooth error case we use

the standard normal kernel, and in the supersmooth case we use the kernel defined

via ϕK(t) = (1− t2)3I{−1 ≤ t ≤ 1}. Each of our three estimators f̂rat, f̂bco and f̂wgt

requires a bandwidth h. In general, a bandwidth should be chosen to minimise some

distance between the estimator and the true unknown density. For each estimator,

we experimented with data-driven versions of the bandwidth that minimises the L2

distance between the estimator and fX , and compared the results with those obtained
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when using the plug-in bandwidth of Delaigle and Gijbels (2004) to compute f̂dec.

For f̂bco and f̂wgt, we found we could simply use this plug-in bandwidth, but for

f̂rat we found we could get better results by using a more sophisticated simulation-

extrapolation (SIMEX) bandwidth of the type suggested by Delaigle and Hall (2008).

See section C.2 in the supplementary file for details of how to compute this bandwidth.

5 Numerical study

5.1 Simulation settings

We examined the practical performance of our methods by applying them to simulated

examples. We generated 100 samples of independent variables X1, . . . , Xn, where

n = 200, 300 and 700, from six densities: (i) 0.5ϕ−2.2,1 + 0.5ϕ2.2,1; (ii) 0.5ϕ−1.5,1 +

0.5ϕ1.5,1; (iii) 0.75ϕ−21 + 0.25ϕ1,0.5; (iv) Gamma(3, 1); (v) -2+0.25 Gamma(5, 1) +

0.75 Gamma(24, 0.5); (vi) 3+0.25 Gamma(5, .5) + 0.75 Gamma(24, 0.5), where ϕµ,σ

denotes the density of a normal random variable with mean µ and variance σ2, and

Gamma(k, θ) denotes the density of a Gamma random variable with shape parameter

k and scale θ. We obtained the contaminated dataW1, . . . ,Wn by takingWi = Xi+Ui,

where the Ui ∼ fU were independent random variables, and independent of the Xis.

For fU , in each case, we considered Laplace and normal densities such that the noise

to signal ratio NSR = Var(U)/Var(X) equals 10% or 25%.

When computing our estimators, for densities (i)–(iii) we used the correct model

for f( · | θ), that is, we took f( · | θ) to be a normal mixture of the form p ϕµ1,σ1 +

(1−p)ϕµ2,σ2 , and θ = (p, µ1, σ1, µ2, σ2). However, since in practice it can be expected

that we often use an approximate model, we used a wrong parametric form for the

gamma mixture densities (iv) to (vi). More precisely, we modelled (iv) by a normal

density, and we modelled (v) and (vi) by the normal mixture form introduced above.

Our theory indicates that, in finite sample, using approximate models should lead to
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Figure 5.1: Quartile curves f̂1 (Q1), f̂2 (Q2) and f̂3 (Q3) when estimating density (i)
with f̂dec (left), f̂bco (middle) or f̂wgt (right), when n = 200 and U ∼ Laplace with
NSR = 10% (1st row) or NSR = 25% (2nd row).

improvements over f̂dec, and we shall see that our simulation results confirm this.

5.2 Simulation results

We applied the estimators f̂dec, f̂rat, f̂bco and f̂wgt to the contaminated samples gen-

erated for each setting described above. We implemented our three estimators with

θ estimated by θ̂P (the pilot estimator of section 4.2), θ̂MD and θ̂ML, and found that,

due to the variability caused by its ratio form, f̂rat performed best with θ̂P , whereas

f̂bco and f̂wgt performed best with, respectively, θ̂MD and θ̂ML. In the tables below we

report results only for these three best combinations.

Let f̂ denote any one of these estimators; for each, we computed the 100 integrated

squared errors ISE =
∫
(f̂ − fX)

2 corresponding to the 100 generated samples. In the

tables we report the median and inter-quartile range (IQR) of the 100 ISEs for each

case. In the figures, for a given method and density fX , we show the three estimated

20



curves f̂1, f̂2 and f̂3 that resulted in, respectively, the first, second and third quartile

of these 100 ISE values, and we refer to them as “the quartile curves”. Additional

tables, reporting the integrated squared bias of estimators, are provided in Tables

D.1 and D.3 in section D of the supplementary file. We also implemented the method

of Hazelton and Turlach (2010) with 5 knots, as recommended there. We found

that, depending on the cases, their method could either improve on f̂dec, or worsen it

significantly. This is not unexpected, since their method is not generally consistent.

Given this lack of robustness, we do not discuss their method further.

Table 5.1: Median (IQR) of 100 values of 103×ISE obtained when estimating densities
(i) to (iii) in the Laplace error case, when NSR = 10% or 25% and n = 200 or 700,
using the estimators f̂dec, f̂rat( ·; θ̂P ), f̂bco( ·; θ̂MD) and f̂wgt( ·; θ̂ML).

Density (i) Density (ii) Density (iii)
n = 200 n = 700 n = 200 n = 700 n = 200 n = 700

NSR = 10%

f̂dec 7.24 (4.83) 3.55 (1.55) 4.63 (2.89) 2.44 (1.42) 7.79 (5.61) 3.91 (2.38)

f̂rat( ·; θ̂P ) 4.86 (2.86) 2.03 (1.29) 3.93 (3.06) 1.33 (1.11) 5.77 (4.24) 2.49 (1.76)

f̂bco( ·; θ̂MD) 4.24 (3.57) 1.91 (1.56) 4.33 (2.58) 1.56 (1.25) 6.57 (3.78) 2.96 (1.96)

f̂wgt( ·; θ̂ML) 3.66 (3.07) 1.07 (1.22) 3.18 (2.76) 1.03 (1.04) 5.58 (4.94) 1.44 (1.36)
NSR = 25%

f̂dec 11.3 (9.14) 5.78 (3.39) 6.26 (4.29) 3.68 (1.99) 10.9 (7.41) 5.76 (3.27)

f̂rat( ·; θ̂P ) 8.78 (6.32) 4.63 (2.42) 5.41 (4.20) 2.77 (1.62) 9.79 (6.87) 4.64 (2.55)

f̂bco( ·; θ̂MD) 6.38 (5.89) 2.67 (2.17) 5.27 (3.81) 3.02 (1.75) 10.2 (6.39) 5.09 (3.27)

f̂wgt( ·; θ̂ML) 6.77 (7.26) 1.95 (2.27) 4.07 (4.60) 1.54 (1.80) 9.04 (9.15) 2.66 (2.92)

Table 5.1 shows the median and IQR of the 100 ISEs for estimating densities (i) to

(iii) with f̂dec, f̂rat( ·; θ̂P ), f̂bco( ·; θ̂MD) and f̂wgt( ·; θ̂ML), when the errors are Laplace,

n = 200 or n = 700, and NSR = 10% or NSR = 25%. These results show that, when

the parametric model is correctly specified, the parametrically assisted estimators can

considerably improve the purely nonparametric estimator f̂dec, sometimes reducing

the median ISE value by more than 50%. Depending on the case, each of f̂bco and

f̂wgt can be the most competitive estimator, but in all cases presented in the table,

f̂rat performs similarly to, or worse than, f̂bco. Therefore, given the complexity of
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Figure 5.2: Quartile curves f̂1 (Q1), f̂2 (Q2) and f̂3 (Q3) when estimating density (iii)
with f̂dec (left), f̂bco (middle) or f̂wgt (right), when U ∼ N(0, σ2) with NSR = 25%
and n = 200 (1st row) or n = 300 (2nd row).

computing f̂rat (see section 4.3), even in the Laplace error case, this estimator seems

much less attractive than the other two, and we did not implement it for other errors.

Table 5.2 shows the results for the estimators f̂dec, f̂bco( ·; θ̂MD) and f̂wgt( ·; θ̂ML)

when the errors are normal. It leads to similar conclusions to Table 5.1, although

in this case, for density (iii), f̂wgt( ·; θ̂ML) was outperformed by f̂dec. This is because

estimating θ is much more difficult for supersmooth errors (e.g. normal errors) than

for ordinary smooth errors, particularly when fX has peaks of unequal size, like

density (iii). Now, poorer estimates of θ affect f̂wgt in two ways: the parametric part

f(x | θ̂ML) is less good, and the weight ŵ, which depends on θ̂ML, is closer to zero.

This implies that, in the normal error case (and more generally in supersmooth error

cases), f̂wgt can perform more poorly, and can be even a little worse than f̂dec. See

also Table D.2 in section D of the supplementary file, where we compare the weight

ŵ used by f̂wgt in the Laplace and normal error cases, for densities (i) to (iii).
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Table 5.2: Median (IQR) of 100 values of 103×ISE obtained when estimating densities
(i) to (iii) in the normal error case, when NSR = 10% or 25% and n = 200 or 700,
using the estimators f̂dec, f̂bco( ·; θ̂MD) and f̂wgt( ·; θ̂ML).

Density (i) Density (ii) Density (iii)
n = 200 n = 700 n = 200 n = 700 n = 200 n = 700

NSR = 10%

f̂dec 8.74 (5.56) 4.84 (2.77) 5.03 (3.62) 2.53 (1.57) 8.98 (4.94) 5.42 (2.50)

f̂bco( ·; θ̂MD) 4.51 (3.61) 2.11 (1.71) 4.31 (4.12) 1.61 (1.45) 6.40 (4.34) 2.98 (2.04)

f̂wgt( ·; θ̂ML) 5.59 (4.83) 2.84 (2.13) 3.60 (3.19) 1.76 (1.03) 9.51 (5.35) 5.59 (2.53)
NSR = 25%

f̂dec 19.0 (11.0) 12.6 (6.32) 8.01 (4.59) 5.61 (3.33) 15.9 (9.12) 10.7 (5.84)

f̂bco( ·; θ̂MD) 15.2 (10.8) 4.98 (6.22) 7.34 (6.18) 4.14 (3.68) 14.2 (11.0) 6.24 (4.79)

f̂wgt( ·; θ̂ML) 11.3 (7.64) 6.20 (4.15) 5.20 (3.81) 2.93 (2.54) 16.6 (7.82) 11.2 (5.01)

Table 5.3: Median (IQR) of 100 values of 103×ISE obtained when estimating densities
(iv) to (vi) in the normal error case, when NSR = 10% or 25% and n = 200 or 700,
using the estimators f̂dec, f̂bco( ·; θ̂MD) and f̂wgt( ·; θ̂ML).

Density (iv) Density (v) Density (vi)
n = 200 n = 700 n = 200 n = 700 n = 200 n = 700

NSR = 10%

f̂dec 4.96 (3.97) 2.74 (1.43) 3.17 (2.25) 1.61 (0.95) 4.94 (2.10) 2.81 (1.23)

f̂bco( ·; θ̂MD) 3.68 (3.16) 2.16 (1.39) 1.80 (1.58) 0.88 (0.74) 4.32 (2.66) 1.82 (1.21)

f̂wgt( ·; θ̂ML) 5.10 (3.99) 2.78 (1.44) 3.20 (2.31) 1.66 (0.97) 5.30 (2.33) 2.95 (1.25)
NSR = 25%

f̂dec 7.42 (5.49) 5.54 (2.85) 6.25 (3.96) 3.80 (2.46) 7.46 (3.32) 5.38 (2.03)

f̂bco( ·; θ̂MD) 5.56 (5.10) 4.02 (2.09) 3.93 (3.87) 1.65 (1.26) 7.45 (3.48) 4.32 (2.23)

f̂wgt( ·; θ̂ML) 7.49 (5.20) 5.69 (2.80) 6.20 (4.74) 3.63 (2.43) 8.26 (3.10) 5.64 (2.00)

In Figure 5.1 we show the quartile curves f̂1, f̂2 and f̂3 obtained when estimating

density (i) with f̂dec, f̂bco( ·; θ̂MD) when n = 200, and NSR = 10% or 25%. Figure

5.2 depicts those quartile curves in the case where fX is density (iii), the errors are

normal, NSR = 25% and n = 200 or n = 300. The figures illustrate the significant

improvement that the estimator f̂bco( ·; θ̂MD) can offer over f̂dec. For example, it is

able to recover the peaks of fX more successfully than f̂dec. As expected from our

theory, the estimator f̂wgt also improves on f̂dec, but in a less impressive manner than

f̂bco. As usual, and as also illustrated in the tables, we see that all estimators improve

as the sample size n increases and when the NSR decreases.
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Figure 5.3: Quartile curves f̂1 (Q1), f̂2 (Q2) and f̂3 (Q3) when estimating density (v)
with f̂dec (left), f̂bco (middle) or f̂wgt (right), when U ∼ N(0, σ2) with NSR = 10%
and n = 200 (1st row) or n = 300 (2nd row).

Finally, in Table 5.3 we illustrate the robustness of our estimators against mis-

specification of the parametric model f( · | θ). The table reports results for estimating

the gamma density (density (iv)) and the mixtures of two gamma densities (densities

(v) and (vi)), assuming that f( · | θ) is equal to, respectively, a normal density or a

mixture of two normal densities. Clearly, a normal density, which is symmetric, is

not a very good approximation to density (iv), which is asymmetric, but a normal

mixture is a reasonable approximation to densities (v) and (vi). In other words, to

make the connection with our theory, η is rather large for density (iv), whereas it is

rather small for densities (v) and (vi). In both cases η is fixed, but in finite samples,

a small η can be interpreted as tending to zero fast, and a large η can be interpreted

as tending to zero slowly. Therefore, from the theory, we can expect that in case (iv),

f̂bco will perform significantly better than f̂wgt, and this is confirmed by the results

shown in the table. Moreover, even though f( · | θ) is misspecified, f̂bco can still im-
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prove on f̂dec quite significantly in many cases, without degrading it much in other

cases. As in Table 5.2, and for the same reasons as there, here f̂wgt was often not able

to improve the results of f̂dec.

To illustrate these properties visually, Figure 5.3 shows the quartile curves ob-

tained in the case where fX was density (v), the errors were normally distributed

with NSR = 10%, and sample size n was 200 or 300. We can see that, even though

f( · | θ) is misspecified, the estimated normal mixtures help f̂bco recover the location

and height of the peaks of fX , which in turns leads f̂bco to noticeably improve f̂dec.

In this misspecified case, as anticipated by our theoretical results, the estimator f̂wgt

does not improve on f̂dec. Of course, performance improves as n increases.

5.3 Conclusion of simulations

To summarise, our numerical results illustrate that the estimators f̂bco( ·; θ̂MD) and

f̂wgt( ·; θ̂ML) can both considerably improve on the deconvolution estimator f̂dec. De-

pending on the case, each of those two estimators can outperform the other, but, as

anticipated by our theory, f̂bco is more robust to misspecification of the parametric

model f( · | θ); this is our favoured estimator. Although it has good asymptotic prop-

erties, f̂rat is not as competitive as f̂bco, in part due to the difficulty of computing it.

6 Supplemental Materials

Appendix B contains technical details, appendix C contains details of implementation,

and appendix D contains additional simulation results.
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A Appendix

A.1 Details of construction of the ratio estimator f̂rat

We wish to find the function Lx that satisfies (2.4). Since fU is symmetric, we have

E[Lx(Wj | θ, h)|Xj] =

∫
Lx(Xj + u | θ, h)fU(u) du = {Lx( · | θ, h) ∗ fU}(Xj) .

To satisfy (2.4), we need this to be equal to Kx(Xj | θ, h). In other words, for all x and

y we need to find Lx such that {Lx(· | θ, h)∗ fU}(y) = Kx(y | θ, h), which is equivalent

to

{ϕLx( · | θ,h)∗fU}(t) = ϕLx( · | θ,h)(t)ϕU(t) = ϕKx( · | θ,h)(t)

for all t. We deduce from the Fourier inversion theorem that

Lx(y | θ, h) =
1

2π

∫
e−ity

ϕKx( · | θ,h)(t)

ϕU(t)
dt =

1

2π

∫
e−ity

ϕU(t)

∫
eitw

K
(
x−w
h

)
hfX(w | θ)

dw dt ,
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which proves that Lx is of the form given in (2.5). For simplicity, it is assumed here

that the Fourier transforms and inverse Fourier transforms are all well defined; see

section 3.5 for more detailed assumptions.

A.2 Proof of (3.9) and (3.10)

We shall derive only the part of (3.9) and (3.10) pertaining to the case where nη2

diverges. Settings where nη2 is bounded are relatively straightforward to treat, and

instances that overlap both cases can be dealt with using a subsequence argument.

To derive these results, observe that if (3.6) and (A2)–(A4) hold,

f̂bco(x | θ̂) = f̂bco(x | θ1) +Op

(
n−1/2

)
; (A.1)

note that if (3.8) obtains for ℓ0 = β,

E
{
f̂bco(x | θ1)

}
− fX(x) =

∫
{ψ(x− hu)− ψ(x)}K(u) du = O

(
hβ η

)
; (A.2)

and observe that, using standard arguments,

Var
{
f̂bco(x | θ1)

}
= Var

{
f̂dec(x | θ1)

}
. (A.3)

In the ordinary smooth case, result (3.9) follows directly from (A.1)–(A.3), since

in that case we have Var
{
f̂dec(x | θ1)

}
= O

{
(nh2α+1)−1

}
; see Fan (1991a).

In the supersmooth case, condition (A3) can be used to prove that Var{f̂dec(x | θ1)} =

O{n−1 h2(κ+1)α+2α1 exp(2h−α/γ)}, where α1 is as in (3.2) and κ is as in (A3); see sec-

tion ?? in the supplementary file for a proof. Combining these bounds for bias and

variance, respectively, we deduce that the mean squared error of f̂bco(x | θ1) is given by

E
{
f̂bco(x | θ1)− fX(x)

}2
= O

{
h2β η2 + n−1 h2(κ+1)α+2α0 exp

(
2h−α

/
γ
)}

= O
[
η2

{
h2β +

(
nη2

)−1
h2(κ+1)α+2α0 exp

(
2h−α

/
γ
)}]

.

Since nη2 diverges as n → ∞, h2β + (nη2)−1 h2(κ+1)α+2α0 exp(2h−α/γ) is asymptotic

to the mean squared error of the deconvolution kernel estimator f̂dec for sample size
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nη2, which implies that the optimal rate of convergence to zero of this quantity is

obtained by taking a bandwidth h = c {log(nη2)}−1/α, where c > (2/γ)1/α. It follows

that the square root of the minimum of our bound to mean squared error is of order

η {log(nη2)}−β/α, which proves (3.10).

A.3 Proof of Theorem 1

The result can be proved along the lines of the proof of Theorem 5 in Fan (1991a),

taking, as there, f0(x) = Cr (1 + x2)−r for some r > 1/2, and replacing Fan’s fn

by fn = f0 + c η δβH(x/δ), with H as in Fan (1991a). In particular, H is a fixed,

non-degenerate function that has β bounded derivatives, and is such that
∫
H = 0,

supx (1 + |x|)m+1 |H(x)| < ∞ for some m ≥ 2, and ϕH (the Fourier transform of H)

vanishes outside [1, 2]. The quantities (β, α,m,m0, δn) in Fan (1991a) are, in our case,

(α, 0, β,m+ 1, δ), respectively.

As in Fan (1991a), without loss of generality, we take x0 = 0. Since f0(x) > 0

in a neighborhood of x0, then for all sufficiently small values of η δβ, and hence

for sufficiently small C4 in (3.16); and for all sufficiently small c; fn ≥ 0 on the real

line. Therefore fn is a proper density function. The functions ψ1 and ψ2 referred to in

Theorem 1 are identical to 0 and c η δβH(x/δ), respectively. They satisfy (3.15). The

argument used to prove Theorem 5 of Fan (1991a) gives the bounds I1 = O(η2 δ2α)

and I2 = O(η2 δ2α) in place of the bounds derived by Fan (1991a); the quantities I1

and I2 are as defined there. Hence, δ2β+1 (I1 + I2) = O(δ2α+2β+1 η2) = O(n−1) if we

take δ = δ(n) = (n η2)−1/(2α+2β+1). Theorem 1 now follows as in Fan (1991a).

A.4 Discussion of assumptions in section 3.5, and examples
illustrating (B6)

The properties assumed in (B2) are satisfied by kernels used in practice, which are

such that either ϕK is bounded and compactly supported, or K is a Gaussian density.
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The assumptions h→ 0 and nh2α+1 → ∞, imposed in (B3) except in the special case

c = 0, are generally necessary and sufficient for the bias and variance, respectively, of

the standard deconvolution estimator f̂dec, to converge to zero, and so are mild. Since

(B4) and (B5) refer to the parametric model f( · | θ), not the actual density of X; and

since a degree of smoothness, with respect to both x and θ, is often appropriate for

the model; then (B4) and (B5) are reasonable. We discuss (B6) below. Assumptions

and results for the error-free case are obtained by simply taking α = 0 throughout.

In the following examples we define ω(ℓ)(w, x | θ) = (∂/∂w)ℓ ω(w, x | θ), and show

that (B6) holds in a wide variety of cases.

Example 1. Assume that

max
ℓ=0,...,s

∣∣ω(ℓ)(w, x | θ)
∣∣ ≤ C7 (1 + |w|)α1 , (A.4)

uniformly in −∞ < w < ∞, x ∈ I and θ ∈ Θ, where C7, α1 > 0. Condition

(A.4) typically holds when f(x | θ) is a smooth function of x and has tails that are

polynomially light. In such cases we can take K to be a conventional kernel function

used in deconvolution problems, for which ϕK is compactly supported and

max
ℓ=0,...,s

∣∣K(ℓ)(w)
∣∣ ≤ C8 (1 + |w|)−α2 , (A.5)

for all w, where C8, α2 > 0 and α2 can be taken as large as needed by choosing K

appropriately. If (A.4) and (A.5) hold and α2 > α1 + r + 2 then, for ℓ = 0, . . . , s,

sup
x∈I

sup
θ∈Θ

∣∣γ(ℓ)h,x(u | θ)∣∣ ≤ C9 (1 + |u|)α1+r+1−α2 = C9 (1 + |u|)−1−c ,

where c > 0. Therefore (B6) holds.

Example 2. In place of (A.4), assume that

max
ℓ=0,...,s

∣∣ω(ℓ)(w, x | θ)
∣∣ ≤ C9 exp

(
α3w

2
)
, (A.6)
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uniformly in −∞ < w < ∞, x ∈ I and θ ∈ Θ, where C9, α3 > 0. Condition (A.6)

holds when f( · | θ) is a Gaussian density, and more generally if f( · | θ) represents an

exponential family. Here we take K to be the normal N(0, τ 2) density, i.e. K(w) =

τ−1 (2π)−1/2 exp(−1
2
τ−2w2). In this case, (B6) is valid provided that τ−2 > 2α3.

A.5 Discussion of conditions for Theorems 1 and 2

In framing the lower bounds in Theorems 1 and 2 we assume that the model is known

completely, not only up to an unknown parameter θ. Assumption (3.14) merely asserts

that fact, taking the density to be f0 and adding the minor additional constraint that

f0 is bounded away from zero in the vicinity of the point x0 at which we are going

to estimate fX . (This serves only to ensure that if ψ = fX − f0 is small in absolute

terms, then it is also small relative to the value taken by f0 near x0.) Taking the

model to be known completely does not weaken the impact of the lower bounds, since

any statistically interesting formulation of the minimax lower bounds would have to

encompass that case.

Next we discuss conditions (3.15) and (3.16). Recall that our goal is to estimate

the density fX using guidance from f0. If f0 is close to fX (ψ = fX − f0 is small),

then we expect that f0 can help us improve purely nonparametric estimators, and

we hope to be able to construct an estimator that has better convergence rates than

a purely nonparametric estimator. However, if f0 is far from fX (ψ is large), then

we expect that knowing f0 won’t help us improve nonparametric estimators of fX ,

but we hope that incorporating f0 in the estimation procedure won’t degrade the

convergence rates of a purely nonparametric estimator.

The sequence η = η(n), in equations (3.15) and (3.16), is used to bound the order

of magnitude of the function ψ. The discussion above shows that we should consider

both the case where η → 0 as n→ ∞ (ψ small) and the case where η ̸→ 0 as n→ ∞

(ψ large), whence condition (3.16). Clearly, the convergence rates of an estimator
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that uses f0 in the right way should depend on η: the smaller η, the closer f0 is to

fX , and so the faster the rates should be; this is what Theorem 1 expresses. Since

fX is assumed to have β derivatives, then in (3.15) we do not assume bounds just

on ψ, but also on its first β derivatives. This merely strengthens the first property

in (3.8) by asking that the bound to the derivative of largest order also applies to

derivatives of lower order. (As noted in discussion prior to (3.8), this strengthening

is not necessary when deriving upper bounds to convergence rates, but it turns out

to be useful for the lower bounds in Theorems 1 and 2.) The additional conditions

imposed in (3.15), specifically
∫
|ψ| <∞ and

∫
ψ = 0, are mentioned only for clarity;

they follow directly from the fact that f0 and f0+ψ are both proper density functions.

Note that (3.16) asserts that η should be bounded and, in addition, not any smaller

than a constant multiple of n−1/2. The upper bound here is merely a reflection of the

fact that we want the densities f0 and f0 + ψ to have uniformly bounded derivatives

up to the βth; in this case there is clearly no need to permit η to be unbounded. The

lower bound asserts only that we are not treating problems of superefficiency, where

we would estimate densities at rates that are strictly faster than the conventional

parametric one of n−1/2. For example, if we were to allow η to converge to zero more

rapidly than n−1/2, the quantity (η2α+1/nβ)1/(2α+2β+1), appearing in the probability

statement on the left-hand side of (3.18), would converge to zero faster than n−1/2,

and so the difference between the estimator ϕ(W1, . . . ,Wn) and its target fX(x0)

would also converge to zero at this superefficient rate.

Finally, the class Ψn is the class of functions ψ discussed above; it depends on

n through η. Since each ψ corresponds to a function fX , Ψn also corresponds to a

class of functions fX . Minimax rates are usually derived uniformly over a class of

functions, which is why we have introduced Ψn.
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A.6 Discussion of condition on fX

If the data distribution is kept fixed as n diverges then the asymptotic theory is de-

generate, and in particular is uninformative. There are just two possible asymptotic

regimes: either the data distribution coincides exactly with the parametric assump-

tion, and the estimator is root-n consistent, or the data distribution is different from

that assumption, and the estimator has exactly the same first-order theoretical prop-

erties as a conventional nonparametric estimator. However, this sharply dichotomous

performance does not correctly reflect performance in practice, where as the data dis-

tribution moves steadily closer to the model, for fixed sample size, the performance

of the parametrically assisted estimator steadily and gradually improves; it does not

change sharply.

Of course, this evolutionary change is not unexpected. The challenge is not to

explain it, and why conventional theory does not predict it. (Since conventional

theory is predicated on the parametric model being either correct or wrong, it can

be expected to imply sharply dichotomous performance.) Rather, the challenge is

to develop theory that correctly reflects the continuous evolution in performance

observed in practice, as the data distribution moves closer to the parametric model.

Therefore we allow the data distribution to depend on n, and to converge to the

model at a certain rate as sample size increases. The performance of our method

then depends on that rate of convergence. See Fan and Ullah (1999), Hall and Simar

(2002), Staudenmayer and Ruppert (2004), Staudenmayer, Ruppert and Buonaccorsi

(2008) and Burman and Chaudhuri (2011) for related work of this type.
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