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In a large class of statistical inverse problems it is necessary to suppose
that the transformation that is inverted is known. Although, in many appli-
cations, it is unrealistic to make this assumption, the problem is often insol-
uble without it. However, if additional data are available, then it is possible
to estimate consistently the unknown error density. Data are seldom avail-
able directly on the transformation, but repeated, or replicated, measurements
increasingly are becoming available. Such data consist of “intrinsic” values
that are measured several times, with errors that are generally independent.
Working in this setting we treat the nonparametric deconvolution problems
of density estimation with observation errors, and regression with errors in
variables. We show that, even if the number of repeated measurements is
quite small, it is possible for modified kernel estimators to achieve the same
level of performance they would if the error distribution were known. Indeed,
density and regression estimators can be constructed from replicated data so
that they have the same first-order properties as conventional estimators in
the known-error case, without any replication, but with sample size equal
to the sum of the numbers of replicates. Practical methods for constructing
estimators with these properties are suggested, involving empirical rules for
smoothing-parameter choice.

1. Introduction. Statistical deconvolution problems arise in a great many set-
tings, and typically have the form g = T (f ), where g is a function about which
we have data, T is a transformation, and f = T −1(g) is a function we wish to
estimate. In a large class of such problems, including density deconvolution and
errors-in-variables regression, it is common to assume that T is known. Indeed,
the nature of the data usually precludes any other approach.

In this paper we consider cases where there is a small number replications of
each intrinsically different observation, the observation errors being independent
and the intrinsic parts of the observations being the same among replicates. Data of
this type are numerous, and increasingly are becoming available in various fields.
Examples include work of Jaech (1985), who describes an experiment where the
concentration of uranium is measured for several fuel pellets; of Biemer et al.
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(1991), who discuss repeated observations in a social science context; of Ander-
sen, Bro and Brockhoff (2003), on nuclear magnetic reasonance; of Bland and Alt-
man (1986), on lung function; of Eliasziw et al. (1994), on physiotherapy for the
knee; of Oman, Meir and Haim (1999), relating to kidney function; and of Dunn
(1989), a brain-related study. For further medical examples, see Carroll, Ruppert
and Stefanski (1995) and Dunn (2004).

When data of this type are available, it is usually possible to construct consistent
estimators of the function f of interest, without making parametric assumptions
about the transformation T . We treat both density deconvolution and errors-in-
variables regression, focusing on cases where the convergence rate, and first-order
properties more generally, are the same when the error distribution is known and
when it is not known, but is estimated from repeated measurements. In Section 2
we construct a relatively simple density estimator and generalize it to the regres-
sion case.

Theoretical properties of our estimators are taken up in Section 3. We show that
a sufficient condition for first-order properties of estimators, in the cases of known
and unknown error distributions, to be equivalent, is that, colloquially speaking,
“the target density is smoother than half a derivative of the error density.” Instances
where this condition is violated are those where the convergence rate is relatively
poor, even when the error density is known.

We direct attention to examples where the number of replications of each obser-
vation is relatively small. (We use the terms “replications” and “repeated measure-
ments” synonymously.) In theoretical terms, this means that the number of replica-
tions is uniformly bounded. That is generally the case in practice, since gathering
large numbers of replications is expensive in terms of time, effort or money. More-
over, particularly in cases where statistical performance is the same when the error
density is known or unknown, it is seldom advantageous to have large numbers of
replications.

For instance, we show that if the total number of data is M = np, where p ≥ 2
equals the number of times that each of n intrinsically different observations is
replicated, then first-order properties of nonparametric estimators depend only
on M , not on the separate values of n and p. We prove this result rigorously
when p is bounded, but a similar argument shows that it is also valid if p diverges
sufficiently slowly as M increases. More generally, the result holds if M = ∑

j Nj ,
where Nj is the number of replicates of the j th intrinsically different observation.
Properties of the estimator depend, to first order, only on M , provided that each
Nj ≥ 2.

In Section 4 we develop an adaptive, data driven procedure for smoothing-
parameter choice, and show that it enjoys good performance for real and simulated
datasets.

Related work in the context of density estimation includes that of Li and Vuong
(1998), who derived upper bounds to convergence rates in the measurement-error
problem when replications are present. Li and Vuong’s results are important; they
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comprise some of the first contributions to density deconvolution in cases where
the error distribution is not known. Nevertheless, the properties reported by Li and
Vuong (1998), and bounds given also by Susko and Nadon (2002), are too coarse
to permit it to be shown that convergence rates can be identical in the cases of
known and unknown error distributions. Further discussion is given in Section 3.5.

Recent, related research in the regression setting, and in the econometrics lit-
erature, includes that of Li (2002), Li and Hsiao (2004) and Schennach (2004a,
2004b), who demonstrated that replications can be used to good effect in regression
problems with measurement error. See also the work of Horowitz and Markatou
(1996) on error estimation from panel data, and the extensive literature, accessible
through the work of Newey and Powell (2003), on inference in the context of in-
strumental variables. However, except in parametric contexts, this and related work
is not sufficiently detailed to show that the convergence rates familiar in problems
where the error distribution is known can also be enjoyed when the distribution is
accessible only via repeated measurements.

The problem of density estimation with unknown error density, estimated from a
sample of the error, has been considered by Diggle and Hall (1993), Barry and Dig-
gle (1995) and Neumann (1997). Madansky (1959), Carroll, Eltinge and Ruppert
(1993) and Huang and Yang (2000), among others, have discussed linear regres-
sion with replicated data, when at least some of the predictors are measured with
error. Early work on the problem of density deconvolution, under the assumption of
known distribution of measurement error, includes that of Carroll and Hall (1988),
Stefanski and Carroll (1990) and Fan (1991). More recent contributions, including
surveys of earlier research, include the papers of Delaigle and Gijbels (2002, 2004)
and van Es and Uh (2005). The literature on kernel methods for errors-in-variables
regression is particularly large, and is surveyed by Carroll, Ruppert and Stefanski
(1995).

2. Models and methodology.

2.1. Density deconvolution. Suppose we observe

Wjk = Xj + Ujk for 1 ≤ k ≤ Nj and 1 ≤ j ≤ n,(2.1)

where the random variables Xj are identically distributed as X, the Ujk’s are iden-
tically distributed as U , and the Xj ’s and Ujk’s are totally independent. We wish
to estimate the density of X. In the context of our discussion in Section 1, (2.1)
indicates that there are n subsets of “intrinsically different” data and, within the
j th of these subsets, Nj repeated, or replicated, measurements of the variable Xj .

Let fU and fX denote the respective densities of U and X, and write f Ft
U and

f Ft
X for the respective characteristic functions (i.e., the Fourier transforms of those

densities). Provided that

f Ft
U is real-valued and does not vanish at any point on the real line,(2.2)



668 A. DELAIGLE, P. HALL AND A. MEISTER

a consistent estimator of f Ft
U is given by

f̂ Ft
U (t) =

∣∣∣∣∣ 1

N

n∑
j=1

∑
(k1,k2)∈Sj

cos{t (Wjk1 − Wjk2)}
∣∣∣∣∣
1/2

,(2.3)

where Sj denotes the set of 1
2Nj(Nj − 1) distinct pairs (k1, k2) with 1 ≤ k1 <

k2 ≤ Nj , N = N(n) = 1
2

∑
j≤n Nj (Nj − 1), and we ignore values of j for which

Nj = 1. Assumption (2.2) is conventional when using kernel methods for density
deconvolution; see Stefanski and Carroll (1990) and Fan (1991), for example.

An estimator of fX is given by

f̂X(x) = 1

Mh

n∑
j=1

wj

Nj∑
k=1

L̂

(
x − Wjk

h

)
,

where M = ∑
j Nj , the weights wj are nonnegative and satisfy

∑
j wjNj = M ,

L̂(u) = 1

2π

∫
e−itu KFt(t)

f̂ Ft
U (t/h) + ρ

dt,(2.4)

K is a symmetric kernel function with compactly supported Fourier transform KFt,
h > 0 is a bandwidth, and ρ ≥ 0 is a ridge parameter.

We introduce the ridge only so we can take expectation without concern for
fluctuations of the denominator in the integral at (2.4). The ridge would not be
necessary if our aim were to develop limit theory for f̂X that did not involve taking
expected values. See Section 3.1 for discussion and theory in the case ρ = 0.

If fU were known then, instead of f̂X , we would use the following generaliza-
tion of the conventional deconvolution estimator:

f̃X(x) = 1

Mh

n∑
j=1

wj

Nj∑
k=1

L

(
x − Wjk

h

)

[see, e.g., Carroll and Hall (1988)], where

L(u) = 1

2π

∫
e−itu KFt(t)

f Ft
U (t/h)

dt.

The bias of f̃X does not depend on choice of the weights, and it can readily be
shown that the asymptotic variance is minimized by taking each wj = 1. Opti-
mality of this choice persists in the case of regression deconvolution, which we
consider in Section 2.2.

Therefore, we take each wj = 1 in the work below. In particular, f̂X and f̃X

henceforth denote the estimators

f̂X(x) = 1

Mh

n∑
j=1

Nj∑
k=1

L̂

(
x − Wjk

h

)
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and

f̃X(x) = 1

Mh

n∑
j=1

Nj∑
k=1

L

(
x − Wjk

h

)
.

Section 3.3 demonstrates that f̂X is first-order equivalent to f̃X . For this re-
sult, and in the setting of “ordinary-smooth errors” [see (3.1)], the main assump-
tion needed is that fX be sufficiently smooth relative to fU . See condition (3.12).
Properties of f̃X are summarized in Section 3.4.

2.2. Errors-in-variables regression. Here the model at (2.1) is extended, so
that it addresses data (Wjk, Yj ) generated as

Wjk = Xj + Ujk, Yj = g(Xj ) + Vj ,(2.5)

for 1 ≤ k ≤ Nj and 1 ≤ j ≤ n,

where the Xj ’s, Ujk’s and Vj ’s are identically distributed as X, U and V , respec-
tively, E(V ) = 0, E(V 2) < ∞, and the Xj ’s, Ujk’s and Vj ’s are totally indepen-
dent. We wish to estimate the function g.

Define

â(x) = 1

Mh

n∑
j=1

Nj∑
k=1

Yj L̂

(
x − Wjk

h

)
,

(2.6)

ã(x) = 1

Mh

n∑
j=1

Nj∑
k=1

YjL

(
x − Wjk

h

)
.

In the classical case, where fU is known and each Nj = 1, the standard kernel
estimator of g is g̃ = ã/f̃X and, of course, g̃ is also appropriate in the case of
replicated data.

The intuition behind g̃ is that ã is a consistent estimator of the function a = fXg.
When fU is not known we can estimate a by â, and so we can modify g̃ in the
manner of Section 2.1, estimating g by ĝ = â/f̂X . We show in Section 3.6 that ĝ

is first-order equivalent to g̃.

3. Theoretical properties.

3.1. Density deconvolution. First we state assumptions. We ask that, for con-
stants α > 0 and B1 > 1, and all real t ,

B−1
1 (1 + |t |)−α ≤ |f Ft

U (t)| ≤ B1(1 + |t |)−α.(3.1)

This is often referred to as the case of ordinary-smooth errors. The importance of
the lower bound in (3.1), in addition to the upper bound (which is conventional
when deriving convergence rates), is discussed in Section 3.3.
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Given β,B2 > 0, let F (β,B2) denote the class of densities fX for which

sup
−∞<t<∞

(1 + |t |)β |f Ft
X (t)| ≤ B2.

[The class F (β,B2) is a Fourier analogue of Fan’s class Cm,α,B of functions; his
m + α + 1 is our β .] Let K have the property

sup |KFt| < ∞ and, for some c > 0, KFt(t) = 0 for all |t | > c.(3.2)

The kernels used in deconvolution commonly have this property, and so, while our
results can be derived under weaker conditions, there is little motivation for that
generalization.

The theorem below gives an upper bound to pointwise mean-squared distance
between f̂X and f̃X , uniformly in all points and all densities fX ∈ F (β,C2). In
Section 3.3 we use that result to show that, if the bandwidth h is chosen so that it
gives optimal performance of f̂X , and if a relation (3.12) on the relative smooth-
nesses of fU and fX holds, then the difference between f̂X and f̃X is negligible
relative to the distance between either estimator and the true density, fX .

THEOREM 3.1. Let C1 > 1 and C2, β > 0. Assume that (i) 1 ≤ Nj ≤ C1

for each j ; (ii) N(n) ≥ C−1
1 n for each n ≥ 1; (iii) f Ft

U satisfies (3.1); (iv) α >
1
2 ; (v) KFt satisfies (3.2); (vi) h1(n) ≤ h ≤ h2(n), where h2(n) → 0 and, for
some δ > 0, n(1−δ)/4αh1(n) is bounded away from zero; and (vii) c1n

−c2 ≤ ρ ≤
c3 min{h1(n)4α+2, n−1}, where c1, c2, c3 > 0. Then, for each integer k ≥ 1,

sup
fX∈F (β,C2)

sup
−∞<x<∞

E{f̂X(x) − f̃X(x)}2 ≤ const.pn,(3.3)

where, for each integer k ≥ 1,

pn = pn(k) = n−1{
hβ−2α−1 + h2(β−2α)−1 + (logn)2}

(3.4)
+ n−2(

h2(β−4α)−2 + h−6α−1) + n−kh−4(k+2)α−2

and the constant in (3.3) depends on k but not on h ∈ [h1(n), h2(n)] or on n.

Technical arguments are given in a longer version of this paper [Delaigle, Hall
and Meister (2006)]. Theorem 3.1 remains correct without condition (i), that is,
without the assumption that the Nj ’s are bounded uniformly in j and n. However,
if (i) is dropped, then the asymptotic properties of f̂ cannot be discussed simply
in terms of the size of M , and that difficulty hampers elucidation of our results.
Indeed, if condition (i) is removed, then, depending on the size of the Nj ’s, and
on the frequency with which large Nj ’s occur, properties of f̂ can be very close
to those of a standard kernel estimator based on the (unobservable) data Xj . In
practice, the expense, in terms of time, effort or money, of making repeated mea-
surements usually ensures that the Nj ’s are relatively small, typically no more
than 2 to 5, and so we shall retain condition (i).
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We argued in Section 2 that, if we were to develop a limit theory that did not
involve taking expected values, the ridge parameter ρ could be taken equal to zero.
In that setting we should replace uniform pointwise error, at (3.3), by error at a
single point, or by a global metric such as integrated squared error. Otherwise, we
incur a logarithmic penalty on the right-hand side of (3.3). [This is to be expected,
since the same penalty arises in more conventional problems; see, e.g., Bickel and
Rosenblatt (1973).] We should also remove the supremum over densities fX ∈
F (β,C2), since the uniformity implied by the supremum is not meaningful if we
remove the expectation.

For the sake of definiteness, when working with ρ = 0, we measure accuracy in
terms of squared error at a particular point, or integrated squared error. To treat the
latter, note that (3.3) implies that, for each pair x1, x2 for which −∞ < x1 < x2 <

∞,

sup
fX∈F (β,C2)

∫ x2

x1

E{f̂X(x) − f̃X(x)}2 dx = O(pn).(3.5)

Let f̂ 0
X(x) denote the version of f̂X constructed with ρ = 0. We claim that (3.5)

continues to apply to f̂ 0
X , provided the expectation and supremum over fX are

removed from the left-hand side, and the right-hand side is interpreted in an “in
probability” sense. Moreover, squared error at each fixed point x converges at the
same rate:

|f̂ 0
X(x) − f̃X(x)| = Op(p1/2

n ),
(3.6) ∫ x2

x1

{f̂ 0
X(x) − f̃X(x)}2 dx = Op(pn).

THEOREM 3.2. Let C1 > 1, let C2, α,β > 0, let −∞ < x1 < x2 < ∞, and
take ρ = 0 in the definition of L̂, at (2.4), and hence, also in the definition of f̂X ,
obtaining the estimator f̂ 0

X . Assume that conditions (i)–(vi) in Theorem 3.1 hold.
Then (3.6) holds for each fX ∈ F (β,C2), each x ∈ (−∞,∞) and each pair x1, x2

for which −∞ < x1 < x2 < ∞.

Results (3.6) and (3.10), below, show that optimal convergence rates can be
achieved using a single smoothing parameter, the bandwidth, rather than two pa-
rameters, the bandwidth and ridge.

3.2. Asymptotic optimality. The size of bandwidth that minimizes pointwise
mean squared error, when using f̃X to estimate fX , is h � h0 ≡ n−1/{2(α+β)−1};
and, for such a bandwidth, pointwise mean squared error of f̃X is of size qn, where

qn = n−2(β−1)/{2(α+β)−1}.(3.7)
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The same result holds if we replace f̃X by the errors-in-variables regression es-
timator, g̃, which we define in Section 3.6. See Fan (1991) and Fan and Truong
(1993) for discussion of theory in these respective cases, and also for proofs of
lower bounds which show that the rate qn is minimax optimal, in an L2 sense.

However, these results address only the case where there is no replication, that
is, each Nj = 1. In the case of upper bounds, generalization to settings where
each Nj ≥ 2 is relatively straightforward. See Section 3.4 for details. Below we
generalize lower bounds in the setting of density deconvolution.

THEOREM 3.3. Assume that α,β > 1
2 . Let F (β,C) denote the class of den-

sities fX defined in Section 3.1, and write F̆ for the class of all measurable func-
tionals of the data. Assume that 2 ≤ Nj ≤ B for each j , where 2 ≤ B < ∞. Then,
for each fixed x and each sufficiently large C > 0, there exists D > 0 such that, for
all sufficiently large n,

inf
f̆ ∈F̆

sup
fX∈F (β,C)

EfX
{f̆ (x) − fX(x)}2 ≥ Dqn.(3.8)

3.3. Equivalence of f̂X and f̃X . In view of the results given in Section 3.2,
and in order to establish that f̂X is asymptotically equivalent to f̃X when the latter
is performing optimally, it is instructive to show that when h � h0,

sup
fX∈F (β,C2)

sup
−∞<x<∞

E{f̂X(x) − f̃X(x)}2 = o(qn),(3.9)

if the ridge-prameter ρ is taken to be nonzero; or, if the ridge is zero, that

|f̂ 0
X(x) − f̃X(x)| = op(q1/2

n ),
(3.10) ∫ x2

x1

{f̂ 0
X(x) − f̃X(x)}2 dx = op(qn).

Compare with (3.6). In fact, (3.9) and (3.10) follow from Theorems 3.1 and 3.2,
respectively, if we prove that

qn = o(pn).(3.11)

Provided

β > α + 1
2 ,(3.12)

it is straightforward to show that if h � h0, then

n−1{
hβ−2α−1 + h2(β−2α)−1 + (logn)2}

(3.13)
+ n−2(

h2(β−4α)−2 + h−6α−1) = o(qn),

and also that if k is sufficiently large and h � h0, then n−kh−4(k+2)α−2 = o(qn).
This result and (3.13) imply (3.11).
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Therefore, condition (3.12), which can be characterized colloquially as the as-
sertion that “fX is smoother than half a derivative of fU ,” is sufficient to ensure
that, in deconvolution problems, there is no first-order loss of performance in using
replicated data to estimate the error density when the latter is not known. Intuition
behind (3.12) is given in Section 3.5.

Of course, (3.12) fails if α is too large; that is, if fU is too smooth. This is the
reason for placing the lower bound on |f Ft

U (t)| in (3.1). Without that bound, fU

can be arbitrarily smooth. It can be shown that if β < α, then f̂X and f̃X are not
asymptotically equivalent, and the minimax-optimal, pointwise convergence rate
of an estimator of fX can be no faster than n−2(β−1)/(4α−1), which is strictly slower
than the rate of convergence of f̃X to fX . However, the case where α ≤ β ≤ α + 1

2
is still unclear.

3.4. Properties of f̃X . Let f̌X denote the “standard” version of f̃X , obtained
by taking Nj = 1 for each j , but with sample size M rather than n. Theorem 3.4,
which is given below and is straightforward to derive, argues that the bias of f̃X is
identical to that of f̌X , and that the variance of f̃X equals that of f̌X , to first order.

Recall that U and X have the distributions of Ujk and Xj , respectively, that
W = X + U , and that N = 1

2
∑

j≤n Nj (Nj − 1). Put

mn(x) =
∫

K(u)fX(x − hu)du,

vn(x) = 1

M

{
1

h

∫
L(u)2fW(x − hu)du − mn(x)2

}
,

wn(x) = 2N

M2

{
1

h

∫
K(u)2fX(x − hu)du − mn(x)2

}
.

THEOREM 3.4. The mean and variance of f̌X(x) equal mn(x) and vn(x),
respectively; the mean of f̃X(x) equals mn(x); and the variance of f̃X(x) equals
vn(x) + wn(x).

The quantity wn is generally of strictly smaller order than vn, since
∫

K2 re-
mains fixed but

∫
L2 diverges as h decreases. Therefore, in terms of first-order

properties of mean and variance, f̃X and f̌X have identical performance. In view
of this property, and bearing in mind the asymptotic equivalence of f̂X and f̃X

noted in Section 3.3, we can fairly say that:

to first order, f̂X has the same properties as a conventional

deconvolution density estimator, computed when the error density(3.14)

is known and the sample size is M but without any replication.

Of course, this assertion requires (3.9) and, hence, needs (3.12).
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Together, (3.8), (3.9) and (3.14) demonstrate minimax optimality of the estima-
tor f̂X . Of course, this property necessitates the supremum being taken over fX

in (3.9). That requirement motivated our introduction of the ridge parameter in our
definition of f̂X .

3.5. Discussion of different approaches to density deconvolution. Let (2.2)′
denote the version of (2.2) where the assumption that f Ft

U is real-valued is omitted.
For cases where (2.2)′ holds but (2.2) fails, Li and Vuong (1998) suggest an es-
timator of f Ft

U quite different from our f̂ Ft
U . However, from a practical viewpoint,

the condition that f Ft
U be real-valued is mild. In particular, in the nonparametric

literature on density deconvolution and errors-in-variables regression where fU is
assumed known, that quantity is invariably taken to be symmetric, in which case
f Ft

U is real-valued.
The alternative estimator suggested by Li and Vuong (1998) in the context of

(2.2)′ requires the distributions of both U and X to have characteristic functions
that do not vanish anywhere (see Li and Vuong’s condition A3) and also to be
compactly supported (see their assumption A4). We are not aware of a distribution
which enjoys both these properties. Certainly, none of the standard, compactly-
supported distributions satisfy A3. This, and the numerical complexity of Li and
Vuong’s estimator, discouraged us from considering their technique.

If α is sufficiently less than β , then the problem of estimating fU from the dif-
ferences Wjk1 − Wjk2 is more difficult statistically, although more straightforward
numerically, than the problem of estimating fU from the raw data Wjk . This in-
dicates why condition (3.12) is required. For values of α that are large relative
to β , alternative deconvolution methods may possibly give better theoretical per-
formance, although we are not aware of any that are attractive computationally.

3.6. Errors-in-variables regression. The results in this section are closely
analogous to those in earlier sections, so we give only an outline. Recall from
Section 2.2 that, under the model (2.5), our estimator of g is ĝ = â/f̂X , where â

is an estimator, defined at (2.6), of a = fXg. Properties of ĝ follow directly from
those of the numerator and denominator in the ratio â/f̂X . The denominator is
treated in Theorems 3.1 and 3.2; here we address the numerator.

Given fX ∈ F (β,C2), let G(β,C2|fX) denote the class of functions g for which

sup
−∞<t<∞

(1 + |t |)β
∣∣∣∣
∫

eitxfX(x)g(x) dx

∣∣∣∣ ≤ C2.

Recall that conditions associated with the errors-in-variables model (2.5) include
the assumption that E(V ) = 0 and E(V 2) < ∞.
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THEOREM 3.5. Let C1 > 1 and C2, α,β > 0. Assume (i)–(vii) in Theorem 3.1.
Then, for each integer k ≥ 1,

sup
fX∈F (β,C2),g∈G(β,C2|fX)

sup
−∞<x<∞

E{â(x) − ã(x)}2 ≤ const.pn,(3.15)

where pn is as at (3.4) and the constant in (3.15) depends on k but not on h ∈
[h1(n), h2(n)] or on n.

We know from Section 3.3 that, if α and β satisfy (3.12), and if h is of the same
size as the bandwidth that minimizes mean squared error of f̃X (this is also the
size of the optimal bandwidth for ã and g̃), then pn = o(qn). [Recall that qn is
given by (3.7), and that q

1/2
n equals the minimum order of magnitude of error for

estimators of fX , a and g.] It then follows from Theorems 3.1 and 3.5, and (3.11),
that if conditions (i)–(vii) hold, f̂X(x) − f̃X(x) = op(q

1/2
n ) and â(x) − ã(x) =

op(q
1/2
n ). Therefore, provided fX(x) > 0, we have

ĝ(x) = â(x)

f̂X(x)
= ã(x)

f̃X(x)
+ op(q1/2

n ) = g̃(x) + op(q1/2
n ).(3.16)

That is, if the bandwidth is chosen so that it is optimal for estimating g by g̃, then ĝ

is first-order equivalent to g̃.
It is straightforward to state and prove the analogue of Theorem 3.4 for the

estimator ã instead of f̃X . This leads directly to the analogue of (3.14), where
the only change necessary is to replace f̂X by ĝX and alter “density estimator” to
“regression estimator.”

An argument similar to that used in Section 5 to derive Theorem 3.2 can be
employed to show that (3.16) holds even if the ridge parameter, ρ, is taken as zero.
Therefore, (3.14) applies in the ridge-free case.

3.7. Supersmooth error case. All our discussion in the previous paragraphs
was based on the assumption that the error distribution is ordinary smooth, and,
in particular, satisfies (3.1). It is also of interest to treat the case of supersmooth
errors, so named because there the error density is infinitely differentiable. In that
context the following condition is imposed in place of (3.1): for constants α > 0,
γ > 0 and B1 > 1, and all real t ,

B−1
1 exp(−γ |t |α) ≤ |f Ft

U (t)| ≤ B1 exp(−γ |t |α).(3.17)

For such error distributions, pointwise mean squared error, when employing f̃X to
estimate fX , is of optimal order when using a bandwidth h = D(logn)−1/α , where
D > (4γ )1/α denotes a constant. In this case, pointwise mean squared error of f̃X

is of size qn = (logn)−2(β−1)/α . Here, the rate of convergence of the estimator f̃X

is so slow that the loss of performance incurred by estimating fU from the data,
and using f̂X instead of f̃X , is negligible, regardless of restrictions such as (3.12).
In particular, the following theorem holds. Its proof follows the lines of that of
Theorem 3.1, but is more straightforward.
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THEOREM 3.6. Let C1 > 1 and C2,C3, α,β, γ > 0. Assume that (i) 1 ≤ Nj ≤
C1 for each j ; (ii) N(n) ≥ C−1

1 n for each n ≥ 1; (iii) f Ft
U satisfies (3.17); (iv)

KFt satisfies (3.2) with c = 1; (v) h = D(logn)−1/α , with D > (4γ )1/α ; and (vi)
ρ = C2n

−κ , with κ > 1
4 . Then, for some ε > 0,

sup
fX∈F (β,C3)

sup
−∞<x<∞

E{f̂X(x) − f̃X(x)}2 ≤ const.n−ε.

This result is readily generalized to the estimator ĝ, provided h is chosen so that
the optimal convergence rate for g̃ as an estimator of g is attained. In particular, if
h = D(logn)−1/α where D > (4γ )1/α , then ĝ is first-order equivalent to g̃.

4. Numerical properties.

4.1. Simulated examples. We study numerical properties of the estimators f̂X

and ĝ in several simulated examples. In the density case, and following model
(2.1), we generate 500 random samples of replicated observations for n individu-
als, Wij , where i = 1, . . . , n and j = 1, . . . ,Ni . We take the noise-to-signal ratio
σ 2

U/σ 2
X equal to 25%, except in the case of density (iii) below, where we take

σ 2
U/σ 2

X = 10%. The notation σ 2
T denotes the variance of a random variable T . The

error density fU is chosen to be a Laplace or a centered normal density. In each in-
stance where the first of these choices is used, (3.12) is satisfied; the second choice
corresponds to a supersmooth density, and there (3.12) is not relevant.

We consider four target densities fX: (i) X ∼ 0.5N(−3,1) + 0.5N(2,1), (ii)
X ∼ χ2(3), (iii) X ∼ ∑5

�=0(2
5−�/63)N{65 − 96 × 2−�/21, (32/63)2/22�} and (iv)

X ∼ N(0,1). Density (i) is bimodal and symmetric, density (ii) is asymmetric and
density (iii) is the smooth comb density discussed by Marron and Wand (1992).
Note that, even in the error-free case, the latter density is particularly hard to esti-
mate because of its numerous features.

In the regression case we generate 500 datasets of randomly-sampled vectors
(Wij , Yi), i = 1, . . . , n, j = 1, . . . ,Ni , according to the model (2.5). The density
fX is chosen to be a uniform U [0,1] or a normal N(0.5, σ 2

X) density, with σ 2
X cho-

sen so that 0 and 1 are respectively the 0.025 and 0.975 quantiles of fX . The error
density fU is a Laplace or centered normal density, and the noise-to-signal ratio
σ 2

U/σ 2
X equals 10%. Except for our Bernoulli regression example [see case (iii) be-

low], the error density fV is a centered normal density such that the noise-to-signal
ratio σ 2

V /σ 2(g) equals 10%, where σ 2(g) denotes the mean squared deviation of
g from its average value.

We consider three regression curves: (i) g(x) = x2(1 − x)2, (ii) g(x) = 3x +
20(2π)−1/2 exp{−100(x − 1

2)2}, (iii) Y |X = x ∼ Bernoulli{g(x)}, with g(x) =
0.45 sin(2πx) + 0.5. Note that curve (i) is unimodal and symmetric around 0.5,
curve (ii) is a mixture of a straight line and an exponential curve, and curve (iii) is
an asymmetric sinusoid.
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We sought an automatic way of choosing the bandwidth, h. In the density case,
we suggest using ĥPI, the plug-in bandwidth of Delaigle and Gijbels (2002, 2004),
where the characteristic function of the error is replaced by (2.3). This procedure
is justified by the discussion in Section 3.3. In the regression case, a bandwidth-
choice procedure could also be based on a data-driven selector for the known error
case. However, since, to our knowledge, there does not exist such a method, we
must first propose one.

A cross-validation (CV) criterion for selecting h would choose

hCV = arg min
h

n∑
k=1

(
Yk − ∑n

j=1 YjSj (Xk)

1 − Sk(Xk)

)2

,

where, for j = 1, . . . , n,

Sj (x) =
Nj∑
�=1

L

(
x − Wj�

h

)/ n∑
J=1

NJ∑
�=1

L

(
x − WJ�

h

)
.

Since the observations Xk are not available, we need to replace all quantities of the
form

L

(
Xk − Wj�

h

)
= 1

2π

∫
exp(−itXk/h) exp(itWj�/h)

KFt(t)

f Ft
U (t/h)

dt,

by empirical estimators. We suggest replacing exp(−itXk/h) by an estimator
of its expected value, f Ft

X (−t/h), based on the replications of the kth intrinsic
observation. Such an estimator can be defined by f̂ Ft

W (−t/h)/f Ft
U (−t/h), where

f̂ Ft
W (t) = KFt(ht)

∑Nk

m=1 exp(itWkm) is a kernel estimator of f Ft
W . Proceeding that

way, our CV criterion becomes

h̃CV = arg min
h

n∑
k=1

(
Yk − ∑n

j=1 Yj
̂Sj (Xk)

1 − ̂Sk(Xk)

)2

,(4.1)

where

̂Sj (Xk) =
Nk∑

m=1

Nj∑
�=1

L2

(
Wkm − Wj�

h

)/ n∑
J=1

Nk∑
m=1

NJ∑
�=1

L2

(
Wkm − WJ�

h

)
,(4.2)

with L2(x) = (2π)−1 ∫
exp(−itx/h)|KFt(t)|2|f Ft

U (t/h)|−2 dt .
In the case of unknown error density, we define ĥCV as in (4.1) but we replace

L2 in (4.2) by

L̂2(x) = (2π)−1
∫

exp(−itx/h)|KFt(t)|2|f̂ Ft
U (t/h)|−2 dt,

with f̂ Ft
U (t) as in (2.3). As in the error-free case, the computations needed to cal-

culate this bandwidth can be reduced considerably by binning the data. See, for
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example, Fan and Gijbels (1996), page 96. We suggest placing the Wij ’s into 200
equi-spaced bins between their empirical 0.025 and 0.975 quantiles.

The selection of a ridge parameter can be avoided if, instead of using f̂ Ft
U (t) +

ρ in L̂, we employ f̃ Ft
U (t) = f̂ Ft

U (t)I (t ∈ A) + f̂ Ft
P (t)I (t /∈ A), where A denotes

the largest interval around 0 in which f̂ Ft
U (t) is nonincreasing to the left of 0 and

nonincreasing to the right (excepting fluctuations very close to 0), and f̂ Ft
P (t) is

a parametric function estimated from the observations and defined by f̂ Ft
P (t) =

(1 + AUt2)−BU , with AU and BU chosen so as to match the empirical second and
fourth moments of the error with those of f̂P . In the event that these moments
are negative, we set BU = 1 and take AU equal to half the empirical variance of
the error, which corresponds to f̂P being a Laplace density. This method gives
very good results in practice, sometimes even better than in the case of known
error density. It is designed specifically for the comparatively small samples that
typically arise in errors-in-variables regression with repeated measurements. The
small sample sizes there are typically a consequence of the relatively high cost,
in terms of time, effort or money, of making several observations of the same X,
compared with making the same number of observations of different X’s.

In our simulations we consider samples of sizes n = 50, 100 and 250, and fix
the number of replications, Nj , at 2 or 4. In each case we generate 500 datasets, for
each of which we calculate an estimate of the target curve by using the bandwidth
ĥPI (density case) or the bandwidth ĥCV (regression case). We take KFt = (1 −
t2)3I (t ∈ [−1,1]); this kernel is commonly used in deconvolution problems. To
evaluate performance, we calculate the integrated squared error (ISE) distance of
each estimate, where ISE = ∫

I (m̂ − m)2, with m = fX or m = g, and where I is
the whole real line (density case) or I = [0,1] (regression case). In the graphs we
present the three estimates that resulted in the first, second and third quartiles of
the 500 calculated ISEs, and we denote them by, respectively, q1, q2 and q3. We
report only part of the simulations, although our conclusions are similar for the
other, nonreported results.

Table 1 illustrates the effect of increasing the number of replications by com-
paring the median and the inter-quartile range (IQR) of the calculated ISEs, for
Nj = 2 and Nj = 4, obtained from 500 samples from density (i) contaminated by
Laplace or normal errors when M = 200 or M = 500. These and related results

TABLE 1
Values of median × 100 (IQR × 100) of the ISE for density (i), when M = 200 or M = 500, with

Nj = 2 or Nj = 4 and Laplace or normal errors

(Nj ,M) (2, 200) (4, 200) (2, 500) (4, 500)

U ∼ Lap 1.41 (0.94) 1.56 (0.98) 0.89 (0.51) 0.96 (0.58)
U ∼ Norm 2.09 (1.33) 2.31 (1.43) 1.42 (0.92) 1.55 (1.02)
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FIG. 1. Quartile curves of 500 estimates f̂X of density (iii) in the Laplace error case, for Nj = 2
and n = 250 (left panel), together with boxplots (right panel) of the 500 calculated ISEs when n = 50,
100 or n = 250. In each group of two boxplots, the first is for f̂X and the second for f̃X .

indicate better performance when Nj = 2 than when Nj = 4. As suggested in the
introduction, for the same total number of observations, M , it is more advanta-
geous to have a large number of intrinsically different observations, n, than a large
number of replications, Nj .

In Figure 1 we show the quartile curves obtained for 500 samples from density
(iii) contaminated by Laplace error when n = 250, with Nj = 2, together with box-
plots of the calculated ISEs for n = 50, 100 and 250 in the known and unknown
error cases. The results show that, as in the error-free case, it is difficult to recover
all the modes of this density. They also illustrate the fact that knowing the error
density brings only minor improvements, which we also observed in our non re-
ported simulated results. In some of the non-reported cases, the results were even
better for f̂X than for f̃X .

Figure 2 shows the quartile curves obtained from 500 samples in the case of
regression function (i) for n = 100 and Nj = 2, when the error U is normal and
X ∼ U [0,1]. We also show boxplots of the 500 calculated ISEs in the case of
Laplace and normal error U and n = 100 or 250, using ĝ (unknown error) or g̃

FIG. 2. Quartile curves of 500 estimates ĝ of the regression function (i) in the normal error case
for Nj = 2, n = 100 and X ∼ U [0,1] (left panel); and boxplots of 500 ISEs for the same regression
curve in the case of Laplace error (first group of four) or normal error (last group of four), for
n = 100 or 250 (right panel). In each group of two boxplots, the first is for ĝ and the second is for g̃.
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FIG. 3. Quartile curves of 500 estimates ĝ of the regression function (iii) in the Laplace error case
for Nj = 2, X ∼ U [0,1] and n = 100 (left panel) or n = 250 (right panel).

(known error). We see that the estimated curves are quite good and the results are
slightly better when the error density is known.

Finally, Figure 3 shows the quartile curves in the case of regression curve (iii),
when the error U is Laplace, X ∼ U [0,1], Nj = 2 and n = 100 or 250. In this case,
too, we see that the results are quite good and improve as sample size increases.

4.2. Real-data examples. We apply our methods to two medical examples.
The first dataset, described by Bland and Altman (1986), was collected to com-
pare two methods for measuring peak expiratory flow rate (PEFR). Two replicated
measurements of PEFR were made on 17 individuals, using each of two differ-
ent methods: a Wright peak flow meter and a mini Wright meter. As described by
Bland and Altman (1986), when evaluating a new method for measuring a clin-
ical quantity, usually the true values remain unknown and a common practice is
to compare the new method with the established method, rather than with the true
quantities. The goal is thus to check whether the mini meter and the Wright meter
are in agreement.

To this end, we define Xi as the average of all possible readings on the mini
meter for individual i, and define Yi similarly for the “regular” Wright meter. The
latter gives more stable (less variable) readings than the mini meter, and, therefore,
for each individual i, we set Yi equal to the average of the two Wright readings.
Since readings from the mini meter are more variable, then there we need to incor-
porate measurement errors. For j = 1,2, we take Wij to be the j th replicated mini
Wright measurement.

The regression estimate (dashed line) is depicted in the left panel of Figure 4, to-
gether with the Nadaraya–Watson estimate of g (dotted line) that uses the original
data (and hence, ignores the error U ) and the data (Wij , Yi). The unusual shape of
the dashed line, deviant from a straight line, suggests that the two PERF measure-
ment methods might not be in good agreement and that further investigation should
be carried out. Bland and Altman (1986) note that a standard parametric analysis
of these data, not taking the noise into account, indicates agreement between the
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FIG. 4. Regression estimate for the PEFR data (left panel) and density estimate for the CAT data
(right panel).

two methods. Analogously, the dotted line shows that ignoring the measurement
error results in an estimate that oversmoothes the data, and which lies closer to, al-
though still far from, a straight line. For example, the steeper climb of the dashed
line in the upper right-hand part of the graph, and the flatter nature of that line after
the climb (compared to the dotted line), add weight to the argument that the results
from the mini Wright meter, in the 600–700 range, represent stochastic variation of
the relatively constant measurements obtained using the Wright peak flow meter.

The second dataset concerns two replicated measurements derived from CAT
scans of the heads of 50 psychiatric patients. More precisely, the ventricule-brain
ratio (VBR) was measured twice for each patient, using a hand-held planime-
ter. See Turner, Toone and Brett-Jones (1986) and Dunn (2004). The logarithm
of the VBR can be described by model (2.1), and for the ith patient we set
Wij = log(VBRij ), j = 1,2, where VBRij denotes the j th contaminated repli-
cation of the measurement of VBR for patient i. The density estimate of the non-
contaminated log VBR is plotted as the dashed line in Figure 4, and represents
a smooth and symmetric density. We also show, in the dotted line, the kernel
density estimate that ignores measurement error. The second estimate is essen-
tially a smoothed version of the density shown by the dashed line, modulo Gibbs-
phenomenon wiggles in the tails of the latter.

5. Outlines of technical arguments. Details of proofs, and a derivation of
Theorem 3.3, are given by Delaigle, Hall and Meister (2006). Without loss of gen-
erality, c = 1 in (3.2).

5.1. Outline proof of Theorem 3.1. Put ψ = f Ft
U , φ = ψ2 and

�(t) = 1

N

n∑
j=1

∑
(k1,k2)∈Sj

[cos{t (Wjk1 − Wjk2)} − φ(t)].
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In this notation,

(f̂ Ft
U + ρ)−1 = ψ−1I (ψ > ρ) +

k∑
�=1

c�ψ
−2�−1�� + χ1 + χ2,(5.1)

where the constants c� are derived from binomial coefficients, |χ1| ≤ ρ−1I (ψ ≤
ρ),

|χ2| ≤ const.
{

ρ

ψ + ρ

(
ψ−3|�| + ψ−(2k+1)|�|k) + ψ−(2k+3)|�|k+1

+ ρψ−2I (ψ > ρ) + ρ−1I

(
|�| > 1

2
φ

)}
,

and “const.,” here and below, denotes a generic positive constant depending only
on k, fU and the parameters α and C2 of F (β,C2).

Result (5.1) implies that

f̂X(x) − f̃X(x) =
k∑

�=1

c�δ1�(x) + δ01(x) + δ02(x) − δ2(x),(5.2)

where, for � = 1,2 in the case of δ0�, and 1 ≤ � ≤ k for δ1�,

δ0�(x) = 1

2π

∫
e−itx f̂ Ft

W (t)χ�(t)K
Ft(ht) dt,

δ1�(x) = 1

2π

∫
e−itx f̂ Ft

W (t)ψ(t)−2�−1�(t)�KFt(ht) dt,

δ2(x) = 1

2π

∫
e−itx f̂ Ft

W (t)ψ(t)−1KFt(ht)I {ψ(t) ≤ ρ}dt

and f̂ Ft
W (t) = M−1 ∑

j

∑
k eitWjk .

It can be proved that, for a constant n0 ≥ 1, the functions δ01 and δ2 vanish
identically whenever n ≥ n0. Therefore, assuming n ≥ n0, we deduce from (5.2)
that

f̂X(x) − f̃X(x) =
k∑

�=1

c�δ1�(x) + δ02(x).

This formula and the fact that f̂ Ft
W = ψf Ft

X +�1, where �1 = f̂ Ft
W −E(f̂ Ft

W ), imply
that

sup
−∞<x<∞

E{f̂X(x) − f̃X(x)}2

(5.3)

≤ const.
[

max
r=2,3

max
1≤�≤k

sup
−∞<x<∞

E{δr�(x)2} + sup
−∞<x<∞

E{δ02(x)2}
]
,
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where

δ2�(x) = 1

2π

∫
e−itxf Ft

X (t)ψ(t)−2��(t)�KFt(ht) dt,

δ3�(x) = 1

2π

∫
e−itxψ(t)−2�−1�1(t)�(t)�KFt(ht) dt.

Lengthy arguments can be used to show that

max
r=2,3

max
1≤�≤k

sup
−∞<x<∞

E{δr�(x)2}

≤ const.
[
n−1{

hβ−2α−1 + h2(β−2α)−1 + (logn)2}
+ n−2(

h2(β−4α)−2 + h−6α−1) + n−kh2β−4kα−2

+ n−(k+1)h−2(2k+1)α−1]
= O(pn)

and supx E{δ02(x)2} = O(pn). Together, these bounds and (5.3) imply (3.3).

5.2. Outline proof of Theorem 3.3. For brevity we derive only the second part
of (3.6). Since |{f̂ Ft

U (t) + ρ}−1 − f̂ Ft
U (t)−1| ≤ ρ/f̂ Ft

U (t)2, then

|L̂(u) − L̂0(u)| ≤ ρh

2π

∫
f̂ Ft

U (t)−2KFt(ht) dt,(5.4)

where L̂0 denotes the version of L̂ constructed with ρ = 0. With probability πn,
say, equal to 1 − O(n−B) for each B > 0, 1

2f Ft
U (t)2 ≤ f̂ Ft

U (t)2 for all t such that
the integrand at (5.4) does not vanish. Therefore, with probability at least πn,

sup
−∞<u<∞

|L̂(u) − L̂0(u)| ≤ C2
1ρhs

π

∫ 1/h

−1/h
(1 + |t |)2α dt ≤ C3ρh−2α,

where s = sup |KFt| and C3 > 0. Hence, with probability at least πn,

sup
−∞<x<∞

|f̂X(x) − f̂ 0
X(x)| ≤ C3n

−1,

which leads to the second part of (3.6).
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