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Abstract: In the nonparametric deconvolution problem, in order to estimate consistently a
density or distribution from a sample of data contaminated by additive random noise, it is
often assumed that the noise distribution is completely known or that an additional sample
of replicated or validation data is available. Methods also have been suggested for estimating
the scale of the error distribution, but they require somewhat restrictive smoothness assump-
tions on the signal distribution, which can be hard to verify in practice. In the present paper
we take a completely new approach to the problem, not requiring extra data of any type.
We argue that data rarely come from a simple, regular distribution, and that this can be
exploited to estimate the signal distributions using a simple procedure. Our method can be
extended to other problems involving errors-in-variables, such as nonparametric regression
estimation. Its performance in practice is remarkably good, often equalling (even unexpect-
edly) the performance of techniques that use additional data to estimate the unknown error
distribution.

Some Key Words: errors-in-variables, kernel smoothing, measurement errors, nonpara-
metric density estimation.

Short title: Nonparametric deconvolution with unknown error distribution.

1 Introduction

In the nonparametric deconvolution problem we seek to estimate the distribution FX (or the

density fX , if it exists) of a random variable X, but only observe independent and identically

distributed (i.i.d.) data W1, . . . ,Wn on W = X + U , where U denotes a measurement error

independent of X. This classical error problem has received considerable attention since the

late 80s. For several decades, research in the area was performed under the assumption that

the distribution FU of the error U was known.

The case of unknown FU has also been considered in the literature, where a common

approach is to assume the availability of additional data that make it feasible to estimate FU ,

for example a sample of replicated contaminated data, or, in a less commonly encountered

setting, a direct sample from the error distribution. There is also interest in estimating
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FX when FU is unknown and no additional data are available, although work in this case

consists largely of theoretical results in settings where a particular parametric model for FU

is available, not general methods that can be applied broadly and enjoy particularly good

performance. References are given in the second-last paragraph of this section.

Taking a completely new viewpoint, in this paper we argue that FX can in many cases

be estimated consistently without knowing even the shape of FU , and without extra data.

All we require of FU is that it have basic properties of symmetry. This level of generality is

unusual in errors-in-variables problems. To achieve it we use mathematical models for FX

that are different from those that conventionally are assumed when techniques are devised,

or theory is developed, or simulation studies are designed, in deconvolution problems. In

particular, we suppose that FX is drawn from a “random universe,” and for example is not

symmetric.

Of course, we are not going to sample distributions repeatedly. Our statistical analysis

is conducted conditional on a particular but unknown distribution which has been drawn

randomly from the universe, and we invoke the random universe principle, as we refer to it

below, only to motivate and model the irregularity displayed by real data distributions. We

submit that this approach is often appropriate in real, practical settings, although in terms

of theoretical analysis and statistical simulation it is unconventional.

Indeed, from some viewpoints our approach to tackling deconvolution problems is highly

unusual, because it is the sheer irregularity and unpleasantness of a real-world FX distri-

bution that allows us to do exciting, unexpected things in deconvolution. If FX were nice,

symmetric and conventional, for example if it were a normal distribution, then we could not

recover it from data on W without knowing the distribution of U ; but if it is reasonably

irregular then we can estimate it consistently. Usually, irregularity is an unpleasant feature

of statistical problems, but in deconvolution, we argue, it is an asset, and we exploit it.

Perhaps surprisingly, the role played by discrete distributions in this view of deconvolution

is fundamental. In particular, a simple form of the random universe principle, applied to

cases where FX is discrete, implies that that distribution is indecomposable, under basic

symmetry assumptions of FU .

These considerations lead to a new approach to inference in deconvolution problems,
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having two novel, distinct components. First, we use a minimum variance method to pinpoint

the basic distribution that has been sampled, with noise, from a random universe. Secondly,

we use discrete rather than continuous distributions as the basis for our methodology. In

particular, our initial estimator of FX is discrete, and we suggest running a smoother through

it to make it continuous. The performance of the resulting method is remarkably good, often

equalling, or even exceeding, techniques that use additional data to estimate the distribution

of measurement error.

Fourier transform methods are used predominantly for statistical inference in errors-

in-variables problems (including deconvolution). We mention here particularly the work of

Carroll and Hall (1988) and Stefanski and Carroll (1990), who constructed a consistent kernel

deconvolution estimator of fX , and Stefanski (1990) and Fan (1991, 1993), who derived its

general asymptotic properties. Li and Vuong (1998), Lin and Carroll (2006), Hall and Ma

(2007), Delaigle et al. (2008) and Stefanski and McIntyre (2011) addressed measurement error

problems in the setting of replicated data, and Diggle and Hall (1993) and Neumann (1997)

considered cases where samples of error data are available. Butucea and Matias (2005),

Butucea et al. (2008) and Kneip et al. (2012) discussed problems where U has a supersmooth

distribution known up to a scale parameter, and Meister (2006) addressed a similar context

where U is known to be normally distributed. In these papers the distribution of X is

assumed to be less smooth than that of U . The ideas in these articles provide an important

step towards the possibility of estimating FX without additional data or perfect knowledge

of FU , but they nevertheless require a parametric form for FU . Moreover, the assumption

that FX is less smooth than FU can be hard to justify in practice. Carroll et al. (2006)

provided a particularly accessible, book-length account of general methodology.

A reviewer has suggested that we survey the literature on inference for symmetric dis-

tributions, but in truth it is particularly sparse. There is, of course, interest in inference

for symmetric stable laws and related distributions (e.g. Dumouchel, 1973, 1975), and other

particular symmetric classes (e.g. Augustyniak and Doray, 2012), but more generally there

is greater interest in distributions that are constructed deliberately to be asymmetric; see,

for example, Arellano-Vallea et al. (2005).

This paper is organised as follows. We introduce our model and assumptions in section 2,

3



suggest our new methodology in section 3, and illustrate its numerical properties on real and

simulated data in section 4. We motivate the assumptions imposed in section 2 by studying

the decomposability of the distribution of X in section 5. Asymptotic theoretical properties

of our estimators are established in section 6. Finally, we discuss the application of our ideas

to other errors-in-variables problems in section 7. Proofs are given in the appendices.

2 Models and main assumptions

2.1 Model for data, and assumptions on the error distribution

Suppose we observe values of Wj = Xj +Uj for 1 ≤ j ≤ n, where the pairs (Xj, Uj) are i.i.d.

as (X,U), and X and U are independent. We wish to estimate the distribution of X from

data on W , without knowing the distribution of U . Write ϕX and ϕU for the characteristic

functions, and FX and FU for the corresponding distributions (or distribution functions), of

X and U , respectively. We assume that

ϕU is real-valued and nonnegative, but otherwise unknown; in the discrete
case it vanishes at at most a countable number of points, and in the
continuous case it is strictly positive on the real line.

(2.1)

The first part of (2.1) is equivalent to assuming that FU is symmetric, a standard assump-

tion in deconvolution problems. The other conditions in (2.1) are also standard, except that

in deconvolution problems, FU (or equivalently, ϕU) is usually assumed known. When FU is

not known perfectly, it is typically assumed that only its scale is unknown, or that samples

drawn from the error distribution, or replicates of the W s for the same X, are available;

see section 1. Our methods do not require assumptions about the shape or scale of FU , and

neither do we rely on additional samples.

2.2 Assumption on the distribution of X

Our assumption on FX will be given at (2.3) below, but it requires a little notation. Given

distributions F and G, define F ◦G by

(F ◦G)(x) =
∫
F (x− u) dG(u) .

Abusing terminology a little, we shall call F ◦G the convolution of F and G. Since X and

U are independent, we have FW = FX ◦ FU .
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If FX is symmetric, then since FU is also symmetric, with the assumption at (2.1) alone,

we can not distinguish FX from FU knowing only FW , and thus we cannot estimate FX from

data on W . If FX is not symmetric, and it is possible to decompose it as

FX = FY ◦ FZ , (2.2)

(equivalently, ϕX = ϕY ϕZ), where FY and FZ are nondegenerate distributions (and ϕY and

ϕZ their respective characteristic functions) with FZ symmetric, then we cannot distinguish

FX from FY knowing only FW , since FZ ◦ FU is symmetric and could be confused with FU .

However in real applications, FX can rarely be expected to be “regular”. For example,

although simple, classical symmetric distributions are often convenient for inference, we

rarely believe that our data come perfectly from such regular distributions. Rather, since

data can come from very diverse populations, FX can be viewed as a member of a very diverse

universe, and perhaps can be considered to have been drawn randomly, in some sense, from

a general class D of distributions, according to a particular but general sampling model.

There, distributions like FY would not be candidates for FX , because the factorisation of ϕX

into ϕY ϕZ imposes constraints on the structure of the universe, which with probability 1 fail

to hold for a member of that universe drawn at random (see section 5).

The fact that FX does not have a symmetric component, i.e. cannot be decomposed as

the convolution at (2.2), can be exploited to suggest an estimator of FX from data on W .

Specifically, in section 3 we suggest an estimation procedure based on the phase function,

which, for a random variable V , is defined by ρV = ϕV /|ϕV |, with ϕV denoting the char-

acteristic function of V . To understand the role of the phase function in our context, note

that (2.1) implies that ϕU = |ϕU |. Since ϕW = ϕX ϕU , we deduce that ρX = ρW ≡ ϕW/|ϕW |,

except perhaps where ϕU vanishes. More generally, ρX is also equal to the phase function

of distributions of the form FW (1) = FX ◦ FU(1) , where FU(1) is a symmetric distribution.

Importantly, the variance of FW (1) is strictly larger than that of FX . Similarly, if it were

possible to write FX = FY ◦ FZ , where FZ symmetric, then we would have ρX = ρY and the

variance of Y would be smaller than that of X, but we argue (and prove in section 5) that

such a decomposition of FX is often not possible. This motivates us to assume that:

FX uniquely has least variance among all distributions sharing the phase function ρX . (2.3)
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We argue that the distribution FX that is sourced from D in the way described above will

typically satisfy this assumption. If it does not then FX cannot be estimated from data on

W alone, and in that case we suggest taking the minimum variance version of FX to be our

target.

Remark 1. We can write ρX = exp(ipX), where the function pX is real valued and i =
√
−1.

In signal analysis, either of the functions ±pX is referred to as the phase function, and

sometimes that terminology is applied to ρX . We adopt the latter definition in this paper.

Note that although the phase function is not well known to statisticians, it is connected to

the cumulants of a distribution; see Appendix B.11 in the supplementary file.

To motivate further the assumption at (2.3), in section 5 we examine the decomposability

of FX as at (2.2), where FZ is symmetric. The extent of knowledge about decomposability

of a probability distribution was described 35 years ago by Loève as “somewhat disturbing,”

because “the ingenuity and power of the methods and the great wealth of results still leave

the basic problem unsolved: Find applicable general criteria so that, given a law, one can

find all its components, and, in particular, find whether it is. . .indecomposable” (Loève,

1978). The same could be said today; developing useful theory in this area is remarkably

challenging. The interested reader is referred to Linnik and Ostrovskii (1977) and Lukacs

(1970, 1983) for details of the general mathematical theory of distribution decomposability.

3 Methodology

3.1 Estimating FX

Motivated by the discussion in section 2.2, and in particular equation (2.3), we suggest

estimating FX by the distribution with minimum variance that has phase function equal to

an estimator of ρX constructed from the data W1, . . . ,Wn. In section 3.2 we show how this

estimator can be used to construct an estimator of the density fX in the continuous case.

First, we estimate ρX = ρW by ρ̂X = ϕ̂W/|ψ̂|1/2, where

ϕ̂W (t) = n−1

n∑
j=1

exp(itWj) , ψ̂(t) =
1

n(n− 1)

∑∑
1≤j,k≤n : j ̸=k

exp{it (Wj −Wk)} (3.1)
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are root-n consistent estimators of ϕW (t) and ψ(t) = |ϕW (t)|2, respectively.

If the quality of ρ̂X(t) were the same for all t, we would search for the minimum variance

distribution F with phase function ρ = ρ̂X , or equivalently, such that ϕ̂W (t)−
∣∣ψ̂(t)∣∣1/2 ρ(t) =

0 for all t. Of course, the quality of ρ̂X(t) degrades as |t| increases, which indicates that we

should put less emphasis on larger values of |t|. Motivated by this, let F denote a distribution

function, let ρ be its phase function, and let

T (F ) =

∫ ∞

−∞

∣∣∣∣ϕ̂W (t)−
∣∣ψ̂(t)∣∣1/2 ρ(t)∣∣∣∣2w(t) dt ,

where w is a nonnegative weight function. Recalling that our target is the distribution that

has least variance, subject to having the given phase function ρX , we suggest estimating FX

by choosing F to minimise T (F ), at the same time minimising variance.

To do this we use a sieve method, and in particular we approximate FX by a distribution

determined by a finite number of parameters, allowing that number potentially to diverge

with sample size. Many types of approximation are possible, including those based on a

discrete distribution or an orthogonal series; our development will focus on the former. That

is, we approximate FX by a distribution supported at atoms xj with respective probability

masses pj for 1 ≤ j ≤ m. Here, we have two options: (i) both the xjs and the pjs are subject

to choice, or (ii) the xjs are predetermined (here the only fitted parameters are generally the

probability masses). We argue that when approximating continuous distributions by discrete

ones, a method based on (i) is unnecessarily complex. In part, this is because often we are

interested in fX , not FX , and for this we need to smooth the estimator of FX (we shall do

this below). Therefore we take option (ii).

To choose the xjs, recall that the characteristic function of a lattice distribution is always

periodic, which is not the case for continuous distributions. Therefore, instead of taking the

xjs to be distributed on a regular grid ofm points in an interval I, say, we suggest distributing

m points uniformly but randomly in I, and taking these points, arranged in increasing order,

to be xjs. In practice we suggest taking I = [miniWi,maxiWi].

Let p = (p1, . . . , pm) and x = (x1, . . . , xm), write F ( · | p) for the discrete distribu-

tion that puts mass pj at xj for 1 ≤ j ≤ m. The characteristic function of F ( · | p)

is given by ϕ(t | p) =
∑

j pj exp(itxj), its phase function has the formula ρ(t | p) =
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∑
j pj exp(itxj)/

∣∣∑
j pj exp(itxj)

∣∣, and its variance is equal to

v(p) =
m∑
j=1

pj x
2
j −

( m∑
j=1

pj xj

)2

. (3.2)

To compute our estimator of FX , we search for p̂1, . . . , p̂m that minimises

T (p) =

∫ ∞

−∞

∣∣∣∣ϕ̂W (t)−
∣∣ψ̂(t)∣∣1/2 ∑

j pj exp(itxj)∣∣∑
j pj exp(itxj)

∣∣
∣∣∣∣2w(t) dt , (3.3)

under the constraint of minimising the variance and that ϕ̂U = ϕ̂W (t)/ϕ( · | p̂) is symmetric

and less than or equal to 1. We solve this non convex optimisation problem using Matlab’s

constrained optimisation program. Let p̂ denote the value of p obtained in this way. Then

F ( · | p̂) is our discrete approximation to FX . The practical implementation of this procedure

will be discussed in section 4.1.

3.2 Estimating fX in the continuous case

In the continuous case we often wish to estimate the density fX . There are several ways to

construct a density estimator from a discrete approximation to its distribution. We suggest

using f̂X(x) =
∑m

j=1 p̂jKh(x − xj), where K is a kernel and h > 0 a bandwidth; see Hall

and Presnell (1999) for related tilting methods. Define ϕ(t | p̂) =
∑

j p̂j exp(itxj) and let ϕK

denote the Fourier transform of K. In this notation we can write f̂X as

f̂X(x) =
1

2π

∫
e−itx ϕ(t | p̂)ϕK(ht) dt. (3.4)

While this estimator works well (see Appendix B.4 in the supplementary file), the fact

that ϕ(t | p̂) was constructed from values of t such that |t| ≤ t∗ implies that ϕ(t | p̂) is less

reliable for |t| > t∗, which can affect the variability of f̂X . The same phenomenon arises with

the estimator of Delaigle et al. (2008), which is recalled in Appendix B.2 in the supplementary

file. Like there, the variability of f̂X can be reduced by using a standard ridging approach

where ϕ(t | p̂) is replaced by

ϕ̃(t) =

{
ϕ(t | p̂) if |t| ≤ t∗

r(t) otherwise,

with r denoting a ridge function. This leads to the modified estimator

f̃X(x) =
1

2π

∫
e−itx ϕ̃(t)ϕK(ht) dt. (3.5)
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As in Delaigle et al. (2008), we take r = ϕ̂W/ϕ̂U,P , with ϕ̂U,P the characteristic function of

a Laplace distribution having variance equal to an estimator σ̂2
U of the error variance σ2

U (see

Appendix B.1 in the supplementary file for how to construct σ̂2
U). Since Laplace distributions

are very unsmooth, this is usually a good choice; see Meister (2006) and Delaigle (2008).

4 Numerical properties

4.1 Computing the estimators in practice

Here we show how to compute our estimator in the continuous case, which is the most

challenging context and the one that interests us the most. The discrete case requires only

computation of the estimated probabilities p̂j, which can be done along the same lines.

In practice, to avoid numerical problems arising when dividing by a small number, we let

w(t) = ω(t) |
∑

j pj exp(itxj)
∣∣ at (3.3), where we take ω(t) to be the Epanechnikov kernel

rescaled to an interval [−t∗, t∗]. To choose t∗, note that the role of this quantity is to avoid

using ϕ̂W (t) when the latter is a poor estimator of ϕW (t). Since ϕ̂W is unbiased for ϕW ,

and has variance less than or equal to 1/n, then if t is such that ϕ̂W (t) is an order of

magnitude larger than n−1/2, we can expect ϕ̂W (t) to be a reasonable estimator of ϕW (t).

Motivated by this, we take t∗ to be the smallest t > 0 for which |ϕ̂W (t)| ≤ n−1/4. While

our recommendation is sensible, determining the optimal value of t∗ requires more detailed

theoretical results about our procedure than those that we currently have.

We know from the theory in section 6.3 that, when X is continuous, m should diverge

to infinity as n → ∞, but determining the rates at which m should increase is particularly

challenging and is beyond the scope of this paper. Therefore, we chose m from numerical

investigations based on various examples, with sample sizes ranging from n = 200 to n =

2000. These indicated that m = 5
√
n is a reasonable choice.

Once we have the p̂js, it remains to compute the density estimator using f̃X at (3.5).

For this we need to choose the bandwidth h. In Appendix B.3 in the supplementary file,

we show that f̃X can be viewed as an estimator of the deconvolution estimator suggested by

Carroll and Hall (1988) and Stefanski and Carroll (1990) when FU is known, and defined by

f̂DEC(x) =
1

2π

∫
e−itx {ϕ̂W (t)/ϕU(t)}ϕK(ht) dt . (4.1)
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As in Delaigle et al. (2008), this suggests taking h to be an estimator of the 2-stage plug-in

bandwidth of Delaigle and Gijbels (2002, 2004), which is usually employed when computing

f̂DEC; see Appendix B.3 for details. As is the case for f̂DEC, our estimator f̃X is not guaranteed

to be positive everywhere, and so we redefine it to equal zero at places where it was otherwise

negative, and renormalise so that it integrates to 1, producing the revised density estimator

which, for simplicity, we shall also denote by f̃X .

4.2 Real data examples

We start by illustrating the effectiveness of our approach by applying it to two real datasets

where replicated measurements Wi1 and Wi2 are available, with

Wi1 = Xi + Ui1, i = 1, . . . , n and Wi2 = Xi + Ui2, i = 1, . . . , R, with R ≤ n, (4.2)

where the Uijs are independent, and independent of the Xis. This permits us to compare f̃X ,

defined in the last paragraph of section 4.1, which does not use the replicates, with methods

that can only be applied when replicates are available. As we shall see, our estimator worked

extremely well in these two examples, illustrating the fact that real life distributions are often

sufficiently irregular for the arguments supporting our approach to hold.

Below we compare our method with Delaigle et al.’s (2008) estimator (f̂DHM), which esti-

mates FU completely nonparametrically from the differences of replicates (see Appendix B.2

in the supplementary file), and two variants often used in practice, f̂DEC,L and f̂DEC,N, where

FU in f̂DEC at (4.1) is estimated parametrically by a Laplace (f̂DEC,L) or a normal (f̂DEC,N)

distribution whose scale σ̂U is computed from the replicates, as described in Appendix B.2.

We apply these four methods using the 2-stage plug-in bandwidth of Delaigle and Gijbels

(2002, 2004), where, for each method, we replace FU by its related estimator. We also com-

pute the naive estimator, f̂naive, which is the standard kernel estimator of fW based on the

data W11, . . . ,Wn1, and using the plug-in bandwidth of Sheather and Jones (1991).

Our first example comes from the Framingham study carried our by the National Heart,

Lung, and Blood Institute (Kannel et al., 1986 and Carroll et al., 2006). This dataset

comprises measurements, for n = 1615 patients, of several variables related to coronary

heart disease. Our interest is in the systolic blood pressure, which is measured with a great
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Figure 1: Estimators of the density fX for the Framingham data (left) and for the diet and
heart data (right): f̂DHM (DHM), f̂DEC,L (U Laplace), f̂DEC,N (U normal), our estimator f̃X
(new) and f̂naive (naive).

deal of noise. In this study, for each i, two measurements of long term systolic blood pressure

SBPi were collected at each of two exams (exams 1 and 2). As in Carroll et al. (2006), for

each i we let Mij be the average of the two measurements at exam j, for j = 1 and 2, and

take Wij = log(50−Mij) and Xi = log(50−SBPi), where the Wijs satisfy (4.2) with R = n.

The left panel of Figure 1 shows the five estimators of fX on the same graph. We can

see that our estimator, which is computed without the replicates, is very similar to f̂DHM,

f̂DEC,L and f̂DEC,N, which cannot be computed without the replicates. In this example, our

estimator even seems more attractive than f̂DHM, which is perhaps too wiggly. As usual, the

naive estimator, which estimates fW rather then fX , strongly oversmoothes the data.

Our second example comes from a pilot study on coronary heart disease; see Morris et

al. (1977) and Clayton (1992). In this example we have error-prone measurements Wi1,

i = 1, . . . , n of the ratio Xi of poly-unsaturated fat to saturated fat intake for n = 336 men

in a one-week dietary survey. A second measurement of this ratio, Wi2 for i = 1, . . . , R, is

available for R = 60 men, who completed a second survey several months after the first. Our

goal is to estimate the density fX of the Xis. Proceeding as in the previous example, we

can compute the five estimators of fX discussed above. The results are shown in the right

panel of Figure 1. Compellingly, although our estimator does not use the replicates, it is

close to f̂DEC,L and f̂DEC,N, which both use the replicates. In this example, too, f̂DHM is less

attractive than thoseestimators; it seems to oversmooth the data (although not as much as
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Figure 2: Curves Q1, Q2 and Q3 for model (i), when the errors are normal, NSR=20% and
n = 200 (top) or n = 500 (bottom), for our estimator f̃X (left), f̂DEC (middle) and f̂naive
(right). The true curve is depicted by the solid line.

f̂naive), probably because FU is estimated nonparametrically from too few (60) observations.

4.3 Simulated examples

Next we consider simulated examples. Reflecting the issues discussed in section 1, we take

FX to be asymmetric and not straightforwardly decomposable as FX = FY ◦ FZ , where FZ

is symmetric. Specifically, we generated data Wj = Xj + Uj, j = 1, . . . , n, where Uj was

normal or Laplace, and Xj came from one of the following distributions FX :

(i) Xj ∼ χ2(3)/
√
6;

(ii) Xj ∼ {0.5N(1, 1) + 0.5χ2(5)}/
√
4.5.

(iii) Xj ∼ {0.5N(5, .62) + 0.5χ2(3)}/
√
4.08;

For each of these three distributions FX , we generated 100 samples W1, . . . ,Wn of size

n = 200 or n = 500, obtained by taking Wj = Xj + Uj, where Xj ∼ FX and Uj was Laplace

or normal, with noise to signal ratio, NSR = var(U)/var(X), equal to 20% or 40%. For each

of these eight configurations, and for each sample, we computed our estimator f̃X at (3.5) for

unknown FU , implemented as in section 4.1, the standard deconvolution estimator f̂DEC at
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Figure 3: Curves Q1, Q2 and Q3 for model (ii), when the errors are Laplace, n = 200 and
NSR=20%, for our estimator f̃X (left), f̂DEC (middle) and f̂naive (right). The true curve is
depicted by the solid line.

Table 1: Simulation results for densities (i) to (iii). The numbers show 10× the median
absolute deviation [1st quartile,3rd quartile] calculated from 100 simulated samples.

U ∼Normal U ∼Laplace

FX NSR n f̃X f̂DEC f̂naive f̃X f̂DEC f̂naive

(i) 0.4 200 3.67[3.36,4.13] 3.69[3.26,4.29] 4.17[3.84,4.58] 3.08[2.73,3.51] 3.06[2.68,3.35] 3.75[3.48,4.06]
500 3.27[3.01,3.68] 3.31[3.00,3.68] 3.94[3.73,4.20] 2.66[2.35,2.97] 2.61[2.20,2.92] 3.46[3.20,3.75]

0.2 200 2.88[2.51,3.15] 2.93[2.60,3.26] 3.26[2.93,3.53] 2.60[2.29,3.08] 2.62[2.29,3.09] 3.09[2.82,3.46]
500 2.45[2.18,2.76] 2.53[2.38,2.89] 3.02[2.79,3.27] 2.13[1.92,2.40] 2.22[1.93,2.40] 2.75[2.55,2.92]

(ii) 0.4 200 3.90[3.50,4.23] 3.77[3.31,4.17] 4.16[3.80,4.43] 3.33[2.92,3.65] 3.22[2.70,3.51] 3.68[3.35,4.03]
500 3.53[3.22,3.74] 3.49[3.08,3.70] 4.01[3.76,4.20] 2.57[2.21,2.87] 2.48[2.08,2.78] 3.36[3.14,3.54]

0.2 200 2.92[2.61,3.36] 2.99[2.60,3.38] 3.34[3.05,3.68] 2.62[2.31,2.95] 2.53[2.29,2.96] 3.00[2.73,3.28]
500 2.62[2.33,2.93] 2.61[2.40,2.88] 3.08[2.94,3.23] 1.98[1.65,2.39] 2.04[1.71,2.29] 2.66[2.42,2.87]

(iii) 0.4 200 5.14[4.68,5.48] 4.97[4.25,5.45] 5.47[5.19,5.77] 4.04[3.53,4.48] 3.84[3.35,4.35] 4.73[4.42,5.07]
500 4.64[4.29,5.15] 4.40[3.92,5.02] 5.28[5.07,5.52] 3.21[2.76,3.59] 3.22[2.74,3.47] 4.59[4.31,4.72]

0.2 200 3.93[3.52,4.38] 3.93[3.51,4.33] 4.51[4.16,4.77] 3.19[2.88,3.65] 3.28[2.95,3.70] 3.97[3.63,4.25]
500 3.51[2.97,3.99] 3.44[3.11,3.85] 4.23[4.01,4.48] 2.50[2.28,2.91] 2.61[2.35,2.87] 3.62[3.40,3.77]

(4.1) for known FU with the 2-stage plug-in bandwidth of Delaigle and Gijbels (2002, 2004),

and the naive estimator f̂naive (the standard kernel estimator of fW computed from the Wis)

with the Sheather and Jones (1991) plug-in bandwidth. Let f̂ denote any of those estimators;

for each estimator, we computed the integrated absolute error IAE =
∫
|f̂−fX |. In the figures

we show three curves for each estimator: Q1, Q2 and Q3, which, for a given configuration,

correspond to the estimated curves obtained for the samples that gave, respectively, the first,

second and third quartile IAE values for that estimator in that configuration.

Figure 2 shows the curves Q1, Q2 and Q3 for the three estimators, for density (i) when the

Uis are normal, NSR=20% and increasing n. We can see that our estimator performed very

well compared to the standard estimator f̂DEC that uses the correct error distribution, and

much better than the naive estimator f̂naive. As expected, the results improve as n increases.
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In Figure 3 we show Q1, Q2 and Q3 for density (ii), Laplace Uis, n = 200 and NSR=20%

(see Figure B.1 in Appendix B.4 in the supplementary file for NSR=40%). Here too we see

that our estimator fares particularly well compared to f̂DEC, whereas f̂naive performs more

poorly. We obtained similar results in other cases, as can be seen from Table 1, where we

present the median, first and third quartiles of the IAE for all the cases we considered.

5 Indecomposability of FX

5.1 Introduction

Owing to the challenges of decomposability, discussed briefly at the end of section 2, we do

not have all the theory that we would prefer, and so we provide only partial results. To make

the concept of a random universe more concrete, we start by constructing an explicit example

of a discrete random universe; see section 5.2. Then, in sections 5.3 and 5.4, we show that,

in a wide range of settings where FX comes from a discrete random universe, FX cannot be

decomposed as at (2.2) where FY and FZ are two nondegenerate discrete distributions, and

FZ is symmetric. We treat the continuous case in section 5.5.

Note that, if FX is discrete, then cases where FZ is continuous are not relevant, since the

methodology we suggested in section 3 fits only discrete distributions to the phase function,

and is not confounded by potential continuous components in a decomposition of the distri-

bution of Z that will, on account of the assumed positivity of their characteristic functions,

cancel from a formula for ρX . This is also true for the “generalised characteristic function”

ϕ, introduced below; it too does not require consideration in cases where (a component of)

the generalised distribution of Z has a continuous distribution. Therefore, to examine the

existence of a decomposition

FX = FY ◦ FZ

when FX is assumed to be discrete, it is sufficient to consider instances where FZ is discrete.

Our nondecomposability results imply that we cannot write ϕX = ϕY ϕZ , where ϕY is the

characteristic function of FY and ϕZ is the real-valued characteristic function of a symmetric

distribution FZ . Furthermore, our theorems can be extended, either directly or with mild

extra assumptions, to the case where ϕZ is replaced by a “generalised characteristic function”
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ϕ, i.e. a real-valued function, not necessarily a characteristic function but nevertheless a

Fourier transform of a discrete, symmetric but potentially signed “probability” distribution.

In such instances we can write ϕ(t) =
∑

1≤j≤mZ
rj exp(it zj), where the sequences of values

zj and rj are each symmetric, but where it is not necessarily true that each rj is positive.

Further discussion is given below Theorems 1, 2 and 4.

5.2 An example of model for sampling FX from a random universe

Recall from section 1 that we introduce random sampling from large sets of distributions

only to motivate and model the irregularity of real-world populations. In our statistical

analysis we condition on the randomly sampled distribution, and in particular, sampling

from a random universe is not a feature of our methodology.

Let D = Ddisc denote the class of all discrete distributions having two or more distinct

atoms. In the example considered here, we first we choose randomly the number, M , of

atoms of FX . We take M ≥ 2 to be a random variable having a discrete distribution

of which the support is the set {2, 3, . . .}. Next, we choose randomly the M atoms of

the distribution FX . To do this, conditional on M , we let V1, V2, . . . denote independent

continuous random variables (for example, normal random variables). Then, we choose

randomly the M probability masses of the distribution FX . For this, put V = (V1, . . . , VM),

and, conditional on M and V , let P = (P1, . . . , PM) be chosen randomly from the simplex

defined by Pj ≥ 0 for 1 ≤ j ≤M and P1+ . . .+PM = 1. Finally, denote by F the sigma-field

generated by M , V and P , and, conditional on F , let X have the discrete distribution FX

that places mass Pj at Vj for 1 ≤ j ≤M .

This sampling model prescribes the joint distribution of (M,V, P ). The model associates,

with each choice of (M,V, P ), a discrete distribution, F ( · |M,V, P ) say, in Ddisc, the dis-

tribution being defined by P (X = x |M,V, P ) = F (x |M,V, P ) , for all real numbers x,

where X is as in the previous paragraph. Each distribution in Ddisc is in the support of

the class of all distributions F ( · |m, v, p), in the sense that if FX ∈ Ddisc then, for each

ϵ > 0, P
[
d
{
FX , F ( · |M,V, P )

}
≤ ϵ

]
> 0 , where d(F,G) can be any conventional measure of

distance between discrete distributions F and G, for example a measure based on the Lévy

metric for distribution functions.
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The construction of FX described above is just an example, and our theoretical analysis

in sections 5.3 and 5.4 will show that the definition given above of the random universe Ddisc

is actually more elaborate than necessary. It is sufficient to take M to be fixed, and either

fix P and choose V randomly in the continuum, or fix V and choose P randomly. Likewise,

it is not essential that P be independent of M and V .

5.3 Discrete distributions with irregularly spaced atoms

In this section we prove that the decomposition at (2.2) is not possible for discrete distribu-

tions FX with irregularly spaced atoms. More precisely, Theorem 1 below states that if FX is

drawn from a random universe of discrete distributions where the atoms of FX are irregularly

spaced, then with probability 1 with respect to the operation of sampling from that universe,

the distribution of X cannot be expressed as that of Y + Z, where the random variables Y

and Z are independent, nondegenerate and have discrete distributions. Although the case

where Z is symmetric is particularly important when working with the phase function, we

note that Theorem 1 is true regardless of whether or not the distribution of Z is symmetric.

Theorem 1. Assume that the atoms of the discrete distributions, in the random universe

from which we draw FX , are irregularly spaced in the sense that the joint distribution of any

finite number of the atoms is continuous. Then, with probability 1 with respect to drawing

FX from the random universe, that distribution cannot be written as a convolution of two

discrete distributions.

See Appendix A.1 for a proof. Theorem 1 is derived under the assumption that FZ is a

proper probability distribution. In particular, it satisfies
∑mZ

j=1 rj = 1, where rj = P (Z =

zj) ≥ 0 are the atoms of the discrete distribution of Z. However, the proof of the theorem

also is correct when ϕX = ϕY ϕ and ϕ is a generalised characteristic function as in section 5.1,

provided we add a mild extra assumption; see Appendix B.6 in the supplementary file.

5.4 Discrete distributions with regularly spaced atoms

Next we consider cases where the randomness of the universe from which FX is drawn

comes from values of the probabilities pj = P (X = xj), and not from arrangements of the
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atoms xj. In particular, here drawing FX from a random universe involves drawing the

probability masses of the atoms of FX randomly, and in the continuum, from the simplex

S of values p1, . . . , pmX
such that each pj > 0 and p1 + . . . + pmX

= 1. (Here mX denotes

the number of atoms of FX .) However, in that random universe the atoms need not be

irregularly arranged; for example they could be constrained to lie on a regular grid.

The next theorem shows that, if the distribution FX comes from this random universe,

then it is not possible to decompose FX as at (2.2). More precisely, Theorem 2 demonstrates

that, with probability 1 with respect to sampling from the random universe, FX cannot be

expressed as the distribution of Y +Z, where Y and Z are independent, nondegenerate and

have discrete distributions, and Z is symmetric.

Theorem 2. Assume that FX is chosen at random from a random universe of discrete

distributions, each having mX ≥ 3 atoms constrained to lie at particular consecutive values

(the same for each FX) on a regular grid, and for which the respective probability masses

are chosen at random and uniformly from S. Then, with probability 1 with respect to the

operation of sampling from the random universe, nondegenerate discrete distributions FY

and FZ cannot be found, supported on consecutive values on the regular grid and such that

FZ is symmetric about some point and FX = FY ◦ FZ.

As for Theorem 1, Theorem 2 is derived and proved under the assumption that FZ is

a proper probability distribution, but our proof is valid in cases where Z is interpreted as

having a generalised discrete distribution. We conclude this section with a result showing

that Theorem 2 does not generally hold when FZ is not constrained to be symmetric. See

Appendix A.2 for a proof and Appendix B.7 in the supplementary file for an example.

Theorem 3. Assume that FX is chosen at random from a random universe of discrete

distributions, each having mX ≥ 3 atoms constrained to lie at particular consecutive values

(the same for each FX) on a regular grid, and for which the respective probability masses

are chosen at random and uniformly from S. Then there is strictly positive probability that

nondegenerate discrete distributions FY and FZ can be found, each supported on consecutive

values on the regular grid, such that FX = FY ◦ FZ.
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5.5 Continuous distributions

Next we study the decomposability of FX in the continuous case, which is much more com-

plex. The main difficulty is that, while there exist many results in the probability literature

about decomposability of distributions, these do not permit checking whether or not a given

distribution is decomposable, let alone decomposable into a convolution where one of the

components is symmetric. As noted by Lukacs (1970), “There is no general method for

finding the prime factors of a given characteristic function; our knowledge consists mostly of

interesting special examples.” One property that is known (see Parthasarathy et al., 1962;

Loève, 1978) is that the set of indecomposable, absolutely continuous distributions is Gδ

dense in the set of absolutely continuous distributions; those authors wrote that “This lends

substance to the statement that, in general, a distribution is indecomposable.”

Thus, the set of absolutely continuous distributions that cannot be decomposed into

FX = FY ◦ FZ , where FZ is symmetric, is vast. Next we give an example in the context of

finite-parameter models. Let m ≥ 3 be an integer, let x1, . . . , xm be fixed, regularly spaced

numbers, and denote by P = (P1, . . . , Pm) a multivariate probability distribution drawn

randomly and uniformly from the simplex S defined in section 5.4, with mX there replaced

by m. Let U = (U1, . . . , Um) be a vector of independent random variables, with each Uj

distributed uniformly on [c1, c2], where 0 < c1 < c2 < ∞. It is assumed too that U is

independent of P . Define FX( · |h, P, U) to be the continuous distribution that has density

fX(x |h, P, U) =
m∑
j=1

Pj

hUj

K
(x− xj
hUj

)
, (5.1)

where h > 0 and K is the density of a symmetric, compactly supported probability distri-

bution G that cannot be decomposed as G = G1 ◦G2 for nondegenerate G1 and G2.

As h decreases to zero in the definition of FX( · |h, P, U), that distribution converges to

the discrete distribution FX( · |P ) that has an atom of mass Pj at xj for 1 ≤ j ≤ m. In

view of Theorem 2, with probability 1 with respect to the operation of sampling P from the

simplex, FX( · |P ) is not decomposable as FY ◦ FZ , where FZ is symmetric.

The property of “indecomposability with probability 1” is also true for the distribution

FX( · |h, P, U), if h is sufficiently small and positive; see Theorem 4, below. Of course,
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in this setting the indecomposability property involves drawing (P,U), rather than simply

P , from the joint distribution prescribed two paragraphs above. Theorem 4 exploits the

fact that the Ujs are chosen randomly and independently, and would not necessarily hold

in more restrictive circumstances. For example, if the Ujs were all equal to U0, say, then

we could write FX( · |h, P, U) = FY ◦ FZ where FY = FX( · |P ) and FZ is the continuous,

symmetric distribution with density fZ(z) = (hU0)−1K(z/hU0). See Appendix B.8 in the

supplementary file for a proof of the theorem.

Theorem 4. If FX( · |h, P, U) is as defined three paragraphs above, if the continuous, sym-

metric, compactly supported distribution with density K is not decomposable, and if h is

sufficiently small, then, with probability 1 with respect to the operation of sampling from the

random universe, nondegenerate distributions FY and FZ cannot be found such that FY is a

distribution, FZ is symmetric and FX = FY ◦ FZ.

As for Theorems 1 and 2, although this result is proved under the assumption that FZ

is a proper probability distribution, with a mild extra assumption it can be extended to the

case where ϕX = ϕY ϕ and ϕ is a generalised characteristic function as in section 5.1.

6 Large-sample properties

6.1 Asymptotic theory for the discrete case

Here we establish consistency and rates of convergence of our estimators of FX when

that distribution is discrete with a finite number of atoms. In this setting, let m0,

p0 = (p01, . . . , p
0
m0) and x0 = (x01, . . . , x

0
m0) denote the true values of m, of p = (p1, . . . , pm)

and of x = (x1, . . . , xm), respectively. We make the following assumptions, where constants

denoted by C. or c. are respectively large or small:

(a) |ϕW (t)| > c1 (1 + |t|)−C1 for all t, where c1, C1 > 0; (b) the function w in
(3.3) is continuous, and 0 < w(t) ≤ C2 exp(−c2 |t|) for all t, where C2, c2 > 0;

(6.1)
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(a) the true FX is discrete and has exactly m0 ≥ 2 atoms, at the points
x01, . . . , x

0
m0 and with respective probability masses p01, . . . , p

0
m0 > 0, and ϕX

satisfies |ϕX(t)| > c3 (1 + |t|)−C3 for all t, where c3 > 0 and C3 ≥ 0; (b) any
other distribution FY , say, with the same phase function as FX , has strictly
greater variance than FX , and, if m = m0 is held fixed, the minimum variance
for FX is achieved in the usual quadratic way as p→ p0 and x→ x0; (c) when
estimating m0, x0 and p0 we know the value of a constant C4 > 0 such that
m0 ≤ C4 and maxj |x0j | ≤ C4, and consequently we confine attention to m
satisfying m ≤ C4 and xj, satisfying |xj| ≤ C4.

(6.2)

It follows from (6.2)(c) that the variance of X is bounded above by C2
4 , and hence that the

minimum variance criterion is well defined.

The assumption in (6.2)(a) that |ϕX(t)| > c3 (1 + |t|)−C3 for all t often holds for discrete

distributions, having either regularly or irregularly spaced atoms. Indeed, the assumption

is often valid with C3 = 0. To appreciate why, suppose FX is the discrete distribution with

mass πj at ξj for 1 ≤ j ≤ m, and write πk = πmax for the largest πj. Then

|ϕX(t)| =
∣∣ϕX(t) exp(−it ξk)

∣∣ = ∣∣∣∣ m∑
j=1

πj exp{it (ξj − ξk)}
∣∣∣∣ ≥ πmax −

∑
j : j ̸=k

πj = 2 πmax − 1 .

Therefore, if πmax >
1
2
, and we choose c3 ∈ (0, 2πmax − 1), then |ϕX(t)| > c3 for all t.

Next we define estimators m̂, p̂ and x̂ of m0, p0 and x0, respectively. In a theoretical

account of the discrete case it is feasible to minimise T , at (3.3), over m and x as well as p.

Therefore it is appropriate to write T (p) and v(p), at (3.3) and (3.2), as T (m, p, x) and

v(m, p, x), respectively. Noting (6.2)(c), for each integer m ∈ [1, C4] we choose (m, p̂[m], x̂[m])

to minimise T (m, p, x); we define (mj, p̂[mj ], x̂[mj ]), for 1 ≤ j ≤ J , say, to be the local minima

of the sequence {v(m, p̂[m], x[m]), 1 ≤ m ≤ C4}; and we take (m̂, p̂, x̂) to be the value of

(mj, p̂[mj ], x̂[mj ]) that minimises v(mj, p̂[mj ], x̂[mj ]) over 1 ≤ j ≤ J . Defining p̂k and x̂k, for

1 ≤ k ≤ m̂, to be the components of p̂ = (p̂1, . . . , p̂m̂) and x̂ = (x̂1, . . . , x̂m̂), we take F̂X to

be the distribution function that places mass p̂j at x̂j for 1 ≤ j ≤ m̂.

Theorem 5. If (6.1) and (6.2) hold, and if (m̂, p̂, x̂) is defined as suggested above, then

P (m̂ = m0) → 1 and (p̂, x̂) = (p0, x0) +Op(n
−1/2).

A proof of the theorem is given in Appendix A.3. To better interpret the theorem, let

L denote the Lévy metric, both here and in Theorem 7 below. Then Theorem 5 implies

that, under the assumptions stated there, L(F̂X , F
0
X) = Op(n

−1/2). Theorem 7 will establish

consistency of F̂X for F 0
X in a general setting.
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6.2 Minimising both T (p) and v(p) in a general setting

This section is a prelude to section 6.3, where we establish consistency of our estimator of

FX in a context that includes both continuous and discrete cases. Recall the definitions of

T (p) and v(p) at (3.3) and (3.2), and put

T0(p) =

∫ ∞

−∞

∣∣∣∣ϕW (t)− |ϕW (t)|
∑

j pj exp(itxj)∣∣∑
j pj exp(itxj)

∣∣
∣∣∣∣2w(t) dt . (6.3)

As in section 3.1 we have in mind cases where bothm and the grid (either regular or irregular)

on which the components xj of x lie either do not depend on the data, or are determined

from the data in a rudimentary way. In the continuous case, m would diverge with n, and

the grid represented by x would become infinitesimally fine and expand to fill the support

of the distribution of W .

Let t̂ denote any sequence of positive random variables with the property that

1− π ≡ P
{
sup
p

|T (p)− T0(p)| ≤ t̂
}
→ 1 , t̂→ 0 (6.4)

as n→ ∞, where the second convergence is in probability, and, here and below, supp denotes

the supremum over m-point probability distributions defined on the grid. For example,

regardless of choice of m and x, (6.4) holds if we take t̂ = cn where cn denotes any sequence

of positive constants satisfying cn → 0 and n1/2 cn → ∞, and if the weight function w, in

(3.3) and (6.3), is integrable. (This follows from the fact that n1/2 (ϕ̂W −ϕW ) and n1/2 (ψ̂−ψ)

both converge weakly to Gaussian processes.) Alternatively we could take t̂ to be a bootstrap

approximation to the upper π-level quantile of the distribution of supp |T (p) − T0(p)|, and

let π decrease slowly to zero as n increases.

Recall from section 3.1 that F ( · | p) denotes the distribution that places mass pj on xj for

1 ≤ j ≤ m. We shall view T0(p) as a measure of the distance of the distribution F ( · | p) from

the class DX of all distributions with phase function ρX . (This interpretation is appropriate

because T0 = 0 if and only if the ratio
∑

j pj exp(itxj)/|
∑

j pj exp(itxj)|, in the definition

at (6.3), is replaced by a function that equals ρX almost everywhere.) Given a positive

random variable δn converging to 0, let P(δn) denote the set of all p (of length m) such

that T0(p) ≤ δn. We interpret {F ( · | p) : p ∈ P(δn)} as the class of distributions that are
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representable on our grid and are no further than δn from DX . In practice we can often

obtain an appropriate value for δn by combining an assumption about the smoothness of FX

with knowledge of the fineness of the grid.

Put P̂(δn) = {p : T (p) ≤ t̂ + δn}. In section 6.3 we shall take p̂, the value of p that we

use to construct our estimator of FX , to be the minimiser of v(p) over p ∈ P̂(δn). (With

probability at least 1 − π, P̂(δn) contains any value of p that minimises T0(p) over P(δn).

Therefore, since P(δn) is nonempty whenever δn > 0, the probability that P̂(δn) is nonempty

converges to 1.) Theorem 6, below, shows that T0(p) converges to 0 uniformly in p ∈ P̂(δn),

and that with probability converging to 1, P̂(δn) contains P(δn).

Theorem 6. If (6.4) holds, and δn → 0 as n→ ∞, then

supp∈P̂(δn)
T0(p)

P−→ 0 , P
{
P(δn) ⊆ P̂(δn)

}
→ 1 . (6.5)

6.3 General consistency of F̂X, and consistency of f̂X in the con-
tinuous case

Here we establish consistency of our estimator F̂X in a general context that encompasses

discrete and continuous distributions. In the continuous case we also prove consistency

of the estimator f̂X of section 3.2. Our setting is that of section 6.2, and we adopt the

notation there. Additionally we constrain F̂X to satisfy
∫
x4 dF̂X(x) ≤ C n−1

∑n
j=1 W

4
j , for

any fixed constant C ≥ 1. This condition is justified by the fact that E(W 4) = E(X4) +

6E(X2)E(U2) + E(U4), and requires only minor adjustments to m and x. The constraint

ensures that our estimator of FX does not have tails that are unduly heavy.

Define p̂ = (p̂1, . . . , p̂m) = argmin {v(p) : p ∈ P̂(δn)}, and let F̂X denote the dis-

crete distribution with atoms of mass p̂j at the respective components xj of the vector

x = (x1, . . . , xm). We take this version of F̂X to be our estimator of FX , and again write L

for the Lévy metric. Recall from section 6.2 that P(δn) = {p : T0(p) ≤ δn}. It follows from

the definition of T0 at (6.3) that, if the grid is sufficiently extensive and sufficiently fine, then

for each n there exists p0 = p0(n) such that F ( · | p0) → F 0
X as n → ∞, where F 0

X is the

version of FX that has minimum variance subject to having phase function ρX . We assume

that the fineness of the grid decreases sufficiently quickly (i.e. m increases sufficiently fast),
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or δn decreases to zero sufficiently slowly, to ensure that P(δn) contains, for sufficiently large

n, such a probability vector p0:

there exists p0 = p0(n) such that T (p0) ≤ δn for all sufficiently large n, and
F ( · | p0) → F 0

X .
(6.6)

The next theorem establishes consistency of our estimator F̂X . See Appendix B.9 in the

supplementary file for a proof.

Theorem 7. If E(W 4) < ∞ and there exists a unique distribution F 0
X with minimum

variance over all distributions FX for which ϕX = |ϕX | ρX almost everywhere on the real

line, and if (6.1), (6.4) and (6.6) hold, then L(F̂X , F
0
X) → 0 in probability.

Finally, we state a general theorem which, in the context of Theorem 7 and the additional

assumption that F 0
X is smooth, ensures that a simple kernel smooth of F̂X , like the one in

section 3.2, produces a uniformly consistent estimator of the density f 0
X = F 0

X
′. Of course,

the quantities F̂X and F 0
X mentioned in Theorem 8 are not required to be those introduced

earlier in this paper. The proof is given in Appendix B.10 in the supplementary file.

Theorem 8. Let F̂X be an estimator of a distribution function F 0
X , and assume that

L
(
F̂X , F

0
X

) P−→ 0 as n → ∞. Suppose too that F 0
X is absolutely continuous with density f 0

X ,

which is bounded and uniformly continuous, and define f̂X(x) = h−1
∫
K{(x−u)/h)} dF̂X(u) ,

where the nonnegative kernel K is of bounded variation and satisfies
∫
K = 1, and h > 0

represents a bandwidth. Then, if h = h(n) decreases to 0 sufficiently slowly as n increases,

sup
x

∣∣f̂X(x)− f 0
X(x)

∣∣ P−→ 0 . (6.7)

It follows from an integration by parts argument, and formula (B.13) in Appendix B.10

and the fact that K is of bounded variation, that the probability that f̂X is well defined and

uniformly bounded converges to 1 as n→ ∞.

7 Application to other problems

There are many problems involving measurement errors where knowing, or having an accu-

rate estimator of, the error distribution is critical. Examples include nonparametric errors-

in-variables regression, cure rate models (Ma and Yin, 2008) and variance estimation (Wang
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at al. 2009). Our method can be used in those cases too, since once we have an estimator of

the distribution of U , we can use it to replace FU . See Appendix B.5 in the supplementary

file for details about the errors-in-variables regression problem.

A Appendix

A.1 Proof of Theorem 1

Recall that if F and G are distributions then F ◦ G denotes their convolution. We derive

Theorem 1 by contradiction. If Theorem 1 does not hold, then

FX is a discrete probability distribution with mass pj > 0 at respective distinct
points xj, for 1 ≤ j ≤ mX , and FX can be written as the convolution FY ◦ FZ

of discrete probability distributions FY and FZ , where FY has mass qj > 0 at
distinct points yj for 1 ≤ j ≤ mY (with mY ≥ 2), and FZ has mass rj > 0 at
distinct points zj for 1 ≤ j ≤ mZ (with mZ ≥ 2).

(A.1)

(We permit mX , mY and mZ to be either finite or infinite. Of course, if one of mY and mZ

is infinite then mX must be too.) We claim that (A.1) entails:

There exist atoms x1, x2, x3 and x4 of FX , at least three of them distinct, such
that x1 < x2 < x4, x1 < x3 < x4 and x2 − x1 = x4 − x3.

(A.2)

If the mX atoms of FX are chosen randomly, in such a manner that each finite subset of

them has a continuous joint distribution, then the probability of (A.2) holding equals 0.

This proves Theorem 1.

It remains to show that (A.2) follows from (A.1). To this end, note that the atoms x

of FX all have the form x = y + z, where y and z are atoms of FY and FZ , respectively.

The assumptions in (A.1) imply the existence of atoms y1 < y2 and z1 < z2 of FY and FZ ,

respectively. Then (A.2) holds with x1 = y1+ z1, x2 = y1+ z2, x3 = y2+ z1 and x4 = y2+ z2.

A.2 Proofs of Theorems 2 and 3

Let the atoms of the distributions FX , FY and FZ be xj, yj and zj, respectively, for 1 ≤ j ≤

mX , 1 ≤ j ≤ mY and 1 ≤ j ≤ mZ , where each of mX , mY and mZ is a finite integer strictly

greater than 1. The atoms are assumed to be defined on the same regular grid, which without

loss of generality is the set of integers. Define pj = P (X = xj), qj = P (Y = yj) and rj =

P (Z = zj). Then the atoms of FX are the points yj + zk, with respective probabilities qjrk,
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although typically not all the atoms listed in this way are distinct. Indeed, if y1, . . . , ymY
and

z1, . . . , zmZ
are each sets of consecutive integers, say 0, . . . ,mY −1 and 1, . . . ,mZ , respectively,

then mX = mY +mZ − 1, the atoms of FX are the points j = 1, . . . ,mY +mZ − 1, and

pj =

min(mY −1, j−1)∑
i=max(0, j−mZ)

qi rj−i , 1 ≤ j ≤ mY +mZ − 2 , (A.3)

where we have omitted the last equation in (A.3), corresponding to j = mX = mY +mZ −1,

because the pjs are constrained to add to 1.

Assume that p1, . . . , pmX
−1 are known; we wish to determine qjs and rjs such that FX =

FY ◦FZ . Since q1+. . .+qmY
= r1+. . .+rmZ

= 1, then there are exactlymY +mZ−2 unknowns

qjs and rjs to be determined, and these are given by the mY +mZ − 2 equations (A.3). In

particular, in the context of Theorem 3, the number of unknowns is the same as the number

of equations. It follows that in some but not all instances, if the values p1, . . . , pmX
are chosen

at random on the simplex of values for which each pj ≥ 0 and p1 + . . . + pmX
= 1, then

nondegenerate distributions of Y and Z can be selected such that FX = FY ◦ FZ . Examples

will be discussed in Appendix B.7 in the supplementary file.

On the other hand, in the context of Theorem 2 the distribution FZ is symmetric, entailing

r1 = rmZ
, r2 = rmZ−1, and so on. In particular, the number of unknown values of rj is now

reduced from mZ to 1
2
mZ if mZ is even, and to 1

2
(mZ + 1) if mZ is odd. The number of

unknowns qj and rj is now strictly less than the number of equations in (A.3), and so, since

the pjs on the left-hand sides of those equations are chosen randomly in the continuum,

then with probability 1 (with respect to the operation of drawing (p1, . . . , pmX
) from the

mX-variate simplex), probability distributions (q1, . . . , qmY
) and (r1, . . . , rmZ

) (the latter

symmetric), satisfying equations (A.3), cannot be found.

In cases where the atoms of FX are not at consecutive points of a grid, the number of

equations still exceeds the number of unknowns, and so, since the pis are sampled randomly

and in the continuum, there is zero probability of finding FZ such that FX = FY ◦ FZ .

A.3 Proof of Theorem 5

Step 1. Simplified formula for T (m, p, x). The simplification is given at (A.6) below. Define

∆1(t) = n−1
∑

j {exp(itWj) − ϕW (t)}, and note that in this notation, ϕ̂W = ϕW + ∆1.
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Observe too that

ψ̂(t) =
1

n(n− 1)

∑∑
1≤j,k≤n : j ̸=k

exp{it (Wj −Wk)} = |ϕW (t)|2 +∆2(t) +Op

(
nd1−1

)
,

uniformly in |t| ≤ nD1 for any d1, D1 > 0, where

∆2(t) =
1

n

n∑
j=1

[{
exp(itWj)− ϕW (t)

}
ϕ̄W (t) +

{
exp(−itWj)− ϕ̄W (t)

}
ϕW (t)

]
.

Furthermore,

max
j=1,2

|∆j(t)| = Op

(
nd2−(1/2)

)
, (A.4)

uniformly in |t| ≤ nD2 , for any d2, D2 > 0. Therefore, in view of (6.1)(a), given d3 > 0, if

D2 = D2(d3) > 0 is sufficiently small then

∣∣ψ̂(t)∣∣1/2 = |ϕW (t)|
∣∣∣1 + |ϕW (t)|−2

{
∆2(t) +Op

(
nd2−1

)}∣∣∣1/2
= |ϕW (t)|

{
1 + 1

2
|ϕW (t)|−2 ∆2(t) +Op

(
nd3−1

)}
,

uniformly in t such that |t| ≤ nD2 . Hence, recalling the definition of T (m, p, x) at (3.3), we

deduce that since w(t) decreases at least as fast as exp(−c2 |t|) as |t| diverges (see (6.1)(b)),

then for any D3 > 0,

T (m, p, x) =

∫ nD2

−nD2

∣∣∣∣ϕW (t) + ∆1(t)−
{
|ϕW (t)|+ 1

2
|ϕW (t)|−1∆2(t)

+Op

(
nd3−1

)} ∑
j pj exp(itxj)∣∣∑
j pj exp(itxj)

∣∣
∣∣∣∣2w(t) dt+Op

(
n−D3

)
=

∫ nD2

−nD2

∣∣∣∣ϕW (t) + ∆1(t)−
{
|ϕW (t)|+ 1

2
∆3(t)

}
ρ(t |m, p, x)

+Op

(
nd3−1

)∣∣∣∣2w(t) dt+Op

(
n−D3

)
, (A.5)

where, defining α(t) = ϕW (t)/|ϕW (t)|, we put

∆3(t) =
1

n

n∑
j=1

[
ᾱ(t)

{
exp(itWj)− ϕW (t)

}
+ α(t)

{
exp(−itWj)− ϕ̄W (t)

}]
;

the ratio ρ(t |m, p, x) =
∑

j pj exp(itxj)
/∣∣∑

j pj exp(itxj)
∣∣ is interpreted as 1 if the denom-

inator equals 0; and the remainders are of the stated orders uniformly in all choices of m in

26



the range 1 ≤ m ≤ C4 (see (6.2)(c)), and of the pjs and xjs, and, in the case of the remainder

Op(n
d3−1), also uniformly in t such that |t| ≤ nD2 .

Bearing in mind the exponential rate of decrease of the weight function w (see (6.1)(b)),

we can deduce from (A.5) that if d3, D3 > 0 are given then D4 = D4(d3, D3) > 0 can be

found, sufficiently large, such that

T (m, p, x) =

∫ D4 logn

−D4 logn

∣∣∣ϕW (t)− |ϕW (t)| ρ(t |m, p, x) + ∆1(t)

− 1
2
∆3(t) ρ(t |m, p, x) +Op

(
nd3−1

)∣∣∣2w(t) dt+Op

(
n−D3

)
, (A.6)

where the same interpretation of the remainders applies.

Step 2. Simple consistency. Under assumption (6.1), properties (A.4) and (A.5) imply that

T (m, p, x) =

∫ ∞

−∞

∣∣∣ϕW (t)− |ϕW (t)| ρ(t |m, p, x)
∣∣∣2w(t) dt+ op(1) , (A.7)

uniformly in (m, p, x). Define (m̂, p̂, x̂) as in the paragraph preceding Theorem 5. If

n(1), n(2), . . . is any infinite sequence of values of n, then a further infinite subsequence

n1, n2, . . . can be chosen such that (a) the random variable m̂ has a proper limiting distribu-

tion, with atoms confined to the positive integers not exceeding the integer part of C4; and,

(b) conditional on m̂ = m say, the random vector (p̂, x̂) has a proper limiting distribution,

depending on m. Using this result, an argument by contradiction, employing properties

(6.2)(a), (6.2)(b) and (A.7), shows that:

the probability that m̂ = m0 converges to 1 as n → ∞, and, conditional on
m̂ = m0, (p̂, x̂) converges in probability to (p0, x0).

(A.8)

Step 3. Root-n consistency. In view of (A.8) there exists a positive sequence of real numbers

ϵn, decreasing to 0, such that n1/2 ϵn → ∞ and P
{∥∥(p̂, x̂)− (

p0, x0
)∥∥ ≤ ϵn

}
→ 1 . By (A.6),

for (p, x) satisfying ∥(p, x)− (p0, x0)∥ ≤ ϵn, we have

T
(
m0, p, x

)
=

∫ D4 logn

−D4 logn

∣∣∣ϕW (t)− |ϕW (t)| ρ
(
t
∣∣ m0, p, x

)
+∆1(t)

− 1
2
∆3(t) ρ

(
t
∣∣ m0, p0, x0

)
+ n−1/2∆4(t | p, x)

∣∣∣2w(t) dt+Op

(
n−D3

)
, (A.9)

where the stochastic process ∆4 satisfies sup(p,x) : ∥(p,x)−(p0,x0)∥≤ϵn |∆4(t | p, x)|
P−→ 0. From this

point standard arguments, which involve minimising T (m0, p, x) in (A.9) over (p, x) satisfying
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∥(p, x)− (p0, x0)∥ ≤ ϵn, show that the minimum is attained at a value of (p, x) that is within

Op(n
−1/2) of (p0, x0). Hence, by (A.8), (p̂, x̂) = (p0, x0)+Op(n

−1/2), conditionally on m̂ = m0.

Equivalently, since P (m̂ = m0) → 1, we have (p̂, x̂) = (p0, x0) + Op(n
−1/2) in the standard,

unconditional sense.

A.4 Proof of Theorem 6

Observe that T0(p) ≤ T (p) + t̂ ≤ 2 t̂ + δn, where, in view of (6.4), the first inequality holds

simultaneously for all p, with probability 1− π, and the second inequality holds simultane-

ously for all p ∈ P̂(δn), with probability 1. The first part of (6.5) is therefore a consequence

of the second part of (6.4) and the assumption that δn → 0.

Note that p ∈ P(δn) is equivalent to T0(p) ≤ δn. The assertions at (6.4) imply that with

probability at least 1 − π, whenever p ∈ P(δn) it holds too that T (p) ≤ t̂ + δn; that is,

p ∈ P̂(δn). Therefore P{P(δn) ⊆ P̂(δn)} ≥ 1 − π, and so the second part of (6.5) follows

from the first part of (6.4).
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