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Summary

We consider non- and semi-parametric estimation of a conditional probability curve in
the case of group testing data, where the individuals are pooled randomly into groups,
and only the pooled data are available. We derive a nonparametric weighted estimator 15

that has optimality properties accounting for group sizes, and show how to extend it
to multivariate settings, including the partially linear model. In the group testing con-
text, it is natural to assume that the probability curve depends on the covariates only
through a linear combination of them. Motivated by this, we develop a nonparametric
estimator based on the single-index model. We study theoretical properties of the sug- 20

gested estimators, and derive data-driven procedures. Practical properties of the methods
are demonstrated via real and simulated examples and shown to have smaller median
integrated square error than existing competitors.

Some key words: Bandwidth; local polynomial regression; multivariate kernel estimator; partially linear
model, single-index model, weighted estimator. 25

1. Introduction

Group testing (Dorfman, 1943) is a method employed when collecting data on a
Bernoulli variable Y , where, instead of observing the value of Y for each individual
in a sample, the individuals are pooled in J groups of sizes n1, . . . , nJ ; and only the max-
imum of the Y -values of the individuals within each group is observed. More specifically, 30

let Yij denote the value of Y for the ith individual in the jth group. In the group testing
setting, instead of observing Yij (i = 1, . . . , nj ; j = 1, . . . , J), we observe

Y ∗
j = max

i=1,...,nj

Yij (j = 1, . . . , J) . (1)

This technique was originally introduced in infectious disease studies, to reduce the
cost and increase the speed of data collection. Often, Y is the result of a blood or urine
test, typically a test for an infectious disease, and Y = I(test is positive), where I(E) 35
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denotes the indicator function of an event E ; that is, I(E) = 1 if E is true, and I(E) = 0
otherwise. There, Y ∗

j = 1 if one or more individuals within the jth group test positive.
Of course, individual here should be interpreted in a broad sense. In particular, it does
not necessarily have to refer to a person, and could for example be an animal, or a water
or milk sample tested for pollution (Nagi & Raggi, 1972; Wahed et al., 2006; Lennon,40

2007; Fahey et al., 2006). As described by Hepworth (2005), the topic of group testing
includes applied studies of plant disease (Fletcher et al., 1999), fisheries (Worlund &
Taylor, 1983), and spread of disease by insects (Swallow, 1985).

In those studies it is common also to observe one or several covariates X, in which
case it is of interest to estimate the probability of being contaminated, for example45

by an infectious disease, given X, that is p(x) = pr(Y = 1 | X = x). Unlike Y , X is
often observed for each individual. In the parametric context, this problem has been
studied by, for example, Vansteelandt et al. (2000) and Xie (2001). Delaigle & Meister
(2011) suggested a consistent nonparametric estimator of p, which does not exploit fully
properties of unequal group sizes. See Delaigle & Hall (2012) for the particular context50

where the data are grouped homogeneously, and also Gastwirth & Hammick (1989);
Chen & Swallow (1990); Farrington (1992); Gastwirth & Johnson (1994); Hardwick et al.
(1998); Hung & Swallow (2000); Bilder & Tebbs (2009); Chen et al. (2009); Huang (2009);
Huang & Tebbs (2009); Li & Xie (2012) and Wang et al. (2013) for related work.

While the univariate, nonparametric estimator of Delaigle & Meister (2011) performs55

well when all groups have the same size, it does not account fully for the fact that
groups of unequal size do not contain the same amount of information about p. As a
result, when groups are of unequal size, the corresponding estimators suffer from excessive
variance. We suggest a new, nonparametric estimator which addresses this difficulty
through adaptive weights, and allows for discrete covariates determined by a partially60

linear model.
We generalise our method to the multivariate context and also derive a single-index

version of our estimator. For the latter, we use ideas proposed in the standard regression
context by Härdle et al. (1993), although the grouped nature of our data makes the adap-
tation to our setting highly nontrivial, in both the development of the method and the65

derivation of its theoretical aspects. We establish asymptotic properties of our estimators,
and propose automatic, data-driven procedures for choosing the smoothing parameters
in practice. We extend our methodology to cases where the tests are imperfect.

2. Methodology when a single covariate is modelled nonparametrically

2·1. Local polynomial estimator and Delaigle & Meister’s (2011) estimator70

In the univariate case considered by Delaigle & Meister (2011), we observe a sample
(Xij , Y

∗
j ) (i = 1, . . . , nj ; j = 1, . . . , J), with Y ∗

j as in (1). Here Yij | Xij = x ∼ Be{p(x)};
that is, p(x) = pr(Yij = 1 | Xij = x) = 1− pr(Yij = 0 | Xij = x), the Yijs are indepen-
dent, and the Xijs are independent and identically distributed random variables. The
goal is to construct a consistent nonparametric estimator of p based on the grouped75

testing data (Xij , Y
∗
j ) (i = 1, . . . , nj ; j = 1, . . . , J).

Before discussing estimators for such data, it is useful to address the simpler problem
of estimating p nonparametrically when the Yijs are available. Since p(x) = E(Yij | Xij =
x), p is a regression curve and can be estimated by the standard ℓth order local polynomial
estimator, constructed as follows. First, approximate p locally around x by an ℓth degree80
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polynomial pℓ(z) =
∑

0≤k≤ℓ αk,x (x− z)k; and then, fit the local coefficients αk,x by min-

imising the locally weighted least squares sum,
∑

j≤J

∑
i≤nj

{Yij − pℓ(Xij)}2Kh(Xij −
x), where K is a kernel function, h > 0 is a bandwidth, and Kh(x) = h−1K(x/h). For
k = 0, . . . , ℓ, let α̂k,x be the resulting estimator of αk,x. The ℓth order local polynomial
estimator of p(x) is defined by p̂(x) = α̂0,x. See Fan & Gijbels (1996, p. 19). 85

In the group testing data context introduced above, Delaigle & Meister (2011) sug-
gested the first nonparametric estimator of p. Their approach consists in constructing the
standard local polynomial estimator based on the group testing data, and converting this
naive estimator into a consistent estimator of p through a correction factor. Although
their estimator has good properties when the group sizes nj are equal, it assigns the same 90

weight to each observation Y ∗
j , regardless of the size of the group it comes from. In many

applications, the groups cannot be taken of equal size. See, e.g., Hepworth (2005) for a
study involving plant viruses, where nj varies from 1 to 25. In such cases the quality of
the information contained in Y ∗

j depends heavily on the group size nj . By not taking
this into account, the estimator of Delaigle & Meister (2011) estimator can suffer from 95

a large variance.
To overcome this difficulty we suggest a new nonparametric estimator of p, which

we construct so as to optimise asymptotic theoretical properties, whether the njs are
equal or not. We use this estimator to construct a rescaled estimator which satisfies
a centralised bias property. Instead of treating only this simple univariate context, in 100

Section 2·2 we introduce our method in a more general partially linear model, which
enables us to include discrete explanatory variables. The case of multiple continuous
covariates will be treated in Section 3. See also Section 7 for the case of imperfect tests.

2·2. Partially linear model

Suppose we observe a continuous variable and one or more discrete covariates, such 105

as gender. Specifically, we observe pairs (Xij , Y
∗
j ), with Y

∗
j as in (1), and where Xij =

(Uij , V
T
ij )

T is a d-dimensional vector, with d ≥ 1. Here, Uij is a continuous variable and,

when d ≥ 2, Vij ∈ Rd−1 is a discrete variable or vector. When d = 1, we observe only a
continuous variable X = U , as in Delaigle & Meister (2011).

We model the continuous and discrete parts simultaneously through a partially linear 110

model. There it is assumed that

p(Xij) = g(Uij) + γTVij (j = 1, . . . , J ; i = 1, . . . , nj) , (2)

where g is an unknown function and γ ∈ Rd−1 is an unknown parameter. We let N =∑
j≤J nj , Z

∗
j = 1− Y ∗

j , m = 1− g and q0 = 1− E{p(Xij)}.
In the standard non-grouped data case, methods have been developed in the literature

for estimating g and γ. See, for example, Speckman (1988) and Härdle et al. (2000). In 115

the group testing context,

E(Z∗
j | X1j , . . . , Xnjj) =

nj∏
i=1

{
m(Uij)− γTVij

}
, (3)

E(q
1−nj

0 Z∗
j | Xij) = m(Uij)− γTVij . (4)

As in the standard case, below we suggest estimating m and γ in two steps.
To estimate m, assume temporarily that γ and q0 are known, and let T ∗

ij = Z∗
j + 120

q
nj−1
0 γTVij . It follows from (4) thatm(u) = E(q

1−nj

0 T ∗
ij | Uij = u). Borrowing techniques
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from the local polynomial estimator introduced in Section 2·1, this equation can be used
to construct an ℓth order local polynomial estimator of m, with ℓ ≥ 0, as follows. First,
approximate m(z), for z in a neighbourhood of u, by the ℓth order polynomial mℓ(z) =∑

0≤k≤ℓ αk,u (z − u)k. Then, at each u, estimate the coefficients αk,u by minimising a125

locally weighted least squares sum. Using the standard approach discussed in Section
2·1, the ith individual from the jth group would be assigned a weight Kh(Uij − u). We
use different weights in our case, since groups of unequal size do not contain information

of the same quality. Motivated by the relation m(u) = E(q
1−nj

0 T ∗
ij | Uij = u), we suggest

estimating αu = (α0,u, . . . , αℓ,u)
T by130

(α̂0,u, . . . , α̂ℓ,u)
T = argmin

αu

J∑
j=1

nj∑
i=1

{
q
1−nj

0 T ∗
ij −mℓ(Uij)

}2
Kh(Uij − u) q

nj−1
0 ψj(q0) ,

where ψ1, . . . , ψJ are smooth, positive weight functions defined on [0, 1]. We shall show
later how to choose the ψjs to optimise properties of our estimator; see Section 5·1.

As in the standard case, discussed in Section 2·1, for γ and q0 known we de-
fine the ℓth order local polynomial estimator of m(u) by m̂0(u) = α̂0,u. This estima-

tor can also be written as m̂0(u) = eT1 S̃−1
N T̃N , where e1 = (1, 0, . . . , 0)T, and where135

S̃N = (S̃N,k,k′)0≤k,k′≤ℓ and T̃N = (T̃N,0, . . . , T̃N,ℓ)
T, with

S̃N,k,k′ =
1

Nhk+k′

J∑
j=1

ψj(q0) q
nj−1
0

nj∑
i=1

Kh(Uij − u) (Uij − u)k+k′ , (5)

T̃N,k =
1

Nhk

J∑
j=1

ψj(q0)

nj∑
i=1

T ∗
ij Kh(Uij − u) (Uij − u)k .

In practice q0 is unknown, but it is estimated root-N consistently by the maximum
likelihood estimator q̂ derived by Delaigle & Meister (2011), which is recalled in the140

supplementary material. To estimate γ, let ϵij = q
1−nj

0 Z∗
j −m(Uij) + γTVij . It follows

from (4) that E(ϵij | Xij) = 0. Therefore,

q
1−nj

0 Z∗
j − E

(
q
1−nj

0 Z∗
j

∣∣ Uij

)
= −γT{Vij − E(Vij | Uij)}+ ϵij .

We can replace q0 by q̂, and the functions gZU (u) = E(q
1−nj

0 Z∗
j | Uij = u) and gV U (u) =

E(Vij | Uij = u) can be estimated using standard nonparametric regression, for example
local-linear estimators with a cross-validation bandwidth. Let the estimators be ĝZU and145

ĝV U , computed from the data (Uij , q̂
1−nj Z∗

j ) (i = 1, . . . , nj ; j = 1, . . . , J) and (Uij , Vij)
(i = 1, . . . , nj ; j = 1, . . . , J), respectively. This suggests estimating γ by

γ̂ = argmin
γ

J∑
j=1

nj∑
i=1

[
q̂1−nj Z∗

j − ĝZU (Uij) + γT
{
Vij − ĝV U (Uij)

}]2
. (6)

Replacing q0 by q̂ and γ by γ̂ in the definition of m̂0(u), we deduce the estimator

m̂(u) = eT1 Ŝ−1
N T̂N , (7)

where ŜN and T̂N denote the versions of S̃N and T̃N with every occurrence of q0 and
γ replaced by q̂ and γ̂, respectively. If d > 1, let x = (u, v), where u ∈ R and v ∈ Rd−1.150
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Since p(x) = 1−m(u) + γTv, we deduce that p(x) can be estimated by

p̂(x) = 1− m̂(u) + γ̂Tv . (8)

When X = U , the estimator of p is found by letting x = u and γ = γ̂ = 0 in (8).
Moreover, in that case, the property q0 = E{m(X)} suggests a second estimator, m̂cb, of

m, found by standardising m̂ so as to satisfy the identity q̂ = N−1
∑J

j=1

∑nj

i=1 m̂cb(Xij).
Motivated by this, we define m̂cb by 155

m̂cb(x) = q̂ m̂(x)

/{
1

N

J∑
j=1

nj∑
i=1

m̂(Xij)

}
, (9)

and we put p̂cb(x) = 1− m̂cb(x). The index cb stands for centralised bias. Indeed, we
shall see in Section 4·1 that the asymptotic bias term of the estimator m̂cb is centralised;
these quantities will be defined more precisely in Section 4·1. This estimator could be
generalised to the case d > 1, but there, q0 = E{m(U)} − γTV , and thus instead of (9),
the rescaling depends on γ̂, which is much less attractive. 160

3. Multivariate case

3·1. General multivariate estimator

Our ideas can be extended to the multivariate case, where Xij = (Xij,1, . . . , Xij,d)
T is

a d-dimensional continuous vector. There, instead of using a partially linear model, we
could estimate the function p completely nonparametrically. The extension can be made 165

along the lines of standard multivariate local polynomial regression. For example, in the
local-constant case we can estimate p at x ∈ Rd by p̂(x) = 1− m̂(x), where

m̂(x) =

∑J
j=1

∑nj

i=1 ψj(q̂)Z
∗
jKH(Xij − x)∑J

j=1

∑nj

i=1 ψj(q̂) q̂nj−1KH(Xij − x)
, (10)

with K denoting a d-variate kernel, H a bandwidth matrix, and KH(x) =
|H|−1/2K(H−1/2x). See Delaigle & Meister (2011) for an alternative local-constant esti-
mator of m, which does not take the unequal sample sizes fully into account. 170

In the supplementary material we derive a local-linear version of this estimator; see
equation (??). As we shall discuss in our numerical section, the local-linear estimator can
work very well for d small, but it can also suffer from too much variability. In general we
recommend using the local-constant estimator. See Section 6·1.

The purely multivariate estimators at (10) and (??) are consistent, but suffer from 175

the usual curse of dimensionality. As in the standard non-grouped case, it can be proved
that their convergence rate is order N−2/(d+4). To overcome this difficulty it is common
to reduce dimension, for example using additive models or single-index models; see Fan
& Gijbels (1996, pp. 274–276). We take up this issue in the next section.

3·2. Single-index model 180

In the parametric context with group testing data, p is often assumed to follow a
parametric generalised linear model, where p depends on x only through βT0 x, with
β0 denoting a d-dimensional parameter. See, for example, Vansteelandt et al. (2000).
Therefore, in the nonparametric case it seems natural to reduce dimension through single-
index models, where the nonparametric form for p depends on x only through βT0 x. 185
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Motivated by this, and recalling equation (4), we consider the single-index model,
where we assume that the data (Xij , Z

∗
j ) (j = 1, . . . , J ; i = 1, . . . , nj), are generated from

Z∗
j = q

nj−1
0 g

(
βT0 Xij

)
+ ϵij , (11)

in which

q0 = E
{
g
(
βT0 Xij

)}
, g

(
βT0 Xij

)
= q

1−nj

0 E(Z∗
j | Xij) , (12)

Z∗
1 , . . . , Z

∗
nj

are independent and identically distributed random variables, the Xijs are

independent and identically distributed random d-vectors, the sets (Z∗
j , X1j , . . . , Xnjj)190

(j = 1, . . . , J), are independent of one another, β0 is a fixed d-vector of unit length, g is
a smooth, nonnegative function, 0 < q0 < 1, and ϵij is defined by (11). In view of (12),
E(ϵij | Xij) = 0 for each i and j, and Z∗

j has the Bernoulli distribution with pr(Z∗
j =

1) = q
nj

0 and pr(Z∗
j = 1 | Xij) = q

nj−1
0 g(βT0 Xij). We wish to estimate q0, β0 and g, the

latter nonparametrically. From there we can deduce an estimator of p(x) = 1− g(βT0 x).195

3·3. Estimation in the single-index model

It is awkward to estimate q0 and g together, since g can be estimated only at nonpara-
metric rates, whereas q0 can be approximated root-N consistently. We estimate q0 by the
maximum likelihood estimator, q̂, of Delaigle & Meister (2011). Let ψj , for j = 1, . . . , J ,
denote smooth, positive functions defined on [0, 1], let fβ denote the density of βTXij ,200

and let gβ(t) = E(q
1−nj

0 Z∗
j | βTXij = t). Motivated by the estimator m̂ introduced in

Section 2·2, we define an estimator of g, when β0 = β, by

ĝβ(t | h) = âβ(t | h)
/
b̂β(t | h) , (13)

where β is in the set B0 of all unit d-vectors,

âβ(t | h) =
1

N

J∑
j=1

ψj(q̂)Z
∗
j

nj∑
i=1

Kh

(
t− βTXij

)
, (14)

b̂β(t | h) =
1

N

J∑
j=1

ψj(q̂) q̂
nj−1

nj∑
i=1

Kh

(
t− βTXij

)
. (15)205

The quantities âβ(t) and b̂β(t) can be viewed as estimators of, respectively,

aβ(t) = fβ(t) gβ(t) ×M/N , bβ(t) = fβ(t) ×M/N , (16)

where M =
∑

j≤J nj ψj(q0) q
nj−1
0 . See the proof of Theorem 2 for details.

As (14) and (15) indicate, we describe here in detail the single-index model using local-
constant methods, but it is also possible to use more general local polynomial methods;210

see the supplementary material. As will be discussed in Section 6, in practice, while
the local-linear estimator can sometimes improve on the local-constant one for d small,
local-constant fitting provides substantial robustness against the variance problems that
can afflict higher order techniques when the sample size, N , is not sufficiently large.
These difficulties reflect the fact that a local-constant estimator never takes the form of215

a nonzero number divided by zero, whereas a local-linear estimator can have that form.
We shall use the notation β̂ to denote an estimator of β0, and âβ̂(t | h)/b̂β̂(t | h) will

denote an estimator of aβ0(t)/bβ0(t) = g(t). Next, to reflect the first part of (12), and
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using arguments similar to those for m̂cb in Section 2·1, we define a second estimator by

ĝβ,cb(t | h) = q̂ ĝβ(t | h)
/{

1

N

J∑
j=1

nj∑
i=1

ĝβ
(
βT0 Xij

∣∣ h)} . (17)

To choose h and define β̂ we shall use a cross-validation approach inspired by work 220

of Härdle et al. (1993). However, two difficulties prevent us from applying their method
directly to our context: the data are not identically distributed, in fact the Z∗

j s do not
even have the same mean; and all the Xijs from group j share the same Z∗

j . For the
same reason, theoretical properties of our estimator are much more difficult to derive
than those in Härdle et al. (1993). To overcome these challenges, we proceed as follows. 225

Take A to be a compact subset of Rd, and define

ĝ
(−j)
β = â

(−j)
β

/
f̂
(−j)
β (18)

to be the version of ĝβ computed on omitting all pairs (Z∗
j , Xij) (i = 1, . . . , nj); the

estimators â
(−j)
β and f̂

(−j)
β are also constructed in this leave-out manner. We introduce

the squared-error cross-validation criterion,

S1(h, β) =
∑∑
Xij∈A

{
Z∗
j − q̂nj−1 ĝ

(−j)
β

(
βTXij

∣∣ h)}2
ϕj(q̂) , (19)

where
∑∑

Xij∈A denotes summation over (i, j) such that 1 ≤ i ≤ nj , 1 ≤ j ≤ J and 230

Xij ∈ A, and ϕ1, . . . , ϕJ are smooth, positive weight functions. Omitting pairs (Z∗
j , Xij)

(i = 1, . . . , nj) involves reducing sample size from N to N − nj . Observe too that, in
(19), it is unnecessary to omit data from the jth group when computing q̂.

We choose (h, β) = (ĥ, β̂) to minimise S1(h, β). In this notation our estimator of g(t),

where g is the function in the model at (11), is either ĝβ̂(t | ĥ) or ĝβ̂,cb(t | ĥ), where 235

ĝβ(t | h) and ĝβ,cb(t | h) are given by (13) and (17), respectively.

4. Asymptotic properties

4·1. Asymptotic normality of the nonparametric estimator in Section 2·2
Recall that, in the general case, X = (U, V T)T, where U is a continuous variable and

V ∈ Rd−1 is discrete. Let fU denote the density of U . We make the following assumptions: 240

(H1) K is real and symmetric, ∥K∥∞ <∞,
∫
K(x) dx = 1,

∫
|x|2ℓ+3|K(x)| dx <∞,

and
∫ (

|x|3ℓ+1 + x4ℓ
)
K(x)2 dx <∞;

(H2) h→ 0 and Nh→ ∞ as N → ∞;
245

(H3) fU (u) > 0 and fU is twice differentiable and satisfies ∥f (j)U ∥∞ <∞ for j = 0, 1, 2;

(H4) m is ℓ+ 2 times differentiable, and ∥m(j)∥∞ <∞ for j = 0, . . . , ℓ+ 2;

(H5) 0 < infj ψj(q0) < supj ψj(q0) <∞; 250

(H6) supj nj <∞ and 0 < q0 < 1.

We introduce the following notation: µj =
∫
xj K(x) dx, νj =

∫
xj K(x)2 dx,

µ = (µℓ+1, . . . , µ2ℓ+1)
T, µ̃ = (µℓ+2, . . . , µ2ℓ+2)

T, S =
(
Sk,k′

)
0≤k,k′≤ℓ

, S∗ =
(
S∗
k,k′

)
0≤k,k′≤ℓ



8 A. Delaigle, P. Hall and J.R. Wishart

where Sk,k′ = µk+k′ , S
∗
k,k′ = νk+k′ , M =

∑
j≤J nj ψj(q0) q

nj−1
0 and255

τj(u)
2 = m(u) q

nj−1
0

{
1− q

nj−1
0 m(u)

}
− q

nj−1
0 E

{(
γTVij

)
| Uij = u

}{
1− 2 q

nj−1
0 m(u)

}
− q

2nj−2
0 E

{(
γTVij

)2 | Uij = u
}
.

The next theorem establishes asymptotic normality of m̂0, defined above equation (5).
Its proof is similar to that of Theorem 3.1 of Delaigle et al. (2009); see the supplementary
material.260

Theorem 1. Under Conditions (H1)–(H6), we have

m̂0(u) = m(u) +B(u) + V (u)1/2 NN + op{B(u)}+ op{V (u)1/2} , (20)

where the random variable NN is asymptotically normal N(0, 1),

V (u) = eT1 S−1 S∗ S−1 e1
1

M2 h fU (u)

∑
j≤J

nj ψj(q0)
2 τj(u)

2 ,

B(u) =


eT1 S−1µ

1

(ℓ+ 1)!
m(ℓ+1)(u)hℓ+1 ℓ odd;

eT1 S−1 µ̃
1

(ℓ+ 2)!

{
(ℓ+ 2)m(ℓ+1)(u)

f ′U (u)

fU (u)
+m(ℓ+2)(u)

}
hℓ+2 ℓ even .

Standard arguments for partially linear models can be used to prove that γ̂ = γ +265

Op(N
−1/2). Similarly, it follows from Delaigle & Meister (2011) that q̂ = q0 +Op(N

−1/2).
This rate of convergence is so fast that, if γ and q0 are replaced by γ̂ and q̂ in the formula
for m̂0, then the error that is introduced is negligible, to first order, relative to the error
in m̂0 as an approximation to m. Consequently, (20) also holds if m̂0(u), on the left-hand
side, is replaced by m̂(u). The methods used are conventional, and ask of the ψjs that270

they have uniformly bounded first derivatives.
Thus, for both m̂ and m̂0, the best convergence rate is obtained using h such that

B(u)2 ≍ V (u), where a ≍ b means that a = O(b) and b = O(a). Then, since (H5)–(H6)
imply that M ≍ N and V (u) ≍ 1/(Nh), we have m̂(u)−m(u) = Op(N

−(ℓ+1)/(2ℓ+3)) if ℓ

is odd and Op(N
−(ℓ+2)/(2ℓ+5)) if ℓ is even.275

Recall the estimator m̂cb, defined at (9). Using arguments similar to those employed in
Step 7 of the proof of Theorem 2, it can be shown that with h chosen as in the previous
paragraph, m̂cb(x) = m̂(x)− q−1

0 m(x)E{B(X)}+ op{B(x)} and

m̂cb(x) = m(x) +Bcb(x) + V (x)1/2 NN + op{B(x)} ,

where Bcb(x) = q−1
0 [E{m(X)}B(x)−m(x)E{B(X)}]. Here we used the fact that q0 =

E{m(X)}. In particular, E{Bcb(X)} = 0, whence the name centralised bias estimator.
A more general consistent estimator of m can be defined by replacing the ψjs in (5) by

ψ̃js potentially different from the ψjs, and satisfying
∑

j≤J nj ψ̃j =
∑

j≤J nj ψj q
nj−1
0 .

It can be proved that this estimator has the same asymptotic bias, B, as ours, and280

that its asymptotic variance, V , is minimised by taking ψ̃j = ψj . The estimator of

Delaigle & Meister (2011) can be expressed in this general form, taking ψ̃j = 1 and

ψj = N/(
∑

k≤J nk q
nk−1
0 ). Our analysis shows that our estimator has more attractive

asymptotic properties than theirs.
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4·2. Theoretical properties of the single-index model 285

Let A ⊂ Rd be the closure of a union of a finite number of bounded, open convex
sets, let X have the distribution of a generic Xij , assume that the distribution of X is
continuous, write f for the density of X, and recall that fβ is the density of βTX. Let
Bnhd represent an open neighbourhood of β0 ∈ B0.

To establish properties of our estimator, assume that conditions (I1)–(I8) in Sec- 290

tion A·1 hold. Recall the definition of ĝβ(t | h) at (13). Let ĝ
[0 (−j)]
β be the version

of ĝβ that arises if we replace q̂ by q0, and if we leave out all pairs (Z∗
j , X1j), . . . ,

(Z∗
j , Xnjj). That is, ĝ

[0 (−j)]
β is the version of ĝ

(−j)
β , at (18), that is obtained on

replacing q̂ by q0. Put S2(β) =
∑∑

Xij∈A {Z∗
j − q

nj−1
0 gβ(β

TXij)}2 ϕj(q0), S3(h) =∑∑
Xij∈A {ĝ[0 (−j)]

β0
(βT0 Xij | h)− g(βT0 Xij)}2 q

2(nj−1)
0 ϕj(q0) , with gβ as in Section 3·3. 295

Thus, S2(β) is the sum-of-squares criterion we would use to compute β̂ if we knew q0
and gβ, and S3(h) is the cross-validation criterion we would employ to compute the
weighted least-squares bandwidth for estimating g if we knew q0 and β0.

Let (ĥ, β̂) be the minimiser of S1(h, β), at (19), over (h, β) ∈ HN ×BN . Let X have
the distribution of an Xij but be independent of all the data Z∗

j and Xij , and let c0 > 0 300

denote the constant such that the bandwidth h0 = h0(N) that minimises E[{ĝβ0(β
T
0 X |

h)− g(βT0 X)}2 I(X ∈ A)] satisfies h0 ∼ c0N
−1/5 as N → ∞. Finally, let

ĝ0(t) =

∑
j ψj(q0)Z

∗
j

∑
iKh0(t− βT0 Xij)∑

j ψj(q0) q
nj−1
0

∑
iKh0(t− βT0 Xij)

(21)

denote the estimator of g that we would use if we knew h0, q0 and β0. If we substitute
these values for h, q̂ and β in the definition of ĝβ(t | h), at (13), we obtain ĝ0(t | h0).

It follows from Theorem 1 that 305

ĝ0(t) = g(t) + (Nh0)
−1/2 g2(t)NN + h20 g3(t) + op

{
(Nh0)

−1/2 + h20
}
, (22)

where the random variable NN is asymptotically normal N(0, 1), g3(t) =
µ2 {g′(t) f ′β0

(t)/fβ0(t) + g′′(t)/2}, and, with R(K) =
∫
K2, we define

g2(t)
2 = R(K)N

{
M2 h0 fβ0(t)

}−1
J∑

j=1

nj ψj(q0)
2 q

nj−1
0 g(t)

{
1− qnj−1 g(t)

}
.

In particular, g2 ≥ 0 and g3 are continuous functions. Result (22) holds for all t ∈ T ,
where T is the set of all βTx with x constrained to lie in any given open set in the
interior of the support of the distribution of X, and β lies in a sufficiently small open
neighbourhood of β0, depending on the aforementioned open set.

Finally we are ready to establish properties of our estimator, in the next theorem. See 310

the supplementary material for a proof.

Theorem 2. Take v0, W1, Σ0, Σ1 and Σ2 as in the supplementary material. If con-
ditions (I1)–(I8) in the supplementary material hold, then (i)

S1(h, β) =S2(β) + S3(h) + 2N (q̂ − q0) (β − β0)
T v0 + V1

+ op

[
N

{
(Nh)−1 + h4

}
+N1/2 ∥β − β0∥+N ∥β − β0∥2 + 1

]
(23) 315

=N
[
(β − β0)

TΣ0 (β − β0)− 2 (β − β0)
T {W1 − (q̂ − q0) v0}

]
+ S3(h) + V2
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+ op

[
N

{
(Nh)−1 + h4

}
+N1/2 ∥β − β0∥+N ∥β − β0∥2 + 1

]
, (24)

uniformly in (h, β) ∈ HN ×BN , and the random variables V1 and V2 do not depend on

β or h; (ii) N1/5 ĥ→ c0 in probability as N → ∞; (iii) N1/2 (β̂ − β0, q̂ − q0) is asymp-

totically normally distributed with zero mean and covariance matrix Σ2; (iv) ĝβ̂(t | ĥ) =320

ĝ0(t | h0) + op(N
−2/5), uniformly in t ∈ T , where ĝ0 is as at (21) and T is as defined

below (22); and (v) ĝβ̂,cb(t | ĥ) = ĝ0(t | h0)− q−1
0 g(t)h20E{g3(βT0 X)}+ op(N

−2/5), uni-

formly in t ∈ T .

It follows from part (v) of the theorem that the estimator ĝβ̂,cb, at (17), generally

differs from ĝ0 by a term of size h20, resulting from a bias contribution associated with325

the denominator on the right-hand side of (17). In particular, using arguments similar
to those in Section 4·1, the asymptotic bias term of ĝβ̂,cb(x) is centred, since ĝβ̂,cb(x) =

g(x) + (Nh0)
−1/2 g2(t)NN + h20 g3,cb(x) + op(N

−2/5), where E{g3,cb(X)} = 0.

5. Computing the estimators in practice

5·1. Computing the weights ψj330

Abusing terminology a little, in the sequel we shall refer to B and V as, respectively,
the asymptotic bias and variance of m̂. Theoretically, we can define locally optimal
weights ψ∗

j (q0;x) to be the ψjs which minimise B(x)2 + V (x). See the supplementary
material for an explicit formula for ψ∗

j (q0;x). Instead of using local weights, we can
use global weights, which are simpler to calculate. We define the global weights ψ∗

j (q0)335

to be the ψjs which minimise the asymptotic weighted integrated mean squared error,
amisew =

∫
{B(x)2 + V (x)}w(x) dx, where w = fX ω, with ω denoting a nonnegative

function. It is common, in local polynomial regression, to use a weighted criterion of this
type; see Fan & Gijbels (1996, p. 67). Specific choice of ω will be discussed in Section 6.

Since the ψjs influence only the variance part, the ψ∗
j s are found by minimising

∫
V ω

with respect to the ψjs, which gives:

ψ∗
j (q0) =

{∫
m(x)ω(x) dx− q

nj−1
0

∫
m(x)2 ω(x) dx

}−1

.

The ψ∗
j s depend on m and q0, which are unknown and have to be estimated from the340

data. In the case X = U we suggest estimating these weights by

ψ̂∗
j (q̂) =

{∫
m̂pilot(x)ω(x) dx− q̂nj−1

∫
m̂pilot(x)

2 ω(x) dx

}−1

, (25)

where q̂ denotes the maximum likelihood estimator of q0, discussed in the supplementary
material, and m̂pilot denotes the estimator of Delaigle & Meister (2011) computed using
their plug-in bandwidth.

These arguments can be extended, and used to compute optimal weights for the par-345

tially linear model, whereX = (U, V ), but the weights in this case are difficult to compute
in practice. We suggest approximating them by the weights at (25), taking m̂pilot to be
the local-constant estimator m̂ at (7) computed with weights ψj(q̂) = (1− q̂nj )−1 and
the cross-validation bandwidth of the supplementary material. These pilot weights ψj(q̂)
result from replacing m by q̂ in the definition of ψ∗

j (q0;x).350
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For the single-index model estimator of Section 3·3 we use the formula at (25), replacing

there m̂pilot(x) by m̂pilot(β̂
T
pilotx), where m̂pilot denotes the estimator obtained when

computing m̂ with weights ψj(q̂) = (1− q̂nj )−1 and with a bandwidth h chosen by cross-

validation, as at (26), and β̂pilot is a pilot estimator of β, which we obtain by fitting a
linear regression to the data, using the global polynomial procedure described in Section 355

4.1.2 of Delaigle & Meister (2011).

5·2. Bandwidth for the estimator in Section 2·2
In the case whereX = U , we suggest a plug-in bandwidth procedure for the local-linear

estimator of m, where ℓ = 1, which is probably the most popular form of the local poly-
nomial estimator. In univariate nonparametric regression, it is well known that plug-in 360

bandwidths usually outperform cross-validation bandwidths. We define our plug-in band-
width as the bandwidth that minimises an estimator of amisew, which was introduced
in Section 5·1, and which, using Theorem 1, can be written as:

amisew =
h4

4
µ22 θ2 +

R(K)

h

∑J
j=1 nj q

nj−1ψ2
j

(
∑J

k=1 nk ψk qnk−1)2

∫ {
1− qnj−1m(x)

}
m(x)ω(x) dx ,

where θ2 =
∫
{m′′(x)}2 fX(x)ω(x) dx and ω is as in Section 5·1. As in Delaigle & Meister 365

(2011), to estimate amisew we use ideas employed by Ruppert et al. (1995). However,
our procedure differs from that of Delaigle & Meister (2011) in that, unlike them, our
approach does not require us to introduce extra weights.

The second term in the formula for amisew is the easiest to estimate, since it requires
only a pilot estimator of m. For this we use the local-constant estimator of m computed 370

with the cross-validation bandwidth obtained by minimising

CV(h) =
J∑

j=1

nj∑
i=1

{
Z∗
j − q̂nj−1 m̂(−j)(Xij)

}2
1[a,b](Xij) , (26)

where m̂(−j) denotes the local-constant estimator of m computed without using obser-
vations from the jth group, and a and b are a lower and an upper empirical quantile of
the Xijs, for example the 10th and 90th percentiles.

The quantity θ2 is the most difficult to estimate. To estimate it, our local polynomial 375

technique is extended to construct consistent estimators of derivatives ofm. For ν ≤ ℓ, de-
fine the ℓth order local polynomial estimator ofm(ν)(x) by m̂(ν)(x) = ν!h−νeTν+1 Ŝ

−1
N T̂N ,

in which eν+1 = (0, . . . , 0, 1, 0, . . . , 0)T where the 1 is at the (ν + 1)th position. Consis-
tency of this estimator can be established along the lines of Theorem 3.1 of Delaigle et al.
(2009). Motivated by this, and following ideas of Ruppert et al. (1995), we take 380

θ̂2 =
1

N

J∑
j=1

nj∑
i=1

{m̂′′
(−j)(Xij)}2 ω(Xij) ,

where m̂′′
(−j) denotes the local polynomial estimator of m′′ of order ℓ = 3, computed

without using the data from the jth group. To compute θ̂2 we need a bandwidth, h2 say,
which is necessarily different from h. However, to choose it we cannot use the approach of
Ruppert et al. (1995), which is valid only for standard regression. In the supplementary
material we show how to extend their method to our group testing setting. 385
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Table 1. Simulation results for models (i) to (iv) using the estimator ĝ = 1− m̂ with m̂
at (7). The numbers show 104×median integrated squared error, and interquartile range
in square brackets, calculated from 200 simulated samples.

Model N = 1,000 N = 5,000 N = 10,000 Model N = 1,000 N = 5,000 N = 10,000
(i) A 28·4[31·7] 10·5[7·04] 6·54[4·82] (iii) A 4·62[8·08] 1·16[1·37] 0·76[0·87]
(i) B 38·7[40·1] 12·7[9·35] 8·09[5·28] (iii) B 6·84[8·79] 1·64[2·06] 1·07[1·20]
(ii) A 17·5[24·3] 4·86[5·79] 2·82[2·92] (iv) A 25·5[32·8] 7·43[6·98] 4·56[4·07]
(ii) B 21·5[32·3] 6·16[7·35] 3·56[4·78] (iv) B 32·8[46·7] 11·1[10·8] 5·32[6·09]

Table 2. Simulation results for models (i) to (iv) using the estimator γ̂ at (6). The num-
bers show 103×median squared error, and interquartile range in square brackets, calcu-
lated from 200 simulated samples.

Model N = 1,000 N = 5,000 N = 10,000 Model N = 1,000 N = 5,000 N = 10,000
(i) A 6·67[20·2] 1·23[4·17] 0·74[1·59] (iii) A 12·8[28·0] 1·44[4·67] 1·10[3·43]
(i) B 11·2[30·8] 2·49[6·01] 1·01[2·56] (iii) B 15·5[42·7] 3·03[9·46] 1·37[4·06]
(ii) A 6·50[23·4] 1·41[3·98] 0·67[1·78] (iv) A 11·5[27·7] 1·78[5·55] 1·08[2·85]
(ii) B 11·1[38·0] 3·21[7·19] 1·44[4·36] (iv) B 12·8[37·6] 3·32[11·0] 1·76[4·44]

Our arguments can be extended for computing a plug-in bandwidth in the case of the
partially linear model, where X = (U, V ). However, the resulting formula involves many
unknowns; recall the definition of τ2j above Theorem 1. Consequently the bandwidth is
too variable to work well in practice. We experimented with this approach and found
that better results could be obtained by using instead the plug-in bandwidth described390

above, pretending that X = U . This is the bandwidth we recommend using in practice.

6. Numerical illustrations

6·1. Simulations

We ran simulations for the univariate, partially linear, and multivariate procedures.
Our goal was threefold: (a) in the univariate case, demonstrate the superiority of our395

approach over that of Delaigle & Meister (2011); (b) in the partially linear case, illus-
trate the performance of our method; (c) in the multivariate case, compare the purely
multivariate nonparametric estimator with the single-index estimator.

For (a) we used the same four models as Delaigle & Meister (2011). Due to space
considerations we provide the results of the comparison of our univariate estimator p̂cb400

with the method of Delaigle & Meister (2011) only in the supplementary material. Those
results show that our procedure can improve significantly on the method of Delaigle &
Meister (2011). For (b) we generalised the univariate models by incorporating a discrete
variable V . Specifically, for g, U , and γ in model (2) we took:
(i) g(u) = {sin(πu/2) + 1 · 2}/[20 + 40u2{sign(u) + 1}], U ∼ N(0, 1 · 52) and γ = 0 · 1;405

(ii) g(u) = exp(−4 + 2u)/{8 + 8 exp(−4 + 2u)}, U ∼ N(2, 1 · 52) and γ = 0 · 05;
(iii) g(u) = u2/8, U ∼ N(0 · 5, 0 · 52) and γ = 0 · 1;
(iv) g(u) = u2/8, U ∼ N(0, 0 · 752) and γ = 0 · 1.
We took V to be a Bernoulli variable independent of U , with P (V = 0) = 0 · 75. We also
considered a version where V was dependent of U ; see the supplementary material for410

details.
In each case we grouped the data in two different ways, as follows. A: [N/4] groups of

size 2 and [N/12] groups of size 6 and B: [N/4] groups of size 2 and [N/20] groups of size
10. Since group testing is most often employed to save money in large studies, the total
sample size, N , is typically rather large. Reflecting this, here we consider three values of415
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Fig. 1. Curves ĝ corresponding to the 20th, dashed line; 100th, dot-dashed line; and 180th, dotted line;
values of

∫
[a,b]

|ĝ − g| for model (ii) with grouping A when N = 5,000 and U and V are dependent for

the left column, N = 5,000 and U and V are independent for the centre column, and N = 10,000 and
U and V are independent for the right column. The true curve is depicted by the solid line.

N : 1,000, 5,000 and 10,000. We generated 200 samples from each model, and applied the
estimators γ̂ at (6) and ĝ = 1− m̂ with m̂ at (7) to each sample. As in Delaigle & Meister
(2011), all estimators of g were truncated to the interval [0, 1]. To assess the performance
of our estimators, we computed, for the 200 samples, the squared error (γ̂ − γ)2 and the
integrated squared error,

∫
[a,b](ĝ − g)2, on the same interval [a, b] as Delaigle & Meister 420

(2011).
We computed the local-linear estimator m̂ at (7) using the plug-in bandwidth of Section

5·2 and the weights at (25). For the ω used to compute the weights in (25) and the plug-in
bandwidth, we took ω(x) = 1[q0·1,q0·9](x), where qα denotes the empirical α quantile of
the distribution of the Uijs. 425

In Table 1 we show, for each of models (i) to (iv), combined with each of the groupings
A and B, the median and interquartile range of the 200 integrated squared error values
for ĝ, obtained for three values of N . In Table 2 we show the median and interquartile
range of the squared errors of γ̂. In Fig. 1, for model (ii) with grouping A, we show
three estimated curves ĝ for N = 5,000 and 10,000 when U and V are independent, and 430

for N = 5, 000 in the case treated in the supplementary material where U and V are
dependent. In each case, the three curves correspond to the samples that resulted in the
20th, 100th and 180th smallest values of

∫
[a,b] |ĝ − g|.

In the multivariate case we compared the method of Section 3·1 for the single-index
model with the purely multivariate estimator of Section 3·2. We simulated from the 435

following models:
(v) p(x1, x2) = exp(−4− 4x1 + 4x2)/{8 + 8 exp(−4− 4x1 + 4x2)} and XT = (V1 +
V2, V1 + V3), where V1 ∼ N(0, 0 · 22), V2 ∼ N(0, 1 · 52) and V3 ∼ N(0, 1 · 52);
(vi) p(x1, x2) = (−x1 + 2x2 − 0 · 5)2/8 and XT = (V1 + V2, V1 + V3), where V1 ∼ N(0, 0 ·
12), V2 ∼ N(0, 0 · 52) and V3 ∼ N(0, 0 · 52); 440

(vii) p(x1, x2, x3) = exp(−4− 10x1 + 6x2 + 10x3)/{8 + 8 exp(−4− 10x1 + 6x2 + 10x3)}
and XT = (X1, X2, X3), where X3 ∼ N(0, 1 · 52), X1 ∼ U [−2, 2] and X2 ∼ U [−2, 2];
(viii) p(x1, x2, x3) = {(1/2)− (−5x1 + 3x2 + 5x3)

2/8}ϕ(−10x1 + 6x2 + 10x3) and X is
as in (vii). Here ϕ denotes the standard normal density.
In each case we grouped the data in two ways, as follows. A: [N/4] groups of size 2, and 445

[N/12] groups of size 6; B: [N/10] groups of size 5, and [N/20] groups of size 10.
For each h on a grid, estimators of β0 were computed by minimising the cross-validation

criterion at (19), where minimisation was undertaken numerically and where we took
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ϕj = 1. Owing to local minima, the success of the procedure depends on the quality of
the starting point of the numerical minimisation procedure. We took two starting points:450

the vector β found by fitting a linear model to the data and the estimator β̃ obtained
using a gradient approach. See the supplementary material for details. We found this to
work reasonably well for the examples we considered. An alternative could be to use the
logistic fit from Vansteelandt et al. (2000); see also Bilder et al. (2010).

Let β̂h denote the solution for a given h. We estimated β0 by β̂ĥ = argminh,β̂h
S1(h, β̂h),455

where h ∈ Hn with Hn as in the supplementary material. We compared our single-index
estimator from Section 3·3 with the purely multivariate estimator from Section 3·1, which
we computed by taking K(x) = ϕ(∥x∥)/

∫
ϕ(∥y∥) dy with ϕ as above, and H to be di-

agonal, with diagonal elements equal to h21, . . . , h
2
d. Here hj = hσ̂j , with σ̂

2
j denoting the

empirical variance of Xj and with h chosen by cross-validation. For the multivariate460

estimator we took ψj = 1; the optimal weights in this context are complex to estimate,
and empirical versions might even introduce too much variability. We compared the two
methods through their integrated squared errors computed on a domain that contained
most of the data.

The results are shown in Table 3, where we report the median and the first and third465

quartiles of 200 integrated squared errors computed from 200 samples. We implemented
the local-constant and local-linear versions of both methods, to which we refer below
as estimators of order ℓ = 0 and ℓ = 1, respectively. It is well known that in practice,
local-linear estimators are more variable than local-constant estimators, and the prob-
lem increases with dimension. This was reflected by our simulation results. As can be470

seen from the table, in the bivariate case the local-linear estimators sometimes brought
significant improvement over the local-constant estimators. However, in our trivariate
examples, the variability of local-linear estimators was too great for them to compete
with local-constant estimators, and we report the results only for ℓ = 0. Note too that
computing the estimators for ℓ = 1 is much more time consuming than for ℓ = 0. For all475

these reasons, in general we recommend using ℓ = 0. Table 3 also shows that overall, the
single-index-based estimator performed significantly better than the purely multivariate
estimator. We found this to be particularly true if the distributions of the components
Xj differed strongly, as in our three dimensional setting; see also the real data example
in the next section. In Table ?? in the supplementary material, we illustrate the effect of480

grouping by comparing our results with those obtained for standard estimators applied
to the non grouped data.

6·2. Real data example

We conclude our numerical illustrations with a reanalysis of the bivariate example
considered by Delaigle & Hall (2012), which was also used by Delaigle & Meister (2011) in485

the univariate case. The data come from the National Health and Nutrition Examination
Survey and were collected in the US between 1999 and 2000. They are available at
www.cdc.gov/nchs/nhanes/nhanes1999-2000/nhanes99_00.htm. These data are not
grouped, and are therefore ideal for illustrating the effect of grouping on estimators.
Since we are using them merely as an illustration, we follow the precedent in other490

papers of ignoring issues of sample weights originating in survey design.
As in the supplementary file of Delaigle & Hall (2012), let X = (X1, X2), where X1 is

the age of a patient and X2 is the total cholesterol measured in 100 mg per dL; let Y
be the indicator, 0 or 1, of the presence of an antibody to hepatitis B virus core antigen
in a patient serum or plasma. As in Delaigle & Hall (2012), our goal is to estimate495
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Table 3. Simulation results for models (v) to (viii). The numbers show 104×median
integrated squared error, and within square brackets the interquartile range, calculated
from 200 simulated samples, where the data were grouped according to grouping A or B.
We show results for the multivariate method and the single-index approach, and indicate
the order of the local polynomial by ℓ.

Model ℓ Grouping N = 5,000 N = 10,000
Multivariate Single-index Multivariate Single-index

(v) 0 A 30 [21,46] 22 [12,36] 21 [14,37] 12 [7,19]
B 52 [33,73] 35 [19,56] 33 [23,49] 16 [10,30]

1 A 28 [21,38] 17 [8,31] 18 [13,25] 8 [5,12]
B 41 [30,54] 21 [11,36] 27 [19,35] 10 [6,16]

(vi) 0 A 14 [10,17] 6 [4,10] 9 [6,12] 4 [2,5]
B 19 [13,28] 12 [6,17] 14 [11,19] 7 [4,10]

1 A 8 [6,11] 3 [2,5] 5 [4,8] 2 [1,3]
B 11 [8,15] 6 [4,11] 8 [6,10] 3 [2,4]

(vii) 0 A 47 [36,61] 30 [21,53] 36 [26,44] 19 [13,28]
B 67 [51,85] 55 [34,82] 50 [39,62] 30 [20,46]

(viii) 0 A 1127 [991,1270] 229 [159,324] 767 [691,851] 141 [96,211]
B 1611 [1349,1840] 405 [263,610] 1206 [1099,1338] 246 [173,361]

p(x) = E(Y | X = x) from these N = 6,960 observations, but where these authors use
homogeneous pools, we grouped the data randomly, in groups of size 10 and 5.

To assess the quality of our estimator we repeated this 200 times. For each of the
200 randomly grouped testing samples created in this way, we computed the multi-
variate estimator derived in Section 3·1, and the single-index version in Section 3·2. In 500

this example, the local-linear estimator suffered from too great variability and we used
the local-constant estimator. As in the simulation Section we computed the integrated
squared error. Here, the true curve p is unknown. As in Delaigle & Hall (2012), we
approximated it by the standard multivariate nonparametric estimator computed from
non-grouped data. In this example the distributions of X1 and X2 are quite different, 505

and the single-index-based estimator performed considerably better than the purely mul-
tivariate estimator. In both cases considered, that is groups of size 10 and groups of size
5, the median, respectively the interquartile range, of the 200 integrated squared error
values for the single-index estimator was about 50, respectively more than 10, times
smaller than that for the multivariate estimator. 510

7. Imperfect tests

When the tests are imperfect, the test result Ỹ ∗
j = 0 or 1 potentially does not reflect

the true status, Y ∗
j . Consequently, the estimators of m, γ and q0 introduced in the

previous sections, with the unobserved Y ∗
j s replaced by the Ỹ ∗

j s, are not consistent for
m, γ and q0. We follow Vansteelandt et al. (2000) and assume that the test accuracy 515

does not depend on the njs, and that the test result depends only on the true status.

Let 1− p1 = pr(Ỹ ∗
j = 0 | Y ∗

j = 0) and 1− p2 = pr(Ỹ ∗
j = 1 | Y ∗

j = 1) be respectively the
known test specificity and sensitivity, where p1 and p2 are less than 0 · 5.

We can estimate q0 by the estimator q̌ defined in Section 5 of Delaigle & Meister
(2011). Let Z̃∗

j = 1− Ỹ ∗
j . As indicated by our calculations in the supplementary material,

to estimate γ consistently we can take

γ̂ = argminγ

J∑
j=1

nj∑
i=1

[
q̌1−nj Z̃∗

j − ĝZ̃U (Uij) + (1− p1 − p2) γ
T
{
Vij − ĝV U (Uij)

}]2
,
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where ĝV U is as defined in Section 2·2 and ĝZ̃U is a standard nonparametric regression

estimator of gZ̃U (u) = E(q
1−nj

0 Z̃∗
j | Uij = u) computed using the data (Uij , q̌

1−nj Z̃∗
j ) (i =520

1, . . . , nj ; j = 1, . . . , J).
Let q̂ denote the maximum likelihood estimator from the supplementary material com-

puted with the Z̃∗
j s instead of the Z∗

j s. To estimate m consistently, we can take

m̂C(u) = C−1
0

{
m̂(u) M̂E − (M̂E − C0) γ̂

TĝV U (u)− p2

J∑
j=1

nj ψ̂j

}
,

where M̂E =
∑

j≤J nj ψ̂j q̂
nj−1 and C0 = (1− p1 − p2)

∑
j≤J nj ψ̂j q̌

nj−1. Here we take

the ψ̂js equal to ψ̂(q̂) in Section 5·1, replacing there the Y ∗
j s by the Ỹ ∗

j s. Some adjustment
is also needed for computing the centralised biased estimator at (9), where we should
replace m̂ by m̂C, and q̂ by q̌.525

See the supplementary material for a practical illustration of the method.
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A. Technical arguments for the single-index model

A·1. Assumptions for Theorem 2

Theorem 2 is derived under the following assumptions:
535

(I1) f is compactly supported, bounded away from 0 on A, and has two bounded, Hölder-
continuous derivatives;

(I2) for k = 0, 1, 2, f
(k)
β (βTx) is bounded uniformly in x and in β ∈ Bnhd, fβ(β

Tx) is bounded
away from zero uniformly in β ∈ Bnhd and x ∈ A, and for each η1 > 0 there exists η2 > 0 such540

that supβ∈Bnhd
|f ′′β (βTx1)− f ′′β (β

Tx2)| ≤ η1 for all x1, x2 ∈ A with ∥x1 − x2∥ ≤ η2;

(I3) the function g, at (11), is bounded and has two bounded, Hölder-continuous derivatives;

(I4) K is a symmetric, compactly supported, probability density with a Hölder continuous545

derivative;

(I5) the njs are uniformly bounded and satisfy J−1
∑

j≤J I(nj = k) → ρk, for each k, as
J → ∞;550

(I6) the functions ψj and ϕj depend on j only through nj , and in particular can be written
as ψj = ψ( · | nj) and ϕj = ϕ( · | nj), respectively;
(I7) the functions ψj and ϕj , appearing in (16) and (19) and denoted below collectively by χj ,
are uniformly bounded and satisfy infj infu∈[η1,1−η1] χj(u) > η2 for each η1 ∈ (0, 1/2), where555

η2 > 0 depends on η1, and they have two bounded derivatives and, for each η3 ∈ (0, 1/2)
and some η4 > 0, they satisfy supj |ψj(u)− ψj(v)− (u− v)ψ′

j(v)− 1/2 (u− v)2 ψ′′
j (v)| ≤

C4(η3) |u− v|2+η4 and supj |ϕj(u)− ϕj(v)− (u− v)ϕ′j(v)| ≤ C4(η3) (u− v)2 whenever
u, v ∈ [η3, 1− η3], where C4(η3) <∞ depends on neither j nor N ;560
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(I8) h ∈ HN ≡ [Nη5−(1/4), N−(1/6)−η5 ] for some η5 ∈ (0, 1/24], and β ∈ BN where BN is any
nonempty set of unit d-vectors β such that supβ∈BN

∥β − β0∥ = O(N−(1/4)−η6) for a value
η6 > 0.

We view N as the asymptotic parameter, and consider J and n1, . . . , nJ to be functions of N .
Thus, (I5) asserts that maxj≤J nj(N) ≤ C, where C > 0 is fixed, and implies that the long-run 565

proportion of values of j such that nj = k equals ρk. In particular, the njs can take no more
than a finite number of fixed values, although within that range they can depend on N , and
N/J →

∑
k≥1 ρk k as N → ∞. Conditions (I1) and (I2) are conventional; they confer second-

order smoothness properties on f and fβ , and permit us to avoid cases where the denominators
in definitions of estimators of g are effectively estimators of zero. Assumption (I3) asks that g 570

enjoy the same level of smoothness as the density of X; (I4) is a standard assumption on the
kernel function, K; (I7) implies that the weight functions ψj and ϕj , which may depend on N ,
are uniformly bounded and smooth; and (I8) defines the regions around 0 and β0, for h and β
respectively, where we search for the minimum of the criterion S1(h, β) at (19).

A·2. Notations used in statement of Theorem 2 575

We can consider gβ(t) = E
{
g
(
βT
0 X

) ∣∣ βTX = t
}
, as a functional of β. This fact is justified to

be consistent with the definition in Section 3·3 in Section A·3. Under conditions (I2) and (I3) the
functional has a continuous derivative in β:

gβ
(
βTx

)
= g

(
βT
0 x

)
+ (β − β0)

T g1(x) + o(∥β − β0∥) , (A1)

where g = gβ0 is as in (11), g1 is a d-vector of functions, the components of g1(x) are bounded
uniformly in x ∈ A, and the remainder in (A1) is of the stated order uniformly in such values 580

of x.
Recall that X is distributed as a generic Xij . Noting the definitions of ρk and ϕ(q | k) in (I5)

and (I6), and letting Sρ =
∑

k≥1 ρk k, define the d-vectors v0 and W1 by

v0 = E
{
I
(
X ∈ A

)
g
(
βT
0 X

)
g1(X)

} ∑
k≥1

ρk ϕ(q0 | k) q2(k−1)
0

/
Sρ , (A2)

W1 =
1

N

∑∑
Xij∈A

q
nj−1
0 ϕj(q0) g1(Xij) ϵij , (A3) 585

where W1 is asymptotically normal N(0, N−1 Σ1), with Σ1 defined at (A6).
Define the d-vector v1 and the both positive semidefinite d× d matrices Σ0 and Σ1 by

v1 = S−1
ρ

∑
k≥1

ρk ϕ(q0 | k) k
2 q

2(k−1)
0

1− qk0
E
[
I(X ∈ A) g

(
βT
0 X

)
g1(X)

{
1− qk−1

0 g
(
βT
0 X

)}]
, (A4)

Σ0 = S−1
ρ E

{
g1(X) g1(X)T I(X ∈ A)

} ∑
k≥1

k ρk ϕ(q0 | k) q2(k−1)
0 , (A5)

Σ1 = S−1
ρ

{∑
k≥1

ρk q
2(k−1)
0 ϕ(q0 | k)2

(
k E

[
I(X ∈ A) g1(X)2 qk−1

0 g
(
βT
0 X

) {
1− qk−1

0 g
(
βT
0 X

)}]
590

+ k (k − 1)E

[
I(X1 ∈ A) I(X2 ∈ A) g1

(
X1

)
g1
(
X2

)T ×
{
qk−2
0 g

(
βT
0 X1

)
g
(
βT
0 X2

)
− 2q2k−3

0 g2
(
βT
0 X1

)
g
(
βT
0 X2

)
+ q

2(k−1)
0 g

(
βT
0 X1

)
g
(
βT
0 X2

)}])}
. (A6)
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We assume that Σ0 is nonsingular. Let c and c1 be positive scalars defined by

c = Sρ

/∑
k≥1

ρk k
2 qk−1

0 (1− qk0 )
−1 , c1 = c2 S−1

ρ

∑
k≥1

ρk k
2 qk0 (1− qk0 )

−1 . (A7)

Recalling the definitions at (A2) and (A4), let Σ2 be the (d+ 1)× (d+ 1) covariance matrix with

Σ
−1/2
0

{
Σ1 − c

(
v0 v

T
1 + v1 v

T
0

)
+ c1 v0 v

T
0

}
Σ

−1/2
0

in the upper d× d diagonal block, c1 as the lowest diagonal element, that is the element in row

d+ 1 and column d+ 1, and where Σ
−1/2
0 (c v1 − c1 v0) is the off-diagonal column.595

A·3. Technical arguments for Sections 3·3 and 4·2
The definition of gβ in Section 3·3 requires justification, since we are asserting that for all β,

not just for β = β0, the left-hand side does not depend on j. To appreciate that our claim is
correct, let F1 and F2 denote the sigma-fields generated by βTXij and Xij , respectively. Then
F1 ⊆ F2, and so, for any random variable V for which E|V | <∞, it holds true that E(V | F1) =600

E{E(V | F2) | F1}. Taking V = ϵij we deduce that

E
(
ϵij

∣∣ βTXij

)
= E

{
E(ϵij | Xij)

∣∣ βTXij

}
= E

(
0
∣∣ βTXij

)
= 0 ,

where we have used the fact that E(ϵij | Xij) = 0. Therefore,

E
(
Z∗
j

∣∣ βTXij

)
= E

{
E(Z∗

j | Xij)
∣∣ βTXij

}
= E

{
q
nj−1
0 g

(
βT
0 Xij

) ∣∣ βTXij

}
= q

nj−1
0 E

{
g
(
βT
0 Xij

) ∣∣ βTXij

}
= q

nj−1
0 gβ

(
βTXij

)
, (A8)

In particular, the argument at (A8) shows that the definition of gβ at the beginning of Section605

A·2 is equivalent to that given in Section 3·3, and does not depend on j.
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