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ABSTRACT. In a large class of statistical inverse problems it is necessary to
suppose that the transformation that is inverted is known. Although, in many ap-
plications, it is unrealistic to make this assumption, the problem is often insoluble
without it. However, if additional data are available then it is possible to estimate
consistently the unknown error density. Data are seldom available directly on the
transformation, but repeated, or replicated, measurements increasingly are becom-
ing available. Such data consist of “intrinsic” values that are measured several
times, with errors that are generally independent. Working in this setting we treat
the nonparametric deconvolution problems of density estimation with observation
errors, and regression with errors in variables. We show that, even if the number
of repeated measurements is quite small, it is possible for modified kernel estima-
tors to achieve the same level of performance they would if the error distribution
were known. Indeed, density and regression estimators can be constructed from
replicated data so that they have the same first-order properties as conventional
estimators in the known-error case, without any replication, but with sample size
equal to the sum of the numbers of replicates. Practical methods for construct-
ing estimators with these properties are suggested, involving empirical rules for
smoothing-parameter choice.
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1. INTRODUCTION

Statistical deconvolution problems arise in a great many settings, and typically

have the form: g = T (f), where g is a function about which we have data, T is a

transformation, and f = T−1(g) is a function we wish to estimate. In a large class of

such problems, including density deconvolution and errors-in-variables regression,

it is common to assume that T is known. Indeed, the nature of the data usually

precludes any other approach.

In this paper we consider cases where there is a small number replications

of each intrinsically different observation, the observation errors being indepen-

dent and the intrinsic parts of the observations being the same among replicates.

Data of this type are numerous, and increasingly are becoming available in vari-

ous fields. Examples include work of Jaech (1985), who describes an experiment

where the concentration of uranium is measured for several fuel pellets; of Biemer

et al. (1991), who discuss repeated observations in a social science context; of An-

dersen et al. (2003), on nuclear magnetic reasonance; of Bland and Altman (1986),

on lung function; of Eliasziw et al. (1994), on physiotherapy for the knee; of Oman

et al. (1999), relating to kidney function; and of Dunn (1989), a brain-related study.

For further medical examples, see Carroll et al. (1995) and Dunn (2004).

When data of this type are available, it is usually possible to construct consis-

tent estimators of the function f of interest, without making parametric assumptions

about the transformation T . We treat both density deconvolution and errors-in-

variables regression, focusing on cases where the convergence rate, and first-order

properties more generally, are the same when the error distribution is known and

when it is not known but is estimated from repeated measurements. In section 2 we

construct a relatively simple density estimator and generalise it to the regression

case.

Theoretical properties of our estimators are taken up in section 3. We show that

a sufficient condition for first-order properties of estimators, in the cases of known

and unknown error distributions, to be equivalent, is that, colloquially speaking,

“the target density is smoother than half a derivative of the error density.” Instances
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where this condition is violated are those where the convergence rate is relatively

poor, even when the error density is known.

We direct attention to examples where the number of replications of each obser-

vation is relatively small. (We use the terms “replications” and “repeated measure-

ments” synonymously.) In theoretical terms, this means that the number of replica-

tions is uniformly bounded. That is generally the case in practice, since gathering

large numbers of replications is expensive. Moreover, particularly in cases where

statistical performance is the same when the error density is known or unknown, it

is seldom advantageous to have large numbers of replications.

For instance, we show that if the total number of data is M = np, where p ≥ 2

equals the number of times that each of n intrinsically different observations is

replicated, then first-order properties of nonparametric estimators depend only on

M , not on the separate values of n and p. We prove this result rigorously when p is

bounded, but a similar argument shows that it is also valid if p diverges sufficiently

slowly as M increases. More generally, the result holds if M =
∑

j Nj where Nj is

the number of replicates of the jth intrinsically different observation. Properties of

the estimator depend, to first order, only on M , provided that each Nj ≥ 2.

In section 4 we develop an adaptive, data driven procedure for smoothing-

parameter choice, and show that it enjoys good performance for real and simulated

datasets.

Related work in the context of density estimation includes that of Li and Vuong

(1998), who derived upper bounds to convergence rates in the measurement-error

problem when replications are present. Li and Vuong’s results are important; they

comprise some of the first contributions to density deconvolution in cases where the

error distribution is not known. Nevertheless, the properties reported by Li and

Vuong (1998), and bounds given also by Susko and Nadon (2002), are too coarse to

permit it to be shown that convergence rates can be identical in the cases of known

and unknown error distributions. Further discussion is given in section 3.5.

Recent, related research in the regression setting, and in the econometrics liter-

ature, includes that of Li (2002), Li and Hsiao (2004) and Schennach (2004a,b), who
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demonstrated that replications can be used to good effect in regression problems

with measurement error. See also work of Horowitz and Markatou (1996) on error

estimation from panel data, and the extensive literature, accessible through work

of Newey and Powell (2003), on inference in the context of instrumental variables.

However, except in parametric contexts, this and related work is not sufficiently

detailed to show that the convergence rates familiar in problems where the error

distribution is known can also be enjoyed when the distribution is accessible only

via repeated measurements.

The problem of density estimation with unknown error density, estimated from

a sample of the error, has been considered by Diggle and Hall (1993), Barry and

Diggle (1995) and Neumann (1997). Madansky (1959), Carroll et al. (1993) and

Huang and Yang, among others, have discussed linear regression with replicated

data, when at least some of the predictors are measured with error. Early work on

the problem of density deconvolution, under the assumption of known distribution of

measurement error, includes that of Carroll and Hall (1988), Stefanski and Carroll

(1990) and Fan (1991). More recent contributions, including surveys of earlier

research, include the papers of Delaigle and Gijbels (2002, 2004) and van Es and

Uh (2005). The literature on kernel methods for errors-in-variables regression is

particularly large, and is surveyed by Carroll et al. (1995).

2. MODELS AND METHODOLOGY

2.1. Density deconvolution. Suppose we observe

Wjk = Xj + Ujk for 1 ≤ k ≤ Nj and 1 ≤ j ≤ n , (2.1)

where the random variables Xj are identically distributed as X, the Ujk’s are iden-

tically distributed as U , and the Xj ’s and Ujk’s are totally independent. We wish

to estimate the density of X. In the context of our discussion in section 1, (2.1)

indicates that there are n subsets of “intrinsically different” data, and, within the

jth of these subsets, Nj repeated, or replicated, measurements of the variable Xj .

Let fU and fX denote the respective densities of U and X, and write fFt
U and

fFt
X for the respective characteristic functions (i.e. the Fourier transforms of those
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densities). Provided that

fFt
U is real-valued and does not vanish at any point on the real line , (2.2)

a consistent estimator of fFt
U is given by

f̂Ft
U (t) =

∣∣∣∣
1
N

n∑

j=1

∑

(k1,k2)∈Sj

cos{t(Wjk1 −Wjk2)}
∣∣∣∣
1/2

, (2.3)

where Sj denotes the set of 1
2 Nj(Nj − 1) distinct pairs (k1, k2) with 1 ≤ k1 <

k2 ≤ Nj , N = N(n) = 1
2

∑
j≤n Nj (Nj − 1), and we ignore values of j for which

Nj = 1. Assumption (2.2) is conventional when using kernel methods for density

deconvolution; see Stefanski and Carroll (1990) and Fan (1991), for example.

An estimator of fX is given by

f̂X(x) =
1

Mh

n∑

j=1

wj

Nj∑

k=1

L̂
(x−Wjk

h

)
,

where M =
∑

j Nj , the weights wj are nonnegative and satisfy
∑

j wj Nj = M ,

L̂(u) =
1
2π

∫
e−itu KFt(t)

f̂Ft
U (t/h) + ρ

dt , (2.4)

K is a symmetric kernel function with compactly supported Fourier transform KFt,

h > 0 is a bandwidth, and ρ ≥ 0 is a ridge parameter.

We introduce the ridge only so we can take expectation without concern for

fluctuations of the denominator in the integral at (2.4). The ridge would not be

necessary if our aim were to develop limit theory for f̂X that did not involve taking

expected values. See section 3.1 for discussion and theory in the case ρ = 0.

If fU were known then, instead of f̂X , we would use the following generalization

of the conventional deconvolution estimator:

f̃X(x) =
1

Mh

n∑

j=1

wj

Nj∑

k=1

L
(x−Wjk

h

)
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(see e.g. Carroll and Hall, 1988), where

L(u) =
1
2π

∫
e−itu KFt(t)

fFt
U (t/h)

dt .

The bias of f̃X does not depend on choice of the weights, and it can readily be shown

that the asymptotic variance is minimised by taking each wj = 1. Optimality of

this choice persists in the case of regression deconvolution, which we consider in

section 2.2.

Therefore, we take each wj = 1 in the work below. In particular, f̂X and f̃X

henceforth denotes the estimators

f̂X(x) =
1

Mh

n∑

j=1

Nj∑

k=1

L̂
(x−Wjk

h

)
, f̃X(x) =

1
Mh

n∑

j=1

Nj∑

k=1

L
(x−Wjk

h

)
.

Section 3.3 demonstrates that f̂X is first-order equivalent to f̃X . For this

result, and in the setting of “ordinary-smooth errors” (see (3.1)), the main assump-

tion needed is that fX be sufficiently smooth relative to fU . See condition (3.12).

Properties of f̃X are summarised in section 3.4.

2.2. Errors-in-variables regression. Here the model at (2.1) is extended, so that it

addresses data (Wjk, Yj) generated as

Wjk = Xj + Ujk , Yj = g(Xj) + Vj , for 1 ≤ k ≤ Nj and 1 ≤ j ≤ n , (2.5)

where the Xj ’s, Ujk’s and Vj ’s are identically distributed as X, U and V , respec-

tively, E(V ) = 0, E(V 2) < ∞, and the Xj ’s, Ujk’s and Vj ’s are totally independent.

We wish to estimate the function g.

Define

â(x) =
1

Mh

n∑

j=1

Nj∑

k=1

Yj L̂
(x−Wjk

h

)
, ã(x) =

1
Mh

n∑

j=1

Nj∑

k=1

Yj L
(x−Wjk

h

)
.

(2.6)

In the classical case, where fU is known and each Nj = 1, the standard kernel

estimator of g is g̃ = ã/f̃X , and of course g̃ is also appropriate in the case of

replicated data.
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The intuition behind g̃ is that ã is a consistent estimator of the function a =

fXg. When fU is not known we can estimate a by â, and so we can modify g̃ in the

manner of section 2.1, estimating g by ĝ = â/f̂X . We show in section 3.6 that ĝ is

first-order equivalent to g̃.

3. THEORETICAL PROPERTIES

3.1. Density deconvolution. First we state assumptions. We ask that, for constants

α > 0 and C1 > 1, and all real t,

C−1
1 (1 + |t|)−α ≤ ∣∣fFt

U (t)
∣∣ ≤ C1 (1 + |t|)−α . (3.1)

This is often referred to as the case of ordinary-smooth errors. The importance of

the lower bound in (3.1), in addition to the upper bound (which is conventional

when deriving convergence rates), are discussed in section 3.3.

Given β,C2 > 0, let F(β, C2) denote the class of densities fX for which

sup
−∞<t<∞

(1 + |t|)β
∣∣fFt

X (t)
∣∣ ≤ C2 .

(The class F(β,C2) is a Fourier analogue of Fan’s class Cm,α,B of functions; his

m + α + 1 is our β.) Let K have the property:

sup |KFt| < ∞ and, for some c > 0, KFt(t) = 0 for all |t| > c. (3.2)

The kernels used in deconvolution commonly have this property, and so, while our

results can be derived under weaker conditions, there is little motivation for that

generalisation.

The theorem below gives an upper bound to pointwise mean-squared distance

between f̂X and f̃X , uniformly in all points and all densities fX ∈ F(β, C2). In sec-

tion 3.3 we use that result to show that, if the bandwidth h is chosen so that it gives

optimal performance of f̂X , and if a relation (3.12) on the relative smoothnesses of

fU and fX holds, then the difference between f̂X and f̃X is negligible relative to

the distance between either estimator and the true density, fX .
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Theorem 3.1. Let C1 > 1 and C2, α, β > 0. Assume that (i) 1 ≤ Nj ≤ C1

for each j; (ii) N(n) ≥ C−1
1 n for each n ≥ 1; (iii) fFt

U satisfies (3.1); (iv) α >

1
2 ; (v) KFt satisfies (3.2); (vi) h1(n) ≤ h ≤ h2(n), where h2(n) → 0 and, for

some δ > 0, n(1−δ)/4α h1(n) is bounded away from zero; and (vii) c1 n−c2 ≤ ρ ≤
c3 min{h1(n)4α+2, n−1}, where c1, c2, c3 > 0. Then, for each integer k ≥ 1,

sup
fX∈F(β,C2)

sup
−∞<x<∞

E
{
f̂X(x)− f̃X(x)

}2 ≤ const. pn , (3.3)

where

pn = pn(k) = n−1
{
hβ−2α−1 + h2(β−2α)−1 + (log n)2

}

+ n−2
(
h2(β−4α)−2 + h−6α−1

)
+ n−k h−4(k+2)α−2 (3.4)

and the constant in (3.3) depends on k but not on h ∈ [h1(n), h2(n)] or on n.

Proofs of Theorems 3.1–3.3 are given in section 5.

We argued in section 2 that, if we were to develop limit theory that did not

involve taking expected values, the ridge parameter ρ could be taken equal to zero.

In that setting we should replace uniform pointwise error, at (3.9), by error at a

single point, or by a global metric such as integrated squared error. Otherwise we

incur a logarithmic penalty on the right-hand side of (3.9). (This is to be expected,

since the same penalty arises in more conventional problems; see e.g. Bickel and

Rosenblatt (1973).) We should also remove the supremum over densities fX ∈
F(β, C2), since the uniformity implied by the supremum is not meaningful if we

remove the expectation.

For the sake of definiteness, when working with ρ = 0 we measure accuracy in

terms of squared error at a particular point, or integrated squared error. To treat

the latter, note that (3.3) implies that, for each pair x1, x2 for which −∞ < x1 <

x2 < ∞,

sup
fX∈F(β,C2)

∫ x2

x1

E
{
f̂X(x)− f̃X(x)

}2
dx = O(pn) . (3.5)

Let f̂0
X(x) denote the version of f̂X constructed with ρ = 0. We claim that (3.5)

continues to apply to f̂0
X , provided the expectation and supremum over fX are
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removed from the left-hand side, and the right-hand side is interpreted in an “in

probability” sense. Moreover, squared error at each fixed point x converges at the

same rate:

∣∣f̂0
X(x)− f̃X(x)

∣∣ = Op

(
p1/2

n

)
,

∫ x2

x1

{
f̂0

X(x)− f̃X(x)
}2

dx = Op(pn) . (3.6)

Theorem 3.2. Let C1 > 1, let C2, α, β > 0, let −∞ < x1 < x2 < ∞, and take

ρ = 0 in the definition of L̂, at (2.4), and hence also in the definition of f̂X , obtaining

the estimator f̂0
X . Assume that conditions (i)–(vi) in Theorem 3.1 hold. Then (3.6)

holds for each fX ∈ F(β, C2), each x ∈ (−∞,∞) and each pair x1, x2 for which

−∞ < x1 < x2 < ∞.

3.2. Asymptotic optimality. The size of bandwidth that minimises pointwise mean

squared error, when using f̃X to estimate fX , is h ³ h0 ≡ n−1/{2(α+β)−1}; and, for

such a bandwidth, pointwise mean squared error of f̃X is of size qn, where

qn = n−2(β−1)/{2(α+β)−1} . (3.7)

The same result holds if we replace f̃X by the errors-in-variables regression estima-

tor, g̃, which we define in section 3.6. See Fan (1991) and Fan and Truong (1993)

for discussion of theory in these respective cases, and also for proofs of lower bounds

which show that the rate qn is minimax optimal, in an L2 sense.

However, these results address only the case where there is no replication,

i.e. each Nj = 1. In the case of upper bounds, generalisation to settings where each

Nj ≥ 2 is relatively straightforward. See section 3.4 for details. Below we generalise

lower bounds in the setting of density deconvolution.

Theorem 3.3. Assume that α, β > 1
2 . Let F(β,C) denote the class of densities

fX defined in section 3.1, and write F̆ for the class of all measurable functionals

of the data. Assume that 2 ≤ Nj ≤ B for each j, where 2 ≤ B < ∞. Then, for

each fixed x and each sufficiently large C > 0, there exists D > 0 such that, for all

sufficiently large n,

inf
f̆∈F̆

sup
fX∈F(β,C)

EfX

{
f̆(x)− fX(x)

}2 ≥ D qn . (3.8)



9

3.3. Equivalence of f̂X and f̃X . In view of the results derived in section 3.2, and

in order to establish that f̂X is asymptotically equivalent to f̃X when the latter is

performing optimally, it is instructive to show that when h ³ h0,

sup
fX∈F(β,C2)

sup
−∞<x<∞

E
{
f̂X(x)− f̃X(x)

}2 = o(qn) , (3.9)

if the ridge-prameter ρ is taken to be nonzero; or, if the ridge is zero, that

∣∣f̂0
X(x)− f̃X(x)

∣∣ = op

(
q1/2
n

)
,

∫ x2

x1

{
f̂0

X(x)− f̃X(x)
}2

dx = op(qn) . (3.10)

Compare with (3.6). In fact, (3.9) and (3.10) follow from Theorems 3.1 and 3.2,

respectively, if we prove that

qn = o(pn) . (3.11)

Provided

β > α + 1
2 , (3.12)

it is straightforward to show that if h ³ h0 then

n−1
{
hβ−2α−1+h2(β−2α)−1+(log n)2

}
+n−2

(
h2(β−4α)−2+h−6α−1

)
= o(qn) , (3.13)

and also that if k is sufficiently large and h ³ h0 then n−k h−4(k+2)α−2 = o(qn).

This result and (3.13) imply (3.11).

Therefore condition (3.12), which can be characterised colloquially as the as-

sertion that “fX is smoother than half a derivative of fU ,” is sufficient to ensure

that, in deconvolution problems, there is no first-order loss of performance in using

replicated data to estimate the error density when the latter is not known. Intuition

behind (3.12) is given in section 3.5.

Of course, (3.12) fails if α is too large; that is, if fU is too smooth. This is the

reason for placing the lower bound on |fFt
U (t)| in (3.1). Without that bound, fU

can be arbitrarily smooth.

3.4. Properties of f̃X . Let f̌X denote the “standard” version of f̃X , obtained by

taking Nj = 1 for each j, but with sample size M rather than n. Theorem 3.4,
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which is given below and is straightforward to derive, argues that the bias of f̃X is

identical to that of f̌X , and that the variance of f̃X equals that of f̌X , to first order.

Recall that U and X have the distributions of Ujk and Xj , respectively, that

W = X + U , and that N = 1
2

∑
j≤n Nj (Nj − 1). Put

mn(x) =
∫

K(u) fX(x− hu) du ,

vn(x) =
1
M

{
1
h

∫
L(u)2 fW (x− hu) du−mn(x)2

}
,

wn(x) =
2N

M2

{
1
h

∫
K(u)2 fX(x− hu) du−mn(x)2

}
.

Theorem 3.4. The mean and variance of f̌X(x) equal mn(x) and vn(x), re-

spectively; the mean of f̃X(x) equals mn(x); and the variance of f̃X(x) equals

vn(x) + wn(s).

The quantity wn is generally of strictly smaller order than vn, since
∫

K2

remains fixed but
∫

L2 diverges as h decreases. Therefore, in terms of first-order

properties of mean and variance, f̃X and f̌X have identical performance. In view of

this property, and bearing in mind the asymptotic equivalence of f̂X and f̃X derived

in section 3.3, we can fairly say that:

to first order, f̂X has the same properties as a conventional deconvolution
density estimator, computed when the error density is known and the
sample size is M but without any replication.

(3.14)

Of course, this assertion requires (3.9) and hence needs (3.12).

Together, (3.8), (3.9) and (3.14) demonstrate minimax optimality of the esti-

mator f̂X . Of course, this property necessitates the supremum being taken over fX

in (3.9). That requirement motivated our introduction of the ridge parameter in

our definition of f̂X .

3.5. Discussion of different approaches to density deconvolution. Let (2.2)′ denote

the version of (2.2) where the assumption that fFt
U is real-valued is omitted. For

cases where (2.2)′ holds but (2.2) fails, Li and Vuong (1998) suggest an estimator of

fFt
U quite different from our f̂Ft

U . However, from a practical viewpoint the condition



11

that fFt
U be real-valued is mild. In particular, in the nonparametric literature on

density deconvolution and errors-in-variables regression where fU is assumed known,

that quantity is invariably taken to be symmetric, in which case fFt
U is real-valued.

The alternative estimator suggested by Li and Vuong (1998) in the context of

(2.2)′ requires the distributions of both U and X to have characteristic functions

that do not vanish anywhere (see Li and Vuong’s condition A3) and also to be

compactly supported (see their assumption A4). We are not aware of a distribution

which enjoys both these properties. Certainly, none of the standard, compactly-

supported distributions satisfy A3. This, and the numerical complexity of Li and

Vuong’s estimator, discouraged us from considering their technique.

If α is sufficiently less than β then the problem of estimating fU from the dif-

ferences Wjk1 −Wjk2 is more difficult statistically, although more straightforward

numerically, than the problem of estimating fU from the raw data Wjk. This in-

dicates why condition (3.12) is required. For values of α that are large relative to

β, alternative deconvolution methods may possibly give better theoretical perfor-

mance, although we are not aware of any that are attractive computationally.

3.6. Errors-in-variables regression. The results in this section are closely analogous

to those in earlier sections, so we give only an outline. Recall from section 2.2 that,

under the model (2.5), our estimator of g is ĝ = â/f̂X , where â is an estimator,

defined at (2.6), of a = fXg. Properties of ĝ follow directly from those of the

numerator and denominator in the ratio â/f̂X . The denominator is treated in

Theorems 3.1 and 3.2; here we address the numerator.

Given fX ∈ F(β, C2), let G(β, C2 | fX) denote the class of functions g for which

sup
−∞<t<∞

(1 + |t|)β

∣∣∣∣
∫

eitx fX(x) g(x) dx

∣∣∣∣ ≤ C2 .

Recall that conditions associated with the errors-in-variables model (2.5) include

the assumption that E(V ) = 0 and E(V 2) < ∞.

Theorem 3.5. Let C1 > 1 and C2, α, β > 0. Assume (i)–(vii) in Theorem 3.1.
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Then, for each integer k ≥ 1,

sup
fX∈F(β,C2), g∈G(β,C2 | fX)

sup
−∞<x<∞

E
{
â(x)− ã(x)

}2 ≤ const. pn , (3.15)

where pn is as at (3.4) and the constant in (3.15) depends on k but not on h ∈
[h1(n), h2(n)] or on n.

We know from section 3.3 that, if α and β satisfy (3.12), and if h is of the same

size as the bandwidth that minimises mean squared error of f̃X (this is also the size

of the optimal bandwidth for ã and g̃), then pn = o(qn). (Recall that qn is given by

(3.7), and that q
1/2
n equals the minimum order of magnitude of error for estimators

of fX , a and g.) It then follows from Theorems 3.1 and 3.5, and (3.11), that if

conditions (i)–(vii) hold, f̂X(x) − f̃X(x) = op(q
1/2
n ) and â(x) − ã(x) = op(q

1/2
n ).

Therefore, provided fX(x) > 0, we have:

ĝ(x) =
â(x)

f̂X(x)
=

ã(x)
f̃X(x)

+ op

(
q1/2
n

)
= g̃(x) + op

(
q1/2
n

)
. (3.16)

That is, if the bandwidth is chosen so that it is optimal for estimating g by g̃, then

ĝ is first-order equivalent to g̃.

It is straightforward to state and prove the analogue of Theorem 3.4 for the

estimator ã instead of f̃X . This leads directly to the analogue of (3.14), where

the only change necessary is to replace f̂X by ĝX and alter “density estimator” to

“regression estimator.”

The proof of Theorem 3.5 is omitted, since it closely parallels that of Theo-

rem 3.1, given in section 5.1. An argument similar to that used in section 5.2 to

derive Theorem 3.2 can be employed to show that (3.16) holds even if the ridge

parameter, ρ, is taken as zero. Therefore, (3.14) applies in the ridge-free case.

3.7. Supersmooth error case. All our discussion in the previous paragraphs was

based on the assumption that the error distribution is ordinary smooth, and in

particular satisfies (3.1). It is also of interest to treat the case of supersmooth

errors, so named because there the error density is infinitely differentiable. In that

context the following condition is imposed in place of (3.1): for constants α > 0,
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γ > 0 and C1 > 1, and all real t,

C−1
1 exp

(− γ |t|α) ≤ |ψ(t)| ≤ C1 exp
(− γ |t|α)

. (3.17)

For such error distributions, pointwise mean squared error, when employing f̃X to

estimate fX , is of optimal order when using a bandwidth h = D (log n)−1/α, where

D > (4γ)1/α denotes a constant. In this case, pointwise mean squared error of f̃X

is of size qn = (log n)−2(β−1)/α. Here, the rate of convergence of the estimator f̃X

is so slow that the loss of performance incurred by estimating fU from the data,

and using f̂X instead of f̃X , is negligible, regardless of restrictions such as (3.12).

In particular, the following theorem holds. Its proof follows the lines of that of

Theorem 3.1, but is more straightforward and hence is omitted.

Theorem 3.6. Let C1 > 1 and α, β, γ > 0. Assume that (i) 1 ≤ Nj ≤ C1 for each

j; (ii) N(n) ≥ C−1
1 n for each n ≥ 1; (iii) fFt

U satisfies (3.17); (iv) KFt satisfies

(3.2) with c = 1; (v) h = D (log n)−1/α, with D > (4γ)1/α; and (vi) ρ = C1 n−κ,

with κ > 1
4 . Then, for some ε > 0,

sup
fX∈F(β,C2)

sup
−∞<x<∞

E
{
f̂X(x)− f̃X(x)

}2 ≤ const. n−ε .

This result is readily generalised to the estimator ĝ, provided h is chosen so that

the optimal convergence rate for g̃ as an estimator of g is attained. In particular, if

h = D (log n)−1/α where D > (4γ)1/α, then ĝ is first-order equivalent to g̃.

4. NUMERICAL PROPERTIES

4.1. Simulated examples. We study numerical properties of the estimators f̂X and

ĝ in several simulated examples. In the density case, and following model (2.1),

we generate 500 random samples of replicated observations for n individuals, Wij

where i = 1, . . . , n and j = 1, . . . , Ni. We take the noise-to-signal ratio σ2
U/σ2

X equal

to 25%, except in the case of density (iii) below, where we take σ2
U/σ2

X = 10%. The

notation σ2
T denotes the variance of a random variable T . The error density fU is

chosen to be a Laplace or a centred normal density.
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We consider four target densities fX : (i) X ∼ 0.5N(−3, 1)+0.5N(2, 1), (ii) X ∼
χ2(3), (iii) X ∼ ∑5

`=0(2
5−`/63)N{65 − 96 2−`/21, (32/63)2/22`} and (iv) X ∼

N(0, 1). Density (i) is bimodal and symmetric, density (ii) is asymmetric and den-

sity (iii) is the smooth comb density discussed by Marron and Wand (1992). Note

that, even in the error-free case, the latter density is particularly hard to estimate

because of its numerous features.

In the regression case we generate 500 datasets of randomly-sampled vectors

(Wij , Yi), i = 1, . . . , n, j = 1, . . . , Ni, according to the model (2.5). The density fX

is chosen to be a uniform U [0, 1] or a normal N(0.5, σ2
X) density, with σ2

X chosen so

that 0 and 1 are respectively the 0.025 and 0.975 quantiles of fX . The error density

fU is a Laplace or centred normal density, and the noise-to-signal ratio σ2
U/σ2

X

equals 10%. Except for our Bernoulli regression example (see case (iii) below),

the error density fV is a centred normal density such that the noise-to-signal ratio

σ2
V /σ2(g) equals 10%, where σ2(g) denotes the mean squared deviation of g from

its average value.

We consider three regression curves: (i) g(x) = x2 (1 − x)2, (ii) g(x) = 3x +

20 (2π)−1/2 exp{−100 (x − 1
2 )2}, (iii) Y |X = x ∼ Bernoulli{g(x)}, with g(x) =

0.45 sin(2πx) + 0.5. Note that curve (i) is unimodal and symmetric around 0.5,

curve (ii) is a mixture of a straight line and an exponential curve, and curve (iii) is

an asymmetric sinusoid.

We sought an automatic way of choosing the bandwidth, h. In the density case,

we suggest using ĥPI, the plug-in bandwidth of Delaigle and Gijbels (2002, 2004),

where the characteristic function of the error is replaced by (2.3). This procedure is

justified by the discussion in section 3.3. In the regression case, a bandwidth-choice

procedure could also be based on a data-driven selector for the known error case.

However, since, to our knowledge, there does not exist such a method, we must first

propose one.

A cross-validation (CV) criterion for selecting h would choose

hCV = argminh

n∑

k=1

(
Yk −

∑n
j=1 YjSj(Xk)

1− Sk(Xk)

)2

,
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where, for j = 1, . . . , n,

Sj(x) =
Nj∑

`=1

L
(x−Wj`

h

)/ n∑

J=1

NJ∑

`=1

L
(x−WJ`

h

)
.

Since the observations Xk are not available, we need to replace all quantities of the

form

L
(Xk −Wj`

h

)
=

1
2π

∫
exp(−itXk/h) exp(itWj`/h)

KFt(t)
fFt

U (t/h)
dt ,

by empirical estimators. We suggest replacing exp(−itXk/h) by an estimator

of its expected value, fFt
X (−t/h), based on the replications of the kth intrinsic

observation. Such an estimator can be defined by f̂Ft
W (−t/h)/fFt

U (−t/h), where

f̂Ft
W (t) = KFt(ht)

∑Nk

m=1 exp(itWkm) is a kernel estimator of fFt
W . Proceeding that

way, our CV criterion becomes:

h̃CV = argminh

n∑

k=1

(
Yk −

∑n
j=1 Yj

̂Sj(Xk)

1− ̂Sk(Xk)

)2

, (4.1)

where

̂Sj(Xk) =
Nk∑

m=1

Nj∑

`=1

L2

(Wkm −Wj`

h

)/ n∑

J=1

Nk∑
m=1

NJ∑

`=1

L2

(Wkm −WJ`

h

)
, (4.2)

with L2(x) = (2π)−1
∫

exp(−itx/h) |KFt(t)|2 |fFt
U (t/h)|−2 dt.

In the case of unknown error density, we define ĥCV as in (4.1) but we replace

L2 in (4.2) by

L̂2(x) = (2π)−1

∫
exp(−itx/h) |KFt(t)|2 |f̂Ft

U (t/h)|−2 dt ,

with f̂Ft
U (t) as in (2.3). As in the error-free case, the computations needed to

calculate this bandwidth can be reduced considerably by binning the data. See, for

example, Fan and Gijbels (1996), page 96. We suggest placing the Wij ’s into 200

equi-spaced bins between their empirical 0.025 and 0.975 quantiles.

The selection of a ridge parameter can be avoided if, instead of using f̂Ft
U (t)+ρ

in L̂, we employ f̃Ft
U (t) = f̂Ft

U (t) I(t ∈ A) + f̂Ft
P (t) I(t 6∈ A), where A denotes the
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largest interval around 0 in which the estimator f̂Ft
U (t) is not erratic, i.e. does not

oscillate, and f̂Ft
P (t) is a parametric function estimated from the observations and

defined by f̂Ft
P (t) = (1 + AU t2)−BU , with AU and BU chosen so as to match the

empirical second and fourth moments of the error with those of f̂P . In the event

that these moments are negative, we set BU = 1 and take AU equal to half the

empirical variance of the error, which corresponds to f̂P being a Laplace density.

This method gives very good results in practice, sometimes even better than in the

case of known error density.

In our simulations, we consider samples of sizes n = 50, 100 and 250, and fix

the number of replications, Nj , at 2 or 4. In each case we generate 500 datasets, for

each of which we calculate an estimate of the target curve by using the bandwidth

ĥPI (density case) or the bandwidth ĥCV (regression case). We take KFt = (1 −
t2)3 I(t ∈ [−1, 1]); this kernel is commonly used in deconvolution problems. To

evaluate performance, we calculate the integrated squared error (ISE) distance of

each estimate, where ISE =
∫

I
(m̂ −m)2, with m = fX or m = g, and where I is

the whole real line (density case) or I = [0, 1] (regression case). In the graphs, we

present the three estimates that resulted in the first, second and third quartiles of

the 500 calculated ISE’s, and we denote them by, respectively, q1, q2 and q3. We

report only part of the simulations, although our conclusions are similar for the

other, non-reported results.

x

de
ns

ity

−6 −4 −2 0 2 4 6

0.
0

0.
10

0.
20

q1
q2
q3

x

de
ns

ity

−6 −4 −2 0 2 4 6

0.
0

0.
10

0.
20

q1
q2
q3

Figure 1. Quantile curves of 500 estimates f̂X of density (i) in the Laplace error

case, when M = 500 and Nj = 2 (left panel) or Nj = 4 (right panel).

In Figure 1, we illustrate the effect of increasing the number of replications

by comparing the quartile curves for Nj = 2 and Nj = 4, obtained from 500
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samples from density (i) contaminated by Laplace errors when M = 500. These

and related results indicate better performance when Nj = 2 than when Nj = 4.

As suggested in the introduction, for the same total number of observations, M , it

is more advantageous to have a large number of intrinsically different observations,

n, than a large number of replications, Nj .

Figure 2 examines the loss incurred through estimation of the error density.

We show boxplots of 500 ISE’s calculated for 500 estimates of densities (i) and (iv),

for sample sizes n = 50, 100 or 250, with Nj = 2 and a normal error density. The

boxplots are grouped by sample size. In each set of two boxplots, the first shows the

results for the estimator f̂X (unknown error) and the second, the results obtained,

for the same 500 samples, using the estimator f̃X (known error). The graphs show

that the performance lost by estimating the error density is minor. In some cases

the results are even better for f̂X than for f̃X .
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Figure 2. Boxplots of the ISE of 500 estimates of density (i) (left panel) or den-

sity (iv) (right panel), in the normal error case for Nj = 2 and n = 50, 100 or 250.

In each group of two boxplots, the first is for f̂X (unknown error), and the second,

for f̃X (known error).

In Figure 3, we show the quartile curves obtained for 500 samples from den-

sity (iii) contaminated by Laplace error when n = 250, with Nj = 2, together with

boxplots of the calculated ISE’s for n = 50, 100 and 250 in the known and unknown

error cases. The results show that, as in the error-free case, it is difficult to recover

all the modes of this density, and that knowing the error density brings only minor

improvements.
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Figure 3. Quartile curves of 500 estimates f̂X of density (iii) in the Laplace error

case, for Nj = 2 and n = 250 (left panel), together with boxplots (right panel)

of the 500 calculated ISE’s when n = 50, 100 or n = 250. In each group of two

boxplots, the first is for f̂X (unknown error), and the second, for f̃X (known error).

In Figure 4, we show the quartile curves obtained from 500 samples for regres-

sion function (ii), when the error U is Laplace, n = 250 and Nj = 2, in the case

where X ∼ N(0.5, σ2
X), using ĝ (unknown error) or g̃ (known error). We see that

the results are quite good in all cases, and that, in this example, knowing the error

density does not seem to improve the results.
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Figure 4. Quartile curves of 500 estimates ĝ (left panel) or g̃ (right panel) of the

regression function (ii) in the Laplace error case, for Nj = 2 and n = 250, when

X ∼ N(0.5, σ2
X).

Figure 5 shows the quartile curves obtained from 500 samples in the case of

regression function (i) for n = 100 and Nj = 2, when the error U is normal and

X ∼ U [0, 1]. We also show boxplots of the 500 calculated ISE’s in the case of

Laplace and normal error U and n = 100 or 250, using ĝ (unknown error) or g̃

(known error). We see that the estimated curves are quite good and the results are

slightly better when the error density is known.
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Figure 5. Quartile curves of 500 estimates ĝ of the regression function (i) in the

normal error case for Nj = 2, n = 100 and X ∼ U [0, 1] (left panel); and boxplots of

500 ISE’s for the same regression curve in the case of Laplace error (first group of

four) or normal error (last group of four), for n = 100 or 250 (right panel). In each

group of two boxplots, the first is for ĝ and the second is for g̃ .

Finally, Figure 6 shows the quartile curves in the case of regression curve (iii),

when the error U is Laplace, X ∼ U [0, 1], Nj = 2 and n = 100 or 250. In this case,

too, we see that the results are quite good and improve as sample size increases.
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Figure 6. Quartile curves of 500 estimates ĝ of the regression function (iii) in the

Laplace error case for Nj = 2, X ∼ U [0, 1] and n = 100 (left panel) or n = 250

(right panel).

4.2. Real-data examples. We apply our methods to two medical examples. The

first dataset, described by Bland and Altman (1986), was collected to compare two

methods for measuring peak expiratory flow rate (PEFR). Two replicated measure-

ments of PEFR were made on 17 individuals, using each of two different methods:

a Wright peak flow meter and a mini Wright meter. As described by Bland and

Altman (1986), when evaluating a new method for measuring a clinical quantity,

usually the true values remain unknown and a common practice is to compare the
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new method with the established method, rather than with the true quantities. The

goal is thus to check whether the mini meter and the Wright meter are in agreement.

To this end, we define Xi as the average of all possible readings on the mini

meter for individual i, and define Yi similarly for the ‘regular’ Wright meter. The

latter gives more stable (less variable) readings than the mini meter, and, therefore,

for each individual i, we set Yi equal to the average of the two Wright readings. Since

readings from the mini meter are more variable then there we need to incorporate

measurement errors. For j = 1, 2, we take Wij to be the jth replicated mini Wright

measurement.

The regression estimate is shown in the left panel of Figure 7, together with

the observations (Wij , Yi). The unusual shape of the estimate, deviant from a

straight line, suggests that the two PERF measurement methods might not be in

good agreement and that further investigation should be carried out. Bland and

Altman (1986) note that a standard parametric analysis of these data, not taking the

noise into account, indicates agreement between the two methods. The alternative

analysis they propose concludes that the two methods are not in good agreement.
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Figure 7. Regression estimate for the PEFR data (left panel) and density estimate

for the CAT data (right panel).

The second dataset concerns two replicated measurements derived from CAT

scans of the heads of 50 psychiatric patients. More precisely, the ventricule-brain

ratio (VBR) was measured twice for each patient, using a hand-held planimeter. See

Turner et al. (1986) and Dunn (2004). The logarithm of the VBR can be described
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by model (2.1), and for the ith patient we set Wij = log(VBRij), j = 1, 2, where

VBRij denotes the jth contaminated replication of the measurement of VBR for

patient i. The density estimate of the non-contaminated log VBR is plotted in

Figure 7, which shows a smooth and symmetric density.

5. TECHNICAL ARGUMENTS

5.1. Proof of Theorem 3.1. Without loss of generality, c = 1 in (3.2). Put ψ = fFt
U ,

φ = ψ2 and

∆(t) =
1
N

n∑

j=1

∑

(k1,k2)∈Sj

[
cos{t(Wjk1 −Wjk2)} − φ(t)

]
.

In this notation,

(
f̂Ft

U + ρ
)−1 =

{
ψ (1 + φ−1 ∆)1/2 + ρ

}−1

= ψ−1 I(ψ > ρ) +
k∑

`=1

c` ψ−2`−1 ∆` + χ1 + χ2 , (5.1)

where the constants c` are derived from binomial coefficients, |χ1| ≤ ρ−1 I(ψ ≤ ρ),

|χ2| ≤ const.
{

ρ

ψ + ρ

(
ψ−3 |∆|+ ψ−(2k+1) |∆|k

)
+ ψ−(2k+3) |∆|k+1

+ ρψ−2 I(ψ > ρ) + ρ−1 I
(|∆| > 1

2 φ
)}

,

and “const.”, here and below, denotes a generic positive constant depending only

on k, fU and the parameters α and C2 of F(β, C2).

Result (5.1) implies that

f̂X(x)− f̃X(x) =
k∑

`=1

c` δ1`(x) + δ01(x) + δ02(x)− δ2(x) , (5.2)

where, for ` = 1, 2 in the case of δ0`, and 1 ≤ ` ≤ k for δ1`,

δ0`(x) =
1
2π

∫
e−itx f̂Ft

W (t)χ`(t) KFt(ht) dt ,

δ1`(x) =
1
2π

∫
e−itx f̂Ft

W (t)ψ(t)−2`−1 ∆(t)` KFt(ht) dt ,

δ2(x) =
1
2π

∫
e−itx f̂Ft

W (t)ψ(t)−1 KFt(ht) I{ψ(t) ≤ ρ} dt
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and f̂Ft
W (t) = M−1

∑
j

∑
k eitWjk .

We claim that, for a constant n0 ≥ 1, the functions δ01 and δ2 vanish identically

whenever n ≥ n0. This is a consequence of the fact that (a) KFt(ht) vanishes if

h|t| ≥ 1, and (b) if n ≥ n0, the indicator functions I{ψ(t) ≤ ρ} and I(|t| ≤ h−1)

cannot both equal 1. To appreciate why (b) is true, note that, in view of (3.1),

(c) I{ψ(t) ≤ ρ} implies that |t| ≥ const. ρ−1/α; that, by assumption (vi) in the

theorem, (d) h ≥ h1(n); and, by assumption (vii) in the theorem, ρ ≤ c3 h4α+1
1 ,

whence (e) ρ−1/α ≥ const. h1(n)−4. Together, (c)–(e) entail: (f) I{ψ(t) ≤ ρ} implies

that |t| ≥ const. h−4. Result (b) follows from (f).

Therefore, assuming n ≥ n0, we deduce from (5.2) that

f̂X(x)− f̃X(x) =
k∑

`=1

c` δ1`(x) + δ02(x) .

This formula, and the fact that f̂Ft
W = ψ fFt

X + ∆1 where ∆1 = f̂Ft
W −E(f̂Ft

W ), imply

that

sup
−∞<x<∞

E
{
f̂X(x)− f̃X(x)

}2

≤ const.
[

max
r=2,3

max
1≤`≤k

sup
−∞<x<∞

E
{
δr`(x)2

}
+ sup
−∞<x<∞

E
{
δ02(x)2

}]
, (5.3)

where

δ2`(x) =
1
2π

∫
e−itx fFt

X (t) ψ(t)−2` ∆(t)` KFt(ht) dt ,

δ3`(x) =
1
2π

∫
e−itx ψ(t)−2`−1 ∆1(t) ∆(t)` KFt(ht) dt .

Crude bounds show that for ` ≥ 1,

E
{
δ2`(x)2

} ≤ const. n−`

{( ∫ 1/h

1

|t|2`α−β dt

)2

+ 1
}

≤ const. n−`
{
h2β−4`α−2 + (log n)2

}
, (5.4)

E
{
δ3`(x)2

} ≤ const. n−`−1

{( ∫ 1/h

1

|t|(2`+1) α dt

)2

+ 1
}

≤ const. n−`−1 h−2 (2`+1) α−2 . (5.5)
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Here and below, terms in log n take account of instances where integrals either

converge or just fail to converge, in the latter case being of the form
∫ 1/h

1
|t|−1 dt.

Consider, for example, the case β = 2`α + 1 in (5.4).

A longer argument gives E{δ21(x)2} ≤ const. n−1 {T (h) + log n}, where

T (h) =
∫ 1/h

1

∫ 1/h

1

∣∣fFt
X (t1) fFt

X (t2)
∣∣
{

ψ(t1 − t2)
ψ(t1) ψ(t2)

}2

dt1 dt2

≤ const.
∫ 1/h

1

∫ 1/h

1

(1 + |t1|)2α−β (1 + |t2|)2α−β (1 + |t1 − t2|)−2α dt1 dt2

≤ const.
∫ 1/h

1

∫ 1/h

1

(1 + |t1|)2α−β
{
(1 + |t1|)2α−β

+ (1 + |t1 − t2|)2α−β + 1
}

(1 + |t1 − t2|)−2α dt1 dt2

≤ const.
∫ 1/h

1

{
(1 + |t1|)2α−β + (1 + |t1|)2(2α−β)

}
dt1

≤ const.
(
hβ−2α−1 + h2(β−2α)−1 + log n

)
.

Here we have used the fact that α > 1
2 . Therefore,

E
{
δ21(x)2

} ≤ const. n−1
(
hβ−2α−1 + h2(β−2α)−1 + log n

)
. (5.6)

Using (5.4) for 2 ≤ ` ≤ k, and (5.6) for ` = 1, we obtain:

max
1≤`≤k

sup
−∞<x<∞

E
{
δ2`(x)2

} ≤ const.
[
n−1

{
hβ−2α−1 + h2(β−2α)−1 + (log n)2

}

+ n−2 h2(β−4α)−2 + n−k h2β−4kα−2
}

. (5.7)

The argument leading to (5.6) allows us to increase by 1 the exponent of h in

the term h2β−4α−2 on the right-hand side of (5.5), in the case ` = 1. Analogously,

for each ` ≥ 1, the argument leading to (5.6) can be used to sharpen (5.5) to:

E
{
δ3`(x)2

} ≤ const. n−`−1 h−2 (2`+1) α−1 .

Hence,

max
1≤`≤k

sup
−∞<x<∞

E
{
δ3`(x)2

} ≤ const.
(
n−2 h−6α−1 + n−(k+1) h−2(2k+1)α−1

)
. (5.8)
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Combining (5.7) and (5.8) we deduce that

max
r=2,3

max
1≤`≤k

sup
−∞<x<∞

E
{
δr`(x)2

}

≤ const.
[
n−1

{
hβ−2α−1 + h2(β−2α)−1 + (log n)2

}

+ n−2
(
h2(β−4α)−2 + h−6α−1

)
+ n−k h2β−4kα−2 + n−(k+1) h−2(2k+1)α−1

]

= O(pn) . (5.9)

This bounds the first term on the right-hand side of (5.3). Next we address the

second term there. Since h ≥ h1(n), where n(1−δ)/4α h1(n) is bounded away from

zero, then n1−δh4α is bounded away from zero. It follows from this property, and

Markov’s inequality, that for each B > 0,

sup
t : KFt(ht)6=0

P
{|∆(t)| > 1

2 φ(t)
} ≤ sup

t : KFt(ht)6=0

E
{
2 φ(t)−1 |∆(t)|}2B

≤ const. sup
t : KFt(ht)6=0

(|t|4α n−1
)B

= O
{
(nh4α)−B

}
= O

(
n−Bδ

)
. (5.10)

Hence, since ρ−1 and h−1 are only polynomially large in n, then for each B > 0,

ρ−2 E

[ ∫
I
{|∆(t)| > 1

2 φ(t)
} ∣∣KFt(ht)

∣∣ dt

]2

= O
(
n−B

)
(5.11)

for each B > 0. Moreover,

E

(∫ [
ρ

ψ(t) + ρ

{
ψ(t)−3 |∆(t)|+ ψ(t)−(2k+1) |∆(t)|k

}
+ ψ(t)−(2k+3) |∆(t)|k+1

+ ρψ(t)−2

] ∣∣KFt(ht)
∣∣
{

ψ(t)
∣∣fFt

X (t)
∣∣ + |∆1(t)|

}
dt

)2

≤ const.
{(

ρ h−(4α+1) n−1/2 + h−(2k+1)α−1 n−k/2 + h−(2k+3)α−1 n−(k+1)/2

+ ρ h−2α−1
)2 (

hα+β + n−1/2
)2 + n−1 (log n)2

}
, (5.12)

where the term in n−1 (log n)2 is added to deal with the case of particularly large

values of β, in which instance multiplying through by (hα+β + n−1/2)2 gives too



25

small an order of magnitude. Combining (5.11) and (5.12), and using the fact that,

by assumption, ρ ≤ const. min{h1(n)4α+2, n−1}, we deduce that

sup
−∞<x<∞

E
{
δ02(x)2

}
= O(pn) . (5.13)

Together, (5.3), (5.9) and (5.13) imply (3.3).

5.2. Proof of Theorem 3.2. For brevity we derive only the second part of (3.6).

Since ∣∣∣
{
f̂Ft

U (t) + ρ
}−1 − f̂Ft

U (t)−1
∣∣∣ ≤ ρ

/
f̂Ft

U (t)2

then
∣∣L̂(u)− L̂0(u)

∣∣ ≤ ρh

2π

∫
f̂Ft

U (t)−2 KFt(ht) dt , (5.14)

where L̂0 denotes the version of L̂ constructed with ρ = 0. We know from (5.10)

that, with probability πn, say, equal to 1 − O(n−B) for each B > 0, 1
2 fFt

U (t)2 ≤
f̂Ft

U (t)2 for all t such that the integrand at (5.14) does not vanish. Therefore, with

probability at least πn,

sup
−∞<u<∞

∣∣L̂(u)− L̂0(u)
∣∣ ≤ ρh

π

∫
fFt

U (t)−2 KFt(ht) dt

≤ C2
1ρhs

π

∫ 1/h

−1/h

(1 + |t|)2α dt ≤ C3 ρh−2α , (5.15)

where s = sup |KFt| and C3 > 0. (We continue to take c = 1 in (3.2).)

Result (5.15) implies that, with probability at least πn,

sup
−∞<x<∞

∣∣f̂X(x)− f̂0
X(x)

∣∣ ≤ C3 ρh−2α−1 . (5.16)

By assumption (vi) in Theorem 3.1, h ≥ C4 n−C5 , and so h−2α−1 ≤ C6 nC7 , where

C4, . . . , C7 denote positive constants. Therefore, taking ρ = n−C8 where C8 ≥ C7+1

(this choice satisfies condition (vii) in Theorem 3.1), we conclude from (5.16) that,

with probability at least πn,

sup
−∞<x<∞

∣∣f̂X(x)− f̂0
X(x)

∣∣ ≤ C3 n−1 . (5.17)
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We know from (3.3) in Theorem 3.1 that, for the choice of ρ above, (3.5) holds.

That result and (5.17) imply the send part (3.6).

5.3. Proof of Theorem 3.3. Without loss of generality, each Nj = 2. Then the data

at (2.1) are independent in pairs, the jth pair being (Wj1,Wj2). Suppose there are

two options for fX , the first a fixed density, fX0, and the second, fXn, varying with

n through a perturbation gn: fXn = fX0 + gn, where gn integrates to zero. The

corresponding characteristic function is χn = χ0 +γn, where χ0 is the characteristic

function for fX0, and γn(t) =
∫

eitx gn(x) dx. Choose fX0 ∈ F(β, C2), and select

fU so that fFt
U satisfies (3.1).

Let H denote the perturbation function introduced by Fan (1991, pp. 1268–

1269) in his case ` = 0, and put gn(x) = c δβ−1
n H(x/δn), where c, δn > 0 and

δn → 0. Then, if D1 = D1(C2, c) is sufficiently large, fXn ∈ F(β,D1) for all n.

Note too, for future reference, that H(0) 6= 0.

In this notation, the joint density of (W1,W2) is given by fW1W2 when the

density of X is fX0, and by fW1W2,n when the density of X is fXn:

fW1W2,n(w1, w2)− fW1W2(w1, w2) = c δβ−1
n an(w1, w2) , (5.18)

where

fW1W2(w1, w2) =
∫

fU0(w1 − x) fU0(w2 − x) fX0(x) dx ,

an(w1, w2) =
∫

fU0(w1 − x) fU0(w2 − x)H(x/δn) dx .

The Fourier transform of an is
∫ ∫

an(w1, w2) exp(isw1 + itw2) dw1 dw2 = δn ψ(s) ψ(t) φH{(s + t) δn} ,

where φH(t) =
∫

eitx H(x) dx. Hence, by Parseval’s identity, the integrated squared

distance between fW1W2(w1, w2) and fW1W2,n(w1, w2) equals a constant multiple of:

δ2β
n

∫ ∫
|ψ(s)|2 |ψ(t)|2 |φH{(s + t) δn}|2 ds dt

= δ2β−1
n

∫ ∞

−∞
|ψ(t)|2 dt

∫ 2

1

∣∣ψ(
uδ−1

n − t
)∣∣2 |φH(u)|2 du ³ δ2α+2β−1

n . (5.19)
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Results (5.18) and (5.19), and the arguments of Fan (1991), imply that, if we

define δn by δ2α+2β−1
n = n−1; and if we take F̄ to be the class of all empirical rules

for discriminating between fX0 and fXn, using only the data W = {(Wj1,Wj2) :

1 ≤ j ≤ n}; then, for all sufficiently large c (in the definition of gn),

D2 ≡ lim inf
n→∞

inf
f̄∈F̄

{
PfX0(f̄ = fXn) + PfXn

(f̄ = fX0)
}

> 0 . (5.20)

Let f̆ denote any estimator of fX , and, in the calculations below, take f̄ = fX0 if

|f̆(0)− fX0(0)| ≤ |f̆(0)− fXn(0)|, and f̄ = fXn otherwise. Then, in view of (5.20),

2 sup
fX∈{fX0,fXn}

EfX

{
f̆(0)− fX(0)

}2

≥ EfX0

{
f̆(0)− fX0(0)

}2 + EfXn

{
f̆(0)− fXn(0)

}2

≥ 1
4 {fXn(0)− fX0(0)}2 {

PX0(f̄ = fXn) + PXn(f̄ = fX0)
}

≥ 1
8 D2 {fXn(0)− fX0(0)}2 , (5.21)

the latter inequality holding for all sufficiently large n.

Let F̆ denote the class of all measurable functionals of the data W. Since

fXn(0)− fX0(0) = gn(0) = c δβ−1
n H(0), and H(0) 6= 0, then the far right-hand side

of (5.21) equals D3 δ
2(β−1)
n where D3 > 0. Therefore (5.21) implies that

inf
f̆∈F̆

sup
fX∈{fX0,fXn}

EfX

{
f̆(0)− fX(0)

}2 ≥ D3 n−2(β−1)/(2α+2β−1) . (5.22)

Since both fX0 and fXn are (for all n) in F(β, C) if C is sufficiently large, then

(3.8) follows from (5.22)
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