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Abstract

We consider kernel estimation of a density based on contaminated data and dis-

cuss the important issue of how to choose the bandwidth parameter in practice.

We propose some plug-in type of bandwidth selectors, which are based on non-

parametric estimation of an approximation of the mean integrated squared error.

The selectors are a refinement of the simple normal reference bandwidth selector,

which is obtained by parametrically estimating the approximated mean integrated

squared error by referring to a normal density. In a simulation study we compare

these plug-in bandwidth selectors with a bootstrap and a cross-validated bandwidth

selector. We conclude that in finite samples, an appropriately chosen plug-in band-

width selector and the bootstrap bandwidth selector perform comparably and both

outperform the cross-validated bandwidth. We also illustrate the use of the various

practical bandwidth selectors on a real data example.
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1 Introduction

In this paper we focus on the practical choice of the bandwidth in the context

of contaminated data. Although the ideas behind this selection problem are

close to those in the error-free case, its theoretical and practical study is quite

different and far more complex than for the non-contaminated case, and has

been studied by very few authors. For an overview of bandwidth selection pro-

cedures in the error-free case see for example Silverman (1986) and Wand and

Jones (1995), among others, and the references therein. Papers dealing with

practical bandwidth selection in the deconvolution problem are Stefanski and

Carroll (1990) and Hesse (1999) who propose a cross-validation procedure, and

Delaigle and Gijbels (2001) who investigate a bootstrap method. In this pa-

per we introduce plug-in type of bandwidth selectors for contaminated data.

We define the theoretical optimal bandwidth as the minimizer of the mean

integrated squared error, and then consider an (asymptotic) approximation of

this mean integrated squared error. The unknown quantities in this asymptotic

expression can simply be estimated by making reference to a normal density

(parametric estimation). This then leads to the simple normal reference band-

width selector. The use of more sophisticated (nonparametric) estimators for

the unknown quantities in the approximated mean integrated squared error

leads to the more elaborated plug-in bandwidth selectors.

After having introduced the plug-in selection method we study the finite sam-

ple performances of various bandwidth selectors and their corresponding den-

sity estimates via a simulation study. We compare four procedures: the normal

reference method, the more elaborated plug-in method, the cross-validation

gijbels@stat.ucl.ac.be (I. Gijbels).
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method and the bootstrap method. We will see that in some cases the plug-

in method brings considerable improvement to the normal reference method

and that it competes with the bootstrap procedure. Both, the plug-in and

the bootstrap bandwidth selectors, outperform the cross-validation method

which, as in the error-free case, suffers from a large variability and multiplic-

ity of solution.

This paper is organized as follows. In Section 2 we recall the definition of

the deconvolving kernel density estimator as well as the distinction between

ordinary smooth and supersmooth error distributions. The choice of the the-

oretical optimal bandwidth is also discussed. In Section 3 we propose three

practical bandwidth selectors based on estimation of an (asymptotic) approx-

imation of the mean integrated squared error: a normal reference, a plug-in

and a solve-the-equation bandwidth selector. Section 4 briefly discusses the

other available data-driven bandwidth selectors: the cross-validation method

of Stefanski and Carroll (1990) and the bootstrap procedure of Delaigle and

Gijbels (2001). The finite sample performances of the bandwidth selectors are

explored and compared to each other in Section 5 via a simulation study. In

Section 6 we illustrate the use of the bandwidth selection methods in a real

data example.
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2 Deconvolving kernel density estimator

2.1 The estimator

Suppose we want to estimate a continuous density fX but we observe an i.i.d.

sample Y1, . . . , Yn from the density fY , where

Yi = Xi + Zi i = 1, . . . , n

and where for all i, Zi is a random variable independent of Xi, of known

continuous density fZ , representing the error in the data, and Xi is a random

variable of density fX . In the case where fZ is known up to some parameters,

one may estimate these parameters through repeated measurements on several

individuals. For a real data example see for example Delaigle and Gijbels

(2001). The case where fZ is totally unknown may also be considered. Such a

problem necessitates further observations such as for example a sample from fZ

itself, and will not be studied here. See Barry and Diggle (1995) and Neumann

(1997).

Consider a kernel function K and a smoothing parameter h > 0, depending

on n, called the bandwidth. The deconvolving kernel estimator of fX at x ∈ IR

is then defined by

f̂X(x; h)=
1

nh

n∑
j=1

KZ
(

x − Yj

h
; h

)
, (2.1)

where KZ(u; h) = (2π)−1
∫

e−ituϕK(t)/ϕZ(t/h) dt, with ϕL the Fourier trans-

form of a function or a random variable L. See Carroll and Hall (1988)

and Stefanski and Carroll (1990) for an introduction to this estimator. In

order to guarantee that this estimator is well-defined we need to impose

4



that ϕZ(t) �= 0 for all t,
∫ |ϕX(t)| dt < ∞, supt |ϕK(t)/ϕZ(t/h)| < ∞, and

∫ |ϕK(t)/ϕZ(t/h)| dt < ∞.

Asymptotic properties of the deconvolving kernel estimator, such as consis-

tency or rates of convergence to the target density have been studied in Car-

roll and Hall (1988), Devroye (1989), Stefanski (1990), Stefanski and Carroll

(1990), Fan (1991a,b,c) and Fan (1992) among others. These properties depend

strongly on the error distribution. Fan (1991a) distinguishes two categories

of errors: the ordinary smooth and the supersmooth distributions. These two

classes of error distributions differ in the way that their characteristic function

ϕZ(t) behaves in the tails. An ordinary smooth error distribution is charac-

terized by a characteristic function that decays at a polynomial rate when |t|

tends to infinity. The characteristic function of a supersmooth error distribu-

tion on the other hand tends to zero at an exponentially fast rate when |t|

tends to infinity. Examples of supersmooth error distributions are the normal

and Cauchy distributions and examples of ordinary smooth error distributions

are the gamma and Laplace distributions. The rates of convergence of a non-

parametric density estimator for fX will differ strongly according to this type

of smoothness of the error density. See also, for example, Fan and Koo (2002).

For supersmooth errors this rate cannot be faster than logarithmic, whereas

for ordinary smooth errors the rate of convergence of the estimator to fX is

of a much better polynomial rate. The deconvolving kernel estimator reaches

those optimal rates. See Carroll and Hall (1988), Stefanski (1990), Stefanski

and Carroll (1990), Fan (1991b,c) and Fan (1992).

In kernel density estimation for error-free data, the choice of the kernel func-

tion K has not a big influence on the quality of the estimator. In the error case

however the particular structure of the estimator (2.1) requires some restric-
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tions to be imposed on ϕK , the Fourier transform of K. Throughout this paper

we will, for simplicity, use kernels with ϕK compactly supported although in

the ordinary smooth error case, K could be taken with ϕK supported on IR

and such that ϕK decreases rapidly enough when |t| → ∞ (see Fan (1991c)).

This then immediately ensures the existence of all integrals, but also rules out

kernels in the so-called Beta family such as Uniform, Epanechnikov, Biweight

or Triweight kernels, which are yet the most commonly-used kernels in error-

free kernel density estimation. We also impose that the kernel integrates to one

(since then f̂X also integrates to one), but it may take negative values. Note

that this does not say anything about the positiveness of the kernel density

estimate, since this depends on the behaviour of KZ . See (2.1). Some exam-

ples of kernels satisfying all these conditions can be found in, for example, Fan

(1992) and Wand (1998).

2.2 Theoretical optimal bandwidth

As in usual kernel density estimation, the choice of the bandwidth h will

strongly influence the shape of the estimator f̂X(.; h). In order to select an

‘optimal’ bandwidth, we need to choose a way to measure the distance between

the estimator f̂X(.; h) and its target density fX . A commonly-used criterion

is the Mean Integrated Squared Error (MISE):

MISE{f̂X(·; h)} = E
∫
{f̂X(x; h) − fX(x)}2 dx.

The optimal bandwidth, hMISE, is then defined as the minimizer of this MISE

quantity with respect to h.

This criterion however depends on unknown quantities involving fX , and thus
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is of no direct practical use for selecting the bandwidth. In the next section

we propose two estimators of an (asymptotic) approximated MISE and dis-

cuss practical bandwidth selectors from there on. In order to highlight the

dependency on h, we will in what follows write MISE{f̂X(·; h)} as MISE(h).

3 Plug-in type of bandwidth selection

Stefanski and Carroll (1990) provide an asymptotic expansion for the MISE.

Under some regularity assumptions, they prove that the asymptotic dominat-

ing term of the MISE is given by

AMISE(h) = (2πnh)−1
∫

|ϕK(t)|2.|ϕZ(t/h)|−2 dt +
h4

4
μ2

K,2R (f ′′
X) , (3.2)

where, for any positive integer k, μK,k =
∫

xkK(x) dx, and for any square

integrable function g, R(g) =
∫

g2(x) dx.

The main advantage of this asymptotic approximation over the exact MISE is

that it provides a rather simple expression, and the role of h can be evaluated

more easily. However, (3.2) involves the unknown quantity R (f ′′
X), which has

to be estimated in order to propose practical bandwidth selectors. In the next

two sections we discuss two possible estimators for R(f ′′
X), and obtain as such

an estimator ̂AMISE(h). Application of our bandwidth selection procedures

in practice requires minimization of the resulting estimator of the asymptotic

mean integrated squared error in (3.2). In general we can only approximate

the solution numerically: on a discrete grid of h-values we evaluate ̂AMISE(h)

by numerical integration and select the h that minimizes ̂AMISE(h) on that

grid. In some cases however (for example for most of the ordinary smooth

error densities), this expression simplifies and the minimizer can be found
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more easily (for example analytically). See Delaigle (1999) for more details.

Section 3.3 discusses a solve-the-equation type of bandwidth selection method.

3.1 Normal reference bandwidth selection

A first elementary estimator of R (f ′′
X) is provided by making reference to a

normal distribution: one assumes that fX is a normal N(μX ; σ2
X) density which

implies that R(f ′′
X) = 0.375 σ−5

X π−1/2. The estimator R(f̂ ′′
X) is then defined by

R(f̂ ′′
X) = 0.375 σ̂−5

X π−1/2 , with σ̂2
X a consistent estimator of the variance of

X. See for example Silverman (1986) for the error-free case. In the error case

this variance can be estimated by, for example, σ̂2
X = σ̂2

Y − σ2
Z , where σ̂Y is

the sample standard deviation of the observations Yi.

In general, when fX is not a normal density, this estimator R(f̂ ′′
X) is not a

consistent estimator of R(f ′′
X), and the resulting bandwidth selector is not a

consistent estimator of hMISE either. Hence, although the order (rate) of the

bandwidth selector and of the MISE estimator are not affected by this estima-

tion step, a poor estimation of R(f ′′
X) sometimes accounts for a bad selection

of the bandwidth, resulting itself in a poor estimation of the density. This hap-

pens with densities fX that possess particular non-normal features such as,

for example, strong multimodality and/or asymmetry. See Section 5. There-

fore we need a more elaborated procedure to estimate R(f ′′
X). An appropriate

nonparametric estimator for R(f ′′
X) is discussed in the next section.
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3.2 Plug-in bandwidth selection

Nonparametric estimation of θr = R(f
(r)
X ), with r any positive integer, when

data are measured with errors, has been studied in detail by Delaigle and Gi-

jbels (2002). They propose to estimate the quantity θr by θ̂r = R(f̂
(r)
X (·; hr)),

where f̂
(r)
X (·; hr) is the deconvolving kernel density estimator of the r-th deriva-

tive of fX , defined by

f̂
(r)
X (x; hr) = (nhr+1

r )−1
n∑

i=1

K
(r)
Z

(
x − Yi

hr
; hr

)

with K
(r)
Z (x; hr) = (2π)−1

∫
(−it)re−itxϕK(t)/ϕZ(t/hr) dt, and where hr is the

Mean Squared Error (MSE) theoretical optimal bandwidth for the estimation

of θr (possibly different from h).

Delaigle and Gijbels (2002) prove that, under sufficient regularity conditions,

the asymptotic MSE of the estimator θ̂r is dominated by its squared bias part,

and thus one may choose the bandwidth hr as the minimizer of the absolute

value of the asymptotic bias (ABias), where for a k-th order kernel with k

even

ABias[θ̂r] = (−1)k/2 2hk
r

k!
μK,kθr+k/2+(2πnh2r+1

r )−1
∫

t2r|ϕK(t)|2|ϕZ(t/hr)|−2 dt.

(3.3)

In practice the computation of θ̂r necessitates a numerical integration of

{f̂ (r)
X (.; hr)}2 over the whole real line. The computations involved can be re-

duced considerably as we will explain now. Let ϕ̂ r
X,hr

(t) denote the Fourier

transform of f̂
(r)
X (.; hr). One can easily prove that ϕ̂ r

X,hr
(t) = (−it)rϕ̂X,hr(t),

where ϕ̂X,hr(t) represents the Fourier transform of the density estimate f̂X(.; hr),

given by ϕ̂X,hr(t) = ϕ̂Y (t).ϕK(hrt)/ϕZ(t), with ϕ̂Y the empirical characteristic
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function of Y (see Delaigle and Gijbels (2001)). An application of Parseval’s

idendity leads to

θ̂r =
1

2π

∫
|ϕ̂ r

X,hr
(t)|2 dt =

1

2πh2r+1
r

∫
t2r|ϕ̂Y (t/hr)|2.|ϕK(t)|2|ϕZ(t/hr)|−2 dt,

which is easier to compute since this integral has finite integration bounds,

due to the factor ϕK in the integrand.

From expression (3.3) we see that selecting h2, the optimal bandwidth for

the estimation of θ2 = R(f ′′
X), will necessitate the estimation of θ2+k/2 which

itself requires the estimation of θ2+k and so on. After � steps of iteration one

still needs to deal with a pilot estimation of θ2+�×k/2, by referring to a normal

density for example. We refer to this as an �-stages procedure. As described

in Delaigle and Gijbels (2002), a trade-off between bias and variance has to

be made in order to choose �. A theorectical study establishing this trade-off

is lacking so far and would be very technical in the deconvolution problem

context. From a simulation study which is not reported here, it appears that

when the density to be estimated does not present any strong features, a low

order (for example one-stage) procedure is preferable, but a higher order (a

two- or three-stages) procedure remains quite acceptable. In other cases, such

as for example in case of a strong multimodal density, a higher order procedure

considerably improves the results, since the decrease of the bias is much more

important than the increase of the variance. Hence in general we would advise

to use a two- or three-stages procedure.

In Section 5 we report on results using the two-stages selection procedure of

Delaigle and Gijbels (2002), which for a second order kernel (k = 2) reads as

follows
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Step 0. Estimate θ4 via the normal reference method, i.e. θ̂4 = 8!/(σ̂9
X29 4!

√
π);

Step 1. Use θ̂4 to select a bandwidth h3 for estimating θ3;

Step 2. Use θ̂3 to select a bandwidth h2 for estimating θ2, the quantity of

interest,

where hi is the bandwidth found by minimization of the squared asymptotic

bias.

3.3 Solve-the-equation bandwidth selection

In the error-free case, Park and Marron (1990) and Sheather and Jones (1991),

among others, study a solve-the-equation rule to estimate hAMISE, the mini-

mizer of the AMISE. The idea behind the method is to express h2, the optimal

asymptotic MSE bandwidth for the kernel estimation of R(f ′′
X), as a function

of hAMISE, say h2 = F (hAMISE), estimate the unknown quantities in F and

obtain F̂ , then plug F̂ (hAMISE) into the expression of hAMISE and solve the

resulting fixed point equation in hAMISE :

hAMISE =
(
R(K)/[μ2

K,2R(f̂ ′′
X(.; F̂ (hAMISE))]

)1/5

n−1/5.

It is quite complicated to think of a similar method in the error case. Note that

both quantities hAMISE and h2 necessitate the evaluation of a rather involved

integral (see expressions (3.2) and (3.3)). The main difficulty is in the fact that

the bandwidths appear in a very implicit way in the integrals. It is not possible

to give a general formula for hAMISE and h2 as in the error-free case, and for a

supersmooth error density, it is even not possible to find an analytic expression

for the integrals in (3.2) and (3.3). In the ordinary smooth error case, one can

compute those integrals analytically and obtain an explicit form for (3.2) and
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(3.3). However this does not automatically result in an expression for hAMISE

and h2 and in general, one has to drop some lower order terms in (3.2) and (3.3)

in order to be able to express h2 as a function of hAMISE. In conclusion, when

applicable, a solve-the-equation rule demands a lot of analytic computations

(the formulas have the be recomputed for each error density and each kernel)

and implies a lot of asymptotic approximations. For all these reasons, we do

not really consider this method as a potential competitor of other practical

bandwidth selection methods. We made the necessary computations for the

Laplace error case and the kernel used in the simulations and illustated the

performance of the method. Some results are presented in Section 5.

4 Other bandwidth selection procedures

The bandwidth selection procedures introduced in Section 3 are based on an

asymptotic expression for the mean integrated squared error. Another ap-

proach is to directly try to estimate the mean integrated squared error and

to minimize this estimator with respect to h. This is the general approach

behind the cross-validation and bootstrap bandwidth selectors studied in the

literature, which we briefly discuss in the next two sections. In Section 5, we

then provide a finite sample comparison of the performances of all available

practical bandwidth selectors.

4.1 Cross-validation bandwidth selection

The cross-validation bandwidth selection method of Stefanski and Carroll

(1990) relies on the fact that, under sufficient conditions, the cross-validation
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quantity

CV(h) =
∫ |ϕK(ht)|2|ϕ̂Y (t)|2 + 2(n − 1)−1ϕK(−ht)

[
−n|ϕ̂Y (t)|2 + 1

]
2π|ϕZ(t)|2

dt,

(4.4)

with ϕ̂Y (t) the empirical characteristic function of Y , is an unbiased estimator

of MISE(h)−∫
f 2

X(x) dx. This motivates the cross-validated bandwidth selector,

obtained via minimization of (4.4). Stefanski and Carroll (1990) applied this

method in the context of Gaussian errors and using the particular sinc kernel

(see Davis (1975) and Tapia and Thompson (1978)). A theoretical study of

the cross-validation bandwidth selection procedure has been carried out by

Hesse (1999) in the particular case of ordinary smooth error densities.

An advantage of cross-validation is that it requires few assumptions, but in

practice it suffers from some drawbacks such as non-uniqueness of the solution

or sometimes even very poor performance of the estimator. See Section 5 and

Delaigle (1999) for a more complete description. Cao, Cuevas and González-

Manteiga (1994) and Jones, Marron and Sheather (1996) among others, en-

countered the same problems when applying the method in the error-free case.

In the case of non-uniqueness of the solution we would, in a real data exam-

ple, recommend to select the smallest solution for which the estimator of the

density ‘appears’ smooth enough. Since in a simulation study, a visual inspec-

tion of each density estimate is not feasible, in our simulation study we have

kept as solution the largest bandwidth found in the search interval, as was

suggested by Jones, Marron and Sheather (1996) in the error-free case.
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4.2 Bootstrap bandwidth selection

The bootstrap method of Delaigle and Gijbels (2001) selects the bandwidth

through minimization of the following consistent bootstrap estimator of the

MISE− ∫
f 2

X(x) dx:

MISE∗
2(h)= (2πnh)−1

∫
|ϕK(t)|2|ϕZ(t/h)|−2 dt − π−1

∫
|ϕ̂X,g(t)|2ϕK(ht) dt

+(1 − n−1)(2π)−1
∫

|ϕ̂X,g(t)|2|ϕK(ht)|2 dt , (4.5)

where g is a pilot bandwidth and ϕ̂X,g(t) is the Fourier transform of f̂X(.; g)

given by ϕ̂X,g(t) = ϕ̂Y (t).ϕK(gt)/ϕZ(t), with ϕ̂Y the empirical characteristic

function of Y .

Delaigle and Gijbels (2001) proved that, under sufficient regularity assump-

tions, this leads to a consistent bandwidth selector. Their theoretical results

also establish conditions on the pilot bandwidth g. In their paper it is shown

that a good choice for the pilot bandwidth g is the plug-in bandwidth which

is optimal (in the MSE sense) for estimation of R(f ′′
X). We follow Delaigle and

Gijbels (2001) and choose g to be the two-stages bandwidth h2 of Section 3.2.

From a computational point of view, this bootstrap procedure competes with

other more classical procedures since no bootstrap sample needs to be gener-

ated. As a matter of fact, once a pilot bandwidth g has been chosen, (4.5) can

be computed rather easily directly from the original sample. In practice all in-

tegrals involved will be computed by numerical integration and the bandwidth

will be that value on a grid which minimizes MISE∗
2(h).
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5 Simulation results

Simulations were performed for all above methods using kernel K with charac-

teristic function ϕK(t) = (1−t2)3.1[−1,1](t) (see Fan (1992) for an expression of

K itself). We consider two different error densities (N(0;σ2
Z) and Laplace(σZ))

and three sample sizes (50, 100 and 250). We present detailed results for four

different target densities fX (#1, #2, #3 and #6 below) that have been cho-

sen because they present each a particular feature that can be encountered in

practice, while still being quite standard densities. For a better comparison

of the methods we also provide results using densities #4, #5, #7, #8 and

#9 of Marron and Wand (1992), which are all a mixture of two (#4, #5,

#7, #8) or three (#9) normal densities. See Marron and Wand (1992) for the

definition and a graphical representation of those densities. We also consider

the χ2(8) density (#10). Densities #1, #2, #3 and #6 are, in increasing order

of estimation difficulty, defined by

(1) Density #1: X ∼ N(0;1), the standard normal density.

(2) Density #2: X ∼ χ2(3), chosen because it is skewed.

(3) Density #3: X ∼ 0.5 N(-3;1)+0.5 N(2;1), chosen for its two clearly sep-

arated modes.

(4) Density #6: X ∼ 0.4 Gamma(5)+0.6 Gamma(13), which is bimodal, but

with close and different sized modes;

and are represented in Figure 5.1.

In each case, we generated 500 samples from fX and fZ , which, after the

addition X + Z resulted in 500 samples from fY . The error variance Var(Z)

was controlled by the noise to signal ratio Var(Z)/Var(X). For densities #1,
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Fig. 5.1. Four target densities: density #1 (top left), density #2 (top right), density

#3 (bottom left), and density #6 (bottom right).

#2, #3 and #10 this ratio was set to 25%, but for all the other densities

this ratio was set to 10%, since for those densities there are more particular

features to recover.

We carried out a more extensive simulation study by considering other values

of the error variance and by using other kernels. We chose to report on only a

part of this study, since the other simulations led to similar conclusions. Full

results of the simulation study can be obtained from the authors upon request.

To assess the quality of the density estimator, we used the criterion

ISE(h) =
∫ {

f̂X(x; h) − fX(x)
}2

dx,

and in each reported case, we computed ISE(ĥ) where ĥ is the bandwidth

selected by the method considered.
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We first present detailed results (tables and graphs) for the estimation of

densities #1, #2, #3 and #6. In the tables we report on the empirical median

and interquartile range of the 500 values of the ISE. These robust estimators

were preferred to the mean and the standard deviation since they deal with

the problem of extreme values encountered in practice (mainly with the cross-

validation bandwidth selection method).

In each table we compare the results obtained from four bandwidth selection

methods: the normal reference bandwidth selector (NR), the 2-stages plug-in

bandwidth selector (PI), the cross-validation bandwidth selector (CV) and the

bootstrap bandwidth selector (BT). We present in each case a kernel density

estimate of the bandwidth selector based on the 500 values of ĥ, using a normal

reference bandwidth and a standard normal kernel. We also calculated the

exact value of hMISE, which we indicate on those graphs by a vertical line for

comparison purpose. For most cases we also provide a picture which shows

the target density fX along with three out of the 500 replicated estimates,

corresponding to the first quartile (1st quart), the second quartile (median)

and the third quartile (3rd quart) of the 500 calculated ISE’s.

At the end of the section we provide a further comparison of the performances

of the bandwidth selectors by giving boxplots of the ratio ISE(hMISE)/ISE(ĥ)

for densities #1 to #10.

Table 5.1 compares, for the N(0;1) target density and Laplace or Gaussian

error, the results for three different sample sizes (50, 100 and 250). First note

that all four methods performed quite well. As one could have expected, the

best method in this case was the one referring to a normal density. Nevertheless

we see that as n increases, the bootstrap and the plug-in method perform al-
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Table 5.1

Simulation results for the N(0; 1) density: median(ISE) with empirical interquartile

range between brackets.

n = 50 n = 100 n = 250

Z ∼ Laplace Z ∼ Gaussian Z ∼ Laplace Z ∼ Gaussian Z ∼ Laplace Z ∼ Gaussian

NR 0.011 (0.011) 0.011 (0.012) 0.0071 (0.0080) 0.0080 (0.0075) 0.0041 (0.0035) 0.0051 (0.0042)

PI 0.013 (0.013) 0.014 (0.017) 0.0084 (0.0095) 0.0094 (0.0090) 0.0047 (0.0043) 0.0058 (0.0053)

CV 0.016 (0.018) 0.018 (0.020) 0.011 (0.012) 0.012 (0.013) 0.0059 (0.0061) 0.0072 (0.0078)

BT 0.012 (0.012) 0.013 (0.013) 0.0079 (0.0087) 0.0087 (0.0084) 0.0045 (0.0038) 0.0053 (0.0046)
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Fig. 5.2. Kernel density estimates of the four bandwidths selectors for estimation of

the N(0; 1) density (#1), for sample sizes n = 50 (left) and n = 250 (right).

most as well. By contrast the poorest method seems to be the cross-validation

method, which even for a sample of size 250 remains quite variable. Figure 5.2

presents the kernel density estimates for the 500 ĥ values together with the

exact value of hMISE. From this figure we see that the normal reference and

plug-in methods select a bandwidth which is slightly underestimated whereas

cross-validation and bootstrap led in general to a slightly overestimated band-

width.
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Table 5.2

Simulation results for the χ2(3) density with n = 100.

Laplace error Gaussian error

Method median(ISE) (IQR) median(ISE) (IQR)

NR 0.018 (0.0063) 0.021 (0.0073)

PI 0.015 (0.0063) 0.018 (0.0084)

CV 0.018 (0.010) 0.022 (0.011)

BT 0.016 (0.0062) 0.020 (0.0083)

From Table 5.2 we can see that when estimating the χ2(3) density from a

sample of size 100 and a Laplace or Gaussian error, the plug-in method and the

bootstrap method seem to give the best results, although the normal reference

bandwidth selector also performs reasonably well. The cross-validation method

again gives the poorest results. See also Figures 5.3 and 5.4, for the estimates

of the χ2(3) density and a kernel density estimate of the bandwidth selectors.

Similar conclusions can be drawn from Table 5.3 and Figures 5.5 and 5.6,

where, for n = 100 or 250, we tried to recover the mixed normal density (#3)

contaminated by a Laplace or a Gaussian error. In this case the density is far

from a normal, and the plug-in method brings considerable improvements over

the NR method. The bootstrap method works well and the cross-validation

technique remains very variable.
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Fig. 5.3. Estimation of the χ2(3) density (#2) for a sample of size n = 100 and a

Laplace error by the normal reference method (top left), the plug-in method (bottom

left), the cross-validation method (top right), and the bootstrap method (bottom

right).
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Fig. 5.4. Kernel density estimates of the four bandwidths selectors for estimation

of the χ2(3) density (#2), for sample size n = 100 and Laplace errors (left) and

Gaussian errors (right).
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Fig. 5.5. Estimation of the mixed normal density (#3) for a sample of size n = 100

and a Laplace error by the normal reference method (top left), the plug-in method

(bottom left), the cross-validation method (top right), and the bootstrap method

(bottom right).
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Fig. 5.6. Kernel density estimates of the four bandwidths selectors for estimation of

the mixed normal density (#3), for sample size n = 100 and Laplace errors (left)

and Gaussian errors (right).
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Table 5.3

Simulation results for mixed normal density (#3) with n = 100 or 250.

n = 100 n = 250

Z ∼ Laplace Z ∼ Gaussian Z ∼ Laplace Z ∼ Gaussian

Method med(ISE) (IQR) med(ISE) (IQR) med(ISE) (IQR) med(ISE) (IQR)

NR 0.031 (0.0067) 0.034 (0.0072) 0.023 (0.0051) 0.028 (0.0058)

PI 0.018 (0.012) 0.027 (0.013) 0.011 (0.0074) 0.020 (0.011)

CV 0.022 (0.016) 0.032 (0.018) 0.013 (0.010) 0.025 (0.012)

BT 0.022 (0.013) 0.032 (0.013) 0.012 (0.0082) 0.023 (0.010)

Table 5.4 and Figures 5.7 and 5.8 show that even in the more involved mixed

gamma density case (#6), the deconvolving kernel density estimator with an

appropriate bandwidth still performs reasonably well, taking into account that

the estimates are all using a global bandwidth parameter. In fact we see that

even if it is hard to recover the two modes properly, globally, the estimator

has a good behaviour. Figure 5.9 will confirm that the results obtained by the

practical methods compete with those using the optimal global bandwidth

(hMISE).

Figures 5.9 and 5.10 compare, for densities #1 to #10, the results of the four

practical bandwidth selection methods as well as of the solve-the-equation

(SEQ) method (discussed in Section 3.3), relatively to the results obtained by

using the MISE optimal bandwidth (hMISE). These figures present boxplots of

the ratio ISE(hMISE)/ISE(ĥ) for each target density and in the Laplace error

case. In general this ratio is smaller than one, but it can be larger than one
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Fig. 5.7. Kernel density estimates of the four bandwidths selectors for estimation of

the mixed gamma density (#6), for sample size n = 250 and Laplace errors (left)

and Gaussian errors (right).
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Fig. 5.8. Estimation of the mixed gamma density (#6) for a sample of size n = 250

and a Laplace error by the normal reference method (top left), the plug-in method

(bottom left), the cross-validation method (top right), and the bootstrap method

(bottom right).
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Table 5.4

Simulation results for the mixed gamma density (#6), n = 250.

Laplace error Gaussian error

Method median(ISE) (IQR) median(ISE) (IQR)

NR 0.0024 (0.00078) 0.0026 (0.00085)

PI 0.0021 (0.0011) 0.0023 (0.0011)

CV 0.0024 (0.0017) 0.0025 (0.0014)

BT 0.0024 (0.0011) 0.0026 (0.0010)

since hMISE is the optimal bandwidth on the average, but for a given sample,

ĥ can give a smaller ISE. The bigger this ratio the better the method. For

densities #1, #2, #3, #6 and #10, the boxplots are given for a sample of size

n = 100 and 25% of error. For all the other densities the boxplots correspond

to a sample of size 250 and 10% of error.

We see that except for density #4 (which has a very particular structure),

the PI method gave overall the best ratio accross all simulations, and that

this ratio was rather large in general. In most cases the BT method gave

similar (but slightly less good) results. The NR method failed with special

densities such as densities #3, #4, #5 and #7 but worked reasonably well for

the other densities. The CV method gave generally a smaller ratio than the

other methods, except for density #4, but the major drawback is that it is

always very variable, with a percentage of totally unacceptable results (relative

performance close to 0). Moreover, in practice this method does not always

have a unique solution. See Section 4. In most cases the SEQ method did not

improve the results of the PI method, and suffers from a rather large variability.
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Fig. 5.9. Boxplots of the relative values ISE(hMISE)/ISE(ĥ) for the bandwidths

selectors for estimation of the densities #1, #2, #3, #6 and #10 across the 500

simulations, for a Laplace error. Sample size n = 100 and Var(Z)/Var(X) = 0.25.
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Fig. 5.10. Boxplots of the relative values ISE(hMISE)/ISE(ĥ) for the bandwidths

selectors for estimation of the densities #4, #5, #7, #8 and #9 across the 500

simulations, for a Laplace error. Sample size n = 250 and Var(Z)/Var(X) = 0.10.
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This together with the remarks of Section 3.3 makes that we can not really

recommend the solve-the-equation bandwidth selection method. From Figures

5.9 and 5.10 we can conclude that some of our practical selection procedures

have a performance close to the one for the theoretical MISE-based bandwidth

(since the ratio’s are relatively close to 1).

From Figures 5.2, 5.4, 5.6 and 5.7 we see that in general the four bandwidth

selectors are biased to the right, meaning that they give slighlty too big band-

width values. The plug-in bandwidth was in general smaller than the bootstrap

bandwidth, which is apparently also the case in the error-free case, looking

at the results of Cao, Cuevas and González-Manteiga (1994). This is related

to a remark of Marron and Wand (1992) who noticed that hAMISE was often

smaller than hMISE in the error-free case. We got to a similar conclusion from

our exact computations in the error case. As a consequence, the PI bandwidth

is generally less biased than the other methods. The CV bandwidth is less

biased in the mixed densities cases, but to the extent of a large variance. As

mentioned in Section 3, the NR bandwidth is quite biased for densities far

from a normal. Figures 5.9 and 5.10 show that for the PI bandwidth (mainly),

this bias does not have a serious effect on the efficiency of the method, since

the ratio is relatively close to 1.

In general our conclusions are similar to those in the error-free case, but the

derivation of the results and the application of the methods in practice are

much more involved in the error case. See for example Jones, Marron and

Sheather (1996) or Cao, Cuevas and González-Manteiga (1994) for detailed

results in the error-free case. Further, the simulation results with a Laplace

or Gaussian error are very similar, but as one could expect, the Laplace case

always gives better results than the Gaussian case.
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Finally no method proved to be the best in all cases, but, nevertheless, the

plug-in and bootstrap methods seem to be reliable techniques, whatever the

density to estimate.

6 A real data example: The NHANES study

The data come from the second National Health And Nutrition Examination

Survey (1976–1980), abbreviated as NHANES II study. The interest is to es-

timate the density of the long-term log daily saturated fat intake based on a

sample of size 4708, consisting of women aged between 25 and 50. NHANES

II is the second phase of a previous study NHANES I, which has been ana-

lyzed by, for example, Stefanski and Carroll (1990) and Carroll, Ruppert and

Stefanski (1995). We use the same transformation as in the latter paper, and

work with the variable log(5+saturated fat). From previous nutrition studies

it is reasonable to assume that for this type of data, more than 50% of the

variance is due to the noise. See for example Stefanski and Carroll (1990) or

Carroll, Ruppert and Stefanski (1995).

We applied the plug-in method, the normal reference method, the bootstrap

bandwidth and the cross-validation method to these data, for two different

error densities (Gaussian and Laplace), and an error variance of approximately

1.5 σ2
X , which corresponds to 60% of the variance of the data due to the noise.

Since this variance comes from the knowledge of other nutrition studies, and

thus is probably just a rough estimate of the actual variance, we follow Ste-

fanski and Carroll (1990) and also consider the cases σ2
Z = (1/5) σ2

X or σ2
Z =

(1/3) σ2
X . Each time we compare the results with the case σ2

Z = 0 (the error-
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Fig. 6.11. Estimation of the log saturated fat density for a Laplace error (left pan-

els) with σ2
Z = 1.5σ2

X (top left), σ2
Z = (1/3)σ2

X (center left), σ2
Z = (1/5)σ2

X (bot-

tom left), and for a normal error (right panels) with σ2
Z = 1.5σ2

X (top right),

σ2
Z = (1/3)σ2

X (center right), σ2
Z = (1/5)σ2

X (bottom right). The curves indicated

by the ∗-characters represent the results for the error-free (EF) case.

free case).

The resulting estimators are depicted in Figure 6.11. The curves indicated

by the ∗-characters in each picture represent the results for the error-free

case, obtained by using a classical plug-in bandwidth selector. We see that the
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plug-in, normal reference and bootstrap methods are almost indistinguishable.

This is not surprising since the density appears as almost normal and our

simulations already revealed that for such a density all three methods perform

comparably (see Table 5.1). By contrast the cross-validation method seems to

give, in general, a too small bandwidth. This small bandwidth has a dramatic

effect on the resulting density estimator, mainly if we assume a large error

variance (1.5 σ2
X). Note that Stefanski and Carroll (1990) encountered similar

problems when deconvolving with this much noise.

Except in this case of large error variance, the estimators do not differ much

when considering different error densities. It seems that the important point is

to specify an error variance, whatever the distribution of the error. This goes

along with results of Hesse (1999) who studied the robustness of the decon-

volving kernel density estimator to error misspecification. The error variance

plays an important role in the estimation process: the smaller this variance,

the smoother the estimator will be.

In all cases, the estimators are almost symmetric, with a small tendency to be

skewed to the left, which could be due to underreport of the high saturated fat

intake from the patients, as already remarked by Stefanski and Carroll (1990).
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