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Aims and background

Mathematical modelling is the tool of choice for understanding real world systems when empirical
experimentation is too expensive or logistically infeasible. For example, in a power grid the failure of
one component can have a deleterious effect on adjacent components, potentially causing a cascade
of failures [25]. Since determining the chance of a cascade by experimentation is not practical, the
wise course is to use data from past failures of components to construct a model which can be used
to forecast the chance of a future cascade.

The behaviour of many real world systems can be modelled by random discrete structures (RDS)
that evolve over time. For example, a power grid can be modelled as an evolving random network:
substations, transformers, and power plants are connected, disconnected and rerouted as demands
change. Or, the sizes of populations of frogs in adjacent patches of forest (so-called metapopulations)
can be modelled as interdependent stochastic population processes. Important quantities of interest
in RDS, such as the chance that a random network becomes disconnected or the chance that the
population in a patch of forest goes extinct, cannot always be computed exactly. The standard
practice then is to approximate the finite time quantity by an analogous long-run quantity which
can be computed exactly. The most well-known example is using the central limit theorem (CLT) to
approximate the distribution of the empirical mean of a random sample: as the sample size grows, the
fluctuations of the empirical mean about the true population mean become approximately Gaussian.
In practice, the Gaussian probabilities are substituted directly for those involving the empirical mean,
such as in computations of “p-values”, which are ubiquitous in science. An important question in
this general framework is: what is the error made in such an approximation? To answer it is crucial,
because if the errors are larger than can be tolerated in the application, then the approximation is not
appropriate. With this perspective in mind, the project aims to study RDS that arise from application
areas including ecology, complex networks, insurance, population genetics, computer science, and
statistics. In particular the project will

A1. Determine large-scale statistical features, such as connectivity in a network, which arise from
the different random rules that define RDS.

A2. Understand the way these features interact with additional processes that interface with RDS
(for example failures in a power grid or the spread of disease within a population network).

A3. Approximate quantities of interest in RDS by long-run quantities, and assess the quality of these
approximations by providing explicit error bounds.

A4. Extend several standard techniques in applied probability, including branching process and
differential equation approximations, so that they can be applied effectively to RDS, in addition
to developing new and broadly applicable techniques of independent interest, such as stochastic
fixed point methods.

These aims are critically important in model selection and verification: if some features of a model
match empirical data well, then it may be used to predict values of unobservable data or the effects
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of changes to the system. Two models used to explain the so-called power law behaviour of the
empirical degree distribution (defined to be the histogram of the data of the number of adjacent
neighbours of each node of a network) observed in power grids are the preferential attachment model
of the seminal paper [8] and the highly optimised tolerance model of [27]. Which model is more
appropriate for a given application? Should a third model be used that interpolates between the two
approaches [34]? Or, perhaps none of these models is appropriate. Of course addressing this issue
relies on the data at hand, the relevant properties of the models, and the agreement between the two.
Our purpose is to determine properties of these and other models with the ultimate goal of model
selection and verification. Germane to these questions is our past work [64], which is characteristic of
the kind of results the project aims to achieve. The approaches of [8, 27, 34] all show that when the
number of nodes in their model becomes large, the degree distribution of the network roughly obeys
a power law. But other features of the models differ, and these other features will determine the
appropriateness of the model in a given application. Thus other aspects of these models need to be
studied and understood, and for the preferential attachment model this is the content of [64], where
the probabilities corresponding to the number of neighbours of a given node are approximated (A1)
with an error on the approximation (A3). (See also [24,66,72] for error bounds on the corresponding
approximation for the power law behaviour of the preferential attachment model.) Moreover, the
work of [64,66,72] required the use of a new stochastic fixed point technique used in conjunction with
a novel development of a powerful tool in probability approximation and limit theory called Stein’s
method (A4).

The project will focus on features of RDS (A1), RDS in time and space (A2), the asymptotic
behaviour of RDS (A1, A2), the accuracy of our approximations (A3) and developing novel methods
(A4). Each is detailed below.

Features of RDS. A significant focus of the project will be to investigate properties of RDS that
arise from real world systems. In the context of random networks, the practitioner has many models
to choose from, and each one has different features that make it appropriate or useful in different
situations; see [59] and the collection [60] for historical overview and context. The simplest model of a
random network is the Erdős-Rényi random network, where each pair of nodes is attached by an edge
independently according to the outcome of a (possibly biased) coin toss. These models are reasonably
well understood (see the texts [21, 46]), but there are still detailed questions to address [69, 70]. A
related model is the stochastic block model, where edges are still connected independently, but the
nodes are split into groups 1, . . . , K such that the chance a node in group i connects to a node in group
j is given by parameters p(i, j). This is a popular model used for community detection (p(i, i) > p(i, j)
for i 6= j) [20]. Two models that are widely believed to have realistic features and are close to this
proposal are the small worlds model of [77] and the configuration model. Both are used regularly in
epidemic modelling; see under the next heading for further explanation. Finally we mention again
the preferential attachment model discussed previously. Since the seminal paper [8], there has been
an explosion of research activity, with the first rigorous mathematical results due to [22, 23]. As
described previously, the work of [64, 66, 72] develops new methods for deriving properties of the
degree distributions of these models. Two concrete aims of the project are to extend these methods
to apply to generalisations of the basic model, such as those of [17, 30, 73], and to other random
network models; and to push them further to derive more properties. For example, what is the joint
distribution of a given collection of nodes in these models?

Many general RDS can be understood through urn models. In fact, urn models are abstracted
from applications in statistics (experiment design in clinical trials) [78], computer science (analysis
of algorithms) [52], evolutionary biology [43], and some random networks, including the preferential
attachment network [17,64]. The basic general model is of an urn initially containing black and white
balls. At each step in the process, a ball is drawn and returned to the urn, and some number of black
and white balls is also added, depending on the color of the ball drawn. These models exhibit a “rich
get richer” phenomenon, that appears in many applications. Another feature of the models is that the
behaviour of the (random) number of white (or black) balls in the urn after many steps depends very
sensitively on the rule for returning balls to the urn; thus new models arising in applications often



have to be understood from scratch. The work of [64] provides approximations with errors for the
random number of white balls in families of such urn models, and required the development of new
methods. The project will continue the exploration of generalisations and embellishments (different
rules for returning balls, more colours, et cetera), especially using the methods of [64].

RDS in time and space. RDS are interesting in their own right. However, they frequently appear
in applications as an underlying structure on which a second random process evolves. As an example,
the spread of infection in a population, whose contact structure is described by a random network
realized from the configuration model [76], has some features more realistic than those of the classical
epidemic models that are based on an underlying Erdős–Rényi random graph, and its predictions differ
quantitatively from those of the classical models. In HIV models, such as that of [57], the underlying
network may itself also evolve in time. The ‘gossip’ models of [4], describing the spread of information,
also have this feature, in that local dissemination is deterministic, but there is also long–range spread
resulting from occasional contacts that occur randomly in time and space. An aim of the project is to
determine properties and features of such processes that evolve on top of random network structures
(such as those mentioned in the previous subsection), again with the goal of guiding practitioners to
models appropriate for their particular application.

Asymptotic behaviour of RDS. A number of recent empirical studies indicate that variation in
the quality of habitat plays an important role in the distribution pattern of species, and can have a
significant impact on the dynamics of the population as a whole, in particular on its viability [58].
Given the considerable resources devoted to managing populations in Australia, for both commercial
and conservation purposes, it is vital that the role of patch variation be understood. We aim to develop
mathematical tools for studying the dynamics of metapopulations in which patch characteristics are
allowed to vary. This aim aligns with those of “RDS in time and space”, since positions and qualities
of patches in a metapopulation model can also be viewed as the realisation of a random process;
in [62], a random field with non-trivial dependence structure is assumed. The metapopulation then
evolves as a random process, where the influence between the events at different patches depends on
their qualities and relative positions. We will employ branching process approximations to evaluate
the chance that a near extinct metapopulation becomes established, and we will develop deterministic
and Gaussian approximations to study the growth and long-term equilibrium level of the population,
once it has become established.

Accuracy of approximations. A significant effort will be devoted to the study of the accuracy of
approximations. Two types of questions will be addressed: (a) distributional approximation errors
and (b) extremal properties and tail probability approximation errors.

In relation to (a), the following example is a prototypical case of the range of problems that the
project will address. Probability models are used extensively in evolutionary biology and population
genetics. While some evolutionary dynamics can be understood using deterministic models, there
are other features that are best understood through randomness, for example mutation and selection.
Central to population genetics is Kingman’s coalescent. This has many wonderful theoretical features,
and is also the basis for algorithms used to infer evolutionary history from genetic data [75]. It is the
basis for estimating the past size of human populations, leading to an understanding of our species
prehistory [51, 74], and for estimating the past size of a disease outbreak, using only present genetic
material related to the infection [33]. However, the coalescent is used as a proxy for a discrete object
called the Wright-Fisher model, and with ever-increasing sample sizes, arising from the abundance
of genetic data from cheaper sequencing technologies, understanding the errors in this and other
approximations, routinely made in designing estimation algorithms, is of great importance [19,37,50].
A component of the project is to obtain quantitative bounds on the effects on the inference drawn in
evolutionary biology of the errors in such approximations.

Apropos of (b), the extremal events associated with RDS, such as earthquakes, financial crises
and floods, are perennial in human history. As such events have a small chance of occurring, we are
often unprepared for the damage they cause. Although there is a long history of recorded disasters
such as floods and earthquakes, we still do not understand how such events arise, and hence how to
predict and efficiently prepare for their occurrence. Moreover, in classical statistics, extreme events



were often treated as outliers, and hence did not get sufficient attention in modelling and forecasting.
The systematic mathematical study of extreme events can be traced back to [35, 36]. Since then, the
asymptotic behaviour of extreme values has been better studied; see for example [1, 49,61].

However, most existing studies on extreme events rely on the assumption that the extremes,
whether observed or not, happen as independently occurring (rare) events, so that their consequences
under various scenarios can be more easily assessed. Prediction and prevention regimes based on such
studies often have disastrous consequences. Recent examples include the 2007-2008 global financial
crisis and the 2011 Tohoku earthquake and tsunami. Practitioners have largely been unaware of
the importance of dependence between extreme events, and the information about this dependence
that can be gleaned from existing data. Our aim is to use such data, based on the more frequent
occurrences of less extreme events, to fit models that properly allow for dependence, and then to
study the extremal properties of RDS, given that at least one such event has taken place. We will
derive suitable approximate models for the distribution of extreme events under this conditioning,
and identify the conditions under which the approximate models are effective.

Research project

Features of RDS. The core idea in the stream of work [64, 66, 72] is to relate various preferential
attachment models to certain single colour Pólya urn models (embellishments of those of [44]) and then
to determine new properties and features of these models, by developing and applying a distributional
fixed point technique, discussed in “Developing Novel Methods”, below. The project will develop this
work in several directions. First, the preferential attachment model that we previously studied has
the rule that a new vertex attaches to an existing vertex with chance proportional to its degree. There
are some closely related preferential attachment models [17, 18], and others where the probability
of attachment is proportional to some power of the degree [47] or, more generally, to an increasing
function of the degree ( [73]; see also [30]); for some of these rules, our methods apply, and analogues
of our results hold. Secondly, even in the proportional attachment models, little is so far known
about the joint degrees of multiple vertices, and the project will extend our methods to this setting;
see [67] for preliminary steps in this direction. Significant computer experimentation and simulation
are necessary for this, as a rough preliminary guide to what theoretical results are to be expected.

Additionally, the correspondence between random graph attachment rules and urn models is rich,
and can be exploited in both directions. Given an urn model, a random graph model can be developed
for which the degree of a distinguished node corresponds to the number of balls of a given colour in the
urn, and vice versa; keeping track of the joint degrees of multiple nodes corresponds to multi-color urn
models. So the techniques and methods used in our proportional attachment work have implications
for urn models, including some models with more exotic rules than are usual [65].

We lastly mention that the connection between Pólya urn models and random graphs has found
use in showing graph level convergence (in the local weak sense) of certain preferential attachment
models [17], and a connection to process level convergence (to Aldous’s CRT [2, 3]) is discussed
in [65, Remark 2.6]. A long term goal of the project is to push our methods to the process level, and
perhaps into the burgeoning field of graph limits.

RDS in time and space. Here, we will focus on two areas of practical interest: epidemic modelling
and metapopulations.

For epidemics on the configuration graph, results to date are limited to laws of large numbers
[16, 32, 45], and some description of their stochastic behaviour, such as through CLTs, would be
welcome. Barbour and Röllin have an approach, based on Stein’s method, that may yield a CLT for
the final size, though even the computation of the variance poses substantial problems. For gossip
models, the situation is somewhat easier, and here one can expect to be able to establish not only
a CLT for the final size, but also a description of the evolution of the process in time, in terms of a
diffusion process approximation. In both settings, and in others such as the household models of [7],
the aim is to supplement any approximations with measures of their accuracy, to underpin their use
in practice. Extensive simulation studies will also be conducted, to investigate the stability of the
approximations with respect to model mis-specification. We will also analyse a family of HIV models



with contact structure evolving randomly in time, which includes a parameter describing how fast the
network evolves relative to the evolution of the epidemic process; this may give useful insight into
how well either the fixed network model or the totally random network can be used as a surrogate for
more realistic models.

For metapopulations, Barbour, McVinish and Pollett are currently examining how well the com-
monly used deterministic patch occupancy models of [42] actually approximate their stochastic coun-
terparts. To date, we have shown that the approximation is in general not at all good, unless the
evolution in each patch is significantly influenced by a large number of other patches. However, the
models so far considered are the simplest of their kind. Our aim now is to examine what happens for
the more realistic, structured metapopulation models [41], as well as to refine the conclusions of [62]
with some measure of approximation error. Structured metapopulation models are most naturally
treated in an infinite dimensional setting, entailing substantial mathematical difficulty. Earlier work
of [14, 15] should provide pointers for the techniques required to answer such questions. One goal is
to derive ‘propagation of chaos’ results, linking the behaviour of small groups of patches with that
of the ensemble. This is particularly important when studying processes such as adaptive evolution,
where a new strategy has to be successful at the individual level, before it can translate to the whole
population.

Asymptotic behaviour of RDS. Branching process approximations are widely used to study the
evolution of an initially small population. In the metapopulation context, one typically assumes that
the total number of patches is large, but that initially only few are occupied. The early growth phase is
then approximated using a branching process. As the total number of patches increases, the number
occupied converges weakly to a branching process (or some variant) on finite time intervals; the
chance of total extinction is then easily calculated as the smallest fixed point of a function determined
by the distribution of offspring. Under certain conditions, these results can be improved to strong
convergence on appropriately chosen time intervals. Although the branching process approximation
is most commonly used in the study of epidemics, it is also useful in the study of metapopulations
that are close to extinction [26], but will need to be adapted to account for spatial effects and patch
variation in a continuum.

Deterministic approximations are widely used to approximate the behaviour of large populations.
Typically, this involves the solution to certain (finite dimensional) differential or difference equations.
[31] provides a survey of the relevant literature, and gives quantifiable error bounds. Questions
concerning population persistence can then be phrased in terms of stability of the equilibrium points
of the corresponding differential/difference equation (for which the analysis is typically much simpler).
Going beyond the finite dimensional case, [13, 15] studied a Markov population process where each
individual has one of countably many types, and applied their results to certain metapopulations and
parasitic infections. They were able to prove convergence to a flow on a certain weighted `1 space and
also gave a rate of convergence. Establishing a deterministic limit for a Markov population process
incorporating variation of individuals (in this case patches) is a challenging problem. However, there
has been significant recent progress in this area for metapopulation models [53, 55, 56]. Our results
established only convergence to a deterministic limit. We now propose to construct bounds on the
error to assess the quality of the approximation. A refinement of the description of the error beyond a
simple bound involves examining if the error, appropriately scaled, converges in some sense. Typically,
this involves showing that the scaled error process converges to some Gaussian process (the Gaussian
approximation). The classic paper [48] gives conditions for the error process to converge to a Gaussian
diffusion for simple Markov population processes. In [14], we were able to derive a similar result for
population processes with countably many types. In [54] we were able to prove convergence of the
scaled error process to a Gaussian process for the model studied in [53].

Accuracy of approximations. The main tool for studying of the quality of our approximations is
Stein’s method. To explain how we will implement the idea, consider Stein’s method for the conditional
tail probability approximations of the number of extreme events given that at least m such extreme
events have already occurred [38]. Given a stationary sequence of random variables X1, . . . , Xn with
common distribution function FX , define the number of exceedances above the threshold s as Ns,n :=



∑n
i=1 1(s,∞)(Xi) and the fragility distribution of order m as FDn,m := lims↗xF

L (Ns,n|Ns,n > m) ,
where xF := sup{t : FX(t) < 1}.

We say that a random variable P has a compound Poisson (CP) distribution CP(λ) with λ =

(λ1, λ2, . . . ), if P
d
=

∑∞
i=1 iXi, where Xi follows Poisson distribution with mean λi and the Xi are

independent. One can easily verify that W ∼ L(P |P ≥ 1) with P ∼ CP(λ) if and only if for all
bounded functions g on integers,

E

[
∞∑
j=1

jλjg(W + j)−Wg(W )1{W>1}

]
= 0.

This identity provides a characterisation of the conditional CP distribution, and it can be used to
study conditional CP approximation errors via Stein’s method.

Developing novel methods. The project will strengthen and generalize a number of standard
methods in applied probability, to treat problems that are at present beyond their scope. A significant
component concerns Stein’s method of distributional approximation, and its exploitation using fixed
points of distributional transformations; see the survey [71] for an introduction to Stein’s method from
this point of view.

Stein’s method has been used successfully in applications of the kinds to be pursued here: in
random networks [28, Chs 4 and 6], [11,64,66,72], computational biology [11, Ch 10], [5,29], branching
processes [63], and statistics [6, 39, 40]. However, although we shall use Stein’s method in a variety
of new applications, our focus is on developing it for use in more difficult situations. For example,
the work of [64] studies the random degree of a single vertex in the preferential attachment model;
this is a 1-dimensional result. It is of still greater interest to understand the joint distribution of the
degrees of a collection of k vertices; a k-dimensional result that contains the 1-dimensional result.
Stein’s method has been applied in multi-dimensional problems, see for example [68], but much less
is known than in the 1-dimensional setting. A main aim of the project is to develop the method for
effective use in multi-dimensional applications. A further aim is to develop the method at the process
or infinite-dimensional level. For example, consider the vertex degrees in the preferential attachment
model. It is possible to define an abstract object that represents the random network after adding
infinitely many vertices and their edges [17]. Is it possible to devise a version of Stein’s method that
will measure the closeness of the system with n vertices to the limit? This is an extremely challenging
problem. However, the investigators have experience in developing the method for settings more
complicated than the approximation of random vectors [9, 10, 12, 29], and the goal is to push these
techniques even further.
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