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METHODOLOGY AND THEORY FOR PARTIAL LEAST
SQUARES APPLIED TO FUNCTIONAL DATA

By Aurore Delaigle∗, and Peter Hall∗

University of Melbourne

The partial least squares procedure was originally developed to
estimate the slope parameter in multivariate parametric models. More
recently it has gained popularity in the functional data literature.
There, the partial least squares estimator of slope is either used to
construct linear predictive models, or as a tool to project the data
onto a one dimensional quantity that is employed for further statis-
tical analysis. Although the partial least squares approach is often
viewed as an attractive alternative to projections onto the principal
component basis, its properties are less well known than those of the
latter, mainly because of its iterative nature. We develop an explicit
formulation of partial least squares for functional data, which leads
to insightful results and motivates new theory, demonstrating consis-
tency and establishing convergence rates.

1. Introduction. Partial least squares (PLS) is an iterative procedure
for estimating the slope of linear models. The technique was originally devel-
oped in high dimensional and collinear multivariate settings and is especially
popular in chemometrics. See Wold (1975), Martens and Naes (1989), Hel-
land (1990), Frank and Friedman (1993), Garthwaite (1994), Goutis and
Fearn (1996), Durand and Sabatier (1997) and Nguyen and Rocke (2004).

The iterative nature of PLS can make it difficult to uncover properties in
a clear and explicit way, and for a long time PLS was regarded as a tech-
nique that worked well, but whose properties were relatively obscure. Early
theoretical developments of multivariate PLS can be found in Lorber, Wan-
gen and Kowalski (1987) and Höskuldsson (1988), and further developments
include those of Phatak, Rilley and Penlidis (2002), Phatak and de Hoog
(2003), Bro and Eldén (2009) and Krämer and Sugiyama (2011).

More recently, the method has been applied in the functional data context
by Preda and Saporta (2005a), who suggest using PLS for estimating slope
in functional linear models; see also Reiss and Ogden (2007). Also in the
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2 A. DELAIGLE AND P. HALL

functional setting, the intrinsic iterative nature of PLS has made it difficult
to develop intuition, and derive clear and explicit theoretical properties. In
this paper we provide a transparent account of theoretical issues that under-
pin PLS methods in linear models for prediction from functional data, and
show that they motivate an alternative formulation of PLS in that setting.
This “alternative PLS,” which we refer to here as APLS, has the advantage
that it is expressed only in terms of functions that are explicitly computable.
These attributes make APLS particularly attractive, relative to the conven-
tional PLS formulation, and permit detailed theoretical development.

We give concise stochastic expansions for the difference between estima-
tors derived using APLS, and the quantities to which these estimators con-
verge in the large-sample limit. These expansions are valid uniformly in
estimators based on the first O(n1/2) APLS basis functions, where n de-
notes sample size. The expansions also lead easily and directly to a variety
of results about our estimators, including convergence rates and central limit
theorems.

Besides functional linear models, PLS is employed in a variety of other
data functional problems. For example, Ferraty and Vieu (2006) use it to
define a semi-metric for nonparametric functional predictors or classifiers;
Escabias, Aguilera and Valderrama (2007) employ PLS with logit regression;
Preda, Saporta and Lévéder (2007), and Delaigle and Hall (2012), use it for
functional data classification. See also Preda and Saporta (2005b), Krämer
et al. (2008) and Aguilear et al. (2010).

2. Functional linear models.

2.1. General bases for inference in functional linear models. Let X =
{(X1, Y1), . . . , (Xn, Yn)} denote a sample of independent data pairs, all dis-
tributed as (X,Y ), where X is a random function defined on the nondegen-
erate, compact interval I and satisfying

∫
I E(X2) < ∞, and Y is a scalar

random variable generated by the linear model

Y = a+

∫
I
bX + ϵ . (2.1)

Here, a denotes a scalar parameter, ϵ is a scalar random variable with finite
mean square and satisfying E(ϵ |X) = 0, and b, a function-valued parameter,
is a square-integrable function on I.

Predicting the value of Y , given X, amounts to estimating the function

g(x) = E(Y |X = x) = a+

∫
I
b x , (2.2)
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PARTIAL LEAST SQUARES 3

which itself requires to estimate the scalar a and the function b from the
data. A standard approach is to express X and b in terms of an orthonormal
basis ψ1, ψ2, . . . defined on I. Expansions for X and b in this basis can be
written as X =

∑
j (
∫
I X ψj)ψj and b =

∑
j vj ψj , where vj =

∫
I b ψj .

Since in practice we can calculate only a finite number of terms, the infinite-
dimensional expansion for b is approximated by a sum of p terms, where
p ≥ 1 is an integer, and each term of this sum is then estimated from
the data. Note that

∫
I bX =

∑
j vj

∫
I X ψj , which motivates us to take

a = E(Y ) −
∫
I bE(X) and define β1, . . . , βp to be the sequence v1, . . . , vp

that minimises

sp(v1, . . . , vp) = E

{∫
I
b (X − EX)−

p∑
j=1

vj

∫
I
(X − EX)ψj

}2

. (2.3)

The functions

bp =

p∑
j=1

βjψj , gp(x) = E(Y )+

∫
I
bp (x−EX) = E(Y )+

p∑
j=1

βj

∫
I
(x−EX)ψj

(2.4)
are approximations to b and to g(x), respectively. Their accuracy, as p in-
creases, depends on the choice of the sequence ψ1, ψ2, . . ..

Sometimes the basis is chosen independently of the data (e.g. sine-cosine
basis, spline basis, etc). Then the functions ψj are known, and an empir-
ical version of (2.4) is obtained by replacing the scalars β1, . . . , βp by the
sequence v1, . . . , vp that minimises

n−1
n∑

i=1

{
Yi − Ȳ −

p∑
j=1

vj

∫
I
(Xi − X̄)ψj

}2

. (2.5)

A drawback of such bases is that there is no reason why their first p ele-
ments should capture the most important information about the regression
function g, available from the data. It seems more attractive to use bases
that adapt to the properties of the population represented by the data. We
discuss two such adaptive bases in sections 2.2 and 2.3, respectively.

2.2. Principal component basis. One of the most popular adaptive bases
is the so-called principal component basis, constructed from the covariance
function K(s, t) = cov{X(s), X(t)} of the random process X. As is common
in mathematical analysis, we shall use the notation K also for the linear
transformation (a functional) that takes a square-integrable function ψ to
K(ψ) given by K(ψ)(t) =

∫
I ψ(s)K(s, t) ds .
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4 A. DELAIGLE AND P. HALL

Since
∫
I E(X2) <∞ then

∫
I K(t, t) dt <∞, and we can write the spectral

decomposition of K as

K(s, t) =

∞∑
k=1

θk ϕk(s)ϕk(t) , (2.6)

where the principal component basis ϕ1, ϕ2, . . . is a complete orthonormal
sequence of eigenvectors (i.e. eigenfunctions) of the transformation K, with
respective nonnegative eigenvalues θ1, θ2, . . .. That is, K(ϕk) = θk ϕk for k ≥
1. Positive definiteness of K implies that the eigenvalues are nonnegative,
and the condition

∫
I E(X2) <∞ entails

∑
k θk <∞. Therefore we can, and

do, order the terms in the series in (2.6) so that

θ1 ≥ θ2 ≥ . . . ≥ 0 . (2.7)

In practice the scalars θj and the functions ϕj are unknown and are esti-
mated from the data, as follows. First, the covariance function is estimated
by

K̂(s, t) =
1

n

n∑
i=1

{Xi(s)− X̄(s)} {Xi(t)− X̄(t)} , (2.8)

where X̄(t) = n−1
∑n

i=1 Xi(t). Then, θ1, . . . , θn and ϕ1, . . . , ϕn are estimated

by the eigenvalues θ̂1 ≥ θ̂2 ≥ . . . θ̂n ≥ 0 and the eigenfunctions ϕ̂1, . . . , ϕ̂n
of the transformation represented by K̂, which can have at most n nonzero
eigenvalues. Finally, an empirical version of β1, . . . , βp is defined to be the
sequence v1, . . . , vp that minimises (2.5), where each ψj there is replaced by

ϕ̂j . Then, gp at (2.4) is replaced by its corresponding empirical version. In the
rest of this paper, to avoid confusion with projections of b onto other bases,
we shall add a superscript PC to coefficients obtained from projection of b
onto one of the functions ϕj ; that is, we shall use the notation β

PC
j =

∫
I bϕj .

The literature on functional linear models based on principal component
analysis (PCA) is large. It includes, for example, work by Cai and Hall
(2006), Reiss and Ogden (2007), Apanasovich and Goldstein (2008), Cardot
and Sarda (2008), Baillo (2009), Müller and Yao (2010), Wu, Fan and Müller
(2010) and Yao and Müller (2010).

2.3. The orthonormal PLS basis. The principal component basis intro-
duced in section 2.2 is defined in terms of the population, but only through
X. In particular, while its first p elements ϕ1, . . . , ϕp usually contain most
of the information related to the covariance of X, these are not necessarily
important for representing b, and all or some of the most important terms
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PARTIAL LEAST SQUARES 5

accounting for the interaction between b and X might come from later prin-
cipal components. In prediction, to capture the main effects of interaction
using only a few terms, one could construct the basis in a way that takes
this interaction into account.

Motivated by such considerations, the standard PLS basis, adapted to
the functional context, is defined iteratively by choosing ψp in a sequential
manner, to maximise the covariance functional

fp(ψp) = cov

{
Y − gp−1(X),

∫
I
X ψp

}
, (2.9)

subject to∫
I

∫
I
ψj(s)K(s, t)ψp(t) ds dt = 0 for 1 ≤ j ≤ p− 1 , and ∥ψp∥ = 1 , (2.10)

where ∥ · ∥ is a norm (see section 3.1), and given that ψ1, . . . , ψp−1 have
already been chosen. (Recall that gp was defined at (2.4).) In practice, the
covariances in (2.9) are replaced by estimates, and empirical versions of the
ψjs are constructed by an iterative algorithm described in appendix A.2.

Partial least squares can also be used for prediction in nonlinear models,
where the basis that it produces is sometimes, but not always, effective for
prediction. Specifically, although the PLS basis enables a consistent approx-
imation to g in such cases, a large number of terms may be required to get
a good approximation.

3. Properties of theoretical functional partial least squares. For
prediction and estimation of b, the PLS basis is sometimes preferred to the
PCA basis, partly because it can often capture the relevant information
with fewer terms; see our data illustrations in section 6. Detailed theoretical
properties for inference in functional linear models based on the PCA basis
have been studied in a number of papers, but few results exist about their
functional PLS counterpart. In this section we provide new insight into the
theoretical PLS basis defined at (2.9)–(2.10), and give an explicit description
of the space generated by the first p PLS basis functions ψ1, . . . , ψp. These
properties motivate an alternative formulation of functional PLS, which we
call APLS. It permits us to define the functional PLS basis very simply,
and to construct an explicitly defined algorithm to implement empirical
PLS; see section 4. The explicit nature of the algorithm will allow us to
derive detailed theoretical properties of empirical functional PLS, including
convergence rates; see section 5.
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6 A. DELAIGLE AND P. HALL

3.1. Explicit form of the orthonormal PLS basis. Our first result, The-
orem 3.1, below, gives an explicit account of the constrained optimisation
described in section 2.3. We use the following notation. Given α1 and α2

in the class C(I) of all square-integrable functions on I, write
∫
I
∫
I α1 α2K

to denote
∫
I
∫
I α1(s)α2(t)K(s, t) ds dt . For any x ∈ C(I), define ∥x∥2 =∫

I
∫
I xxK. (Some implementations of PLS, for example the one in appendix

A.2, take ∥x∥2 =
∫
I x

2, but this affects only the scale, not the main proper-
ties of the functions ψj).

Theorem 3.1. If
∫
I E(X2) <∞ then the function ψp that maximises f

at (2.9), given ψ1, . . . , ψp−1 and subject to (2.10), is determined by

ψp = c0

[
K

{
b−

p−1∑
j=1

(∫
I
b ψj

)
ψj

}
+

p−1∑
k=1

ck ψk

]
, (3.1)

where, for 1 ≤ k ≤ p− 1, the constants ck are obtained by solving the linear
system of p− 1 equations∫

I

∫
I
ψj ψpK = 0, j = 1, . . . , p− 1, (3.2)

and where c0 is defined uniquely, up to a sign change, by the property

∥ψp∥ = 1 . (3.3)

One of the interesting implications of the theorem is that for each j, the
jth basis function determined by PLS can be expressed as a linear combi-
nation of j explicitly defined functions. More precisely, the theorem implies
that ψ1 = d1K(b), where, by (3.3) with p = 1, d1 = ∥K(b)∥−1, and more
generally, the following properties follow from the representation (3.1); the
first property implies the second:

(a) For each p ≥ 1, and given ψ1, . . . , ψp−1, the function
ψp is the linear combination of K(b), . . . ,Kp(b) for which
(2.10) holds, and is unique up to a sign change. (b) For each
p ≥ 1, representing a function as a linear form in ψ1, . . . , ψp
is equivalent to representing it as a linear combination of
K(b), . . . ,Kp(b).

(3.4)

These properties motivate the APLS formulation and underpin the rest of
the paper. Interestingly, (3.4) continues to hold if equations (3.2) are re-
placed by

∫
I ψjψp = 0 for j = 1, . . . , p− 1. In particular, although the func-

tions ψ2, . . . , ψp will change in this case, the spaced spanned by ψ1, . . . , ψp

will not alter.
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PARTIAL LEAST SQUARES 7

Result (3.4) is a deterministic functional version of a known result for
empirical PLS in the multivariate context. More specifically, suppose we
have n observations of a q-variate (non functional) predictor of a variable
Y , letX be the n×q matrix of observations on the predictor, and let y be the
n× 1 vector containing the observations on Y . Then it has been established
that the space spanned by the first p empirical PLS components is equal
to the space generated by XTy,DXTy, . . . ,Dp−1XTy, where D = XTX.
See for example Bro and Eldén (2009), and compare the empirical algorithm
in section 4.1. This is itself a particular case of results that are available more
generally in Krylov spaces, although again in the multivariate rather than
functional setting that is the subject of this paper.

3.2. Expansions in a non-orthogonal PLS basis. The properties at (3.4)
give a clear and explicit account of the form taken by the PLS basis functions.
For example, they show that for each p, the space generated by ψ1, . . . , ψp is
the same as the space generated (i.e. spanned) by K(b), . . . ,Kp(b). Note
that the functions Kj(b) are explicitly defined, since we have Kj(b) =∑

k θ
j
kβ

PC
k ϕk, where ϕk is the kth PCA basis function.

Next, if we note that a = E(Y ) −
∫
I bE(X) and define γ1, . . . , γp to be

the sequence w1, . . . , wp that minimises

tp(w1, . . . , wp) = E

{∫
I
(X − EX) b−

p∑
j=1

wj

∫
I
(X − EX)Kj(b)

}2

(3.5)

(compare (2.3)), then the slope function approximation bp at (2.4) has two
equivalent expressions:

bp =

p∑
j=1

γj K
j(b) =

p∑
j=1

βj ψj , (3.6)

where β1, . . . , βp are as defined in section 2.1 if we take the general ψ1, . . . , ψp

introduced there to be the specific functions given by Theorem 3.1.
In matrix notation,

γ ≡ (γ1, . . . , γp)
T = H−1(α1, . . . , αp)

T , (3.7)

where H = (hjk)1≤j,k≤p denotes a p× p matrix,

hjk =

∫
I
Kj+1(b)Kk(b) =

∞∑
r=1

(βPCr )2 θj+k+1
r , (3.8)
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8 A. DELAIGLE AND P. HALL

αj =

∫
I
K(b)Kj(b) =

∞∑
r=1

(βPCr )2 θj+1
r = h0j . (3.9)

Here we have used the fact that, for p fixed, the matrix H is nonsingular
because, for finite p, the equivalence of the expansion in the orthogonal
basis ψ1, . . . , ψp and in the basis K(b), . . . ,Kp(b) implies that the sequence
γ1, . . . , γp that minimises (3.5) is unique. See also our discussion on Hankel
matrices in section 5.3.

The pth order approximation gp(x) to g(x) = E(Y |X = x), resulting
from the pth order approximation of b by either of the identities at (3.6), is
given equivalently by the second formula at (2.4) or by the expression

gp(x) = a+

∫
I
bp x = E(Y ) +

p∑
j=1

γj

∫
I
(x− EX)Kj(b) . (3.10)

We denote by APLS the formulation of PLS based on the sequenceK(b), . . . ,
Kp(b).

For the approximation at (3.6) to converge to b, that function should be
expressible as a linear form in K(b),K2(b), . . .:

b =
∞∑
j=1

wj K
j(b) , (3.11)

where the wjs are constants and the series converges in L2. The next theorem
gives conditions under which, for a general b in C(I), there exist w1, w2, . . .
such that (3.11) holds.

Theorem 3.2. If
∫
I E(X2) < ∞, and the eigenvalues of K are all

nonzero, then each b ∈ C(I) can be written as at (3.11), where the series
converges in L2.

Under the side condition
∫
I E(X2) < ∞ the assumption in Theorem 3.2

that all eigenvalues of K be nonzero is both necessary and sufficient for
(3.11) to hold for all b ∈ C(I). However, if some eigenvalues θj , corre-
sponding to respective eigenvectors ϕj , vanish, then the respective values
of

∫
I(X −EX)ϕj vanish with probability 1, and so those indices make zero

contribution to
∫
I(X − EX) b =

∑
j

∫
I(X − EX)ϕj ·

∫
I b ϕj . Therefore we

can delete the components of b =
∑

j ϕj
∫
I b ϕj that correspond to indices j

for which θj = 0, without affecting the value of
∫
I bX; and it is only through

the latter integral that b influences prediction. Therefore the theorem can
be stated in a form which asserts that even if some of the eigenvalues of K
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PARTIAL LEAST SQUARES 9

vanish, the representation at (3.11) is sufficiently accurate for all purposes
of prediction based on (2.1). The only reason we have not taken this course
is to make our arguments relatively simple and transparent.

Note that the wjs in (3.11) are not determined uniquely. In particular,
(3.11) implies that K(b) =

∑
j wj K

j+1(b), and so the following expansion,

among many others, is alternative to (3.11): b =
∑∞

j=1 (wj +wj+1)K
j+1(b) .

This lack of uniqueness does not violate the equivalence noted in (3.4)(b),
since that property is asserted only for a finite sequence ψ1, . . . , ψp. How-
ever, it makes it impossible to treat usefully the relationship between the
infinite expansion of a function b in terms of the sequence K(b),K2(b), . . .,
and its infinite expansion in terms of the PCA basis, ϕ1, ϕ2, . . ., introduced
in section 2.2. Nevertheless we can discuss the pth order PLS projection
bp =

∑p
j=1 γj K

j(b) of b onto the finite dimensional space spanned by
K(b), . . . ,Kp(b), for an arbitrary but fixed p ≥ 1.

To this end, recall that βPC1 , βPC2 , . . . denote the Fourier coefficients of b
with respect to the PCA basis ϕ1, ϕ2, . . .. Then,

bp =

p∑
j=1

γj K
j(b) =

p∑
j=1

γj

∞∑
k=1

βPCk θjk ϕk =

∞∑
k=1

βPCk

( p∑
j=1

γj θ
j
k

)
ϕk ,

(3.12)
and the last series expresses bp in terms of the components of the PCA basis.

4. Empirical implementation of APLS.

4.1. Algorithm for empirical APLS. A standard algorithm for empiri-
cal implementation of PLS based on the sequence ψ1, . . . , ψp is given in
appendix A.2. In this section we describe a simple empirical algorithm for
implementing APLS based on the non-orthogonal sequence K(b), . . . ,Kp(b).
As we shall see, this algorithm will permit simple derivation of theoretical
properties of PLS. In section 4.2 we shall deduce two algorithms that are
numerically more stable.

To estimate K(b), . . . ,Kp(b), first note that we can estimate K(b) by

K̂(b) =
1

n

n∑
i=1

Xcent
i Y cent

i =
1

n

n∑
i=1

(Xi − X̄) (Yi − Ȳ ) ,

where Xcent
i = Xi − X̄ and Y cent

i = Yi − Ȳ . Then, given an estimator

K̂j(b) of Kj(b), we can estimate Kj+1(b)(t) by K̂j+1(b)(t) =
∫
I K̂

j(b)(s)

K̂(s, t) ds , where K̂ is the conventional estimator of the covariance function,
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10 A. DELAIGLE AND P. HALL

K̂(s, t) = n−1
∑n

i=1 {Xi(s)−X̄(s)} {Xi(t)−X̄(t)} . Having calculated K̂j(b)
for 1 ≤ j ≤ p we take γ̂1, . . . , γ̂p to minimise

Up(w1, . . . , wp) =
1

n

n∑
i=1

{
Y cent
i −

p∑
j=1

wj

∫
I
Xcent

i K̂j(b)

}2

(4.1)

with respect to w1, . . . , wp (compare (3.5)). In matrix notation,

γ̂ ≡ (γ̂1, . . . , γ̂p)
T = Ĥ−1(α̂1, . . . , α̂p)

T , (4.2)

where Ĥ = (ĥjk)1≤j,k≤p denotes a p× p matrix,

ĥjk =

∫
I

∫
I
K̂(s, t) K̂j(b)(s) K̂k(b)(t) ds dt =

∫
I
K̂j+1(b) K̂k(b) , (4.3)

α̂j =

∫
I
K̂(b) K̂j(b) . (4.4)

Finally we construct an estimator of g based on (3.10):

ĝp(x) = Ȳ +

p∑
j=1

γ̂j

∫
I
(x− X̄) K̂j(b) . (4.5)

Remark 1. Formula (3.8) demonstrates that the theoretical version H
of Ĥ is a symmetric matrix. Our estimator Ĥ does not necessarily enjoy
that property, but an alternative estimator of hjk can be defined to satisfy

it. More precisely we can take h̃jk =
∫
I K̂

j+k(b) K̂(b) , which produces a

symmetric estimator H̃ = (h̃jk) of H. We could use H̃ in place of Ĥ, but

computing h̃jk requires K̂ to be iterated j + k times, whereas ĥjk needs

iteration at most max(j + 1, k) times. Therefore we prefer the version Ĥ.

4.2. Stabilised algorithm for empirical APLS. The algorithm described
in section 4.1 would provide a good solution if we were able to work in
exact arithmetic, but it can be unstable in finite precision arithmetic. This
is because, due to the non-unicity of the expression for b in terms of the
infinite series K(b),K2(b), . . ., as p increases the linear system of equations
given by the empirical version of (3.5) (see (4.1)) becomes closer to singular.
Therefore, in finite precision arithmetic, as p increases it becomes more
difficult to numerically identify one or more of the valid expressions arising
from a large number of terms in the sequence K̂(b), K̂2(b), . . ..

There exist a number of numerical methods for overcoming this numerical
difficulty. A simple approach is to transform the linear system of equations
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PARTIAL LEAST SQUARES 11

by Gram-Schmidt orthogonalisation; see section 7.7 of Lange (1999). There,

the columns of the n×p matrix with (i, j)th element equal to
∫
I X

cent
i K̂j(b)

are transformed into p orthonormal vectors u1, . . . , up by the modified Gram-
Schimdt algorithm (a numerically stabilised version of Gram-Schmidt algo-
rithm, see appendix A.3). Instead of using γ̂ in (4.2), the sequence that min-
imises (4.1) can then be computed by solving, with respect to w1, . . . , wp, the
equivalent equation R (w1, . . . , wp)

T = UT(Y cent
1 , . . . , Y cent

n )T , where U is a
matrix with columns u1, . . . , up and R is an upper p× p triangular matrix.
Let γ̂∗ = (γ̂∗1 , . . . , γ̂

∗
p)

T be the solution of this equation. We can estimate g

by ĝ∗p(x) = Ȳ +
∑p

j=1 γ̂
∗
j

∫
I(x− X̄) K̂j(b) .

Alternatively, having constructed K̂j(b) for 1 ≤ j ≤ p as in section 4.1,
we can also transform them into an orthonormal sequence ψ̂1, . . . , ψ̂p satis-

fying the standard PLS constraints,
∫
I
∫
I ψ̂jψ̂k K̂ = 0 for j ̸= k (compare

(2.10)), using for example the modified Gram-Schmidt algorithm. Then we
can calculate an empirical version β̂1, . . . , β̂p of β1, . . . , βp , the latter defined
in section 2.1 (taking there the ψjs to be the empirical PLS basis func-
tions), by finding the sequence v1, . . . , vp that minimises (2.5). Finally, we
can estimate g by

g̃p(x) = Ȳ +

p∑
j=1

β̂j

∫
I
(x− X̄) ψ̂j . (4.6)

In exact arithmetic, ĝ∗p and γ̂
∗ would be equal to, respectively, ĝp and γ̂ de-

fined in (4.5) and (4.2). Likewise, g̃p, would be equal to ĝp. In practice, these
approximations differ because we can only work in finite precision arith-
metic, and the algorithms leading to ĝ∗p and g̃p are much more numerically
stable than the one leading to ĝp. In general, for prediction we found the al-
gorithm leading to g̃p to be preferable. However, the algorithm of section 4.1
is important for developing intuition and assembling theoretical arguments.
On the theoretical side, the simple, explicit formulae in section 4.1 permit
us to establish consistency and derive rates of convergence. Of course, the
equivalence between g̃p, ĝp and ĝ∗p implies that, in order to derive the the-
oretical properties of g̃p and ĝ∗p, it suffices to derive them for ĝp (all three
have the same theoretical properties). On the intuitive side we note that the
explicit formulation of the quantities involved in our empirical algorithms
for APLS gives a much clearer account of what partial least-squares does,
than the standard empirical iterative PLS algorithm in appendix A.2.

5. Asymptotic properties of empirical APLS.
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12 A. DELAIGLE AND P. HALL

5.1. Introduction. To our knowledge, the only existing theoretical results
for functional PLS are those of Preda and Saporta (2005a), who state gen-
eralisations to the functional data context of some results of Höskuldsson
(1988). Although they are of interest, the theoretical arguments there are
iterative and not explicit, and consistency of the PLS approximation is men-
tioned without a proof and without regularity conditions or convergence
rates. This is because those results are based on the iterative empirical ap-
proximation of PLS, and the inexplicit form of the algorithm (see appendix
A.2) apparently makes it very difficult to derive explicit theoretical results.

Our alternative formulation, APLS, of the functional partial least-squares
problem permits us to derive many properties. As already explained in sec-
tion 4.2, the theoretical properties of the empirical approximations ĝ∗p and
g̃p in section 4.2 are identical to those of ĝp in section 4.1.

5.2. Main results. Define µ = E(X), a function, and observe that we
can write:

K̂ = K + n−1/2 ξ + n−1 η , K̂(b) = K(b) + n−1/2 ξ0 + n−1 η0 , (5.1)

where ξ and η are functions of two variables, ξ0 and η0 are functions of a
single variable, each equals OP (1). More specifically,

ξ(s, t) =
1

n1/2

n∑
i=1

(1−E) {Xi(s)− µ(s)} {Xi(t)− µ(t)} ,

ξ0(t) =
1

n1/2

n∑
i=1

(1−E) {Xi(t)− µ(t)} {Yi − E(Yi)} ,

η(s, t) = −n {X̄(s)− µ(s)} {X̄(t)− µ(t)} ,
η0(t) = −n {X̄(t)− µ(t)} (Ȳ − EȲ ) .

For any square-integrable function L of two variables, define |||L|||2 =
∫
I
∫
I L

2

and put R1 = |||K|||+ n−1/2 |||ξ|||+ n−1 |||η|||, R2 = |||ξ|||+ |||η||| . Define too

ζj(t) =

∫
I
Kj(b)(s) ξ(s, t) ds , (5.2)

and

ξj = Kj−1(ξ0) +

j−2∑
k=0

Kk(ζj−k−1) , (5.3)

∥ηj∥ ≤ Rj−1
1 ∥η0∥+R2

j−1∑
k=1

Rj−k−1
1

(∥∥Kk(b)
∥∥+

∣∣∣∣∣∣Kk−1
∣∣∣∣∣∣ ∥ξ0∥)
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PARTIAL LEAST SQUARES 13

+R2 |||ξ|||
j−1∑
k=1

Rj−k−1
1

k−2∑
ℓ=0

∣∣∣∣∣∣Kℓ
∣∣∣∣∣∣ ∥∥Kk−ℓ−1(b)

∥∥ . (5.4)

Theorem 5.1 below requires no assumptions beyond the model at (2.1),
and the condition that∫

I
b2 <∞ , E∥X∥4 <∞ , E

(
ϵ2
)
<∞ . (5.5)

(Recall that ϵ, satisfying E(ϵ |X) = 0, is the error in the model at (2.1).)
Note that, under (5.5), it follows from (5.3) and (5.4) that ∥ξj∥ + ∥ηj∥ =

OP (n
−1/2). Theorem 5.1 shows that the empirical approximations K̂j(b) to

the basis functions used by APLS, converge in probability to their theoretical
values Kj(b) at a rate n−1/2.

Theorem 5.1. If (5.5) holds then, for each j ≥ 1,

K̂j(b) = Kj(b) + n−1/2 ξj + n−1 ηj , (5.6)

where ξj is defined at (5.3) and ηj satisfies (5.4).

The next theorem shows that the matrix entries ĥjk, defined at (4.3), con-
verge in probability to their theoretical counterparts hjk, at (3.8), at a rate
n−1/2. This theorem will be used to establish consistency of the empirical
coefficients γ̂j used in the empirical APLS expansion at (4.5). Note that,
since |||K|||2 =

∑
j θ

2
j , the condition 0 < θ1 < |||K||| imposed in Theorem 5.2

is equivalent to asserting that at least two values of θj are nonzero. The
condition |||K||| < 1 can be ensured by simply changing the scale on which
X is measured, and so is imposed without loss of generality.

Theorem 5.2. Assume (5.5), that θ1, θ2, . . . is the eigenvalue sequence
in the representation (2.6), ordered such that (2.7) holds, and that 0 < θ1 <
|||K||| < 1. Then ∥ηj∥ = Op(|||K|||j) uniformly in 1 ≤ j ≤ C n1/2, and

ĥjk = hjk + n−1/2

∫
I

{
ξj+1K

k(b) +Kj+1(b) ξk
}

+Op

(
n−1 θj1 |||K|||k + n−2 |||K|||j+k

)
, (5.7)

uniformly in 1 ≤ j ≤ k ≤ C n1/2 as n→ ∞, for each C > 0.

Our next result, Theorem 5.3, applies Theorems 5.1 and 5.2 to derive a
stochastic expansion for the difference between the theoretical approximant
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14 A. DELAIGLE AND P. HALL

gp(x), at (3.10), and its estimator ĝp(x), at (4.5). Let ∆1jk =
∫
I{ξj+1K

k(b)+

Kj+1(b) ξk}, denoting the coefficient of n−1/2 in the expansion (5.7), and put
∆1 = (∆1jk), a p × p matrix, and δ = (∆101, . . . ,∆10p)

T, a p-vector. Also,
let λ = λ(p) be the smallest eigenvalue of the p × p matrix H = (hjk),
introduced in section 3.2.

Theorem 5.3. Under the conditions of Theorem 5.2, and if each θj > 0,∥∥∥γ̂ −
{
γ + n−1/2H−1 (δ −∆1 γ)

}∥∥∥ = Op

(
n−1 λ−3

)
, (5.8)

ĝp(x)− gp(x) = Ȳ − EY + n−1/2
p∑

j=1

[{
H−1(δ −∆1 γ)

}
j

∫
I
(x− EX)Kj(b)

+ γj

∫
I

{
(x− EX) ξj − n1/2 (X̄ − EX)Kj(b)

}]
+Op

(
n−1 λ−1 ∥γ∥+ n−1 λ−3

)
, (5.9)

uniformly in functions x and integers p for which ∥x∥ ≤ C, 1 ≤ p ≤ C n1/2

and n1/2λ→ ∞, where C > 0 is fixed but arbitrary.

Note that, by (3.8), |hjk| ≤ θj+k+1
1 ∥b∥2, and therefore ∥Hv∥ ≤ C1 ∥v∥

for all p-vectors v, where the constant C1 does not depend on p. (Here we
have used the condition θ1 < 1, which we introduced in Theorem 5.2 and
also imposed in Theorem 5.3.) Hence λ ≤ C1 for all p. Note too that since,
for finite p, H is nonsingular (see section 3.2), then its smallest eigenvalue
λ = λ(p) is positive. On the other hand, when p = ∞ the sequence γ1, γ2 . . . ,
that minimises (3.5) is not unique (see section 3.2), and so we can have λ→ 0
as p → ∞. The condition n1/2λ → ∞ imposed in Theorem 5.3 reflects this
property, and essentially puts an upper bound to the speed at which p can
tend to infinity as a function of n.

5.3. Implications of the main theorems and additional results.

5.3.1. Consistency and rates of convergence. Let X0 have the same dis-
tribution as X1 . . . , Xn but be independent of those random functions, and
let ∥ · ∥pred denote the predictive L2 norm, conditional on X1 . . . , Xn: if W

is a random variable then ∥W∥pred =
{
E
(
W 2

∣∣ X1, . . . , Xn

)}1/2
. For exam-

ple, taking W = ĝp(X0)− g(X0) we obtain a measure of the accuracy with
which ĝp(X0) predicts g(X0). We shall show in section 7.6 that if p = p(n) is
chosen to diverge no faster than n1/2, and sufficiently slowly to ensure that

n−1/2 λ−1∥γ∥+ n−1 λ−3 → 0 (5.10)
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as n→ ∞, then

∥ĝp(X0)−g(X0)∥pred = Op

{
n−1/2 λ−1(1+∥γ∥)+n−1 λ−3+tp(γ1, . . . , γp)

1/2
}
,

(5.11)
where tp is as at (3.5). It follows from Theorem 3.2 that if all of the eigen-
values θj are nonzero then tp(γ1, . . . , γp) → 0 as p→ ∞ (As remarked in the
paragraph immediately below that theorem, the condition that each θj is
nonzero can be dropped.) Therefore, (5.10) implies that ĝp(X0) is consistent
for g(X0).

Additionally, Theorems 5.1–5.3 make it clear that, provided p does not

diverge too fast as a function of n, the quantities supj≤p ∥K̂j(b) −Kj(b)∥,
sup1≤j,k≤p |ĥjk − hjk| and supj≤p |γ̂j − γj | (see (5.12) below) converge in
probability to zero as n diverges.

5.3.2. Results in supremum metrics. For our expansions of the function

K̂j(b) at (5.6), and of the vector γ̂ at (5.8), our bounds on remainder terms
are given in L2 metrics. In either case they can be extended to the supremum
metric. For example, (5.8) itself implies that:

sup
1≤j≤p

∣∣∣γ̂j − γj − n−1/2
{
H−1 (δ −∆1 γ)

}
j

∣∣∣ = Op

(
n−1 λ−3

)
. (5.12)

Theorem 5.4, below, states a version of (5.6) in the L∞ metric. It makes
use of the following regularity conditions:

for both Di ≡ 1 and Di ≡ Yi ,

sup
t∈I

∣∣∣∣ 1

n1/2

n∑
i=1

{Xi(t)Di − EXi(t)Di}
∣∣∣∣ = Op(1) , (5.13)

sup
t∈I

∫
I

∣∣∣∣ 1

n1/2

n∑
i=1

(1− E) {Xi(s)− EXi(s)} {Xi(t)− EXi(t)}
∣∣∣∣2 ds = Op(1) .

(5.14)
Conditions (5.13) and (5.14) will be discussed in appendix A.1.

Theorem 5.4. If (5.5), (5.13) and (5.14) hold then supt∈I |ξj(t)| =
Op(1) for each j, and

sup
t∈I

∣∣∣K̂j(b)(t)−
{
Kj(b)(t) + n−1/2 ξj(t)

}∣∣∣ = Op

(
n−1

)
.
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16 A. DELAIGLE AND P. HALL

5.3.3. Interpreting stochastic expansions. The coefficients of n−1/2 in the

expansions of K̂j(b)(t)−Kj(b)(t), ĥjk−hjk, γ̂j−γj and γ̂p(x)−γp(x) in (5.6),
(5.7), (5.8) (see also (5.12)) and (5.9), respectively, are each equal to n−1

multiplied by a sum of n independent and identically distributed random
variables with zero mean, plus a term that equals Op(n

−1). In these cases,
for fixed (j, t), (j, k), j and (p, x), respectively, the independent random
variables do not depend on n. Therefore, their variances can be computed
easily.

For example, in the case of ĥjk − hjk, using (5.7) and the definitions of ξ
and ξ0, we have, under the conditions of Theorem 5.2 and for each fixed j
and k,

ĥjk = hjk + n−1
n∑

i=1

Zijk +Op

(
n−1

)
, (5.15)

where the independent and identically distributed random variables Z1jk, . . . ,
Znjk are given by

Zijk = (1− E)

∫
I

(
Kk(b)(u)

[
{Yi − E(Yi)}

∫
I
Kj(u, t) {Xi(t)− µ(t)} dt

+

j−1∑
ℓ=0

∫
I
{Xi(t)− µ(t)}Kℓ(t, u) dt

∫
I
Kj−ℓ(b)(s) {Xi(s)− µ(s)} ds

]
+Kj+1(b)(u)

[
{Yi −E(Yi)}

∫
I
Kk−1(u, t) {Xi(t)− µ(t)} dt

+

k−2∑
ℓ=0

∫
I
{Xi(t)− µ(t)}Kℓ(t, u) dt

∫
I
Kk−ℓ−1(b)(s) {Xi(s)− µ(s)} ds

])
du .

The distribution of Zijk does not depend on n, and, under the assumption
of finite fourth moment of X and finite second moment of ϵ (see (5.5)), Zijk

has finite variance σ2jk, say. Hence, for each fixed j and k it follows from

(5.15) that n1/2 (ĥjk − hjk) is asymptotically normal N(0, σ2jk).

5.3.4. Hankel matrix properties. In section 3.2 we demonstrated that
αj =

∫
xj m(dx), where m is the measure that places mass (βPCr )2 θr at the

point θr for r ≥ 1; m has no mass anywhere else. Therefore the p× p matrix
H = (αj+k) is a Hankel matrix for which the associated nonnegative mea-
sure, m, is discrete and compactly supported. The latter property implies
that m is completely determined by its moments αj , and hence that the
Hankel matrix is “determinate”; see, for example, Berg and Szwarc (2010).
In such cases the smallest eigenvalue of H can converge to zero arbitrarily
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fast as p diverges (Berg and Szwarc, 2010, Theorem 2.5), although more is
known about the case where m is a continuous than that of a discrete mea-
sure, and it is particularly challenging to develop general theory describing
properties of H−1 in the context of our measures m. (See Lascoux (1990)
and Hou et al. (2003) for access to the literature on inverses of Hankel ma-
trices and their determinants.) Nevertheless, as we noted in section 3.2, H
is generally nonsingular for all p.

6. Numerical illustrations. In this section we illustrate, numerically,
in a few examples, the fact that the algorithms in section 4.2 and appendix
A.2 do indeed solve the same problem. We also illustrate the main difference
between the PLS basis and the PCA basis, namely that PLS can capture the
interaction between X and Y using a smaller number of terms than PCA.

In our first illustration, we take the Xis from a real data study, and
generate the Yis according to the linear model at (2.1). By choosing the
population in this way we can represent, in simulations, the vagaries of
real data, but can still compare the performance of our methodology with
the “truth.” We take the Xi curves from a benchmark Phoneme dataset,
which can be downloaded from www-stat.stanford.edu/ElemStatLearn.
In these data,Xi(t) represents log-periodograms constructed from recordings
of different phonemes. The periodograms are available at 256 equispaced
frequencies t, which for simplicity we denote by t = 1, 2, . . . , 256. Hence,
in this example I = [1, 256]. See Hastie et al. (2009) for more information
about this dataset. We used the N = 1717 data curves Xi(t) that correspond
to the phonemes “aa” as in “dark” and “ao” as in “water”.

We computed the first J = 20 empirical PCA basis functions ϕ̂1(t), . . . ,
ϕ̂20(t), and considered four different curves b, which we constructed by taking
b(t) =

∑J
j=1 ajϕ̂j(t) for four different sequences of ajs: (i) aj = (−1)j ·1{j ≤

5}; (ii) aj = (−1)j · 1{6 ≤ j ≤ 10}; (iii) aj = (−1)j · 1{11 ≤ j ≤ 15}; (iv)
aj = (−1)j · 1{16 ≤ j ≤ 20}. These four models were chosen to illustrate
clearly the advantages of the PLS basis over the PCA basis. Example (i)
illustrates a situation particularly favourable to PCA, where the interaction
between X and Y can be represented by the first few PCA basis functions.
There we do not expect that PCA will need many more terms than PLS
to achieve a small prediction error. On going from example (i) to example
(iv), the function b is represented by five consecutively indexed PCA basis
functions in each case, but with their indices successively larger. However, as
we shall see below, in those cases too, PLS manages to construct a basis that
captures the interaction between X and Y using only the first few terms.

In the four cases, for i = 1, . . . , N we generated the Yis by taking Yi =
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18 A. DELAIGLE AND P. HALL∫
I Xib + ϵi, where ϵi ∼ N(0, σ2), and where 5σ2 was equal to the empirical
variance of the

∫
I bXis calculated from the N observations. Then, in each

case, we randomly split these N observations in two parts: a training sample
of size n, and a test sample of size N − n. We did this 200 times for each of
n = 30, n = 50 and n = 100, so for each setting we generated 200 test and
training samples.

For each set of test and training samples generated in this way, we con-
structed our predictor using only the test sample, and then we applied it
to predict

∫
I bXi for each Xi in the associated training sample. In other

words, we constructed X̄, Ȳ and b̂ from the training sample only, where
b̂ was the empirical version of bp calculated either via the first p terms of
the PLS basis (calculated from the algorithm in appendix A.2 or the second
algorithm of section 4.2), or via the first p terms of the PCA basis, for each
of p = 1, . . . , 10. Then, for each observation Xi in the test sample, we calcu-
lated the predictor Ŷi = Ȳ +

∫
I b̂(Xi− X̄) of

∫
I bXi. Note that this predictor

includes the estimator Ȳ −
∫
I bX̄i of the intercept because, although our

data were generated from a model with no intercept, in practice we are not
supposed to know this.

To quantify the quality of prediction, we calculated the prediction error
PE = (N − n)−1

∑N−n
i=1 (Ŷi −

∫
I bXi)

2 in each case, for each method, and
for each test sample. In figure 1 we show boxplots of these prediction errors
calculated in each case from the 200 test samples. Note that here the two
PLS algorithms gave exactly the same estimators, and so the boxplots only
show the results for the standard PLS algorithm and for the PCA method.
These boxplots show that as the information about the interaction between
X and Y moves further away in the sequence of ϕ̂js (that is, going from
case (i) to case (iv)), PLS can capture the interaction using fewer terms
than PCA. For example, in case (i), PLS took p = 3 components to reach
the prediction error that PCA reached with p = 5, but in case (iv), the
prediction error was already very small for PLS with p = 10, and was still
very large for PCA with p = 10. We also calculated the integrated squared
error ISE =

∫
I (̂b− b)

2 for each method and test sample. In figure 2 we show
boxplots of these ISEs calculated from the 200 test samples, for models (i),
(iii) and (iv). We can see that the PLS estimator of b needs less components
than the PCA estimator to reach small ISE values.

In our second example we took the orange juice data which comprise N =
216 observations

(
Xi(t), Yi

)
, i = 1, . . . , N , where each Yi is the saccharose

content of a sample of orange juice and Xi is a curve representing the first
derivative of near-infrared spectra of the juice at 700 equispaced points t.
We take t = 1, . . . , 700 (hence I = [1, 700]). The data can be found at
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Fig 1. Boxplots of the prediction error using the first p PLS components (first group of 10
boxes) or the first p PCA components (last group of 10 boxes), calculated from 200 samples
of sizes n = 30 (first column) or n = 100 (second column) generated from the phoneme
data. The curve b is that in case (i), (ii), (iii) and (iv), in respectively row 1, 2, 3 and
4. From left to right, each group of 10 boxplots addresses the settings indexed by p = 1 to
p = 10.

www.ucl.ac.be/mlg/index.php?page=DataBases. As with our simulated
data above, we split the observations randomly into a training sample of
size n and a test sample of size N − n, for each of n = 30, 50 and 100.
We did this 200 times for each n. Then in each case we calculated our
predictor, as above, from the training sample, and applied it for predicting∫
I Xib for the corresponding test sample. Here we did not know the true

model, so we calculated an estimator of the prediction error as P̂E = (N −
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Fig 2. Boxplots of the ISE of b̂ using the first p PLS components (first group of 10 boxes)
or the first p PCA components (last group of 10 boxes), calculated from 200 samples of
sizes n = 30 (first row) or n = 100 (second row) generated from the phoneme data. The
curve b is that in case (i), (iii) and (iv), in respectively column 1, 2 and 3. From left to
right, each group of 10 boxplots addresses the settings indexed by p = 1 to p = 10.

n)−1
∑N−n

i=1 (Ŷi − Yi)
2, for each (Xi, Yi) in the test sample. In this way we

obtained 200 values of P̂E for each n. Figure 3 shows, for each n, boxplots
of these 200 P̂Es, for p = 1 to 8. As above, the two PLS algorithms (the
algorithm in appendix A.2 and the second algorithm of section 4.2) gave
exactly the same results, except for p = 8 where the numerical roundings of
both methods differed somewhat. Therefore we show the boxplots for both
algorithms. In this example too we can see that the two PLS algorithms
clearly solve the same problem, and that PLS needs fewer terms (i.e. p is
smaller) to capture the same interactions as PCA. This can be advantageous
when computing time is an issue, for example when a linear prediction is
associated with a complex nonparametric procedure. For example, in Ferraty
and Vieu (2006), the linear fit is used in combination with nonparametric
estimators of E(Y |X).

7. Technical arguments.

7.1. Proof of Theorem 3.1. Defining σ2 = var(ϵ) we see that the right-
hand side of (2.9) can be expressed as

cov

{(∫
I
bX

)
−

p−1∑
j=1

(∫
I
b ψj

)(∫
I
X ψj

)
,

∫
I
X ψp

}
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Fig 3. Boxplots of the estimated prediction error using the first p PLS components calcu-
lated by the algorithm of appendix A.2 (first group of 8 boxes) or the second algorithm of
section 4.2 (second group of 8 boxes, denoted by PLS2), or the first p PCA components
(last group of 8 boxplots). Each box was calculated from 200 samples of sizes n = 30 (first
column), n = 50 (second column), or n = 100 (third column) drawn randomly from the
orange data. From left to right, each group of 8 boxplots is for p = 1 to p = 8.

=

∫
I

∫
I
b ψpK −

p−1∑
j=1

(∫
I
b ψj

)(∫
I

∫
I
ψj ψpK

)
.

The partial derivative of the right-hand side here, with respect to ψp, equals

K

{
b−

p−1∑
j=1

(∫
I
b ψj

)
ψj

}
. (7.1)

The equation in ck at (3.2) is the result of adjoining Lagrange multipliers
on the right-hand side so as to accommodate the first p − 1 constraints in
(2.10). The factor c0 on the right-hand side of (3.1) accommodates the last
constraint in (2.10).

7.2. Proof of Theorem 3.2. Recall that C(I) is the space of all square-
integrable functions on I, and suppose b =

∑
j β

PC
j ϕj ∈ C(I). Write

Cp(I) for the p-dimensional subspace of C(I) generated by the PCA ba-
sis functions ϕ1, . . . , ϕp, and let Kp denote the transformation that takes
bp ≡

∑
1≤j≤p β

PC
j ϕj ∈ Cp(I) to

∑
1≤j≤p θjβ

PC
j ϕj . Now,

(θ1 I −Kp) . . . (θp I −Kp) bp = 0

for all bp ∈ Cp(I). Therefore,

a0 bp + a1Kp(bp) + . . .+ apK
p
p (bp) = 0 (7.2)

for all bp ∈ Cp(I), where a0, . . . , ap are constants and a0 = θ1 . . . θp. In
particular, a0 is nonzero, and so (7.2) implies that, for constants c1, . . . , cp,

bp = c1K(bp) + . . .+ cpK
p(bp) . (7.3)
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Let Pp denote the projection operator that takes b =
∑

j β
PC
j ϕj ∈ C(I)

to Pp(b) = bp ∈ Cp(I). Since Pp and K commute then Kj(bp) = Kj Pp(b) =
PpK

j(b). Therefore (7.3) implies that bp = Pp{c1K(b) + . . .+ cpK
p(b)}, or

equivalently,
Pp

[
b−

{
c1K(b) + . . .+ cpK

p(b)
}]

= 0 . (7.4)

In view of (7.4), if we let D(I) denote the vector space generated by K(b),
K2(b), . . ., and if we define Pp{D(I)} = {Pp(z) : z ∈ D(I)}, then Pp(b) ∈
Pp{D(I)} for all p. Now, Pp{D(I)} ⊆ D(I), which is closed under limit
operations in L2. Therefore, the limit as p → ∞ of Pp(b), i.e. b, must be in
D(I).

7.3. Proof of Theorem 5.1. Assume it can be proved that (5.6) holds,
with ξj and ηj satisfying (5.3) and (5.4), for a particular j ≥ 1; in view of
(5.1), (5.6) is valid for j = 1. Then,

K̂j+1(b)(t) =

∫
I
K̂j(b)(s) K̂(s, t) ds

=

∫
I

{
Kj(b) + n−1/2ξj + n−1ηj

}
(s)

(
K + n−1/2ξ + n−1η

)
(s, t) ds

= Kj+1(b)(t) + n−1/2

∫
I

{
Kj(b)(s) ξ(s, t) + ξj(s)K(s, t)

}
ds

+ n−1

∫
I

{
Kj(b)(s) η(s, t) + ηj(s)K(s, t) + ξj(s) ξ(s, t)

}
ds

+ n−3/2

∫
I
{ξj(s) η(s, t) + ηj(s) ξ(s, t)} ds

+ n−2

∫
I
ηj(s) η(s, t) ds . (7.5)

Therefore, taking ξj+1 to be given by the coefficient of n−1/2 in (7.5), and
recalling the definition of ζj at (5.2), we have:

ξj+1(t) =

∫
I

{
Kj(b)(s) ξ(s, t) + ξj(s)K(s, t)

}
ds

= K(ξj)(t) + ζj(t) = K2(ξj−1)(t) +K(ζj−1)(t) + ζj(t) ,

which, on iteration, gives (5.3).
Finally we derive the bound at (5.4) on the remainder, again arguing by

induction; assuming that (5.4) holds for j we establish it for j + 1. Taking
ηj+1 to equal n times the sum of the terms in n−1, n−3/2 and n−2 in (7.5),
we deduce that

ηj+1(t) =

∫
I

{
Kj(b)(s) η(s, t) + ηj(s)K(s, t) + ξj(s) ξ(s, t)

}
ds
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+ n−1/2

∫
I
{ξj(s) η(s, t) + ηj(s) ξ(s, t)} ds+ n−1

∫
I
ηj(s) η(s, t) ds .

Therefore,

∥ηj+1∥ ≤ ∥Kj(b)∥ |||η|||+ ∥ηj∥ |||K|||+ ∥ξj∥ |||ξ|||+ n−1/2 (∥ξj∥ |||η|||+ ∥ηj∥ |||ξ|||)
+ n−1 ∥ηj∥ |||η|||

≤
(∥∥Kj(b)

∥∥+ ∥ξj∥
)
R2 + ∥ηj∥R1

≤
(∥∥Kj(b)

∥∥+ ∥ξj∥
)
R2 +

{(∥∥Kj−1(b)
∥∥+ ∥ξj−1∥

)
R2 + ∥ηj−1∥R1

}
R1

=
{(∥∥Kj(b)

∥∥+ ∥ξj∥
)
+

(∥∥Kj−1(b)
∥∥+ ∥ξj−1∥

)
R1

}
R2 + ∥ηj−1∥R2

1

≤
{ j∑

k=1

(∥∥Kk(b)
∥∥+ ∥ξk∥

)
Rj−k

1

}
R2 + ∥η1∥Rj

1 ,

where the last identity follows on iteration. Observe too that, by (5.1), η1
= η0. Therefore,

∥ηj+1∥ ≤ Rj
1 ∥η0∥+R2

j∑
k=1

Rj−k
1

(∥∥Kk(b)
∥∥+ ∥ξk∥

)
. (7.6)

Note too that, by (5.2), ∥ζj∥ ≤ ∥Kj(b)∥ |||ξ|||, and so, by (5.3),

∥ξk∥ ≤
∣∣∣∣∣∣Kk−1

∣∣∣∣∣∣ ∥ξ0∥+ |||ξ|||
k−2∑
ℓ=0

∣∣∣∣∣∣Kℓ
∣∣∣∣∣∣ ∥∥Kk−ℓ−1(b)

∥∥ .
Hence, by (7.6),

∥ηj+1∥ −Rj
1 ∥η0∥ ≤ R2

j∑
k=1

Rj−k
1

{∥∥Kk(b)
∥∥+

∣∣∣∣∣∣Kk−1
∣∣∣∣∣∣ ∥ξ0∥

+ |||ξ|||
k−2∑
ℓ=0

∣∣∣∣∣∣Kℓ
∣∣∣∣∣∣ ∥∥Kk−ℓ−1(b)

∥∥}

= R2

j∑
k=1

Rj−k
1

(∥∥Kk(b)
∥∥+

∣∣∣∣∣∣Kk−1
∣∣∣∣∣∣ ∥ξ0∥)

+R2 |||ξ|||
j∑

k=1

Rj−k
1

k−2∑
ℓ=0

∣∣∣∣∣∣Kℓ
∣∣∣∣∣∣ ∥∥Kk−ℓ−1(b)

∥∥ . (7.7)

Result (5.4) for j + 1 follows from (7.7).
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7.4. Proof of Theorem 5.2. The representation (5.6) implies that

ĥjk = hjk + n−1/2

∫
I

{
ξj+1K

k(b) +Kj+1(b) ξk
}
+ n−1Rjk , (7.8)

where

ĥjk =

∫
I
K̂j+1(b) K̂k(b) , hjk =

∫
I
Kj+1(b)Kk(b) ,

|Rjk| ≤
∣∣∣∣ ∫

I

{
ξj+1 ξk +Kj+1(b) ηk +Kk(b) ηj+1

}
+ n−1/2

∫
I
(ηj+1 ξk + ξj+1 ηk) + n−1

∫
I
ηj+1 ηk

∣∣∣∣
≤ ∥ξj+1∥ ∥ξk∥+

∥∥Kj+1(b)
∥∥ ∥ηk∥+ ∥∥Kk(b)

∥∥ ∥ηj+1∥
+ n−1/2 (∥ηj+1∥ ∥ξk∥+ ∥ξj+1∥ ∥ηk∥) + n−1 ∥ηj+1∥ ∥ηk∥ . (7.9)

Next we bound |Rjk|. Observe that |||Kk|||2 =
∑

j θ
2k
j = O(θ2k1 ), ∥Kk(b)∥2

=
∑

j θ
2k
j (

∫
I bϕj)

2 = O(θ2k1 ) and |||η|||+|||ξ|||+∥η0∥+∥ξ0∥ = Op(1) as n→ ∞.

Hence, by (5.2), ∥ζj∥ ≤ ∥Kj(b)∥ |||ξ||| = Op(θ
j
1), uniformly in j ≥ 1, and

therefore by (5.3),

∥ξj∥ = Op

(
θj1 +

j−2∑
k=0

θk1 θ
j−k−1
1

)
= Op

(
j θj1

)
, (7.10)

uniformly in j ≥ 1. Note too that

Rj
1 =

{(
|||K|||+ n−1/2 |||ξ|||+ n−1 |||η|||

)j}
= Op

(
|||K|||j

)
,

uniformly in 1 ≤ j ≤ C n1/2, for any C > 0. More simply, R2 = Op(1).
Hence, by (5.4),

∥ηj∥ = Op

(
|||K|||j +

j−1∑
k=1

|||K|||j−k−1 θk1 +

j−1∑
k=1

|||K|||j−k−1 k θk1

)
= Op

(
|||K|||j

)
,

(7.11)

uniformly in 1 ≤ j ≤ C n1/2. (Here we have used the property 0 < θ1 <
|||K||| < 1.) Combining (7.9)–(7.11) we find that:

Rjk = Op

{
jk θj+k

1 + θj1 |||K|||k + θk1 |||K|||j (7.12)
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+ n−1/2
(
|||K|||j θk1 + |||K|||k θj1

)
+ n−1 |||K|||j+k

}
= Op

(
θj1 |||K|||k + n−1 |||K|||j+k

)
, (7.13)

uniformly in 1 ≤ j ≤ k ≤ C n1/2. Theorem 5.2 follows from (7.8) and (7.13).

7.5. Proof of Theorem 5.3. From (3.10), (3.11) and (4.5) we deduce that:

ĝp(x)− gp(x)− (Ȳ − EY )

=

p∑
j=1

{
γ̂j

∫
I
(x− X̄) K̂j(b)− γj

∫
I
(x− EX)Kj(b)

}

=

p∑
j=1

[(
γ̂j − γj

) ∫
I
(x− EX)Kj(b) + γj

∫
I
(x− EX)

{
K̂j(b)−Kj(b)

}
− γj

∫
I
(X̄ − EX)Kj(b) +

(
γ̂j − γj

) ∫
I
(x− EX)

{
K̂j(b)−Kj(b)

}
− (γ̂j − γj)

∫
I
(X̄ − EX)Kj(b)− γ̂j

∫
I
(X̄ − EX)

{
K̂j(b)−Kj(b)

}]
.

(7.14)

Combining (5.6), (7.10) and the bound ∥ηj∥ = Op(|||K|||j), valid uniformly
in 1 ≤ j ≤ C n1/2 for each C > 0 and given in Theorem 5.2, we deduce that∥∥K̂j(b)−Kj(b)

∥∥ ≤ n−1/2 ∥ξj∥+ n−1 ∥ηj∥ = Op

(
n−1/2 j θj1 + n−1 |||K|||j

)
,

(7.15)
uniformly in 1 ≤ j ≤ C n1/2 for each C > 0.

More simply, ∥X̄−EX∥ = Op(n
−1/2). Combining this bound with (7.10),

(7.14) and the properties ∥x∥ ≤ C and ∥Kj(b)∥ = O(θj1), we deduce that

ĝp(x)− gp(x)− (Ȳ − EY )

=

p∑
j=1

[(
γ̂j − γj

) ∫
I
(x− EX)Kj(b)

+ γj

∫
I
(x− EX)

{
K̂j(b)−Kj(b)

}
− γj

∫
I
(X̄ − EX)Kj(b)

]
+Op

{
n−1/2

p∑
j=1

(
|γ̂j − γj |+ n−1/2

∣∣γ̂j∣∣) (j θj1 + n−1/2 |||K|||j
)}

,

(7.16)
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uniformly in 1 ≤ p ≤ C n1/2 and ∥x∥ ≤ C, for each C > 0. Using (5.6) and
the bound ∥ηj∥ = Op(|||K|||j), we deduce from (7.16) that

ĝp(x)−gp(x)− (Ȳ − EY )

=

p∑
j=1

[(
γ̂j − γj

) ∫
I
(x− EX)Kj(b)

+ γj

∫
I

{
n−1/2 (x− EX) ξj − (X̄ − EX)Kj(b)

}]
+Op

[
n−1/2

p∑
j=1

{
|γ̂j − γj |

(
j θj1 + n−1/2 |||K|||j

)
+ n−1/2 (|γ̂j |+ |γj |) |||K|||j

}]
, (7.17)

uniformly in 1 ≤ p ≤ C n1/2 and ∥x∥ ≤ C, for each C > 0.
Given any p× p matrix M , define its norm by ∥M∥ = supv : ∥v∥=1 ∥Mv∥.

Writing ∆ for a particular p×p matrix, and recalling that λ = λ(p) denotes
the smallest eigenvalue of H, we have ∥∆H−1∥ ≤ ∥∆∥/λ. Therefore, if
Ĥ = (ĥjk) is the p× p matrix obtained when ĥjk is defined as at (4.3), and

we put ∆ = Ĥ−H, then, provided that ∥∆∥/λ ≤ ρ where ρ ∈ (0, 1) is fixed,
we have:

Ĥ−1 =
(
I +H−1∆

)−1
H−1 =

[
I −H−1∆+Op

{
(∥∆∥/λ)2

}]
H−1 . (7.18)

Here the matrix M represented by Op{(∥∆∥/λ)2} is interpreted as having
the property ∥Mv∥ ≤ (1 − ρ)−1 (∥∆∥/λ)2 ∥v∥ for all p-vectors v (provided
that ∥∆∥/λ ≤ ρ), where on this occasion ∥Mv∥ and ∥v∥ denote vector norms
of the indicated quantities, and ∥∆∥ is the matrix norm of ∆.

We know from (5.7) that ĥjk = hjk + n−1/2∆1jk + n−1∆2jk, where

∆1jk =

∫
I

{
ξj+1K

k(b)+Kj+1(b) ξk
}
, |∆2jk| = Op

(
θj1 |||K|||k+n−1 |||K|||j+k

)
,

(7.19)
the latter property holding uniformly in 1 ≤ j ≤ k ≤ C n1/2. Note too that,
by (7.10), ∥ξj∥ = Op(j θ

j
1), uniformly in j ≥ 1, and that ∥Kj(b)∥ = O(θj1),

so |∆1jk| = Op{max(j, k) θj+k
1 }. Therefore, if we define ∆jk = ĥjk − hjk

then, since θ1 < |||K||| < 1, we have: n
∑∑

j,k≤p ∆2
jk = Op(1), uniformly

in p ≤ C n1/2. Hence, ∥∆∥ = Op(n
−1/2), uniformly in p ≤ C n1/2, where

∆ = (∆jk) is a p × p matrix. Therefore, if p is chosen to diverge so slowly
that p = O(n1/2) and λ = λ(p) satisfies n1/2 λ→ ∞ then, by (7.18),

Ĥ−1 =
{
I −H−1∆+Op

(
n−1 λ−2

)}
H−1 , (7.20)
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uniformly in p ≤ C n1/2. (Here Op(n
−1 λ−2) denotes a p × p matrix, M

say, for which ∥Mv∥/∥v∥ = Op(n
−1 λ−2) uniformly in nonzero p-vectors

v.) Note too that, if we define ∆ℓ to be the p × p matrix with (j, k)th
element ∆ℓjk, for ℓ = 1, 2, then, in view of the second formula at (7.19),∑∑

j,k≤p ∆2
2jk = Op(1), and so ∥∆2∥ = Op(1) uniformly in p ≤ C n1/2.

Therefore (7.20) and the property ∆ = Ĥ −H = n−1/2∆1 + n−1∆2 imply
that

Ĥ−1 =
{
I − n−1/2H−1∆1 +Op

(
n−1 λ−2

)}
H−1 . (7.21)

(here we used the fact that λ ≤ h1,1 = O(1)).

Recalling the definitions of ĥjk, α̂j and αj at (4.3), (4.4) and (3.9), we

deduce that α̂j = ĥ0j . Noting that result (5.7) can be extended to ĥ0j ,
we have that α̂j = αj + n−1/2∆10j + n−1∆20j , where ∆10j and ∆20j are

given by (7.19). Note too that, by (4.2) and (3.7), γ̂j = (Ĥ−1α̂)j and γj =
(H−1α)j , where α = (α1, . . . , αp)

T and α̂ = (α̂1, . . . , α̂p)
T. Since Kj(b) =

O(θj1) uniformly in j ≥ 1, ∥ηj∥ = Op(|||K|||j) uniformly in 1 ≤ j ≤ C n1/2 (see

Theorem 5.2), and ∥ξj∥ = Op(j θ
j
1) uniformly in j ≥ 1 (see (7.10)), then, by

(5.6), ∥K̂j(b)∥ = Op(θ
j
1+n

−1/2 j θj1+n
−1 |||K|||j) uniformly in 1 ≤ j ≤ C n1/2.

Using formula (4.4) for α̂j , and the fact that 0 < θ1 < |||K||| < 1, we deduce
that:

∥α̂∥ ≤
{ p∑

j=1

∥∥K̂(b)
∥∥2 ∥∥K̂j(b)

∥∥2}1/2

= Op(1) , (7.22)

uniformly in 1 ≤ p ≤ C n1/2.
Therefore, defining δ = (∆101, . . . ,∆10p)

T, we have, by (7.21),

γ̂ = Ĥ−1 α̂ = H−1
(
α+ n−1/2 δ

)
− n−1/2H−1∆1H

−1 α+Op

(
n−1 λ−3

)
= γ + n−1/2H−1 (δ −∆1 γ) +Op

(
n−1 λ−3

)
, (7.23)

uniformly in 1 ≤ p ≤ C n1/2, where the two vectors denoted by Op(n
−1 λ−3)

have the property that their norms equal Op(n
−1 λ−3) uniformly in 1 ≤ p ≤

C n1/2.
Next we combine (7.17) and (7.23), obtaining:

ĝp(x)− gp(x)− (Ȳ −EY )

=

p∑
j=1

[
n−1/2

{
H−1 (δ −∆1 γ)

}
j

∫
I
(x− EX)Kj(b)

+ γj

∫
I

{
n−1/2 (x− EX) ξj − (X̄ − EX)Kj(b)

}]
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+Op

[
n−1 λ−3 + n−1/2

p∑
j=1

{
|γ̂j − γj |

(
j θj1 + n−1/2 |||K|||j

)
+ n−1/2 (|γ̂j |+ |γj |) |||K|||j

}]
, (7.24)

uniformly in 1 ≤ p ≤ C n1/2 and ∥x∥ ≤ C for each C > 0. Here we have used
the fact that, if V = (V1, . . . , Vp)

T is the vector denoted by Op(n
−1 λ−3) on

the far right-hand side of (7.23), then

p∑
j=1

∣∣∣∣Vj ∫
I
(x− EX)Kj(b)

∣∣∣∣ ≤∥V ∥

{
p∑

j=1

∣∣∣∣ ∫
I
(x− EX)Kj(b)

∣∣∣∣2
}2

=Op

(
n−1 λ−3

)
,

uniformly in 1 ≤ p ≤ C n1/2 and ∥x∥ ≤ C, since
∑

j≥1 ∥Kj(b)∥2 <∞.

Note too that, since ∥Kj(b)∥ = O(θj1) and ∥ξj∥ = Op(j θ
j
1), uniformly

in 1 ≤ j ≤ C n1/2, then by (7.19), |∆1jk| = Op(jk θ
j+k
1 ), uniformly in

1 ≤ j, k ≤ C n1/2, and therefore,

∥∆1∥2 ≤
p∑

j=1

p∑
k=1

∆2
1jk = Op(1) , ∥δ∥2 =

p∑
j=1

∆2
10j = Op(1) ,

uniformly in 1 ≤ p ≤ C n1/2. Hence, by (7.23) and (7.22),

∥γ̂ − γ∥ = Op

{
n−1/2 λ−1 (∥δ∥+ ∥∆1∥ ∥γ∥) + n−1 λ−3

}
= Op

{
n−1/2 λ−1 (1 + ∥γ∥) + n−1 λ−3

}
.

Therefore,

p∑
j=1

{
|γ̂j − γj |

(
j θj1 + n−1/2 |||K|||j

)
+ n−1/2 (|γ̂j |+ |γj |) |||K|||j

}
= Op

(
∥γ̂ − γ∥+ n−1/2 ∥γ∥

)
= Op

{
n−1/2 λ−1 (1 + ∥γ∥) + n−1 λ−3

}
.

(7.25)

Result (5.8) is a consequence of (7.23), and (5.9) follows from (7.24) and (7.25).

7.6. Proof of (5.11). To derive (5.11), note that minor modifications of
the argument used to derive (5.9) can be employed to show that, under the
conditions of Theorem 5.3,

∥ĝp(X0)− gp(X0)∥pred
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=

∥∥∥∥Ȳ − EY + n−1/2
p∑

j=1

[{
H−1 (δ −∆1 γ)

}
j

∫
I
(X0 − EX)Kj(b)

+ γj

∫
I

{
(X0 − EX) ξj − n1/2 (X̄ − EX)Kj(b)

}]∥∥∥∥
pred

+Op

(
n−1 λ−1 ∥γ∥+ n−1 λ−3

)
, (7.26)

uniformly in p satisfying 1 ≤ p ≤ C n1/2, for each C > 0. The predictive
norm on the right-hand side of (7.26) can be shown to equalOp{n−1/2 λ−1 (1+
∥γ∥)}, and so if (5.10) holds then

∥ĝp(X0)− gp(X0)∥pred = Op

{
n−1/2 λ−1(1 + ∥γ∥) + n−1 λ−3

}
. (7.27)

Since ∥gp(X0)− g(X0)∥pred = tp(γ1, . . . , γp)
1/2 then (7.27) implies (5.11).

Acknowledgements. We are grateful to Peter Forrester and Alan McIn-
tosh for helpful discussion.
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APPENDIX A: APPENDIX

A.1. Conditions (5.13) and (5.14). Here we give examples where (5.13)
and (5.14) hold. Assume that E(X) = 0. Then the Karhunen-Loève expansion of
Xi, founded on the principal component basis introduced in section 2.2, is given by

Xi =
∑

j θ
1/2
j ξij ϕj , where the random variables ξij , for j ≥ 1, are uncorrelated

and have zero mean and unit variance. For simplicity we suppose that they have
identical distributions with bounded fourth moments, that E(ϵ4) <∞, and that the

eigenvalues θj and eigenvectors ϕj satisfy the condition:
∑∞

j=1 θ
1/2
j supt∈I |ϕj(t)| <

∞ . Then,

E

[
sup
t∈I

∣∣∣∣ 1

n1/2

n∑
i=1

{Xi(t)Di − EXi(t)Di}
∣∣∣∣]

≤
∞∑
j=1

θ
1/2
j

{
sup
t∈I

|ϕj(t)|
}
E

∣∣∣∣ 1

n1/2

n∑
i=1

(1− E) ξij Di

∣∣∣∣
≤

(
Eξ411 · ED4

1

)1/4 ∞∑
j=1

θ
1/2
j

{
sup
t∈I

|ϕj(t)|
}
<∞ , (A.1)

E

[
sup
t∈I

∣∣∣∣ 1

n1/2

n∑
i=1

(1− E) {Xi(s)− EXi(s)} {Xi(t)− EXi(t)}
∣∣∣∣2
]

= E

[
sup
t∈I

∣∣∣∣ ∞∑
j=1

∞∑
k=1

(θj θk)
1/2 ϕj(s)ϕk(t)

{
n−1/2

n∑
i=1

(1− E) ξij ξik

}∣∣∣∣2
]

≤ E
(
ξ411

) [ ∞∑
j=1

θ
1/2
j

{
sup
t∈I

|ϕj(t)|
}]4

, (A.2)

where we have used the properties

{
E

∣∣∣∣ 1

n1/2

n∑
i=1

(1− E) ξij Di

∣∣∣∣}2

≤ E
{
(ξ11D1)

2
}
≤

(
Eξ411 · ED4

1

)1/2
,

{
E

∣∣∣∣ 1

n1/2

n∑
i=1

(1− E) ξij ξik

∣∣∣∣}2

≤ E
{
(ξ1j ξ1k)

2
}
≤ E

(
ξ411

)
.

Properties (5.13) and (5.14) follow from (A.1) and (A.2), respectively.
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A.2. Conventional implementation via the PLS basis. Inference
is based on a dataset X = {(X1, Y1), . . . , (Xn, Yn)} of independent data pairs

distributed as (X,Y ). We first introduce the centred data X
[1]
i = Xi − X̄ and

Y
[1]
i = Yi − Ȳ , for 1 ≤ i ≤ n. Here and below, a superscript in square brackets

denotes the number, or index, of a step in our algorithm. The algorithm goes as
follows. For j = 1, . . . , p:

(1) Estimate ψj by the empirical covariance of X
[j]
i and Y

[j]
i : ψ̂j =

∑n
i=1 X

[j]
i Y

[j]
i/∥∥∑n

i=1 X
[j]
i Y

[j]
i

∥∥.
(2) Fit the models Y

[j]
i = βj

∫
I X

[j]
i ψ̂j + ϵ

[j]
i and X

[j]
i (t) = δj(t)

∫
I X

[j]
i ψ̂j + η

[j]
i (t)

by least-squares, i.e. take

β̂j =
n∑

i=1

Y
[j]
i

∫
I
X

[j]
i ψ̂j

/ n∑
i=1

{∫
I
X

[j]
i ψ̂j

}2
,

δ̂j(t) =
n∑

i=1

X
[j]
i (t)

∫
I
X

[j]
i ψ̂j

/ n∑
i=1

{∫
I
X

[j]
i ψ̂j

}2
.

(3) Calculate X
[j+1]
i (t) = X

[j]
i (t)− δ̂j(t)

∫
I X

[j]
i ψ̂j and Y

[j+1]
i = Y

[j]
i − β̂j

∫
I X

[j]
i ψ̂j .

After completion of steps (1) to (3) for all j, define M =
(
Mj,k

)
1≤j,k≤p

by M−1 =( ∫
I δ̂jψ̂k

)
1≤j,k≤p

. Then b̂p(t) =
∑p

j,k=1 β̂kMj,kψ̂j(t) and g̃p(x) = Ȳ +
∫
I b̂p (x−X̄) .

A.3. Modified Gram-Schmidt algorithm. This algorithm turns a set
of linearly independent functions v1, . . . , vp into a set of orthogonal functions u1, . . . ,
up, where orthogonality is defined with respect to a scalar product ⟨·, ·⟩. For ex-
ample, for the second algorithm in section 4.2, the scalar product between two

functions f1 and f2 is defined by ⟨f1, f2⟩ =
∫
I
∫
I f1(s)f2(t)K̂(s, t) ds dt. The modi-

fied Gram-Schmidt algorithm is described in Lange (1999), section 7.7. It works as
follows:

for j = 1, . . . , p

u
[1]
j = vj

for i = 1, . . . , j − 1

u
[i+1]
j = u

[i]
j − ⟨u[i]j , ui⟩ui

end loop i

uj = u
[j]
j /∥u

[j]
j ∥

end loop j
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