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Abstract

The deconvolution kernel density estimator is a popular technique for solving the

deconvolution problem, where the goal is to estimate a density from a sample of con-

taminated observations. Although this estimator is optimal, it suffers from two major

drawbacks: it converges at very slow rates (inherent to the deconvolution problem)

and can only be calculated when the density of the errors is completely known. These

properties, however, follow from a classical asymptotic view of the problem which lets

the sample size n → ∞ but where the error variance σ2 is supposed to be fixed. We

argue that, in many situations, a more appropriate way to derive asymptotic properties

for the deconvolution problem is to consider that both σ2 → 0 and n → ∞. In this con-

text, not only do the rates of convergence of the deconvolution kernel density estimator

improve considerably, but it is also possible to consistently estimate the target density

with only very little knowledge on the error density. In particular, the deconvolution

kernel density estimator becomes robust against error misspecification and a low-order

approximation developed in the literature becomes consistent. We propose a data-

driven procedure for the low-order method and investigate the numerical performance

of the various estimators on simulated and real data examples.

Key words and phrases: asymptotic results, bandwidth selection, classical errors, kernel

method, measurement errors, smoothing.
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1 Introduction

The conventional deconvolution problem for density estimation is one where a sample of

independent and identically distributed (i.i.d.) variables Y1, . . . , Yn are observed with random

measurement error. More precisely, the observations are generated by the model

Yj = Xj + εj, Xj ∼ fX and εj ∼ fε, (1.1)

where the density fX of Xj is the unknown quantity to estimate, εj is the error variable,

independent of Xj, and fε is a known and fixed density. This problem has received consid-

erable attention in the literature and has numerous applications in different fields such as,

for example, astronomy, public health or econometrics.

In this context, the most popular and extensively studied nonparametric estimator of

fX is the deconvolution kernel density estimator developed by Carroll and Hall (1988) and

Stefanski and Carroll (1990). Let K be a kernel function integrating to 1, h = hn be

a positive smoothing parameter (the bandwidth) and let φg denote the Fourier transform

(resp. characteristic function) of a function (resp. random variable) g. Then if φε(t) 6= 0

∀t ∈ IR and φ̂Y,n(t) = n−1
∑n

j=1 eitYj , the estimator is defined by

f̃X(x; h) =
1

2π

∫
e−itxφ̂Y,n(t)

φK(ht)

φε(t)
dt, (1.2)

if we assume that the integral exists. See van Es and Uh (2005), Meister (2004,2006) or Hall

and Qiu (2005) for recent contributions. See also Carroll et al. (2006) and Delaigle, Hall

and Qiu (2006).

The rates of convergence to zero of the Mean Integrated Squared Error (MISE) of

this estimator have been studied by Fan (1991a,b) in the class of functions fX ∈ Fα,C =

{densities f ∈ Cα s.t. ||f (α)||∞ < C and
∫
{f (α)}2 < C}, with Cα the class of α times contin-

uously differentiable functions. These rates depend on the behaviour of φε in the tails: if ε

is ordinary smooth of order β (see (2.1)), the optimal rates are supfX∈Fα,C
MISE{f̂X(·; h)} ∼

n−2α/(2α+2β+1), whereas if ε is supersmooth of order β (see (2.2)), the optimal rates are
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supfX∈Fα,C
MISE{f̂X(·; h)} ∼ (ln n)−2α/β . See also Masry (1993). Although these rates are

optimal – no nonparametric estimator can improve them – they are particularly slow, espe-

cially when the error density is ‘too regular’. In the very common case of Gaussian errors,

for example, the logarithmic rates of convergence often make the deconvolution problem

appear unpractical. Carroll and Hall (2004) argue that finding consistent estimators for the

deconvolution problem is a goal that is often unattainable, and, in practice, one may obtain

better practical results by constructing a less ambitious low-order approximation of fX , and

accurately estimate that approximation rather than the density fX itself.

In practice, however, reasonable results can be obtained with the deconvolution kernel

density estimator, even with moderate sample sizes. In such cases, the rates predicted by

the classical theory appear too pessimistic and not flexible enough to capture some of the

subtleties of the contamination problem. In standard asymptotic theory, the quality of an

estimator is assessed through its behaviour when the quality of the sample improves, which,

in the classical approach, amounts to studying the ‘ideal situation’ where the sample size n

tends to infinity. However, when the observations contain measurement errors, the quality

of a sample does not only depend on its size but also crucially on the magnitude of the error

variance σ2. Clearly, here, the ‘ideal situation’ does not reduce to having a sample of very

large size, but also a very small error variance. Hence, its seems natural, when studying

asymptotic properties of estimators for the deconvolution problem, to adopt the alternative

approach where both n → ∞ and σ2 → 0.

Of course, in practice, σ2 is not necessarily small. However, in the classical approach,

n is not especially large either and yet the interest of analyzing theoretical properties for

the unrealistic situation where n → ∞ is by now well understood. In particular, it allows

to uncover some important properties of an estimator when n is not too small. Hence, just

like any given sample size can be considered as a finite sample approximation of n → ∞,

any given σ2 can be considered as a finite sample version of σ2 → 0 and we can expect the
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double asymptotics to be a helpful description of an estimator as long as σ2 is not too large.

This alternative approach can also be motivated by real data applications where the error

variance is small compared with the variance of X, but we will see later (numerical section)

that it is not necessary to have a small error variance for this theory to be appropriate.

From this discussion, it becomes natural to rewrite model (1.1) as

Yj = Xj + σZj, Xj ∼ fX , Z ∼ fZ , Var(Z) = 1 (1.3)

where, here and below, when we refer to this model, we imply that the asymptotic properties

we consider are for σ → 0 and n → ∞; when we refer to model (1.1), we imply that the

asymptotics are for n → ∞ only. Hall and Simar (2002) study a related problem in the

context of boundary estimation. Fan (1992) studies the behaviour of the deconvolution

kernel density estimator in a subclass of model (1.3). One of the contributions of this paper

is to fill the gaps between the classical theory and model (1.3). In section 2, we revisit the

behaviour of the deconvolution kernel density estimator under the alternative model and

show that its rates of convergence improve considerably compared to the classical theory.

We apply our results to the interesting case of replicated observations.

Despite these theoretical improvements, the deconvolution kernel density estimator can

only be calculated if the error density fε is known. In section 3, however, we show that,

under model (1.3), consistent estimation of the density fX can be achieved when only a

few low-order moments of fε are known. We prove that, in this setting, the low-order

approximation of Carroll and Hall (2004) is consistent; further, our results imply that the

deconvolution kernel density estimator is robust against error misspecification. We derive

simple data-driven procedures of bandwidth selection for the low-order estimator and prove

that its convergence rates compare fairly with those of f̃X which, in some particular cases,

loses its optimality properties.

We investigate the numerical performance of the estimators in section 4 via simulated and

real data examples. We show that, as expected by the theory, the low-order estimator and
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the deconvolution kernel density estimator with misspecified error density work very well for

moderately large error variances, but also that their quality (relative to the deconvolution

kernel density estimator with known error) does not deteriorate very rapidly when the error

variance increases. We conclude in section 5 and defer the proofs to the appendix.

2 Properties of the deconvolution kernel density esti-

mator

Suppose we have a sample Y1, . . . , Yn of i.i.d. observations generated by model (1.3) –

remember that when we refer to this model, we imply that the asymptotics will be for σ → 0

and n → ∞. In this context, the asymptotic behaviour of the deconvolution kernel density

estimator changes drastically and depends, in a crucial way, on the magnitude of the error

variance. Define a kernel of order α by a function K for which µK,0 = 1, µK,j = 0 for

1 ≤ j < α and µK,α = c, where µK,i ≡
∫

xiK(x) dx, α ≥ 1 is an integer and c 6= 0 is

some finite constant. Theorems 2.1 and 2.2 describe the rates of the deconvolution kernel

density estimator when n → ∞ and σ → 0 for two classes of errors usually considered in the

literature: ordinary smooth errors ε of order β > 0, which are such that

d1|t|
−β ≤ |φε(t)| ≤ d2|t|

−β for all |t| > M , (2.1)

with M, d1, d2 some positive constants and supersmooth errors ε of order β > 0, which satisfy

d1|t|
γ1 exp(−d3|t|

β) ≤ |φε(t)| ≤ d2|t|
γ2 exp(−d3|t|

β) for all |t| > M , (2.2)

with M, d1, d2, d3, γ1 and γ2 some positive constants. For two sequences of numbers an

and bn, we use the notation an >> bn (resp. an << bn) to represent bn = o(an) (resp.

an = o(bn)). The proofs of the theorems are given in the appendix.

Theorem 2.1. For model (1.3), if Z is ordinary smooth of order β, K is of order α and

∫
|t|2β|φK(t)|2 dt < ∞,
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(i) if σ = O(n−1/(2α+1)) and h ∼ n−1/(2α+1), we have

sup
fX∈Fα,C

MISE{f̃X(.; h)} = O(n−2α/(2α+1));

(ii) if σ >> n−1/(2α+1) and h ∼ σ2β/(2α+2β+1)n−1/(2α+2β+1), we have

sup
fX∈Fα,C

MISE{f̃X(.; h)} = O(σ4αβ/(2α+2β+1)n−2α/(2α+2β+1)).

Theorem 2.2. For model (1.3), if Z is supersmooth of order β, K is of order α, φK is

supported on [−1, 1] and
∫

[|t|−2γ1 + |t|−2γ2 ]|φK(t)|2 dt < ∞,

(i) if σ = O(n−1/(2α+1)) and h ∼ n−1/(2α+1), we have

sup
fX∈Fα,C

MISE{f̃X(.; h)} = O(n−2α/(2α+1));

(ii) if σ = n−1/(2α+1)a(n), where 1 << a(n) << n1/(2α+1) and h = (2d3/D)1/βσ{ln a(n)}−1/β,

with D < 2α + 1, we have

sup
fX∈Fα,C

MISE{f̃X(.; h)} = O
(
σ2α{ln a(n)}−2α/β

)
.

Note that no bandwidth can improve the rates provided above. These results generalize

those of Fan (1992), who derives Theorem 2.2 (i). They show that, when σ = O(n−1/(2α+1)),

the rates of the deconvolution kernel density estimator are the error-free rates n−2α/(2α+1).

For larger error variances (σ >> n−1/(2α+1)), the rate of the MISE of the estimator to zero

ranges from n−2α/(2α+1) to the classical deconvolution rates.

The sheer fact of knowing that the rates of the deconvolution kernel density estimator

improve considerably under model (1.3) is already quite enlightening, but it also helps un-

derstanding the situation of growing interest where r ≥ 2 replicated observations of the form

Yij = Xi + εij, j = 1, . . . , r, are available for each individual. See Carroll et al. (2006),

among others. There, it is rather common to use the averaged observations Ȳi. = Xi + ε̄i.

because these data have an error variance r ≥ 2 times smaller than the original sample.

However, (in the ordinary smooth case) the averaged errors become smoother and hence,
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in the classical theory, the rates of the deconvolution estimator worsen, suggesting that we

should rather use the original non averaged observations. Nevertheless, in finite sample, the

variance reduction induced by the averaging process can lead to significant improvement of

performance of the estimator. In theory, this can be justified by our results, since, in model

(1.3), averaging the data, i.e. reducing the error variance, leads to an improvement, rather

than a deterioration, of the convergence rates of the estimator.

3 Consistency without knowledge of the error density

Despite the fast rates derived in the previous section, the deconvolution kernel density esti-

mator suffers from a severe drawback: it can only be calculated when the error density fε is

known, which is not always realistic. In the context of model (1.3) however, we show that

it is not necessary to know more than just a few low-order moments of fε in order to obtain

consistent estimators of fX .

3.1 Low-order approximation

We start by studying the theoretical properties of the low-order approximation developed

by Carroll and Hall (2004). In their approach, based on the ‘classical’ theoretical point

of view, it is seen as a non consistent estimator of fX whose properties remain relatively

obscure. Below, we show that, in our context, their approximation is a consistent estimator

of fX . Suppose we have i.i.d. observations Y1, . . . , Yn generated by model (1.3). Then

fY (x) =
∫

fX(x−σz)fZ(z) dz and, by recursive application of Taylor expansions of fX(x−σz)

and its derivatives, it is readily shown that, if fZ has α finite absolute moments and fX has

α continuous bounded derivatives,

fX(x) =fY (x) +
α∑

m=1

(−1)mSmσmf
(m)
Y (x) + o(σα), (3.1)

if we define Sm =
∑m

r=1

∑
i1,...,ir≥1

i1+...+ir=m

(−1)r
∏

j∈{i1,...,ir}
µZ,j/(j!), with µZ,j =

∫
zjfZ(z) dz.
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Based on this equality, an estimator of fX can be defined by

f̂X(x; h) = f̂Y (x; h) +

α∑

m=1

(−1)mSmσmf̂
(m)
Y (x; h), (3.2)

where f̂
(m)
Y (.; h) is the error-free kernel density estimator of f

(m)
Y , defined by

f̂
(m)
Y (x; h) =

1

nhm+1

n∑

j=1

K(m)
(x − Yi

h

)
, (3.3)

with K and h as at page 2. It is straightforward to check that this estimator is equal to the

low-order approximation of Carroll and Hall (2004). Here and below, we refer to an ‘error-

free’ estimator of a density fT or its derivatives, as an estimator obtained from an error-free

sample, i.e. from a sample T1, . . . Tn where Ti ∼ fT , 1 ≤ i ≤ n. Similarly, we refer to the

‘error-free’ case as the case where the observations are not contaminated by a measurement

error. Note that the condition on fX is commonly used in kernel density estimation, where

it is usually assumed that α = 2.

One of the interests of the estimator (3.2) lies in the fact that, contrary to the deconvolu-

tion kernel density estimator f̃X , it requires very little information about the error density,

since only σ and low-order moments µZ,j, j ≤ α, are needed; if these are unknown, they can

be easily estimated, either via the empirical variance of the difference of replicated observa-

tions or, as proposed by Dunn (2004), by the method of moments via instrumental variables;

see our real data example in section 4. From a practical point of view, it is also very easy

to calculate; for example, under the usual assumption that α = 2 and the error density is

symmetric, the estimator (3.2) simplifies into f̂X(x; h) = f̂Y (x; h) − σ2f̂
(2)
Y (x; h)/2. Finally,

unlike the estimator f̃X , it does not restrict to the cases where the characteristic function of

the error does not vanish.

Our alternative derivation of the estimator allows a simple understanding of its asymp-

totic behaviour, which depends on h and σ and on the relative magnitude of both. In the

case where σ is sufficiently small, the o(σα) error of the approximation of fX by the main

terms of (3.1) is negligible and the main source of error for the estimator comes from the
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kernel estimation of fY and its derivatives. For σ larger, the error comes from both the

approximation and the kernel estimators. In this case, the exact behaviour of the approxi-

mation error, of order o(σα), can only be established under an additional condition on fX

involving the smallest integer k ≥ α + 1 such that Sk 6= 0. We note that this condition is

not needed for constructing the estimator but to establish the main term of the bias when σ

is ‘large’. In most practical situations, the kernel K is symmetric (α is even) and the error

is symmetric. There, Sm = 0 for odd values of m and, typically, k = α + 2. Let L2 denote

the class of square integrable functions. The following conditions will be useful.

Condition A

(A1) fX has α continuous and uniformly bounded derivatives and f
(α)
X ∈ L2;

(A2) fZ has α finite absolute moments;

(A3) K is of order α and has α continuous, bounded and absolutely integrable derivatives.

For a function g ∈ L2, we denote R(g) =
∫

g2. We refer to the bandwidth that minimizes

the MISE of the estimator as the optimal bandwidth and we denote it by hMISE. In the

theorem, k is as defined above.

Theorem 3.1. Under Condition A, MISE{f̂X(.; h)} = AMISE{f̂X(.; h)}× (1+o(1)), where

(i) if σ = o(n−1/(2α+1)), we have, for h = hMISE ∼ n−1/(2α+1)

AMISE{f̂X(.; h)} = R(f
(α)
Y )(α!)−2µ2

K,α h2α + (nh)−1R(K).

(ii) if n−1/(2α+1) << σ << n−α/(4αk+k−2α2), fY has 2α continuous and uniformly bounded

derivatives, fX has k continuous, uniformly bounded derivatives, f
(k)
X ∈ L2 and |µZ,k| < ∞,

we have, for h = hMISE ∼ σ2α/(4α+1)n−1/(4α+1)

AMISE{f̂X(.; h)} = R(f
(α)
Y )(α!)−2µ2

K,α h2α + σ2α(nh2α+1)−1S2
αR(K(α)).

(iii) if σ >> n−α/(4αk+k−2α2), under the same conditions on fX, fY and fZ as in (ii), we

have, for h = hMISE ∼ σ(2α−k)/(3α+1)n−1/(3α+1)

AMISE{f̂X(.; h)} = σ2kR(f
(k)
Y )S2

k + σ2α(nh2α+1)−1S2
αR(K(α)).
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Note that since k ≥ α+1, we always have that n−1/(2α+1) << n−α/(4αk+k−2α2). It is clear that,

as for the deconvolution kernel density estimator, the rates of convergence strongly depend

on the magnitude of the error variance. A discussion on these rates will be provided later

but we already note that, for error variances of order O(n−1/(2α+1)), they are the same error-

free rates as for the deconvolution kernel density estimator. In practice, this means that,

when the error variance is small, we can expect both estimators to perform very well. In the

simulation section, we will see that, in fact, the error variance does not need to be extremely

small for the estimator f̂X to work well. In the theorem, for simplicity, we disregarded the

case σ ∼ n−1/(2α+1), for which the optimal bandwidth and the corresponding MISE are both

of the same order as those described in (i)− (ii) but with a more complicated expression. A

similar remark applies to the case σ ∼ n−α/(4αk+k−2α2), which behaves like (ii)− (iii). These

expressions, as well as the proof of the theorem, are readily obtained from Theorems A.1

and A.2 of the appendix.

Bandwidth selectors. We obtain analytic expressions for the asymptotic optimal band-

width, hAMISE, by minimizing the AMISE given in the three cases of the theorem. In each

case, in order to come up with a practical bandwidth, we estimate the unknown quantity

R(f
(ℓ)
Y ) by a plug-in estimator. See for example Silverman (1986). We examine the perfor-

mance of these bandwidths in the simulation section and see that they work well in practice.

We have:

(i) If σ = o(n−1/(2α+1)), then for C1 = (α!)2R(K)/{2αµ2
K,αR(f

(α)
Y )},

hAMISE = C
1/(2α+1)
1 n−1/(2α+1), (3.4)

which is the same bandwidth as for the usual (error-free) kernel density estimator of fY .

(ii) If n−1/(2α+1) << σ << n−α/(4αk+k−2α2), then for C2 = C1(2α + 1)S2
αR(K(α))/R(K),

hAMISE = C
1/(4α+1)
2 σ2α/(4α+1)n−1/(4α+1). (3.5)

(iii) If σ >> n−α/(4αk+k−2α2), hAMISE can only be found by reintroducing second order terms
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in the AMISE expression (see appendix). For C3 = (−1)α+kR(K(α))α! S2
α/

(
2SkµK,α

∫
f

(α)
Y f

(k)
Y

)

and C4 = −C3(2α + 1)/α, this gives

hAMISE = max(C3, C4)
1/(3α+1)σ(2α−k)/(3α+1)n−1/(3α+1). (3.6)

In particular, when α = 2 and the error density is symmetric, we have k = 4, S2 = −1/2,

S4 = 1/4 − µZ,4/(4!) and
∫

f
(α)
Y f

(k)
Y = −R(f

(3)
Y ).

Exact expression. In some cases, (3.1) is an exact expression for fX , rather than just an

approximation. This is for example the case for errors whose Fourier transform can be written

as φZ(t) = (1 +
∑β

j=1 ajt
j)−1 for all t, as shown in the appendix (page 24). For example,

the Laplace error satisfies this condition for β = 2. Then, if α ≥ β, the formula (3.1) is

exact (and the terms of order higher than β vanish). Moreover, in this case, the estimator

(3.2) is equal to the deconvolution kernel density estimator f̃X(x; h). Here, although both

estimators are equal, the deconvolution kernel density estimator can only be calculated if the

error density fZ is known, whereas the estimator (3.2) only requires the first few moments of

fZ . In the case where α < β, our simulation results indicate that the estimator (3.2) remains

a good alternative to the deconvolution kernel density estimator. Further, in this case, we

show at page 12 that, in some occasions, the estimator (3.2) has better rates of convergence

than the deconvolution kernel density estimator, which loses its optimality properties. In

such cases, σ is small and the approximation error (of order o(σα)) in (3.1) is negligible

compared with the variance increase produced by the additional β −α kernel estimates f̂
(j)
Y ,

j = α + 1, . . . , β, used by the deconvolution kernel density estimator.

Estimation of a cumulative distribution function. The same idea can be used to

develop an estimator of the cumulative distribution function of X. Namely, from FX(x) =

FY (x)+
∑α

m=1(−1)mSmσmf
(m−1)
Y (x)+o(σα), we define the following estimator of FX : F̂X(x) =

F̂Y (x; h) +
∑α

m=1(−1)mSmσmf̂
(m−1)
Y (x; h), where F̂Y (x; h) = n−1

∑n
j=1 κ{(x − Yj)/h}, with

κ(x) =
∫ x

−∞
K(u) du, is the kernel estimator of FY . The MISE of this estimator is obtained
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by calculations similar to the density case. In particular, the MISE is of order n−1 whenever

σ = O(n−1/(2α)).

Comparison with the deconvolution kernel density estimator. Before we compare

the estimators f̂X and f̃X , it is important to realize that cases (ii) and (iii) of Theorem

3.1 were obtained under the additional condition that fX ∈ Fk,C, with k ≥ α + 1 (without

such an assumption, it is impossible to determine the order of the bias of the estimator f̂X ,

which depends on a o(σα) term (see Theorem A.1), and hence it is impossible to compare

the two estimators). If we change the conditions on the kernel and use a kernel of order k

instead of a kernel of order α, then the rates of the deconvolution kernel density estimator

can be improved by replacing α by k in Theorems 2.1 and 2.2. Nevertheless, it is well known

that, in practice, increasing the order of the kernel introduces extra variability of estimators

and generally does not improve their quality (see, for example, Marron and Wand (1992)).

Similarly, there exist infinite order kernels, which have the property that the behaviour of the

bias of kernel estimators depends only on the smoothness of the target density fX (and these

estimators have optimal rates of convergence), but, in practice, they usually suffer from some

drawbacks which make their use quite unpopular. For example, the resulting estimators are

often too wiggly and the good standard bandwidth selectors usually do not apply (the cross-

validation method can be used, but this procedure is usually not very satisfactory, see for

example Delaigle and Gijbels (2004)).

Therefore, and since the exact smoothness properties of the density fX are usually un-

known, the most commonly used kernels are of order 2 or 4. In view of these facts, it is thus

legitimate to compare the rates of the deconvolution kernel density estimator with these of

the alternative estimator, in the case where the kernel is of order α < k and fX ∈ Fk,C.

It is in this most interesting case that the alternative estimator sometimes enjoys better

theoretical properties than the deconvolution kernel density estimator, because its rates of

convergence improve with the smoothness of fX whether or not we increase the order of the
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kernel.

Suppose fX ∈ Fk,C and K is of order α, with k ≥ α + 1. From Theorems 2.1 and 2.2, we

have supfX∈Fk,C
MISE{f̃X(.; h)} = O(σ4αβ/(2α+2β+1)n−2α/(2α+2β+1)) in the ordinary smooth

case and supfX∈Fk,C
MISE{f̃X(.; h)} = O(σ2α{ln a(n)}−2α/β) in the supersmooth case. In

case (ii) of Theorem 3.1, we have supfX∈Fk,C
MISE{f̂X(.; h)} ∼ σ4α2/(4α+1)n−2α/(4α+1). It

follows that when the error is ordinary smooth, the MISE of the estimator (3.2) is of lower

order than the MISE of the deconvolution kernel density estimator if and only if α < β;

they have the same rate when α = β. In the supersmooth error case, the estimator (3.2)

beats the deconvolution kernel density estimator whatever the value of α and β. In case (iii)

of Theorem 3.1, we have supfX∈Fk,C
MISE{f̂X(.; h)} ∼ σ2k. It follows that, when the error

is ordinary smooth, the estimator (3.2) beats the deconvolution kernel density estimator if

and only if σ = o(n−α/(2αk+2βk−2αβ+k)), which is only possible when α > β; they have the

same rate when α = β. In the supersmooth error case, the estimator (3.2) has better rates

of convergence than the deconvolution estimator if and only if σβ(α−k)/α >> ln
(
σn1/(2α+1)

)
,

which is satisfied unless the error variance tends very slowly to zero, i.e. is rather large.

3.2 Deconvolution kernel density estimator

It follows from the discussion at page 11 that, under model (1.3), the deconvolution kernel

density estimator f̃X is robust against certain error misspecifications since, as long as the

first α moments of fε are correctly specified, the estimator f̂X is consistent and equal to

the deconvolution kernel density estimator which pretends that the error density fε is such

that φε(t) = (1 +
∑α

j=1 ajσ
jtj)−1. More generally, the misspecified error density, say fη,

does not need to be of the form above but can be taken from any parametric family large

enough to contain densities that match the first α moments of ε. It is not hard to prove,

using the findings of the previous sections, that, as long as the first α moments of fη equal

those of fε, the deconvolution kernel density estimator is consistent: its bias is of order

13



O(hα)+ o(σα), like the estimator f̂X , and its variance is of the same order as the variance of

the deconvolution kernel density estimator f̃X for the situation where the errors genuinely

come from fη. Since this variance is larger with supersmooth errors, this indicates that we

should preferably select fη in the ordinary smooth class.

In our simulations, we found that, when the error variance was not huge, the finite sample

performance of the deconvolution kernel density estimator with misspecified error was often

similar to that of the known error case, even when the wrong error η was normal. In their real

data example, Delaigle and Gijbels (2004), page 18, already noted that the deconvolution

estimators which assume Laplace or normal error densities with a same variance do not

differ much unless the error variance is very large. For large error variance, their estimator

becomes more erratic when they assume normal errors, which supports our preference for

ordinary smooth errors. See also Delaigle (2007) for simulated examples on the robustness

in problems of measurement errors. Note that, in the classical theory, the estimator is

generally not robust against error misspecification (see Meister (2004)) and, once again, the

alternative asymptotic approach we adopted in this paper allows to account for a behaviour

of the estimator often encountered in practice and yet invalidated by the classical theory.

4 Numerical properties

We examine and compare the numerical properties of the two methods of estimation of

fX and of the kernel density estimator of fY , i.e. the estimator (3.3) with m = 0 that

ignores the error present in the data, for kernels of order α = 2. For the deconvolution

kernel density estimator (DKDE), we use the plug-in bandwidth of Delaigle and Gijbels

(2002,2004), and for the kernel density estimator (KDE), we use the plug-in bandwidth

described in Silverman (1986). For the estimator (3.2), which we denote by LOE, we use

bandwidths h1 = (3.4), h2 = (3.5) or h3 = (3.6), where R(f ′′
Y ) and R(f

(3)
Y ) are estimated

by the plug-in method described in Silverman (1986). We then write LOEi when we refer

14



to (3.2) with bandwidth hi. We do not report the results for bandwidth (3.6), as it was

systematically outperformed by the other bandwidths. We used the standard normal kernel

in the case of Laplace errors and their convolutions, and we used the kernel with characteristic

function φK(t) = (1− t2)3 · 1[−1,1](t) for Gaussian errors (to ensure existence of the DKDE).

4.1 Simulated examples

We consider four target densities fX corresponding to: (i) X ∼ 0.5 N(−2; 1)+0.5 N(2; 1.52),

(ii) X ∼ 0.5 N(−3; 1)+0.5 N(2; 1), (iii) X ∼ 1/3 N(0; 1.22)+1/3 N(1; 4)+1/3 N(2; 4), (iv)

X ∼
∑5

ℓ=0(2
5−ℓ/63) N(65− 96(1/2)ℓ/21; (32/63)2/22ℓ) – smooth comb density from Marron

and Wand (1992). Note that, even in the error-free case, these densities are hard to estimate.

In each case, we generate 500 samples of sizes n = 50, 100 or 250 from fX and add some

random noise ε ∼ fε, where fε is either a normal, a Laplace, a 2- or 8-fold Laplace, where a

p-fold Laplace is a Laplace convolved p−1 times with itself; the noise-to-signal ratio, defined

by NSR = σ2/ Var(X), ranges from 5% to 30%. To evaluate performance, we calculate the

500 values of the Integrated Squared Error (ISE), defined by ISE bf =
∫

(f̂ − fX)2, where f̂

is a calculated estimator. We show boxplots of these calculated ISE’s or of the quantity

log(ISEm / ISEDKDE), where m is a method we compare with the DKDE. We also show, for

one sample, the estimators found by each method. We use the same sample for each method;

it is the sample giving the 249th or 250th smallest calculated ISE for the method LOE2. We

denote these samples by S249 and S250, respectively. We only present a portion of the results;

the conclusions are also supported by the simulations not presented here.

Figure 1 shows the results for the estimation of density (ii) when NSR = 5%. Since the

error variance is small, we want to see if we could ignore the error in the analysis, i.e. use the

KDE of fY to estimate fX . For ε ∼ N(0, σ2), we present boxplots of log(ISEm / ISEDKDE)

where m denotes the LOE1, LOE2 or the KDE of fY . In this case, the LOE (with any of the

bandwidths (3.4) or (3.5)) outperforms the DKDE. These three estimators strongly outper-
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Figure 1: Estimation of density (ii) when NSR=5%: left panel: boxplots of log(ISEm / ISEDKDE)

for ε ∼ N and n = 50, 100 or 250; in each group of boxplots, m is, from left to right, LOE1, LOE2

or the KDE of fY ; centre panel: boxplots of ISEDKDE for n = 50, 100 or 250; in each group of

boxplots, the 1st is for ε ∼Laplace and the 2nd for ε ∼ N ; right panel: estimated curves by the

four methods when ε ∼ N , n = 100 and using the sample S250.

form the KDE, which oversmoothes the data; this illustrates the non negligible improvement

one can get by taking the error into account, even if this error is small. We also compare

boxplots of the 500 calculated values of the ISE of the DKDE when the error is Laplace or

Gaussian. Here, from the classical deconvolution theory, we expect the estimator to perform

considerably better for Laplace than for Gaussian error, but we see that the both estimators

are comparable (here the Gaussian error even works better). For such small error variances,

the less conventional theory for model (1.3) seems more appropriate. On the right panel, we

show, for one sample, the estimated curve for each method when ε ∼ N and n = 100.

In Figure 2, we check further the appropriateness of the LOE. The target is density (iv),

the sample size is n = 250 and we consider Laplace, 2-fold Laplace and normal errors with

NSR = 10% or 25%. We present boxplots of log(ISEm / ISEDKDE) for m as in Figure 1 and

we compare, for two samples, the curves found by each method. Without any surprise, all

methods strongly outperform the KDE of fY which oversmoothes the data. The LOE still

compares very fairly with the DKDE: here, although the error variance is not very small,

LOE1 even beats the DKDE but LOE2 is less good when NSR = 25%. We note that the
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Figure 2: Estimation of density (iv): boxplots of log(ISEm / ISEDKDE) for n = 250, when ε ∼

Laplace and NSR = 10%, ε ∼ N and NSR = 10% or 25%, or ε ∼ 2-fold Laplace (DLap) and

NSR = 25%; in each group of boxplots, m is, from left to right, LOE1, LOE2 or the KDE of fY

(left panel). Estimated curves by the four methods when ε is DLap with NSR = 25% and using

the sample S249 (centre panel) or S250 (right panel).

target density is particularly hard to estimate and, like in the error-free case, only the first

mode is well estimated. In the case where ε ∼Laplace and NSR = 10%, f̂X and f̃X are equal

except for the value of the bandwidth and we see the amount of improvement one can get

by using bandwidth (3.4) when σ2 is not too large.

In Figure 3, we compare the procedures for estimating density (i) with an 8-fold Laplace

error. The bimodal and asymmetric shape of this density is similar to that of the target

density of our real data example, and we choose the same error variance as in that example,

i.e. NSR = 30%. As for the previous figures, we show boxplots of log(ISEm / ISEDKDE) and

compare the estimated curves by each method for two samples. Here, the error variance is

moderately large and the DKDE and LOE2 give similar results. Once again, the KDE of fY

systematically undersmoothes the data much more than the other methods. We obtained

similar results when estimating the simpler unimodal asymmetric density (iii).

Finally, in Figure 4, we illustrate further the robustness of the DKDE by comparing, for

samples of size n = 50, 100 or 250, boxplots for the estimation of densities (iv), (ii) and (i),

for the DKDE with known fε, DKDE assuming normal error, LOE1, LOE2 and the KDE
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Figure 3: Estimation of density (i) when ε is 8-fold Laplace with variance NSR = 30%: boxplots

of log(ISEm / ISEDKDE) for n = 50, 100 or 250; in each group of boxplots, m is, from left to right,

LOE1, LOE2 or the KDE of fY (left panel). Estimated curves by the four methods when n = 250

and using the sample S249 (centre panel) or S250 (right panel).

of fY . We see that the DKDE is robust against error misspecification and even assuming

normal error gives reasonable results, although in the first panel, for n = 50, it just slightly

outperforms the KDE that ignores the error. Overall, the DKDE with correct or wrong

error density and the LOE gave quite similar results and strongly outperformed the KDE.

We obtained similar results for other simulations we carried out, but for very large error

variances, assuming normal error sometimes resulted in a bigger loss of performance.

In most of our simulation results, the best bandwidth for the LOE was (3.4), whereas

bandwidths (3.5) and (3.6) tended to be slightly too large. We also tried larger sample sizes

(n ≥ 1000) and NSR (> 30%) and there, (3.4) tended to be too small whereas the smallest

of (3.5) and (3.6) gave better results, usually close but sometimes slightly less good than

the DKDE. A ‘conservative’ approach, for large error variances, thus seems to be to select

the smallest of the bandwidths (3.5) and (3.6). Our results for the Laplace case, where the

DKDE and the LOE are equal except for the value of the bandwidth, raise the question of

whether (and when) it could suffice or be preferable to use fY -related bandwidths, such as

(3.4) to (3.6), which are much easier to calculate than the usual bandwidths.

We have seen that, for moderate sample size and error variances, the DKDE with mis-
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Figure 4: Boxplots of ISEm for n = 50, 100 or 250. In each group of boxplots, m is, from left

to right, DKDE with known fε, DKDE assuming ε ∼ N , LOE1, LOE2 and the KDE of fY . Left

panel: target is density (iv), ε ∼ 2-fold Laplace and NSR = 10%; centre panel: target is density

(ii), ε ∼ Laplace and NSR = 25%; right panel: target is density (i), ε ∼ Laplace and NSR = 30%.

The horizontal lines show the median ISE of the 1st boxplot of each group.

specified error (preferably ordinary smooth) and the LOE (which can be seen as a DKDE

which uses a different bandwidth) can be used quite confidently as substitutes to the DKDE

with known error. It is clear however that, for huge error variances, these estimators are

less appropriate since the approximation error in (3.1) can sometimes get quite large. One

might argue that, in that case, no estimator will give good results, but, if the error density

is known, we should preferably use the DKDE.

4.2 Real data example: the sucrase data

The data concern the measurement of the enzyme sucrase in intestinal tissues of 24 patients.

In this example, the sucrase (X) was measured by two different methods to which we refer as

the pellet (Y ) and the homogenate (T ) methods, see Carter (1981) for a complete description.

Our goal is to estimate the density of the actual content of sucrase X in the intestinal tissues

from one of the two measurements (in this case we use Y ). The error density is unknown

but a third (instrumental) variable U , the alkaline phosphate, was also measured for each

patient. In this example, the variables can be modelled as Y = X + ε, T = α + βX + δ and

U = γ +λX +ν, where α, β, γ and λ are unknown constants and ε, δ and ν are uncorrelated
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Figure 5: Estimation of the density of sucrase, using the LOE, the KDE which ignores the error

or the DKDE when assuming a normal error (DKDN) or a Laplace error (DKDL).

error variables of zero mean, see Dunn (2004). From this relation, the variance of ε can then

be estimated by the method of moments through the 24 observations on the three variables,

which yields approximately σ2 = (1/3) Var(X). See Dunn (2004) for detailed calculations.

Here the error density is unknown and we calculate the DKDE assuming Gaussian or

Laplace error with a variance σ2 = (1/3) Var(X). From section 3.2, both estimators should be

quite similar. We compare the results with the KDE of fY (i.e. the estimator obtained when

ignoring the error in the data) and the LOE for α = 2, µZ,1 = 0 and σ2 = (1/3) Var(X). The

results are depicted in Figure 5, where we present the estimated densities of the centered

sucrase. Here, LOE1 and LOE2 gave the same curve, which we denoted by LOE. The

LOE and the DKDE with normal or Laplace error are very close and, as was the case in

our simulations, the KDE seems to strongly oversmooth the data. The estimated density

is bimodal, suggesting two groups of patients for which the sucrase concentration differs

significantly.

5 Conclusion

We have studied the deconvolution problem in the asymptotic context where σ2 → 0 and n →

∞. This alternative approach of describing the asymptotics has allowed us to theoretically

account for several results that are encountered in practice but which are yet invalidated
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by the classical theory. In particular, we have seen why the deconvolution kernel density

estimator does not especially work as bad as expected, we have proved and illustrated its

robustness to error misspecification, we have justified the procedure of averaging replicated

observations and we have proved, both in theory and in practice, that, even when the error

is small, the improvement one can get by taking it into account is usually non negligible.

We have been able to clarify the properties of a low-order approximation proposed in

Carroll and Hall (2004) as a substitute to the (seemingly too hard) deconvolution problem.

We have shown that it is a consistent estimator and is indeed a good alternative of the

deconvolution kernel density estimator, especially when little information is available about

the error density. While our results show that, if the error variance is not too large, the

low-order method can occasionally beat the deconvolution kernel density estimator when

the deconvolution problem is very hard, they also imply that, when the error variance is

large, this alternative estimator can not be expected to work better than the deconvolution

kernel density estimator, even in cases where the latter has very slow convergence rates.

A Proofs of the main results

Rates for the deconvolution kernel density estimator. Similarly as for model (1.1),

it is easy to prove that the integrated squared bias satisfies

∫
[Bias{f̃X(x; h)}]2 dx =

h2αµ2
K,α

(α!)2

∫
(f

(α)
X )2 + o(h2α), (A.1)

whereas the integrated variance can be written as

∫
Var{f̃X(x; h)} dx =

1

2πnh

∫
|φK(t)|2|φZ(σt/h)|−2 dt + O(n−1). (A.2)

The next two proofs follow from this result.

Proof of Theorem 2.1. From (A.1) and (A.2), we can write AMISE = c1h
2α + I, where

I = (2πnh)−1
∫
|φK(t)|2|φZ(σt/h)|−2 dt and c1 is a positive constant. From (2.1), we find the
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following upper bound for I

I ≤
c

2πnh

∫

|t|≤Mh/σ

|φK(t)|2 dt +
d−2

1 σ2β

2πnh2β+1

∫

|t|>Mh/σ

|φK(t)|2|t|2β dt, (A.3)

where c = (inf |u|≤M |φZ(u)|2)−1 < ∞. The behaviour of (A.3) and a lower bound for I

depend on the behaviour of σ/h.

(a) If σ = O(h), (A.3) ≤ c2/(nh), with c2 a positive constant, and, for n large enough,

I ≥ c/(2πnh)
∫
|t|≤1/2

|φK(t)|2 dt = c3/(nh), with c3 a positive constant. It follows that the

optimal bandwidth satisfies h ∼ n−1/(2α+1) and σ = O(n−1/(2α+1)).

(b) If σ >> h, we have (A.3) ≤ c2σ
2β/(nh2β+1), with c2 a positive constant, and, for n large

enough, I ≥ d−2
2 σ2β/(2πnh2β+1)

∫
|t|>1/2

|φK(t)|2|t|2β dt = c3σ
2β/(nh2β+1), with c3 a positive

constant. It follows that the optimal bandwidth satisfies h ∼ σ2β/(2α+2β+1)n−1/(2α+2β+1) and

σ >> n−1/(2α+1).

Proof of Theorem 2.2. Similarly to the proof of Theorem 2.1, we need to study the behaviour

of I, which depends on the behaviour of σ/h. The case σ = O(h) is similar to Theorem 2.1.

For σ >> h, from (2.2) and the fact that φK is supported on [−1, 1], we have for n large

enough, c1(σ/h)−2γ2 exp(2d3|σ/(2h)|β)/(nh) ≤ I ≤ c2(σ/h)−2γ1 exp(2d3|σ/h|β)/(nh), with c1

and c2 two positive and finite constants.

Take h = (2d3/D)1/βσ{ln a(n)}−1/β, with 0 < D < 2α + 1 a constant. We get

(σ/h)−2γ1

nh
exp(2d3|σ/h|β) ∼

{ln a(n)}(−2γ1+1)/β

n2α/(2α+1)
a(n)D−1,

and h2α, the squared bias term, behaves like n−2α/(2α+1)a(n)2α{ln a(n)}−2α/β which domi-

nates the upper bound of the variance term. Hence, for that bandwidth, we have MISE ∼

n−2α/(2α+1)a(n)2α{ln a(n)}−2α/β . Clearly, a bandwidth of larger order would increase the

squared bias term, and hence would increase this rate. It is not difficult to see that, for a

bandwidth of smaller order, the lower bound of the variance is of an order larger than this

rate.
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Proof of Theorem 3.1. The proof follows from the next two theorems describing the

behaviour of the bias and variance of the estimator.

Theorem A.1. Under Condition A, we have

(i) if σ = O(h), Bias{f̂X(x; h)} = (−1)αf
(α)
Y (x)hα(α!)−1µK,α + o(hα), where the remainder

terms are uniform in x.

(ii) if σ >> h, then if fY has 2α continuous and uniformly bounded derivatives, fX has k

continuous and uniformly bounded derivatives and |µZ,k| < ∞, we have

Bias{f̂X(x; h)} = (−1)αf
(α)
Y (x)

hα

α!
µK,α + (−1)k+1σkf

(k)
Y (x)Sk + o(hα) + o(σk), (A.4)

where the remainder terms are uniform in x.

Proof of Theorem A.1. We prove the two cases separately.

(i) Under (A3), we have, if we set νm = α − m, m ≤ α − 1,

E{f̂
(m)
Y (x; h)} =f

(m)
Y (x) +

νm∑

j=1

(−1)jf
(m+j)
Y (x)

hj

j!
µK,j + o(hνm) = f

(m)
Y (x) + o(hνm), (A.5)

since µK,νm
= 0 for νm = 1, . . . , α − 1 and where the last term is uniform in x. From (3.1),

(3.2) and (A.5), we deduce

E{f̂X(x; h)} =fY (x) + (−1)αf
(α)
Y (x)

hα

α!
µK,α +

α∑

m=1

(−1)mSmσm{f
(m)
Y (x) + o(hνm)} + o(hα)

=fX(x) + (−1)αf
(α)
Y (x)

hα

α!
µK,α + o(hα) + o(σα),

where we used the fact that σmhνm = O(hα). The conclusion follows from σ = O(h).

(ii) Under the additional conditions, the term o(σα) equals minus the first non zero higher

order term in the Taylor expansion of (3.1), giving (−1)k+1Skσ
kf

(k)
Y (x) + o(σk), while the

o(hνm) term of (A.5) is replaced by a O(hα) term.

Theorem A.2. Under Condition A, we have

Var{f̂X(x; h)} =
fY (x)

nh

(∫
K2 + Tα,1 + 2 Tα,2

)
+ o

{
(nh)−1

}
+ o

{
(σ/h)2α(nh)−1

}
, (A.6)
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where we introduced the notations Tα,1 =
∑α

m,l=1(−1)m+lSmSl(σ/h)m+l
∫

K(m)(u)K(l)(u) du

and Tα,2 =
∑α

m=1(−1)mSm(σ/h)m
∫

K(u)K(m)(u) du and where the remainder terms are

uniform in x.

Proof of Theorem A.2. We have

Var{f̂X(x; h)} =Var{f̂Y (x; h)} +

α∑

m,l=1

(−1)m+lSmSlσ
m+l cov{f̂

(m)
Y (x; h), f̂

(l)
Y (x; h)}

+ 2
α∑

m=1

(−1)mSmσm cov{f̂Y (x; h), f̂
(m)
Y (x; h)},

where, for any two positive integers r, s ≤ α, it is easy to check that

cov{f̂
(r)
Y (x; h), f̂

(s)
Y (x; h)} =

fY (x)

nhs+r+1

∫
K(r)(u)K(s)(u) du + o

( 1

nhs+r+1

)
,

where the lower order terms are negligible uniformly in x.

Derivation of bandwidth (3.6). Here the bandwidth can not be found via the AMISE

expression of case (iii) of Theorem 3.1, but can be found by reintroducing second order

(bias) terms in this AMISE expression. Proceeding that way, we find

AMISE = R(f
(k)
Y )σ2kS2

k + 2(−1)α+k+1σkSk
hα

α!
µK,α

∫
f

(α)
Y f

(k)
Y + σ2αS2

α

R(K(α))

nh2α+1
. (A.7)

If (−1)α+k+1SkµK,α

∫
f

(α)
Y f

(k)
Y > 0, the optimal bandwidth is found by differentiating the

AMISE, which gives h = C
1/(3α+1)
4 σ(2α−k)/(3α+1)n−1/(3α+1). Otherwise, the optimal bandwidth

cancels the sum of the last two terms of (A.7), which gives h = C
1/(3α+1)
3 σ(2α−k)/(3α+1)

n−1/(3α+1).

Exact expression at page 11. Consider ordinary smooth errors whose Fourier transform

can be written as φZ(t) = (1 +
∑β

j=1 ajt
j)−1 for all t. We note that, for j = 0, . . . , β, we

have φ
(j)
Z (0) = ijµZ,j and aj = ijSj. By the Fourier inversion theorem, we have fX(x) =

(2π)−1
∫

e−itxφY (t)φ−1
Z (σt) dt, and we deduce

fX(x) =
1

2π

∫
e−itxφY (t) dt +

β∑

j=1

ajσ
j 1

2π

∫
e−itxtjφY (t) dt = fY (x) +

β∑

j=1

(−1)jSjσ
jf

(j)
Y (x).
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It follows that if α ≥ β, the formula (3.1) is exact (the terms of order higher than β vanish).
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