
Estimation of boundary and discontinuity points in

deconvolution problems

A. Delaigle1,∗ and I. Gijbels2,∗∗

1Department of Mathematics, University of California, San Diego, CA 92122 USA

2Universitair Centrum voor Statistiek, Katholieke Universiteit Leuven, Belgium.

Abstract

We consider estimation of the boundary of the support of a density function when

only a contaminated sample from the density is available. This estimation problem is

a necessary step when estimating a density with unknown support, different from the

whole real line, since then modifications of the usual kernel type estimators are needed

for consistent estimation of the density at the endpoints of its support. Boundary

estimation is also of interest on its own, since it is the basic problem in, for example,

frontier estimation in efficiency analysis in econometrics. The method proposed in this

paper can also be used for estimating locations of discontinuity points of a density in

the same deconvolution context. We establish the limiting distribution of the proposed

estimator as well as approximate expressions for its mean squared error, for various

types of error densities, and deduce rates of convergence of the estimator. The finite

sample performance of the procedure is investigated via simulation.
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1 Introduction

In this paper, we consider kernel estimation of boundary points and discontinuity points of

a density from a contaminated sample of that density, i.e. from a sample that contains mea-

surement errors. The contamination problem, often referred to as a deconvolution problem,

has applications in many different fields such as chemistry or public health. In this context

a so-called deconvolution kernel estimator of the density has been proposed in the literature.

See, for example, Carroll and Hall (1988) and Stefanski and Carroll (1990). This deconvolu-

tion kernel density estimator, however, is not consistent at a discontinuity point or at a finite

left/right endpoint of the density to estimate, and has to be modified by taking these points

into account. See for example Zhang and Karunamuni (2000) for the modifications to apply

in the case of boundary points. It is necessary to provide good estimators of these boundary

points or, more generally, discontinuity points when they are unknown.

Boundary estimation also arises when investigating efficiencies of firms like banks, or

public services. These investigations involve estimation of quantities such as the maximum

level of output that can be produced for a given level of input, which is often referred to as

an economic frontier estimation problem, but can be seen as a problem of estimation of the

boundary of a density. Many different methods have been proposed to estimate a frontier in

the case where the observations do not contain any measurement error, but these methods

do generally not provide consistent estimators of the more realistic stochastic frontiers, i.e.

of frontiers (or boundary points) to be estimated from data that are contaminated by noise.

Boundary estimation from contaminated data has been studied by Kneip and Simar

(1996), Neumann (1997b) or Hall and Simar (2002), for example. These papers, however,

either focus on very specific contexts, or propose methods that are difficult to implement

in practice. Our goal is to provide a method that works in more general contexts, and to

provide a way to implement the method in practice. The idea is to estimate the boundary

point by the maximiser of a certain diagnostic function. This is related to procedures used

in the error-free case to estimate discontinuity points of a density or a regression function.

Similarly as for density estimation in the deconvolution context, the behaviour of the
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proposed estimator depends strongly on the type of error that contaminates the data. See

for example Fan (1991c), who considers two classes of error densities: the ordinary smooth and

the supersmooth error densities. We prove consistency of the proposed boundary estimation

method for both classes of error densities.

This paper is organized as follows. In Section 2 we present the problem of boundary

point estimation and introduce the estimation procedure. In Section 3 we establish the

asymptotic distribution for the estimator and deduce approximate expressions for its bias

and variance. In Section 4, the finite sample performance of the procedure is illustrated on

simulated examples. The proofs of the results are given in Section 5.

2 The estimation method

Suppose we are interested in a density fX , but we observe an i.i.d. sample Y1, . . . , Yn from the

density fY , where Yi = Xi + Zi, i = 1, 2, . . . , n, and where for all i, Zi is a r.v. independent

of Xi, of known continuous density fZ , representing the error in the data and Xi is a r.v.

of density fX . The case where fZ is totally or partially unknown may also be considered,

if further observations, such as for example a sample from fZ itself, are available. See for

example Barry and Diggle (1995), Neumann (1997a) and Li and Vuong (1998).

In the case where the density fX is continuous, a so-called deconvolving kernel density

estimator of fX has been proposed. Consider a kernel function K and a smoothing parameter

h = hn > 0, depending on n, called the bandwidth. The deconvolving kernel estimator of fX

is then defined by

f̂X(x; h) =
1

nh

n∑

j=1

KZ

(x− Yj
h

)
, (2.1)

where KZ(u) = (2π)−1
∫
e−ituϕK(t)/ϕZ(t/h) dt, with ϕL the Fourier transform (resp. char-

acteristic function) of a function (resp. random variable) L. See Carroll and Hall (1988) and

Stefanski and Carroll (1990) for an introduction to this estimator. Throughout this paper,

we assume that fZ is real and symmetric and that, for all t ∈ IR, ϕZ(t) 6= 0. In order to

guarantee that the integral in (2.1) exists, we choose the kernel K to be a real, continuous
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and symmetric function, such that ϕK has a compact support [−BK , BK], with 0 < BK <∞.

Note that, under our assumptions, KZ is real and symmetric and ‖ϕK‖∞ <∞.

In this paper, we consider the case where the uncontaminated density fX has one or

two finite boundary points and fX is not continuous in these points, which is of particular

interest when estimating an economic frontier or as a first step to kernel estimation of fX .

When the data of interest are observed directly (i.e. without error), a simple and consistent

approach for estimating the boundary points is to estimate the left endpoint of the support

by the smallest observation, and the right endpoint by the largest observation. In the case

of measurement error however, these simple estimators min(Y1, . . . , Yn) and max(Y1, . . . , Yn)

will not be consistent estimators of the boundary points of fX but rather of those of fY .

Hence, we need a more elaborated procedure.

The method we propose uses the fact that a boundary point is a particular discontinuity

point of the density. The idea is then to use methods that exist in the error-free case to

detect a discontinuity point, and adapt them to the case of boundary point estimation with

contaminated data. We focus on kernel methods. In the error-free case, several such methods

to detect a discontinuity point have been proposed. They are all based on the following basic

idea: estimate a discontinuity point by the maximizer of an appropriate diagnostic function.

Chu and Cheng (1996) choose as diagnostic function the difference of two kernel density

estimators. Couallier (1999, 2000) uses the derivative of a kernel density estimator. See

Müller (1992), Wu and Chu (1993), Gijbels, Hall and Kneip (1999), Goderniaux (2001) and

Gijbels and Goderniaux (2004), among others, for similar methods in the regression context.

We propose a diagnostic function based on derivative estimation. For a density fX with

a single boundary point τ , we define the estimator of τ by

τ̂ = argmaxx |Ĵ(x)|, (2.2)

where the diagnostic function Ĵ(x) is proportional to the derivative of the deconvolution

kernel density estimator of fX : Ĵ(x) = 1
nh

n∑
i=1

K ′Z
(
x−Yi
h

)
. Unlike fX , the kernel estimate f̂X is

a smooth function, even in τ . In the current context, it is to be expected that this estimate

will be continuous but with large derivatives when approaching the endpoints (large positive
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derivative for a left endpoint and large negative derivative for a right endpoint). In the next

section, we prove that the method is consistent, and provide asymptotic distribution of the

estimator.

3 Asymptotic distribution of the estimator

Consider a density fX with a single boundary or discontinuity point τ . In this section we

show that the estimator for τ introduced in the previous section is a consistent estimator, and

establish its asymptotic law. The basic ideas of proof use techniques and conditions somewhat

similar to those used for proving the consistency of a discontinuity point estimator in the error

free case. See for example Müller (1992), Chu and Cheng (1996) and Couallier (1999). In

particular, we assume that τ lies in a compact interval [A,B], and thus our estimator is defined

as τ̂ = argmaxx∈[A,B] |Ĵ(x)|. We partition the interval [A,B] in n1+q intervals of equal size,

and define En as the set of endpoints of the partition. More precisely, let En = {z0, . . . , zn1+q},
where z0 = A < z1 < . . . < zn1+q = B, and zj+1− zj = (B−A)/n1+q for j = 0, . . . , n1+q − 1.

Note that, unlike the error free case, where the kernel K is usually a positive, bounded

and compactly supported function, the pseudo kernel KZ of the error case is supported on

the whole real line, not positive everywhere and is asymptotically unbounded. Hence, despite

some similarities in the main ideas, the error case is much more difficult to deal with.

In particular, the asymptotic properties of our estimator depend strongly on the error

distribution, since the latter dictates the behaviour of KZ . As in Fan (1991c) we consider

two types of error distributions, the ordinary smooth distributions and the supersmooth

distributions.

Definition 1. The distribution of a random variable Z is said to be

(i) ordinary smooth of order β if its characteristic function ϕZ(t) satisfies: d0|t|−β ≤
|ϕZ(t)| ≤ d1|t|−β as t→∞, for some positive constants d0, d1 and β.

(ii) supersmooth of order β if its characteristic function ϕZ(t) satisfies: d0|t|β0 exp(−|t|β/γ) ≤
|ϕZ(t)| ≤ d1|t|β1 exp(−|t|β/γ) as t → ∞, for some positive constants d0, d1, β, γ and
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constants β0 and β1;

We will see that for supersmooth error densities (e.g. normal and Cauchy densities) the rate of

convergence of the estimator is logarithmic. This rate is much faster (algebraic) for ordinary

smooth error densities (e.g. gamma and Laplace densities). The same distinction shows up

when considering deconvolving kernel density estimation (see for example Fan (1991c)).

In what follows, we treat the ordinary smooth and the supersmooth error cases separately.

We first define some useful notations. For any set D ⊂ IR and positive integer m, let Cm(D)

denote the set of functions m times continuously differentiable on D and define Dm(D) =
{
f ∈ Cm(D) : sup0≤j≤m supx∈D |f (j)(x)| < ∞

}
. For a square integrable function f , let

also R(f) denote
∫
f 2(x) dx. Finally, let d denote the size of the discontinuity of fX in

τ , i.e. d = fX(τ+) − fX(τ−), where, for any function g and point a ∈ IR, we use the

notation g(a+) = limx→
>
a g(x) and g(a−) = limx→

<
a g(x). Then, we define the function rX by

rX = fX − d I[τ,+∞[. Clearly, rX is continous on IR, and, in particular in τ , since we have

rX(τ−) = rX(τ+) = fX(τ−).

3.1 Ordinary smooth error case

In the case where the error Z is ordinary smooth of order β, we introduce the following

assumptions.

Condition A:

(A1) K ∈ C3(IR) is a symmetric, kth order kernel (k ≥ 2 even), such that ‖K‖∞ = K(0) >

maxx6=0 |K(x)|, K ′′(0) < 0, and
∫
|uK(r)(u)| du <∞ for r = 0, 1, 2, 3;

(A2) rX is Lipschitz continuous with Lipschitz constant L;

(A3) fY is differentiable on IR \ {τ} such that supx∈IR\{τ} |f (`)
Y (x)| <∞ for ` = 0, 1;

(A4) KZ ∈ C4(IR) is such that
∫
|K ′′Z(u)| du = O(h−β) and

∫
|u| · |K ′′Z(u)|2 du = O(h−2β),

and, for r = 0, 1, . . . , 4, ‖K(r)
Z ‖∞ = O(h−β) and R(K

(r)
Z ) ∼ h−2β ;

(A5) h → 0 as n → ∞, such that, for some 0 < δ < 1/2 and p ∈ IN0 = IN \ {0},
nh

2+2δ+β
1+q →∞ ∑∞

n=1 n
1+q−ph−4δp−p−2βp <∞, with q ∈ IN0 as at page 4.
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Although some of these conditions look rather involved, they are quite common in density

deconvolution problems. A discussion on these and similar conditions is provided in Delaigle

(2003). There, it is shown that the conditions can be expressed in a rather simple form, but

to the extent of less generality of the functions fZ and K. In particular, Condition (A1) is

satisfied by most kernels commonly used in deconvolution problems. See also Fan (1991a,b)

and Delaigle and Gijbels (2002,2004a,b).

Under the conditions stated, we prove the asymptotic normality of the estimator. We

approximate the first two moments of the estimator by the first two moments of the asymp-

totic distribution, and deduce an approximation of the Mean Squared Error (MSE) of the

estimator τ̂ . We discuss rates of convergence of the estimator to its target point τ . The

proofs of the results are deferred to Section 5.

The asymptotic distribution of the estimator is described in the next theorem. This dis-

tribution depends on the number of derivatives l of the function rX . We need to distinguish

the case l = 0 from the case l ≥ 1.

Theorem 3.1. Suppose the error is ordinary smooth of order β. Under Conditions (A1)–

(A5), if rX ∈ Cl(IR)∩D3(IR \ {τ}) with l ≥ 0, and
∫
|u|3|K ′′(u)| du <∞. Let k2 = 0 if l = 0

and 1 otherwise. Then, for h = o(n
− 1

2β+2k2+5 ), we have

√
n

h

[ τ − τ̂√
R
(
K ′′Z
) −

hk2+2Dτ

dK ′′(0)
√
R
(
K ′′Z
)
]

L−→ N
(

0;
Bτ

d2{K ′′(0)}2

)
, (3.1)

where Dτ = (−1)k2+1

(k2+1)!
[r

(k2+1)
X (τ+)+(−1)k2+1 r

(k2+1)
X (τ−)]

∫ 0

−∞ u
k2+1K ′′(u) du and Bτ = [fY (τ+)+

fY (τ−)]/2.

An approximation of the mean squared error (AMSE) of the estimator τ̂ of τ can be found

by using the moments of the asymptotic distribution.
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Corollary 3.1. Under the conditions of Theorem 3.1, we have,

AMSE[τ̂ ] =
h2k2+4D2

τ

d2{K ′′(0)}2
+

hR
(
K ′′Z
)
Bτ

nd2{K ′′(0)}2
. (3.2)

When rX ∈ Cl(IR), with l > 1, we see that we obtain the same asymptotic expression

whatever the value of l. If Dτ = 0, one has to go one or several steps further in the Taylor

expansions used in the proofs, until finding a non-zero leading term.

The above results show that, the larger the discontinuity, the easier the estimation, which

is easy to understand intuitively, as a large discontinuity is more likely to produce large

derivatives of f̂X , and thus easily detectable maxima for the diagnostic function Ĵ .

From Theorem 3.1, we deduce that

τ − τ̂ = OP

(
√
hR
(
K ′′Z
)

n

)
+O(hk2+2). (3.3)

Under the conditions of the theorem, we know that hR
(
K ′′Z
)

is of order h1−2β (by condition

(A4)). To obtain rates of convergence of the estimator, we need to investigate both terms at

the right-hand side of expression (3.3) and make the distinction between the case where the

exponent 1− 2β is ≥ 0 and the case where 1− 2β < 0. Similarly, this distinction is coming

up when looking at AMSE in (3.2).

If 0 ≤ β ≤ 1/2 and hence 1 − 2β ≥ 0, minimization of (3.3) with respect to h leads

to choosing h as small as possible. Under the conditions of the theorem, we can take h ∼
n−

1
2β+1

+η, with η > 0 which provides a rate of convergence slightly slower than n−
1

2β+1 , more

precisely, τ − τ̂ = OP(n−
1

2β+1
+ε) with ε > 0.

For β > 1/2, or equivalently 1 − 2β < 0, we see that the optimal bandwidth is the

balancing bandwidth (i.e. the bandwidth which makes the two terms of (3.3) of the same

order). If Dτ 6= 0, this bandwidth satisfies h ∼ n
− 1

2β+2k2+3 . From (3.3), we conclude then

that τ − τ̂ = OP(n
− k2+2

2β+2k2+3 ).
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3.2 Supersmooth error case

If the error is supersmooth of order β with β0 and β1 as in Definition 1, we assume, for

simplicity, that the support of ϕK is [−1, 1], i.e. BK = 1, and we introduce some conditions.

Condition B:

(B1)–(B3): the same as Conditions (A1)–(A3), with the extra condition
∫
|t|2r−2β0|ϕK(t)|2 dt <

∞ in (B1);

(B4) KZ ∈ C4(IR) is such that, for r = 0, 1, . . . 4, ‖K (r)
Z ‖∞ = O

(
hβ0 exp(h−β/γ)

)
, R(K

(r)
Z ) =

O
(
h2β0 exp(2h−β/γ)

)
, and

∫
|K ′′Z(u)| du = O

(
hβ3 exp(h−β/γ)

)
, with β3 a real constant;

(B5) fY (τ−) > 0 and for n large enough,

h−1

∫ ∞

−∞
{K ′′Z(y)}2fY (τ − hy) dy ≥ c5fY (τ−)hc6 exp

( 2

hβγ
− 4βbn

hβγ

)
(3.4)

where b = hβ/(4+10), c5 is a positive constant and c6 is a constant depending on β0.

As in the ordinary smooth error case, these conditions are rather common for this (difficult)

class of error densities. Fan (1991a) proves that (B5) is satisfied under mild additional

assumptions on K and fZ . See Delaigle (2003) for similar results for Condition (B4).

If the error is supersmooth of order β and if Condition B is satisfied, we obtain the same

asymptotic law of the estimator as in the ordinary smooth error case. From there, we deduce

the same approximate expression for the MSE of τ̂ . However the rates of convergence of the

estimator τ̂ to its target point τ are different.

The asymptotic distribution of the estimator τ̂ is provided in the following theorem. Note

that in the supersmooth error case the study of the variance of the random quantity hĴ ′(τ) is

more tedious than in the ordinary smooth error case. The proofs of the results can be found

in Section 5.
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Theorem 3.2. Suppose the error is supersmooth of order β > 0 and h = d·(2/γ)1/β(lnn)−1/β

with d > 1. Under Conditions (B1)–(B5), if rX ∈ Cl(IR) ∩ D3(IR \ {τ}) with l ≥ 0, and
∫
|u|3|K ′′(u)| du <∞. Let k2 = 0 if l = 0 and 1 otherwise. Then

τ − τ̂
h

√
Var(hĴ ′(τ))

− E[hĴ ′(τ)]

dK ′′(0)

√
Var(hĴ ′(τ))

L−→ N
(

0;
1

d2{K ′′(0)}2

)
, (3.5)

with E[hĴ ′(τ)] = hk2+1Dτ + O(hk2+2), and where Var(hĴ ′(τ)) = (nh)−1
∫ {

K ′′Z(u)
}2

fY (τ −
hu) du+O(n−1). Further, if

∫
|u| · |K ′′Z(u)|2 du = O(R(K ′′Z)), we can write

√
nh
[ τ − τ̂
h
√
R
(
K ′′Z
) −

E[hĴ ′(τ)]

dK ′′(0)
√
R
(
K ′′Z
)
]

L−→ N
(

0;
Bτ

d2{K ′′(0)}2

)
.

The following corollary establishes an approximate mean squared error of the estimator τ̂ .

Corollary 3.2. Under the conditions of Theorem 3.2, we have

AMSE[τ̂ ] =
h2k2+4D2

τ

d2{K ′′(0)}2
+
h2 Var(hĴ ′(τ))

d2{K ′′(0)}2
. (3.6)

If we further assume that
∫
|u| · |K ′′Z(u)|2 du = O(R(K ′′Z)), we have

AMSE[τ̂ ] =
h2k2+4D2

τ

d2{K ′′(0)}2
+

hR
(
K ′′Z
)
Bτ

nd2{K ′′(0)}2
.

Under the conditions of the theorem, we have R(K ′′Z) = O
(
h2β0 exp(2h−β/γ)

)
. With the

condition imposed on the bandwidth, we obtain, from (3.3), that τ̂−τ = OP

(
(lnn)−(k2+2)/β

)
,

which is a much slower rate of convergence than in the ordinary smooth error case.

4 Simulations

In this section, we illustrate the finite sample performance of the procedure on a few examples.

As noted in Section 2, the estimator f̂X is expected to have large positive derivative for a

left endpoint and large negative derivative for a right endpoint. Hence, in practice, our

estimator can be calculated as τ̂ = argmaxx Ĵ(x), ( respectively τ̂ = argminx Ĵ(x)), for a

10



x

J(
x)

-5 0 5

-0
.0

4
0.

0
0.

02
0.

04
0.

06

x

J(
x)

-5 0 5

-0
.0

4
-0

.0
2

0.
0

0.
02

x

J(
x)

-5 0 5

-0
.0

3
-0

.0
1

0.
0

0.
01

0.
02

x

J(
x)

-5 0 5

-0
.0

3
-0

.0
1

0.
0

0.
01

0.
02

x

J(
x)

-5 0 5

-0
.0

2
-0

.0
1

0.
0

0.
01

0.
02

x

J(
x)

-5 0 5

-0
.0

2
-0

.0
1

0.
0

0.
01

0.
02

Figure 4.1: Typical shape of Ĵ(x) for a sample of size n = 100 from Density #3 contaminated

with a Laplace error, for increasing bandwidths (from the left to the right and from the top

to the bottom).

left (respectively right) boundary point τ . In the case of two boundary points τ1 and τ2, we

define, using similar ideas, the estimators τ̂1 = argmaxx Ĵ(x) and τ̂2 = argminx Ĵ(x).

Note that the above method may be applied for the estimation of a discontinuity point

as well, but, in that case, one has no information on the sign of the discontinuity and has to

stick to the original definition (2.2).

Typical shape of the diagnostic function Ĵ is illustrated in Figure 4.1 for increasing band-

widths (here for a sample of size n = 100 from Density #3 below contaminated by a Laplace

error), with the actual endpoints (here −3 and 3) indicated by vertical lines. We see that

the diagnostic function is indeed maximized at points close to −3 and minimized at points

close to 3.

We select the bandwidth by estimating the asymptotic MISE optimal bandwidth for esti-

mating the derivative of a density developed in the case of continuous and differentiable

densities, i.e., for a second order kernel K, we estimate the bandwidth that minimizes

AMISE
{
f̂ ′X(x; h)

}
= (2πnh5)−1

∫
t4|ϕK(t)|2|ϕZ(t/h)|−2 dt + h4

4
µ2
K,2θ4, where µK,2 denotes

the second moment of the kernel K, and θ4 = R(f
(4)
X ) is unknown. We use a plug-in estima-
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Figure 4.2: Densities with a bounded support. Density #1 (top left panel), density #2 (top

right panel), density #3 (bottom left panel) and density #4 (bottom right panel).

tion method similar to the plug-in bandwidth selector of Delaigle and Gijbels (2002, 2004b).

More precisely, we choose h = argmin ÂMISE(h), with

ÂMISE(h) =
1

2πnh5

∫
t4
|ϕK(t)|2
|ϕZ(t/h)|2 dt+

h4

4
µ2
K,2θ̂4, (4.7)

where θ̂4 is the two-stage plug-in estimator of θ4 proposed by Delaigle and Gijbels (2002).

See Delaigle and Gijbels (2002) for detailed implementation of the procedure.

We use the second order kernel K corresponding to ϕK(t) = (1 − t2)3.1[−1,1](t), com-

monly used in deconvolution problems. We consider four densities with a compact support,

illustrated in Figure 4.2:

1. Density #1 (a uniform density): fX(x) = 1/3 · 1[0,3](x);

2. Density #2 (a concave density): fX(x) = 3/175(−x2 + 6x+ 5) · 1[0,5](x);

3. Density #3 (a sinus type density): fX(x) = (sin2(x/2) + 2)/(15− sin 3) · 1[−3,3](x);

4. Density #4 (a multimodal density): fX(x) = (sin x+ 1.1)/(28.5− cos 25) · 1[0,25](x).

For each of the above densities #1—4, we have generated 100 samples of size n = 100

and 250, contaminated by a Laplace error with a noise to signal ratio VarZ/VarX = 10%.
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Figure 4.3: Scatterplots of 100 replicated estimators for samples of size n = 100 (left panels),

or 250 (right panels), from density #1 (top panels), density #2 (second line panels), density

#3 (third line panels) or density #4 (bottom panels) contaminated by a Laplace error with a

noise to signal ratio VarZ/VarX = 10%. Estimates of the right (respectively left) endpoint

are indicated by the character � (respectively +).

Figure 4.3 shows scatterplots of the 100 replicated estimators of the left and right endpoints,

indicated by respectively the characters + and �. The true endpoints are indicated by

horizontal lines. From that figure, we see that the method performs quite well, even for the

more difficult Densities #2 and #4, and the results improve as the sample size increases. As
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one could have expected, the left endpoint of Density #2 is more difficult to estimate than

the right endpoint, because it has a smaller jump size, but yet, we see that the bias decreases

as the sample size increases. See Delaigle and Gijbels (2004c) for more detailed results on

this type of problem and other more challenging difficulties.

5 Proofs of the results

In this section we prove the results of Sections 3.1 and 3.2. For u < 0 and rX ∈ C`+1(IR\{τ}),
the `th order Taylor expansion of rX around a boundary point τ may be written as rX(τ+u) =

rX(τ) + ur′X(τ−) + . . . + u`

`!
r

(`)
X (τ−) + R`(τ), where R`(τ) =

u`+1

(`+ 1)!
r

(`+1)
X (τ + θu), with

0 < θ < 1. We obtain a similar expansion for u > 0, with τ+ instead of τ−.

5.1 Auxilary results for the ordinary smooth case

The following sequence of lemmas lead to the proof of Theorem 3.1 and Corollary 3.1.

Throughout, K is a kth order symmetric kernel with k ≥ 2. The following conditions will be

useful.

Condition C: (Cm
1 ) K ∈ Cm(IR) is such that lim|x|→∞K(m−1)(x) = 0; (Cm

2 ) KZ ∈ Cm(IR);

(Cm
3 )
∫
|u| · |K(m)

Z (u)|2 du = O(h−2β); (Cm
4 )
∫
|K(m)

Z (u)| du = O(h−β); (Cm
5 ) ‖K(m)

Z ‖∞ =

O(h−β); (Cm
6 ) R(K

(m)
Z ) ∼ h−2β; (Cm

7 )
∫
|uK(m)(u)| du <∞.

The next lemma is a generalization of a result of Stefanski and Carroll (1990). See Delaigle

and Gijbels (2002) for a proof.

Lemma 5.1. Let r ≥ 0. If K ∈ Cr(IR), we have E
[
K

(r)
Z

(
x−Y
h

)]
= E

[
K(r)

(
x−X
h

)]
.

Lemma 5.2. Assume Conditions (C2
1) and (C2

2), and rX ∈ Cl(IR)∩D3(IR \ {τ}) with l ≥ 0.

Let k2 = 0 if l = 0 and 1 otherwise. Then, if K ′(0) = 0 and
∫
|u|3|K ′′(u)| du <∞,

E
[ 1

nh

n∑

i=1

K ′′Z

(τ − Yi
h

)]
=hk2+1Dτ +O(hk2+2). (5.1)
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Proof. From Lemma 5.1 and the condition K ′(0) = 0, we can write

E
[ 1

nh

n∑

i=1

K ′′Z

(τ − Yi
h

)]
=

∫ 0

−∞
K ′′(u)rX(τ − hu) du+

∫ +∞

0

K ′′(u)rX(τ − hu) du .

A Taylor expansion of rX of order 2 around τ− (resp. τ+) for u > 0 (resp. u < 0),

combined with the fact that
∫
ujK ′′(u) du = 0 for j = 0, 1, provides the result.

Lemma 5.3. Let r ≥ 0. Under (A2), (Cr+1
1 ), (Cr+1

2 ) and (Cr+1
7 ), we have, for all x,

E
[
hrĴ (r)(x)

]
= dK(r)

(x− τ
h

)
+O(h) ,

uniformly in x.

Proof. Follows from Lemma 5.1 and Lipschitz continuity of rX .

Lemma 5.4. Let r ≥ 0. Under Conditions (A2), (A3), (Cr+1
1 ), (Cr+1

2 ), (Cr
3), (Cr+1

7 ) and if

K
(r)
Z is symmetric, we have

Var
[
h−1K

(r)
Z

(τ − Y
h

)]
=
fY (τ+) + fY (τ−)

2h

∫ {
K

(r)
Z (u)

}2
du+O(h−2β).

Proof. From Lemma 5.3, a first order Taylor expansion of fY around τ+ or τ− and the

symmetry of K
(r)
Z , we have

Var
[
h−1K

(r)
Z

(τ − Y
h

)]
=h−1

∫ {
K

(r)
Z (u)

}2
fY (τ − hu) du+O(1)

=
fY (τ+) + fY (τ−)

2h

∫ {
K

(r)
Z (u)

}2
du+R2 +O(1),

where |R2| ≤ sup
x∈IR\{τ}

|f ′Y (x)|
∫
|u| · |K(r)

Z (u)|2 du = O(h−2β).

The next lemma generalizes a result of Fan (1991a) to the case where the density fX is not

continuous.
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Lemma 5.5. Let r ≥ 0. Under Conditions (A2), (A3), (Cr+1
1 ), (Cr+1

2 ), (Cr
3), (Cr

4), (Cr
5),

(Cr
6), (Cr+1

7 ), and if K
(r)
Z is symmetric and nh→∞ as n→∞, we have

1
nh

n∑
i=1

K
(r)
Z

(
τ−Yi
h

)
− E

[
1
nh

n∑
i=1

K
(r)
Z

(
τ−Yi
h

)]

√
Var

[
1
nh

n∑
i=1

K
(r)
Z

(
τ−Yi
h

)]
L−→ N(0; 1). (5.2)

Proof. Denoting h−1K
(r)
Z

(
τ−Yi
h

)
by Yn,i, i = 1, . . . , n, where, for all i 6= j, Yn,i ⊥⊥ Yn,j, we use

the central limit theorem for triangular arrays of random variables. See for example Serfling

(1980), page 32. We need to verify the following Lyapounov condition: for some η > 0,

lim
n→∞

nE |Yn,1 − E(Yn,1)|2+η

(nVar(Yn,1))(2+η)/2
= 0. (5.3)

From Minkowski’s inequality, we have E |Yn,1−E(Yn,1)|2+η ≤
({

E |Yn,1|2+η
} 1

2+η+E |Yn,1|
)2+η

.

Under the conditions of the lemma, E |Yn,1| ≤ supx∈IR\{τ} |fY (x)|
∫
|K(r)

Z (u)| du = O(h−β) ,

and h1+η E |Yn,1|2+η ≤ ||K(r)
Z ||1+η

∞ · supx∈IR\{τ} |fY (x)|
∫
|K(r)

Z (u)| du = O(h−β(2+η)). We con-

clude that h1+η E |Yn,1 − E(Yn,1)|2+η = O(h−β(2+η)). From the proof of Lemma 5.4, we have

Var(Yn,1) ∼ h−2β−1, and the Lyapounov condition is satisfied.

Lemma 5.6. Let r ≥ 0. Under (A2), (Cr+1
1 ), (Cr+1

2 ), (Cr+1
5 ), (Cr+1

6 ), (Cr+1
7 ), if supx∈IR\{τ} |fY (x)|

<∞ and if nh→∞ as n→∞, we have, for all p ∈ IN0 and for n large enough,

E[hrĴ (r)(x)− hr E Ĵ (r)(x)]2p ≤ 2n−ph−p−2βp ·
{ 2

π

∫
|t|2r+2+2β|ϕK(t)| dt · sup

x∈IR\{τ}
|fY (x)| (2/d0)

2
}p
.

Proof. Let Tj denote K
(r+1)
Z

(x−Yj
h

)
. We have

E[hrĴ (r)(x)− hr E Ĵ (r)(x)]2p =
1

(nh)2p
E

n∑

i1,i2,...,i2p=1

i2p∏

j=i1

[
Tj − E(T1)

]

=
1

(nh)2p

n∑

i=1

E
[
Ti − E(T1)

]2p
+

1

(nh)2p

n∑

i=1

∑

j 6=i

2p−2∑

li=2

E
[
Ti − E(T1)

]li · E
[
Tj − E(T1)

]2p−li

+ . . .+
1

(nh)2p

∑

i1 6=i2 6=...6=ip

ip∏

j=i1

E
[
Tj − E(T1)

]2
, (5.4)

since, from E
[
Ti−E(Ti)

]
= 0, we only have to consider the terms of the sum where at most p

different indices appear and each index ik appears lik ≥ 2 times. Let Cj
l denote the binomial
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coefficient. We have, for all l ≥ 2,

E
[
Ti − E(T1)

]l
=

l∑

j=0

(−1)jCj
l E
[
K

(r+1)
Z

(x− Yi
h

)]j[
EK

(r+1)
Z

(x− Y1

h

)]l−j
= O(h1−lβ),

since, by Lemma 5.3, we have E
[
K

(r+1)
Z

(
x−Y1

h

)]
= O(h), and, for all j ≥ 2, using arguments

similar to the proof of Lemma 5.5, we have E
[
K

(r+1)
Z

(
x−Yi
h

)]j
= O(h1−jβ). Finally we get

E[hrĴ (r)(x)− hr E Ĵ (r)(x)]2p =O
(
n−ph−p−2βp

)
,

since nh→∞ as n→∞. From the above calculations, we also see that we can write

E[hrĴ (r)(x)− hr E Ĵ (r)(x)]2p =

∏p−1
l=0 (n− l)
(nh)2p

{
E
[
T1 − E(T1)

]2}p · (1 + o(1))

=
1

nph2p

{
E
[
K

(r+1)
Z

(x− Y1

h

)]2}p
· (1 + o(1))

≤ 1

nph2p

{
2h sup

x∈IR\{τ}
|fY (x)| ·R(K

(r+1)
Z )

}p
· (1 + o(1))

≤n−ph−p−2βp ·
{

2cβ(K) sup
x∈IR\{τ}

|fY (x)| · (2/d0)
2
}p
· (1 + o(1)),

where cβ(K) = π−1
∫
|t|2r+2+2β|ϕK(t)|2 dt, and details for obtaining the last inequality can

be found in Delaigle and Gijbels (2003).

Lemma 5.7. Let r ≥ 0. Assume Conditions (A2), (A5), (Cr+1
1 ), (Cr+2

2 ), (Cr+1
5 ), (Cr+2

5 ),

(Cr+1
6 ) and (Cr+1

7 ). Further assume that ‖K (r+1)‖∞ < ∞, and supx∈IR\{τ} |fY (x)| < ∞.

Then, if nh→∞ as n→∞, we have for all ε > 0

∞∑

n=1

P
(
h−2δ sup

x∈[A,B]

|hrĴ (r)(x)− hr E Ĵ (r)(x)| > ε
)
<∞ , (5.5)

with δ > 0 as in Condition (A5).

Proof. Let En be as defined on page 5. For each x in [A,B] there exists at least one point

z in En such that |x − z| ≤ (B − A)n−(1+q). Denote that point by z(x). For all ω ∈ Ω, the

sample space, we have

sup
x∈[A,B]

|hrĴ (r)(x)− hr E Ĵ (r)(x)| ≤ S1,n + S2,n + S3,n, (5.6)
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where S1,n ≡ supx∈[A,B] |hrĴ (r)(x)−hrĴ (r)(z(x))|, S2,n ≡ supx∈[A,B] |hrĴ (r)(z(x))−hr E Ĵ (r)(z(x))|
and S3,n ≡ supx∈[A,B] |hr E Ĵ (r)(z(x))− hr E Ĵ (r)(x)|, and where to simplify the notations, we

do not indicate specifically the dependence of the random variables on ω. We treat these

three terms separately. For the first term, note that for all ω ∈ Ω and for all x ∈ [A,B] we

have (by the mean-value theorem)

|hrĴ (r)(x)− hrĴ (r)(z(x))| ≤ hr|Ĵ (r+1)(ξ)| · |x− z(x)| ≤ h−2‖K(r+2)
Z ‖∞ · |x− z(x)|

where ξ lies between x and z(x) and ‖K (r+2)
Z ‖∞ ≤ c1h

−β, with c1 a positive constant inde-

pendent of ω and n. We conclude that

h−2δS1,n = h−2δ sup
x∈[A,B]

|hrĴ (r)(x)− hrĴ (r)(z(x))| ≤ c1 · (B − A) h−2−2δ−βn−1−q.

For handling the second term in (5.6), note that we have, for all ω ∈ Ω,

sup
x∈[A,B]

|hrĴ (r)(z(x))− hr E Ĵ (r)(z(x))| ≤ sup
z∈En
|hrĴ (r)(z)− hr E Ĵ (r)(z)|.

Hence for all ε > 0 and ` ≥ 1, we can write

∑̀

n=1

P
(
h−2δS2,n > ε

)
≤
∑̀

n=1

P
(
h−2δ sup

z∈En
|hrĴ (r)(z)− hr E Ĵ (r)(z)| > ε

)

≤
∑̀

n=1

∑

z∈En

[
P
(
h−2δ|hrĴ (r)(z)− hr E Ĵ (r)(z)| > ε

)]
.

Now by Chebychev’s Inequality and Lemma 5.6, we have that, for any z ∈ IR, and n large

enough (say n ≥ M)

P
(
h−2δ|hrĴ (r)(z)− hr E Ĵ (r)(z)| > ε

)
≤E[hrĴ (r)(z)− hr E Ĵ (r)(z)]2p

ε2p/h−4δp
≤ c2n

−ph−p−2βph−4δp,

where c2 is independent of n. Taking the limit as `→∞, we deduce that

∞∑

n=1

P
(
h−2δS2,n > ε

)
≤M − 1 + c2

∞∑

n=M

n1+q−ph−4δp−p−2βp + c2

∞∑

n=M

n−ph−4δp−p−2βp <∞,

by Condition (A5). For the third term in (5.6), we have

|hr E Ĵ (r)(z(x))− hr E Ĵ (r)(x)| ≤ I + II,
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with I =
∣∣
∫
K(r+1)(u)[rX(z(x) − hu)− rX(x − hu)] du

∣∣ ≤ (B − A)n−1−qL

∫
|K(r+1)(u)| du

and II =
∣∣
∫
K(r+1)(u)[dI[τ,+∞[(z(x) − hu) − dI[τ,+∞[(x − hu)] du

∣∣ ≤ (B − A)n−1−q|d| ·
‖K(r+1)‖∞h−1, where we used Lipschitz continuity of rX and the bound |z(x) − x| ≤ (B −
A)n−1−q. Finally we obtain

h−2δS3,n = h−2δ sup
x∈[A,B]

|hr E Ĵ (r)(z(x))− hr E Ĵ (r)(x)| ≤ c3n
−1−qh−1−2δ,

with c3 a positive constant independent of n (and of ω). Let ε be any positive real number.

Since we have shown that, for all ω ∈ Ω, h−2δS1,n + h−2δS3,n ≤ c1 (B − A)h−2−2δ−βn−1−q +

c3n
−1−qh−1−2δ, which, under Condition (A5), tends to zero as n → ∞, we have, for n large

enough (say n ≥ M), h−2δS1,n + h−2δS3,n ≤ ε/2. Thus we can write

∞∑

n=1

P
(
h−2δS1,n + h−2δS2,n + h−2δS3,n > ε

)
≤ (M − 1) +

∞∑

n=M

P
(
h−2δS2,n > ε/2

)
<∞.

Lemma 5.8. Suppose that τ̂ = τ+O(h1+η) a.s., with η > 0. Assume Conditions (A2), (A5),

(C3
1), (C4

2), (C3
5), (C4

5), (C3
6), (C3

7), and suppose that ‖K(3)‖∞ <∞ and supx∈IR\{τ} |fY (x)| <
∞. Then, if nh→∞ as n→∞, we have

h2Ĵ ′′(ξ)
a.s−→ dK ′′(0), (5.7)

for any ξ between τ and τ̂ .

Proof. We have

|h2Ĵ ′′(ξ)− dK ′′(0)| ≤ |h2Ĵ ′′(ξ)− h2 E Ĵ ′′(τ)|+ |h2 E Ĵ ′′(τ)− dK ′′(0)| ≤ T1,n + T2,n + T3,n,

with T1,n = supx∈[A,B] |h2Ĵ ′′(x) − h2 E Ĵ ′′(x)|, T2,n = supx∈[τ∧τ̂ ,τ∨τ̂ ] |h2 E Ĵ ′′(x) − h2 E Ĵ ′′(τ)|,
and T3,n = |E h2Ĵ ′′(τ)−dK ′′(0)|, and where, by Lemmas 5.7 and 5.3, T1,n

a.s.−−→ 0 and T3,n → 0.

Now, by Lemma 5.3 and a Taylor expansion of K ′′ around 0, we have, for all x ∈ [A,B],

h2 E Ĵ ′′(x) − h2 E Ĵ ′′(τ) = dx−τ
h
K(3)(θ) + O(h), with θ between 0 and (x − τ)/h and where

the remainder term O(h) is uniform in x. In particular, since [τ ∧ τ̂ , τ ∨ τ̂ ] ⊂ [A,B] we can

write T2,n ≤ h−1|d| · ‖K(3)‖∞ · |τ̂ − τ | +O(h) = O(hη) +O(h), where the last equality holds

almost surely. This proves that T2,n
a.s−→ 0.
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Proposition 5.2 below shows that under the conditions of the theorem, the condition

τ̂ − τ = O(h1+η) a.s. of Lemma 5.8 is satisfied, with η corresponding to δ appearing in

Condition (A5). Its proof requires Proposition 5.1 below. The proof of Proposition 5.1

follows from standard arguments and is ommitted here. See Delaigle and Gijbels (2003) for

more details. See also Couallier (2000). Let In = {x ∈ [A,B] : |x− τ | > h1+δ}, with δ > 0.

Proposition 5.1. Under Conditions (A1) to (A5), we have

∞∑

n=1

P (sup
x∈In
|Ĵ(x)| ≥ |Ĵ(τ)|) <∞. (5.8)

Proposition 5.2. Under Conditions (A1) to (A5), we have

τ̂ − τ = O(h1+δ) a.s. , (5.9)

with δ > 0 as in Condition (A5).

Proof. By definition of τ̂ , we have P
(
τ̂ ∈ In

)
≤ P

(
supx∈In |Ĵ(x)| ≥ |Ĵ(τ)|

)
, and

∞∑

n=1

P (sup
x∈In
|Ĵ(x)| ≥ |Ĵ(τ)|) <∞ =⇒ P (A) = 1,

by the Borel-Cantelli lemma, if we define A =
{
w :

∞⋃
n=1

∞⋂
m=n

{|τ̂m − τ |/h1+δ
m ≤ 1}

}
. We have

that ∀ω ∈ A : lim sup
n→∞

|τ̂n−τ |
h1+δ
n
≤ 1, and thus τ̂ − τ = O(h1+δ) almost surely. We conclude with

Proposition 5.1.

5.2 Proofs of the main results for the ordinary smooth case

Proof of Theorem 3.1. By applying a Taylor expansion of Ĵ ′ around τ , we can write

0 = Ĵ ′(τ̂ ) = Ĵ ′(τ) + (τ̂ − τ)Ĵ ′′(ξ), where ξ lies between τ and τ̂ . Thus we have

τ − τ̂ = Ĵ ′(τ)/Ĵ ′′(ξ), (5.10)

where by Lemma 5.8, Ĵ ′′(ξ) is almost surely different from zero as n→∞, since K ′′(0) < 0.

Under the conditions of the theorem, we have τ̂ − τ = O(h1+δ) a.s. (see Proposition 5.2).

Hence the conditions of Lemma 5.8 are all satisfied.
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Below, we search for the asymptotic law of Ĵ ′(τ)/Ĵ ′′(ξ) and deduce from there the asymp-

totic law of τ − τ̂ . From Lemma 5.5, for r = 2, we know that

hĴ ′(τ)− E[hĴ ′(τ)]√
Var(hĴ ′(τ))

L−→ N(0; 1)

where, by Lemma 5.4, Var
[
hĴ ′(τ)

]
= Bτ

nh
R
(
K ′′Z
)

+O(n−1h−2β), with Bτ = fY (τ+)+fY (τ−)
2

, and

where R(K ′′Z) ∼ h−2β (see Condition (A4)).

From Lemma 5.2, we know that E[hĴ ′(τ)] = hk2+1Dτ +O(hk2+2). Hence we have

hĴ ′(τ)− hk2+1Dτ√
Bτ
nh
R
(
K ′′Z
) · an + bn

L−→ N(0; 1),

where an =

√
Bτ
nh

R(K′′Z)√
Bτ
nh

R(K′′Z)+O(n−1h−2β)
→ 1 and bn = O(hk2+2)√

Bτ
nh

R(K′′Z)+O(n−1h−2β)
→ 0 n→∞, since

R(K ′′Z) ∼ h−2β, and we deduce that

hĴ ′(τ)− hk2+1Dτ√
Bτ
nh
R
(
K ′′Z
)

L−→ N(0; 1)

and the conclusion follows from (5.10) and Lemma 5.8.

Proof of Corollary 3.1. From Theorem 3.1, an approximate expression for the expectation

(AE) may be derived from AE
[

τ−τ̂√
R
(
K′′Z

) − hk2+2Dτ

dK′′(0)

√
R
(
K′′Z

)
]

= o(
√
h/n). Using Condition

(A4), we obtain AE
[
τ̂
]

= τ − hk2+2Dτ
dK′′(0)

+ o(n−1/2h(1−2β)/2). An approximate expression for the

variance (AVar) is given by

n

h
AVar

[ τ − τ̂√
R
(
K ′′Z
) −

hk2+2Dτ

dK ′′(0)
√
R
(
K ′′Z
)
]

=
Bτ

d2{K ′′(0)}2
(1 + o(1)),

and thus AVar[τ̂ ] =
hR(K′′Z)Bτ
nd2{K′′(0)}2 (1 + o(1)). The conclusion follows immediately.

5.3 Auxilary results for the supersmooth case

The following sequence of lemmas lead to the proof of Theorem 3.2 and Corollary 3.2. Again,

K is a kth order symmetric kernel with k ≥ 2. The proof of Lemma 5.12 is straightforward,

hence it is ommitted. The following conditions will be useful.
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Condition D: (Dm
1 )
∫
|K(m)

Z (u)| du = O
(
hβ3 exp(h−β/γ)

)
, with β3 a real constant; (Dm

2 )

‖K(m)
Z ‖∞ = O

(
hβ0 exp(h−β/γ)

)
; (Dm

3 ) R(K
(m)
Z ) = O

(
h2β0 exp(2h−β/γ)

)
.

The next lemma generalizes a result of Fan (1991a) to the case where the density fX is

not continuous.

Lemma 5.9. Let r ≥ 0. Suppose that h = d · (2/γ)1/β(lnn)−1/β with d > 0. Assume

Conditions (A2), (Cr+1
1 ), (Cr+1

2 ), (Cr+1
7 ), (Dr

1), (Dr
2). If expression (3.4) is satisfied and

supx∈IR\{τ} |fY (x)| <∞, then statement (5.2) in Lemma 5.5 holds.

Proof. We need to verify the Lyapounov condition (5.3) for Yn,i = h−1K
(r)
Z

(
τ−Yi
h

)
, i =

1, . . . , n. Let β4 = min(β0, β3). We have E |Yn,1| ≤ supx∈IR\{τ} |fY (x)|
∫
|K(r)

Z (u)| du =

O
(
hβ4 exp(h−β/γ)

)
and h1+η E |Yn,1|2+η ≤ ‖K(r)

Z ‖1+η
∞ · supx∈IR\{τ} |fY (x)|

∫
|K(r)

Z (u)| du =

O
(
h(2+η)β4 exp((2 + η)h−β/γ)

)
. We conclude that

h1+η E |Yn,1 − E(Yn,1)|2+η =O
(
hβ4(2+η) exp((2 + η)h−β/γ)

)
. (5.11)

For the denominator, note that, from expression (3.4), we have, as in the proof of Lemma

5.4 (using Lemma 5.3)

Var(Yn,1) =h−1

∫ {
K

(r)
Z (u)

}2

fY (τ − hu) du−
{
dK(r−1)(0) +O(h)

}2

≥c5 fY (τ−)hc6 exp(
2

γhβ
− 4βb

γhβ
)−

{
dK(r−1)(0) +O(h)

}2

≥c5

2
fY (τ−)hc6 exp(

2

γhβ
− 4βb

γhβ
),

for n large enough, where b = hβ/(2r+10) and c5 is a positive constant independent of n and

c6 is a constant independent of n. We have

(5.3) ≤c · lim
n→∞





1

(nh)η/2
· h

β4(2+η) exp((2 + η)h−β/γ)

[hc6+1 exp( 2
γhβ
− 4βb

γhβ
)
](2+η)/2

· h
1+η E |Yn,1 − E(Yn,1)|2+η

hβ4(2+η) exp((2 + η)h−β/γ)





=c · lim
n→∞

{
n−η/2hβ5 exp

(
2(2 + η)βbh−β/γ

)
· h

1+η E |Yn,1 − E(Yn,1)|2+η

hβ4(2+η) exp((2 + η)h−β/γ)

}
,

where c =
[

2
c5fY (τ−)

](2+η)/2
and β5 = (2 + η) β4− 2+η

2
c6− η− 1. Under the assumptions of

the lemma, we have exp
(
2(2 + η)βbh−β/γ

)
= n(2+η)βd−βb, with b = hβ/(2r+10) tending to zero
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as n → ∞, and thus exp
(
2(2 + η)βbh−β/γ

)
· n−η/2hβ5 ∼ n−η/2+(2+η)βd−β b(lnn)−β5/β, which

tends to 0 as n → ∞ (even if β5 < 0), since b → 0 as n → ∞ and η > 0. Hence, by (5.11),

the Lyapounov condition (5.3) is satisfied.

Lemma 5.10. Let r ≥ 0. Assume Conditions (A2), (Cr+1
1 ), (Cr+1

2 ), (Cr+1
7 ), (Dr+1

2 ) and

(Dr+1
3 ). Suppose that supx∈IR\{τ} |fY (x)| < ∞ and

∫
|t|2r+2−2β0|ϕK(t)|2 dt < ∞. Then, if

nh→∞ as n→∞, we have, for all p ∈ IN0 and for n large enough,

E[hrĴ (r)(x)− h2 E Ĵ (r)(x)]2p ≤ 2n−ph−p+2β0p exp(2ph−β/γ)
{
cβ0(K) sup

x∈IR\{τ}
|fY (x)| · 8

πd2
0,0

}p
,

where cβ0(K) =
∫
|t|2r+2−2β0|ϕK(t)|2 dt.

Proof. Similar to the proof of Lemma 5.6. In this case, however, for all j ≥ 2, we find

E
[
K

(r+1)
Z

(
x−Yi
h

)]j
= O

(
hjβ0+1 exp(jh−β/γ)

)
and then get E[hrĴ (r)(x) − hr E Ĵ (r)(x)]2p =

O
(
n−p h−p+2β0p exp(2ph−β/γ)

)
, since nh → ∞ as n → ∞. From the above calculations,

we also have

E[hrĴ (r)(x)− hr E Ĵ (r)(x)]2p

≤ 1

nph2p

{
2h · sup

x∈IR\{τ}
|fY (x)| ·R(K

(r+1)
Z )

}p
· (1 + o(1))

≤n−ph−p+2β0p exp(2ph−β/γ) ·
{
cβ0(K) sup

x∈IR\{τ}
|fY (x)| · 8

πd2
0,0

}p
· (1 + o(1)),

where details for obtaining the last inequality can be found in Delaigle and Gijbels (2003).

Lemma 5.11. Let r ≥ 0 and h = d · (2/γ)1/β(lnn)−1/β with d > 1. Assume Conditions

(A2), (Cr+1
1 ), (Cr+2

2 ), (Cr+1
7 ), (Dr+1

2 ), (Dr+2
2 ) and (Dr+1

3 ). Suppose that ‖K(r+1)‖∞ < ∞,

supx∈IR\{τ} |fY (x)| < ∞ and
∫
|t|2r+2−2β0|ϕK(t)|2 dt < ∞. Then statement (5.5) in Lemma

5.7 holds for any δ > 0.

Proof. Similarly as in the proof of Lemma 5.7, we need to bound the sum in (5.6). For the

first term, we have, for all ω ∈ Ω

sup
x∈[A,B]

|hrĴ (r)(x)− hrĴ (r)(z(x))| ≤ h−2‖K(r+2)
Z ‖∞|x− z(x)| ≤ cn−1−qhβ0−2 exp(h−β/γ),
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with c > 0 a constant independent of ω and n, and thus h−2δS1,n ≤ c1n
(d−β/2)−1−q(lnn)

2+2δ−β0
β ,

with c1 > 0 a constant independent of ω and n. For the second term in (5.6), by Chebychev’s

Inequality and Lemma 5.10, we have that, for any z ∈ IR, and n large enough (say n ≥M)

P
(
h−2δ|hrĴ (r)(z)− hr E Ĵ (r)(z)| > ε

)
≤c2(lnn)

p+4δp−2β0p
β npd

−β−p,

where c2 is independent of ω and n. We deduce that
∞∑

n=1

P
(
h−2δS2,n > ε

)
<M + c2

∞∑

n=M

(lnn)
p+4δp−2β0p

β npd
−β−p+1+q + c2

∞∑

n=M

(lnn)
p+4δp−2β0p

β npd
−β−p

<∞,

as soon as pd−β−p+1+q < −1, which is equivalent to requiring that p > 2+q
1−d−β , since d > 1.

For the third term in (5.6), we get h−2δS3,n ≤ c3n
−1−qh−1−2δ, with c3 a positive constant.

Since c1n
(d−β/2)−1−q(lnn)

2+2δ−β0
β + c3n

−1−qh−1−2δ tends to zero as n→∞, we conclude as in

the proof of Lemma 5.7.

Lemma 5.12. Suppose that τ̂ = τ +O(h1+η) a.s., with η > 0, and h = d · (2/γ)1/β(lnn)−1/β

with d > 1. Assume Conditions (A2), (C3
1), (C4

2), (C3
7), (D3

2), (D4
2), (D3

3). Suppose that

‖K(3)‖∞ <∞, supx∈IR\{τ} |fY (x)| <∞ and
∫
|t|6−2β0|ϕK(t)|2 dt <∞. Then statement (5.7)

in Lemma 5.8 holds.

The proofs of Propositions 5.4 and 5.3 are similar to the ordinary smooth error case.

Proposition 5.3. Suppose that h = d ·(2/γ)1/β(lnn)−1/β with d > 1, and 0 < δ < 1/2. Then

under Conditions (B1) to (B4), statement (5.8) of Proposition 5.1 holds.

Proposition 5.4. Suppose that h = d ·(2/γ)1/β(lnn)−1/β with d > 1, and 0 < δ < 1/2. Then

under Conditions (B1) to (B4), statement (5.9) of Proposition 5.2 holds.

5.4 Proofs of the main results for the supersmooth case

Proof of Theorem 3.2. As in the proof of Theorem 3.1, we have τ − τ̂ = Ĵ ′(τ)/Ĵ ′′(ξ),

where ξ lies between τ and τ̂ . From Lemma 5.9 for r = 2 and Lemma 5.12,

hĴ ′(τ)− E[hĴ ′(τ)]

h2Ĵ ′′(ξ)
√

Var(hĴ ′(τ))

L−→ N
(

0;
1

d2{K ′′(0)}2

)
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which implies

τ − τ̂
h

√
Var(hĴ ′(τ))

− E[hĴ ′(τ)]

dK ′′(0)

√
Var(hĴ ′(τ))

L−→ N
(

0;
1

d2{K ′′(0)}2

)
, (5.12)

where E[hĴ ′(τ)] = hk2+1Dτ +O(hk2+2). We may further develop the variance term if we note

that, as in the proof of Lemma 5.4, we have Var(hĴ ′(τ)) = Bτ
nh
R
(
K ′′Z
)

+O(n−1R(K ′′Z)).

Proof of Corollary 3.2. From (5.12), an approximate expression for the variance (AVar)

is given by AVar
[
τ̂
]

= h2 Var(hĴ ′(τ))
d2{K′′(0)}2 . An approximate expression for the expectation (AE)

may be derived as follows

AE
[τ − τ̂

h
− E[hĴ ′(τ)]

dK ′′(0)

]
= o
(√

Var(hĴ ′(τ))
)
.

Hence, we obtain AE[τ̂ ] = τ − hk2+2Dτ
dK′′(0)

+ o
(
h

√
Var(hĴ ′(τ))

)
. Finally an approximate mean

squared error may be written as

AMSE[τ̂ ] =
h2k2+4D2

τ

d2{K ′′(0)}2
+
h2 Var(hĴ ′(τ))

d2{K ′′(0)}2
.

If we further assume that
∫
|u|·|K ′′Z(u)|2 du = O(R(K ′′Z)), we have Var(hĴ ′(τ)) = Bτ

nh
R
(
K ′′Z
)
+

O(n−1R(K ′′Z)) and the conclusion follows.
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