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Abstract: In the popular deconvolution problem, the goal is to estimate a curve f

from data that only allow direct estimation of another curve g, the convolution of f

and a so-called error density. Unlike the standard assumption in deconvolution, we

consider a more general setting where the characteristic function of the error density

can have zeros. This problem is important as the characteristic functions of uniform

distributions, and more generally of many compactly supported distributions, have

some zeros. We propose a new nonparametric deconvolution estimator, prove that its

convergence rates are not affected by the zeros if f has a finite left endpoint, and we

show rate-adaptivity. We suggest data-driven bandwidth selectors and examine their

finite sample behaviour via simulated examples.
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1 Introduction

We consider curve estimation from a sample of data observed with additive mea-

surement errors. This problem, often referred to as a deconvolution problem, or an

errors-in-variables problem, has received a lot of attention. Fourier methods are very

popular in the deconvolution literature because they turn convolution equations into

simple products. However, their drawback is that they can only be used when the

characteristic function of the measurement error has no zeros, because they involve

dividing by it. Several authors have proposed ways to modify deconvolution estima-

tors so that they can be used also when the characteristic function of the error has

some zeros. However, the techniques developed so far are either cumbersome (they

require the introduction of additional smoothing parameters) or they suffer from very

poor rates of convergence.

In this paper, we show that, if the target curve has a finite left endpoint then,

without introducing any additional smoothing parameter, it is possible to construct

a simple deconvolution kernel estimator that is consistent even if the characteristic

function of the error has some zeros. Our technique can be applied to general decon-

volution problems, and we describe it in detail for the density case in Section 2, then

show in Section 3 how to use it in the errors-in-variables regression problem. Other

possible applications include image reconstruction. In Section 4, we prove consistency

of the estimator in the general deconvolution problem and show that its rates are not

affected by the zeros of the characteristic function of the error. We apply these re-

sults to derive asymptotic properties of the density and regression estimators. Like

other kernel techniques, our estimator requires the selection of a smoothing param-

eter called the bandwidth. We suggest two data-driven ways to select it in practice.

In Section 5.1, we suggest a general cross-validation procedure, study its theoretical

properties, and show that it is rate-adaptive. In Section 5.2, we propose an alternative

SIMEX bandwidth selection procedure. Finite sample performance of the method is

illustrated in Section 6 via simulations and on a data example.
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2 Density deconvolution

One of the most popular deconvolution problems is density estimation from data con-

taminated by additive measurement error, often referred to as density deconvolution.

The goal is to estimate the density fX of a random variable X when the only available

data are an i.i.d. sample W1, . . . , Wn, with

Wj = Xj + δj , j = 1, . . . , n ,

Xj ∼ fX , δj ∼ fδ with fδ known, and all the Xj’s and δj’s are independent. Thus,

each observation Wj ∼ fW is a contaminated version of Xj. Throughout, we follow

the classical approach to deconvolution in which the error density fδ is known so

that one can focus on the deconvolution techniques themselves. In practice, the error

density might be unknown but empirically accessible by some additional data, see

e.g. Efromovich (1997) and Neumann (1997).

2.1 Classical deconvolution

Let `ft denote the Fourier transform of a function `. Then fW = fX ∗ fδ is equivalent

to f ft
W = f ft

Xf ft
δ , so that if f ft

δ (t) 6= 0 ∀t, we can write f ft
X = f ft

W /f ft
δ . Motivated by

these considerations, if f ft
δ (t) 6= 0 ∀t, the deconvolution kernel density estimator of

Carroll and Hall (1988) and Stefanski and Carroll (1990) is

f̂X(x) = (2π)−1

∫
e−itxK ft(ht)f̂ ft

W (t)/f ft
δ (t) dt, (2.1)

where f̂ ft
W (t) = n−1

∑n
j=1 eitWj , h > 0 is a smoothing parameter called the bandwidth,

and K is a symmetric function called the kernel. Thus, K ft(ht)f̂ ft
W (t) is an estimator

of f ft
W , kernel-regularized so that the integral in (2.1) exists.

In the classical deconvolution literature, it is common to consider errors of two

types, ordinary smooth and supersmooth. Ordinary smooth errors of order α > 0

satisfy d1(1 + |t|)−α ≤ |f ft
δ (t)| ≤ d2(1 + |t|)−α for all t ∈ R, with 0 < d1 ≤ d2 some

constants. Supersmooth errors of order α > 0 satisfy d1|t|γ exp(−d3|t|α) ≤ |f ft
δ (t)| ≤

d2|t|γ exp(−d3|t|α) for all t ∈ R, with d1 > 0, d2 > 0, d3 > 0, and γ ≥ 0, some
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constants. In particular, both classes of errors have a characteristic function that

never vanishes and decays approximately monotonically, i.e. the absolute value of

the characteristic function is bounded from above and below by two positive and

decreasing functions that coincide up to some different constants.

2.2 Fourier-oscillating errors

Although the estimator (2.1) is only defined when f ft
δ (t) 6= 0 ∀t, there exist many

error densities fδ whose characteristic functions have zeros. For example, uniform

densities, self-convolved uniform densities, or the convolution of uniform densities

and other densities all have a characteristic function f ft
δ that has isolated zeros. In

this context, Hall and Meister (2007) generalise the ordinary smooth and supersmooth

errors into, respectively

|f ft
δ (t)| ≥ c1

∣∣ sin(πt/λ)
∣∣ν(1 + |t|)−α , (2.2)

for all t ∈ R with c1 > 0 a constant, and

|f ft
δ (t)| ≥ c1

∣∣ sin(πt/λ)
∣∣ν |t|γ exp{−d|t|α} , (2.3)

for all t ∈ R, with c1 > 0, d > 0, and γ ≥ 0 some constants, and where fδ ∈ L2(R).

See also Meister (2008). In both (2.2) and (2.3) we have ν ∈ Z and ν, λ > 0. Clearly,

for errors in this class, f ft
δ can have isolated zeros at non-zero integer multiples of λ,

and the standard method at (2.1) cannot be used.

This type of error includes simple errors like uniforms, which arise frequently

when a device is used to measure a physical quantity. For example, Sun et al. (2002)

describe an experiment where data on the velocity of halo stars in the Milky Way are

collected, and where the measurement errors due to effects such as the mechanical

stiffness of the spectrograph are assumed to be uniformly distributed. Other examples

include resolution limits of chronometers in problems where the variable of interest

is the time taken for a task to be completed. If the timing resolution limit is L µs,

assigning detection times to the center of the interval where the measured time falls
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gives rise to a uniform error U [−L/2, L/2]. See for example Dosso et al. (1998).

Similar problems also arise when an analog signal is digitized.

Our error model can also be employed to model more complex situations where the

measurement process is affected by a superposition of several sources of errors (oper-

ator errors, machine imperfections, etc). For example, quantization devices are often

assumed to produce uniformly distributed errors, on which instrumentation noise and

the effect of external random factors is superimposed. See Knyupfer (1966) for an

early consideration of this problem. Similarly, the error due to limited resolution of

a machine can be superimposed to other sources of errors, such as those made by the

experimenter. We will also see another interesting application of our model in the

data section.

Several authors have already studied the problem of a vanishing f ft
δ . A first method

was developed by Devroye (1989), who modified the deconvolution kernel estimator

so as to exclude neighbourhoods of the zeros of f ft
δ from the integration domain. His

method requires the choice of three parameters (one of which is used to determine

the size of these neighbourhoods), which seems quite unattractive from a practical

viewpoint. Moreover, his work is restricted to consistency with convergence rates not

investigated.

In Hall and Meister (2007), the main idea is to replace f ft
δ (t) by a threshold func-

tion ρ(t), called a ridge parameter function, when it takes values too close to zero.

Their method requires the selection of a functional smoothing parameter, and can be

reduced to the selection of two smoothing parameters. Although the authors suggest

a way to choose them, the estimator cannot achieve better convergence rates than

n−1/(2ν), whether fX has a finite or infinite left endpoint. In the next section we pro-

pose a new estimator which attains the “classical” deconvolution rate n−2β/(2β+2α+1),

regardless of the parameter ν. Here, β denotes the smoothness degree of the target

function f (see the definition at (4.26)). Thus, for large β, our estimator significantly

improves the rates achieved by the estimator of Hall and Meister (2007).

The method of Meister (2008) requires the construction of local neighbourhoods

around the zeros of f ft
δ . The estimator of f ft

X in those neighbourhoods is defined
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by local polynomial continuation of an estimated function, which is defined on a

domain outside the neighbourhoods. Meister (2008) shows that the convergence rates

can be improved compared to Hall and Meister (2007) by imposing some additional

local smoothness constraints on f ft
X . Still, the rates are slower than those derived

for ordinary smooth error densities in Fan (1991). This approach requires three

smoothing parameters: the bandwidth plus two smoothing parameters that determine

the length of the small neighbourhoods and the approximation region. Choosing

them is not easy. In addition, when fX is compactly supported (this is included in

our context of finite left endpoint), Meister (2008) shows that his estimator attains

convergence rates of order a(n) · n−2β/(2β+2α+1), where a(n), with 1/a(n) = o(1), is

a logarithmic loss factor. As already indicated above, our estimator does not suffer

from any logarithmic loss.

2.3 Our proposed estimation procedure when the errors are

Fourier-oscillating

In the existing approaches discussed in Section 2.2, the idea is to replace f ft
δ by an

approximation of f ft
δ that does not have any zeros, depends on one or more smooth-

ing parameters, and becomes arbitrarily close to f ft
δ as n increases. However, in the

particular case where the error density is uniform U[0,1], Groeneboom and Jongbloed

(2003) show that, if fX has a finite left endpoint, it is possible to construct a ker-

nel density estimator of fX for which the only smoothing parameter required is a

bandwidth.

Motivated by their finding, our goal was to develop a kernel deconvolution es-

timator for the general errors defined at (2.2) and (2.3), that does not require any

other smoothing parameter than the bandwidth. In particular we wanted to see if it

is possible, without using any approximation, to express fX in a form that could be

estimated from the data without having to deal with division by zero.

For errors of the type defined at (2.2) and (2.3), f ft
δ can vanish at t = kλ, k ∈ Z.

To deal with these zeros, we propose a method with two main steps. In the first, we
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avoid division by zero by estimating a function p which is not equal to fX (not even

approximately); In the second, we reconstruct fX from the function p.

Let supp denote support. In order to involve our method, we assume that

fX ∈ L2(R) and I = supp fX ⊆ [a,∞), (2.4)

where a is known (the only restriction on a is that it be finite, but the infimum of I
can be much larger than a). In practice, our assumption that the support of fX is

finite can be justified by the fact that many physical quantities cannot take arbitrarily

small values. For example, lots of econometric, medical or astronomic quantities (e.g.

the salary of an individual, the systolic blood pressure of a patient, the velocity of

a star) cannot take negative values. However, we should mention that W may also

be limited by such physical constraints. For example, the measured systolic blood

pressure of an individual is always positive. In such cases, our conditions cover only

the cases where the left endpoint of fX is strictly larger than that of fW , and |δ| does

not take values larger than the difference of the two endpoints.

As a first step, instead of trying to estimate fX directly, we estimate the function

p(x) = (2π)−1
∫

e−itxpft(t) dt, where

pft(t) =
(
exp(2itπ/λ)− 1

)ν
f ft

X(t). (2.5)

Thus, compared to fX , in the definition of p we replace f ft
X(t) by the smoothing

parameter-free function
(
exp(2itπ/λ)−1

)ν
f ft

X(t) (recall that ν and λ are known since

fδ is known). To estimate p(x), we take

p̂(x) =
1

2π

∫
e−itxK ft(th)Φ̂p(t) dt, (2.6)

where h > 0 is a bandwidth, K ∈ L2(R) is a kernel function such that ‖K ft‖∞ < ∞,

K ft is compactly supported, and where, for f̂ ft
W as in (2.1),

Φ̂p(t) =
(
exp(2itπ/λ)− 1

)ν
f̂ ft

W (t)/f ft
δ (t) (2.7)

for all t ∈ R\{kλ : k ∈ Z, k 6= 0}. For t = kλ, k ∈ Z\{0}, we can conventionally put

Φ̂p(kλ) = 0 or Φ̂p(kλ) = limt→kλ Φ̂p(t) if it exists. As the function Φ̂p arises only in
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an integral, those values of Φ̂p do not matter. Furthermore, we have

lim sup
t→kλ

∣∣Φ̂p(t)
∣∣ ≤ 2ν+1

∣∣Φ̂g(kλ)
∣∣c−1

1 (1 + |kλ|)α , a.s. ,

and thus Φ̂p is well defined for all t.

Clearly, for ν > 0 (i.e. when f ft
δ has zeros), p(x) is not equal (even approximately)

to fX(x). By using p̂ instead of f̂X at (2.1) we avoid the problem of dividing by zero,

though p̂ is not an estimator of fX . However, if fX has a finite left endpoint, then it

is possible to reconstruct fX from p, and thus to derive an estimator of fX from p̂.

To see this, note that, by the binomial expansion, we can write

pft(t) =
ν∑

k=0

(
ν

k

)
(−1)ν−ke2itkπ/λf ft

X(t), (2.8)

so that

p(x) =
ν∑

k=0

(
ν

k

)
(−1)ν−kfX(x− 2kπ/λ). (2.9)

Next we show how (2.9) can be inverted to write fX as a function of p. Since the

support I of fX is in [a,∞), we have that fX(u) = 0 for all u < a, and, in particular,

for u = x−2kπ/λ, when k > (x−a)λ/(2π). Therefore, as long as J+1 > (x−a)λ/(2π)

(for example, J = dλ(x − a)/(2π)e), we have, for any given x ∈ R, P(x) = ΓF(x),

where P(x) =
(
p(x), . . . , p(x − 2Jπ/λ)

)T
, F(x) =

(
fX(x), . . . , fX(x − 2Jπ/λ)

)T
,

and Γ =
(
Γj,k

)
1≤j,k≤J+1

, with Γj,k = γν,k−j, and

γν,k =





(
ν
k

)
(−1)ν−k if k ∈ {0, . . . , ν} ,

0 otherwise .

Here we have used the fact that, when k > J , all the terms of (2.9), with x

replaced by x − 2kπ/λ, are zero. Note that Γ is an upper triangular matrix with

all its diagonal components equal to (−1)ν . Hence, it is invertible and we can write

F(x) = Γ−1 P(x). Therefore, for all x ∈ R we have

fX(x) = (1, 0, . . . , 0)F(x) =
J∑

k=0

ηkp(x− 2kπ/λ) , (2.10)
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where (η0, . . . , ηJ) =
(
1, 0, . . . , 0

)
Γ−1.

Finally, since the ηk’s are known constants, and combining (2.10), (2.6) and the

fact that we know that the support of fX is included in [a,∞), we take

f̂X(x) =
J∑

k=0

ηkp̂(x− 2kπ/λ) · 1[a,∞)(x)

=
1

2π

∫
e−itxK ft(th)

( J∑

k=0

ηk exp(2itkπ/λ)
)
Φ̂p(t) dt · 1[a,∞)(x) . (2.11)

Our estimator can be written in the usual kernel form as

f̂X(x) =
1

nh

n∑
j=1

Kδ

(x−Wj

h

)
· 1[a,∞)(x), (2.12)

where

Kδ(x) =
1

2π

∫
e−itx K ft(t)

f ft
δ (t/h)

( J∑

k=0

ηke
2itkπ/(λh)

)(
e2itπ/(λh) − 1

)ν
dt. (2.13)

Remark 1. Note that J depends on x, as already noted above. However, if we

restrict to x ≤ b, where b is finite, then it is not necessary to use a different J for

each x. As a matter of fact, in that case we can take J = dλ(b− a)/(2π)e for all x.

Remark 2. If the target density does not have a finite left endpoint a but decays

rather fast, our procedure still works well in practice, as we will see in Section 6. In

theory, one could try to find a specific guideline for selecting J = J(x), with J(x) →∞
and a → −∞ as n →∞. However, the results of Hall and Meister (2007) and Meister

(2008) have it that no estimator (including ours) can have the classical deconvolution

rates n−2β/(2β+2α+1), and our estimator reaches these rates when a is finite (see Section

4). Moreover in practice, if we let J →∞, the estimator of fX suffers from numerical

instability. In particular, the size of the matrix Γ increases (thus the calculation of

the inverse matrix Γ−1 becomes computationally more difficult).

Example 1. When fδ = f ∗mU ∗ fV , where fU is a U [−aδ, aδ] density, f ∗mU denotes

fU convolved m times with itself, and fV is a density whose Fourier transform does
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not vanish, we have ν = m, λ = π/aδ and f ft
δ (t) = (sin aδt)

m/(aδt)
m f ft

V (t). Simple

calculations show that e2itπ/(λh) − 1 = 2i sin{tπ/(λh)}eitπ/(λh), so that

Kδ(x) =
(2i)m(aδ/h)m

2π

J∑

k=0

ηk

∫
e−it{x−aδ(2k+m)/h}K ft(t)tm /f ft

V (t/h) dt.

When m is even, the sine part of the exponential above vanishes, and when m is

odd its cosine part vanishes. To show an explicit example of calculation of the ηk’s,

consider the case where the error is a mixture of a uniform and another variable V ,

so m = 1. We have γν,k = γ1,k =
(

1
k

)
(−1)1−k for k = 0, 1 and γ1,k = 0 otherwise.

Thus γ1,0 = −1, and γ1,1 = 1, so that if J = 0, then Γ = −1 and η0 = Γ−1 = −1. If

J = 1, then

Γ =


 −1 1

0 −1


 , Γ−1 =


 −1 −1

0 −1




and (η0, η1) = (−1,−1), which is the first row of Γ−1. if J = 2, then

Γ =



−1 1 0

0 −1 1

0 0 −1


 , Γ−1 =



−1 −1 −1

0 −1 −1

0 0 −1




and (η0, η1, η3) = (−1,−1,−1), which corresponds to the first row of Γ−1. Similar

calculations can be made for J > 2 and other values of m.

3 Errors-in-variables regression

Our procedure can be applied to the errors-in-variables regression problem. There

the goal is to estimate a regression function g from i.i.d. data (W1, Y1), . . . , (Wn, Yn)

generated by the model

Yj = g(Xj) + εj , Wj = Xj + δj

where Xj ∼ fX is independent of δj ∼ fδ, the εj’s are independent, Eεj = 0, and

supj Eε2
j < ∞. See e.g. Fan and Truong (1993) and Carroll et al. (2006).

10



3.1 Nadaraya-Watson estimator

To construct a nonparametric estimator of g, a standard approach is to write g =

m/fX where m = g · fX , construct estimators of m and fX and take their ratio. In

the error-free case, when kernel techniques are used, the resulting estimator of g is

called the Nadaraya-Watson estimator. See Fan and Truong (1993) for an extension

of that method to the errors-in-variables setting when f ft
δ has no zeros. Suppose that

g and fX are supported on I ⊂ [a, b] where a and b are finite constants. By assuming

that the right endpoint b is finite, integrability of the function gjfX for j = 1, 2 is

guaranteed. Take

f̂X(x) =
1

nh

n∑
j=1

Kδ

(x−Wj

h

)
· 1[a,b](x), (3.14)

m̂(x) =
1

nh

n∑
j=1

YjKδ

(x−Wj

h

)
· 1[a,b](x), (3.15)

with Kδ as in (2.13). We define a Nadaraya-Watson type estimator of g by

ĝ(x) = m̂(x)/ max{f̂X(x), ρ}, (3.16)

where the truncation parameter ρ > 0 is used to avoid problems caused at points

where f̂X(x) is too small. Note that, although it is not always mentioned in papers

treating nonparametric regression, the problem of avoiding division by a too small

number is quite standard.

3.2 Local polynomial estimator

One of the advantages of the Nadaraya-Watson estimator is that it is simple to un-

derstand and easy to implement in practice. A theoretical advantage is that it can be

used with the sinc kernel, an infinite order kernel having the property that it adapts

automatically to the smoothness of the curves. On the negative side, the convergence

rate of the estimator corresponds to the lowest of the smoothness degrees of fX and

g. In particular, if g is smoother than fX , then the estimator of g converges at a rate

dictated by fX and not g.
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One way to avoid smoothness conditions on fX when deriving convergence rates

of estimators of g is to use local polynomial methods; see Fan and Gijbels (1996) for

a thorough investigation of their properties in the error-free setting. An extension

of those methods to errors-in-variables problems has recently been given by Delaigle

et al. (2009). These estimators have the advantage of adapting automatically to

the boundary of the design density and provide a natural and elegant solution to

the problem of derivative estimation. Nevertheless, the construction of the local

polynomial estimator requires inversion of a matrix depending on the kernel function;

in order to ensure its invertibility, more specific kernels than the sinc kernel have to

be used.

In the sequel, we show how to extend the concept of local polynomial regression

estimators to the case where f ft
δ has some zeros. Our local polynomial estimator of

order p of g(`), with p ≥ `, is

g̃(`)
p (x) = `!h−`eT

`+1Ŝ
−1
n T̂n · 1[a,b](x), (3.17)

where eT
`+1 = (0, , . . . , 0, 1, 0, . . . , 0) with 1 on the (` + 1)th position, Ŝn =

{Ŝn,j+k(x)}0≤j,k≤p, and T̂n = {T̂n,0(x), . . . , T̂n,p(x)}T with

Ŝn,k(x) =
1

nh

n∑
j=1

Kδ,k

(x−Wj

h

)
· 1[a,b](x), (3.18)

T̂n,k(x) =
1

nh

n∑
j=1

YjKδ,k

(x−Wj

h

)
· 1[a,b](x), (3.19)

where

Kδ,k(x) =
i−k

2π

∫
e−itx (K ft)(k)(t)

f ft
δ (−t/h)

( J∑

k=0

ηke
2itkπ/(λh)

)(
e2itπ/(λh) − 1

)ν
dt. (3.20)

The motivation for the construction of our estimator is essentially the same as in

Delaigle et al. (2009), and we refer to that paper for details. Note that by Cramer’s

rule we can rewrite the estimator as

g̃(`)
p (x) = `!h−` det(Ân,l)/ det(Ŝn) · 1[a,b](x) ,
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where the matrix Ân,l is constructed by replacing the ` + 1st column of Ŝn by the

vector T̂n. As in the Nadaraya-Watson case, to avoid division by zero or a very small

number, we define a modified local polynomial estimator of g(`) by

ĝ(`)
p (x) =

`!h−` det(Ân,l)

max{det(Ŝn), ρ}
· 1[a,b](x), (3.21)

where ρ > 0 is a truncation parameter. As usual, it is not hard to check that the

Nadaraya-Watson estimator is equal to the local constant estimator, that is, to the

local polynomial estimator of order p = 0.

4 Generalisation and asymptotic properties

In this section we prove that our procedure, applied to density, regression, or to

estimate more general curves f , attains the same convergence rates whether ν = 0

(i.e. f ft
δ has no zeros) or ν > 0 (i.e. f ft

δ has zeros). Our results improve those of

Hall and Meister (2007) and Meister (2008), who incur a logarithmic penalty when

f ft
δ has isolated zeros under slightly different smoothness constraints. To obtain these

results, the condition that the support of f is included in [a,∞) is essential, as can be

deduced from the lower bound proofs in Hall and Meister (2007) and Meister (2008).

However, even under this condition, their estimators attain slower convergence rates

than ours (see also Section 2.2).

4.1 Deconvolution in general

Our estimator can be applied in more general deconvolution problems than density

and regression, and in this section we derive asymptotic theory for the general context.

Suppose we wish to estimate the function f , but we only have data allowing direct

empirical estimation of ξ, where ξ = f ∗ fδ, for fδ a known density satisfying (2.2) or

(2.3). More specifically, we assume that the data are such that we can construct an

estimator Φ̂ξ(t) of ξft for which

sup
t∈R

E
∣∣Φ̂ξ(t)− ξft(t)

∣∣2 = O(1/n) , (4.22)
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where the constant contained in O(· · · ) is uniform for all admitted functions f . For

example, in the density deconvolution setting introduced in Section 2, we have f = fX ,

ξ = fW and Φ̂ξ = f̂ ft
W , the empirical characteristic function of the observed data.

We also assume that

f ∈ L2(R) and I = supp f ⊆ [a,∞) (4.23)

where a is known.

Based on arguments we developed in the density case, our general estimator of f

is

f̂(x) =
1

2π

∫
e−itxK ft(th)

( J∑

k=0

ηk exp(2itkπ/λ)
)
Φ̂p(t) dt · 1[a,∞)(x) . (4.24)

where

Φ̂p(t) =
(
exp(2itπ/λ)− 1

)ν
Φ̂ξ(t)/f

ft
δ (t) . (4.25)

Our result concerns the asymptotic behaviour of the mean integrated squared

error (MISE) of f̂ , where the integral is taken over a compact interval [a, b] with an

arbitrary but fixed constant b > a. In this case, we can take J = dλ(b − a)/(2π)e,
a constant that does not depend on x in the construction of estimator (4.24). As

noted earlier, this is sufficient for most practical applications, as one would rarely be

interested in estimating a curve f outside a compact interval. In order to attain the

convergence rates, we assume that f belongs to the Sobolev class

FS
C,β = {f supported on [a,∞) s.t.

∫ ∣∣f ft(t)
∣∣2(1 + |t|2β)dt ≤ C }. (4.26)

Thus β > 0 represents the smoothness degree of f .

Theorem 4.1 (Generalized ordinary smooth case). In the general deconvolution prob-

lem, suppose that fδ satisfies (2.2), that K ∈ L2(R), ‖K ft‖∞ ≤ 1, supp K ft ⊆ [−1, 1],

and |K ft(t)− 1| = o(|t|β), and assume that (4.22) holds. Then, if h ³ n−1/(2β+2α+1)

and b denotes some arbitrary but fixed constant, for f̂ at (4.24),

sup
f∈FS

C,β

E

∫ b

a

∣∣f̂(x)− f(x)
∣∣2dx = O

(
n−2β/(2β+2α+1)

)
.
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These rates correspond to those derived by Fan (1993) for ordinary smooth fδ in

the case ν = 0 (i.e. without zeros) and do not suffer from the isolated zeros of f ft
δ .

Remark 3. (Generalized supersmooth case). Our estimator can also be applied in

the generalized supersmooth case, with for fδ as in (2.3). Using techniques similar

to the ordinary smooth case, it can be proved that, as long as h ∼ c (ln n)−1/α with

c > (2d)1/α, the estimator converges to f at the rate (log n)−2β/α. As in the generalized

ordinary smooth case, this rate is optimal and is the same as the rate derived by Fan

(1991, 1993) in the supersmooth case where f ft
δ has no zeros. However this result is

less interesting since this rate can already be achieved by the ridge parameter method

of Hall and Meister (2007).

Remark 4. (White Noise Model). A third application of our general deconvolu-

tion estimator is the white noise model in which one observes the stochastic process

Y (x), x ∈ R , driven by the stochastic differential equation

dY (x) =
[
f ∗ fδ

]
(x) dx + n−1/2 dW (x) ,

where W denotes a standard Wiener process. The goal is to reconstruct the true sig-

nal or image f from the functional observation Y , that is affected by both pointspread

effects and random noise. The model has applications in the field of image recon-

struction; see Qiu (2005) for an introduction to those topics. We assume that the

support of the target function f and the pointspread function fδ is contained in some

intervals [a, b] and [−R,R], respectively, so that we obtain an empirical version of

ξft(t) by

Φ̂ξ(t) =

∫ b+R

a−R

exp(itx) dY (x) ,

where the integral is to be understood in the Ito sense. Then (4.22) is satisfied due

to Ito’s lemma; and Theorem 4.1 provides the standard deconvolution rates.

4.2 Consistency of density and regression estimators

Consistency of the density estimator follows from general results rather straight-

forwardly. In particular, elementary calculations show that (4.22) holds, and thus
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consistency of f̂X and associated rates of convergence are as described by Theorem

4.1.

For the Nadaraya-Watson estimator, note that our estimator m̂ is obtained by

taking

Φ̂ξ(t) =
1

n

n∑
j=1

Yj exp(itWj)

in (4.24), and thus (4.22) is satisfied for ξ = m ∗ fδ, as fδ ∈ L2(R). Under the

smoothness assumptions m, fX ∈ FS
C,β, Theorem 4.1 can be applied to the esti-

mators m̂ and f̂X . If the class F ′
C,D,β contains all (g, fX) so that m, fX ∈ FS

C,β,

max{‖g‖∞, ‖fX‖∞} ≤ D, and I ⊆ [a, b] where I denotes the support of g and fX ,

these results can then be easily combined to prove that

sup
(g,fX)∈F ′C,D,β

E

∫

{fX(x)≥ρ}

∣∣ĝ(x)− g(x)
∣∣2dx

≤ O(1) ·
(

sup
fX∈FS

C,β

E

∫ b

a

∣∣f̂X(x)− fX(x)
∣∣2dx + sup

m∈FS
C,β

E

∫ b

a

∣∣m̂(x)−m(x)
∣∣2dx

)
,

(4.27)

so that the weighted MISE converges to zero with the rates given in Theorem 4.1.

Consistency of the local polynomial estimator (3.21) is more difficult to obtain.

In the next theorem, we derive the convergence rate for the pointwise risk of the

estimator (3.21); its proof does not follow straightforwardly from the general results,

and is given in Section 7.

Theorem 4.2. Suppose that ‖g(j)‖∞ ≤ const. for all j = 0, . . . , β, integer β > 0,

that fX is a bounded density, that is continuous at some x ∈ (a, b), that the support

of g and fX are contained in [a, b], and that fδ satisfies (2.2). Assume that 0 < ρ <

fp
X(x) det(S) where S =

( ∫
yj+kK(y)dy

)
0≤j,k≤p

, and let K be a symmetric kernel that

is a continuous and compactly supported density with |(K ft)(k)(t)| ≤ const. · |t|−α−2

for all k = 0, . . . , p. Then, for h ³ n−2β/(2β+2α+1), where β = p + 1, we have

E
∣∣ĝ(l)

p (x)− g(l)(x)
∣∣2 = O

(
n−2(β−l)/(2β+2α+1)

)
.

Note that the conditions with respect to the kernel function K in Theorem 4.2
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are satisfied for any compactly supported density K that is at least (α + 2)-fold

continuously differentiable on the whole real line.

Theorem 4.2 gives us the individual convergence rates for the local polynomial

regression estimator, which can be achieved without the assumption of fX being

β-fold continuously differentiable, unlike the Nadaraya-Watson estimator.

5 A general bandwidth selector

5.1 General cross-validation procedure

As usual for nonparametric estimators, in order to reach the convergence rates es-

tablished in Theorem 4.1, the order of the underlying bandwidth depends on the

smoothness degree β of f , that is unknown in practice. In this section we develop

a data-driven cross-validation (CV) bandwidth selection procedure for the estimator

(4.24); it can be used for both density deconvolution and the Nadaraya-Watson re-

gression estimator. In the case of the local polynomial estimator of order p > 0, we

can use the SIMEX procedure of Section 5.2. Cross-validation procedures for density

deconvolution have been studied for kernel methods by Stefanski and Carroll (1990),

Hesse (1999) and, for ridge parameter approaches, by Hall and Meister (2007). For

related methods in wavelet deconvolution, see Pensky and Vidakovic (1999).

Unlike error-free contexts, since no direct data coming from the curve of interest

are available, CV procedures in deconvolution problems are usually based on estima-

tors of the MISE calculated in its Fourier domain. In our context, we suggest using

the rate-efficient upper bound on the MISE derived in the proof of Theorem 4.1, that

is,

Rn(h) =
c

πn

∫ ∣∣∣
J∑

k=0

ηke
2itkπ/λ

∣∣∣
2∣∣K ft(ht)

∣∣2∣∣(e2itπ/λ − 1
)ν

/f ft
δ (t)

∣∣2 dt

+
1

π

∫ ∣∣∣
J∑

k=0

ηke
2itkπ/λ

∣∣∣
2
∣∣e2itπ/λ − 1

∣∣2ν

|f ft
δ (t)|2

∣∣ξft(t)
∣∣2K ft(ht)(K ft(ht)− 2) dt

plus a term which does not depend on h. Here, the constant c comes from (4.22),
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supt∈RE|Φ̂ξ(t)− ξft(t)|2 ≤ c/n (see also Section 6.1).

Since this bound is rate-efficient, any choice of h under which Rn is minimized

leads to the convergence rates derived in Theorem 4.1. In practice, Rn needs to be

estimated since it depends on gft. We suggest choosing h to minimize

R̂n(h) =
c

πn

∫ ∣∣∣
J∑

k=0

ηke
2itkπ/λ

∣∣∣
2∣∣K ft(ht)

∣∣2∣∣(e2itπ/λ − 1
)ν

/f ft
δ (t)

∣∣2dt

+
1

π

∫ ∣∣∣
J∑

k=0

ηke
2itkπ/λ

∣∣∣
2
∣∣e2itπ/λ − 1

∣∣2ν

|f ft
δ (t)|2 Ψ̂ξ(t)K

ft(ht)(K ft(ht)− 2) dt ,

where Ψ̂ξ(t) is an empirical version of |ξft(t)|2.
In the errors-in-variables regression problem, with the Nadaraya-Watson estimator

of Section 3.1, we choose two bandwidths: one for the numerator m̂ and one for the

denominator f̂X . For m̂ we take

Ψ̂ξ(t) =
1

n(n− 1)

∑

j 6=k

YjYk exp
(
it(Wj −Wk)

)
, (5.28)

and for f̂X we take Ψ̂ξ(t) = {n(n− 1)}−1
∑

j 6=k exp
(
it(Wj −Wk)

)
, which we also use

for choosing the bandwidth in the problem of density deconvolution.

To prove asymptotic properties of the data-driven estimator of the regression curve

g, take the grid H =
{
1/k : k = 1, . . . , bn1/(2α+1)c} and let

ĥ = argminh∈H R̂n(h) . (5.29)

For F ′
C,D,β as in Section 3, let

FA
C,β,c0,c1

=
{
(g, fX) ∈ F ′

C,D,β :

∫ ∞

ω

∣∣ϕft(t)
∣∣2dt ≥ c0ω

−2β, ‖ϕ‖1 ≤ c1 ,

∣∣ϕft(ω)
∣∣ ≤ c−1

0 |ω|−β−1/2∀ω ≥ 1 for ϕ = fX ,m
}

.

In density deconvolution, the class F ′
C,D,β can be replaced by FS

C,β in the above

definition and we may put ϕ = g = fX . The next theorem establishes that the

bandwidth selector (5.29) is rate-adaptive in errors-in-variables regression and density

deconvolution, the latter following from the results on fX . In the sequel, we write

f̂h = f̂ where h denotes the bandwidth used in the construction of the estimator f̂ .
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Theorem 5.1. Consider the Nadaraya-Watson estimator of section for the errors-

in-variables regression problem, and suppose that the conditions of Theorem 4.1 are

satisfied. Assume that Eεs
1 < ∞ for all integer s ≥ 0, and take K(x) = (sin x)/(πx).

Take ĥ as in (5.29). Then for b an arbitrary but fixed constant,

sup
(f,fX)∈FA

C,β,c0,c1

E

∫ b

a

∣∣m̂ĥ(x)−m(x)
∣∣2dx = O

(
n−2β/(2β+2α+1)

)
,

sup
(f,fX)∈FA

C,β,c0,c1

E

∫ b

a

∣∣f̂X;ĥ(x)− fX(x)
∣∣2dx = O

(
n−2β/(2β+2α+1)

)
.

5.2 Alternative SIMEX bandwidth selectors

The cross-validation method introduced in Section 5.1 is attractive because it can be

applied in a variety of contexts, including density and regression, and our theoretical

results show that it is rate-adaptive. However, as our numerical results illustrate,

in finite samples the CV method suffers from the usual problems encountered in

practice. As an alternative, we suggest using methods based on SIMEX (Simulation-

Extrapolation) ideas. SIMEX was introduced by Cook and Stefanski (1994) and

Stefanski and Cook (1995) to estimate a parametric regression curve. Here, we use

SIMEX to select the bandwidth of a nonparametric curve estimator.

SIMEX is related to the bootstrap: estimate all unknown quantities via samples of

data generated from the observations, but differently from the bootstrap method. In

SIMEX, the idea is to learn the effect that adding noise has on the target quantities by

creating samples (SIMulation step) that contain more and more noise, and extrapolate

(EXtrapolation step) this effect back to the original problem. Note that bandwidths

selected by such a SIMEX approach rely more on approximation ideas than on rate-

adaptivity, but have very good practical performances. Their use can also be justified

theoretically, but the proofs are long and require the use of non-standard theoretical

arguments; see Delaigle and Hall (2008) and their supplemental material.

SIMEX bandwidth for regression. In the regression case, we use the SIMEX

bandwidth proposed by Delaigle and Hall (2008) adapted to our context. The adap-
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tation is straightforward: it consists in replacing their Kδ by our Kδ. Therefore we

refer to that paper for implementation details, Section 6.2 for numerical performance.

SIMEX bandwidth for density. In the density case, we suggest a SIMEX band-

width, which can be summarized as follows.

1) If we knew the density fX , we could select the bandwidth for estimating fX as

hX = argminh

∫ {f̂X(x; h) − fX(x)}2 dx, where f̂X is the deconvolution estimator

constructed from the contaminated data Wi = Xi + Ui.

2) (SIMulation step). Consider the problem with one (respectively, two) additional

level(s) of error, where the goal is to estimate fW (resp. f ?
W ) from contaminated data

W ?
i = Wi + U?

i (resp. W ??
i = W ?

i + U??
i ), with U?

i ∼ fδ (resp. U??
i ∼ fδ). If we knew

fW (resp. f ?
W ) we could select the bandwidth hW (resp. h?

W ) for estimating fW (resp.

f ?
W ) as hW = argminh

∫ {f̂W (x; h) − fW (x)}2 dx (resp. h?
W = argminh

∫ {f̂ ?
W (x; h) −

f ?
W (x)}2 dx), where f̂W (resp. f̂ ?

W ) is our deconvolution estimator of fW (resp. f ?
W )

constructed from the contaminated data W ?
i (resp. W ??

i ).

3) Here fW and f ?
W are unknown, but unlike the original problem where we do not have

direct data on fX , we have direct data W1, . . . , Wn ∼ fW and W ?
1 , . . . , W ?

n ∼ f ?
W . Thus

we can construct standard (non deconvolution) kernel estimators f̃W and f̃ ?
W of fW

and f ?
W , and then approximate hW and h?

W by ĥW = argminh

∫ {f̂W (x; h)−f̃W (x)}2 dx

and ĥ?
W = argminh

∫ {f̂ ?
W (x; h)− f̃ ?

W (x)}2 dx, respectively.

4) (EXtrapolation step). The idea is that W ?
i measures Wi in the same way as W ??

i

measures W ?
i and Wi measures Xi. Thus we can expect that hW approximates hX

in roughly the same way as h?
W approximates hW . With this motivation, we take the

SIMEX bandwidth to be ĥX = ĥ2
W /ĥ?

W .

5) To avoid strong dependence on the particular samples generated, we repeat step 2)

B times to generate B resamples; we then replace the integrated squared errors of

step 3) by the average of the corresponding B integrated squared errors.

20



6 Finite sample results

6.1 Details of implementation of the method

In the density case, where the estimator is given by (2.12), to apply the CV method

in practice we can take c = 1. In the regression case, where we use the estimator

(3.16), we apply the method to f̂X with c = 1 to find a bandwidth h1, say, then apply

the method to m̂ with ĉ = n−1
∑n

j=1 Y 2
j to find the bandwidth h2. As usual in CV

procedures, in case of multiple minima we take the second smallest local minimum.

To select ρ, we employ the method used by Delaigle and Hall (2008) at page 282, but

we replace their Kδ by our Kδ.

The lower bound a of the left endpoint L of the support of f need not be very

close to L, and it suffices to have a rough bound. In many practical cases, the

experimenter has an idea of the range of X, but otherwise a can be selected from the

data. For example, if fδ is compactly supported we can take â = min{W1, . . . , Wn}
as an empirical version of a. In more general contexts we can take the â = L̂ − |L̂|,
where L̂ is estimated by methods similar to those of Delaigle and Gijbels (2006) or

Meister (2006).

6.2 Simulation results

We applied our method to estimate various densities and regression curves. In

each case we took the error δ to be a convolution of a Laplace and the uniform

U [−1, 1] density (Lap∗Uni), or a convolution of two uniforms (Uni∗Uni), such that

Var(δ)/ Var(X) = 0.1 or 0.25. The three densities we considered were (i) fX(x) =

β4,4((x + 7)/15)/15, (ii) fX(x) = 0.5β9,4((x + 7)/15)/15 + 0.5β9,9((x + 7)/9)/9, (iii)

fX(x) = 0.5φ−3,1(x) + 0.5φ2,1(x), where βa,b(x) denotes the density of a beta random

variable with parameters a and b and φµ,σ(x) denotes the density of a normal random

variable with mean µ and variance σ2. In case (iii), fX does not have a finite left

endpoint but, as we will see, our estimator worked well in this case too. For regres-

sion functions we took (iv) g(x) = 2 sin(x) exp(−x2/10), fX(x) = β4,4((x+7)/15)/15,
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Table 1: Comparison of the various methods — (2.12) with hCV (CV), (2.12) with

hSIMEX (SIM) and f̂naive — for estimation of density (i): values of the quantiles q0.1,

q0.25, q0.5, q0.75, and q0.9, of 103 × ISE, when δ ∼ Lap∗Uni.

n = 100 n = 250 n = 500

f̂X q0.5 [q0.25, q0.75]–[q0.1, q0.9] q0.5 [q0.25, q0.75]–[q0.1, q0.9] q0.5 [q0.25, q0.75]–[q0.1, q0.9]

VarU = 10%VarX

SIM 2.23 [1.37,3.80]–[0.78,5.29] 1.29 [0.77,2.17]–[0.56,2.86] 0.81 [0.56,1.21]–[0.40,1.55]

CV 1.70 [0.87,3.24]–[0.50,6.10] 0.66 [0.34,1.40]–[0.18,3.44] 0.34 [0.18,0.74]–[0.10,1.42]

f̂naive 2.33 [1.53,4.15]–[0.81,5.49] 1.56 [0.93,2.18]–[0.66,2.94] 0.99 [0.67,1.37]–[0.42,1.70]

VarU = 25%VarX

SIM 3.17 [1.89,4.86]–[0.91,6.72] 1.72 [1.12,2.61]–[0.74,3.93] 1.46 [1.01,2.16]–[0.78,2.84]

CV 2.52 [1.31,3.95]–[0.67,5.60] 0.89 [0.46,1.59]–[0.25,2.72] 0.46 [0.22,0.89]–[0.13,1.75]

f̂naive 3.51 [2.30,5.35]–[1.34,7.20] 2.53 [1.69,3.33]–[1.11,4.43] 1.91 [1.43,2.39]–[1.01,3.00]

and ε ∼ N(0, 0.2); (v) g(x) = exp(−0.25x2), fX(x) = β4,4((x + 7)/15)/15, and

ε ∼ N(0, 0.05).

In each case, we generated 200 contaminated samples, applied our methods with

the CV bandwidth selector hCV and the (infinite order) sinc kernel, or the SIMEX

bandwidth hSIMEX with the (second order) kernel K ft(t) = (1 − t2)3 · 1[−1,1](t). We

also calculated the naive estimator f̂naive, that ignores the error present in the data.

In the density case, f̂naive is the usual kernel density estimator (with standard normal

kernel and plug-in bandwidth) applied to the contaminated data; in the regression

case, f̂naive is the usual Nadaraya-Watson estimator (with standard normal kernel and

cross-validation bandwidth) applied to the contaminated data. Thus f̂naive is not a

consistent estimator of f , but rather of its contaminated version, and it illustrates

the importance of taking the error into account when estimating f . For each method

we calculated the corresponding 200 values of ISE =
∫

(f̂ − f)2, where f̂ denotes the

estimator of f . Figures 1-3 present three curves q1, q2, and q3 corresponding to the

first, second, and third quartiles of these 200 ISE’s. In each graph the target curve is

shown as a solid line.
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Table 2: Comparison of the various methods — (2.12) with hCV (CV), (2.12) with

hSIMEX (SIM) and f̂naive — for estimation of density (ii): values of the quantiles q0.1,

q0.25, q0.5, q0.75, and q0.9, of 103 × ISE, when δ ∼ Lap∗Uni.

n = 100 n = 250 n = 500

f̂X q0.5 [q0.25, q0.75]–[q0.1, q0.9] q0.5 [q0.25, q0.75]–[q0.1, q0.9] q0.5 [q0.25, q0.75]–[q0.1, q0.9]

VarU = 10%VarX

SIM 9.04 [5.85,12.2]–[4.49,15.5] 5.99 [4.11,7.93]–[2.98,9.79] 4.25 [3.16,5.38]–[2.33,7.25]

CV 9.74 [7.46,15.4]–[5.86,24.4] 5.66 [4.36,7.61]–[3.61,12.2] 3.95 [3.07,4.97]–[2.23,9.04]

f̂naive 11.5 [8.67,13.9]–[6.82,16.4] 8.66 [6.77,10.2]–[5.38,11.7] 6.78 [5.56,8.14]–[4.78,9.63]

VarU = 25%VarX

SIM 13.8 [9.92,18.2]–[6.65,22.4] 12.9 [9.95,15.4]–[7.92,19.2] 6.16 [4.92,8.69]–[3.48,11.6]

CV 14.3 [10.9,26.5]–[8.38,76.8] 8.55 [6.59,11.8]–[5.05,21.1] 6.86 [4.94,9.46]–[4.01,19.7]

f̂naive 18.2 [15.6,21.2]–[12.5,23.5] 15.0 [12.8,17.0]–[10.6,19.6] 12.7 [11.2,14.9]–[10.1,17.2]

Tables 1 and 2 give the quantiles 0.1, 0.25, 0.5, 0.75, and 0.9 of these ISE’s when

estimating densities (i) and (ii) with Var(δ)/ Var(X) = 0.1 or 0.25, and with sample

sizes n = 100 to 500. We compare the results of our consistent estimator using hCV or

hSIMEX, and f̂naive. Figure 1 shows some of the estimated curves for density (ii). These

tables and graphs illustrate familiar properties of kernel smoothing. For example, the

results improve as the sample size increases or as the error variance decreases. They

also show that hCV combined with a sinc kernel manages to recover the peaks of the

target curve better than hSIMEX with a finite order kernel, but is often more variable

and more wiggly in the tails. Note that, as usual, this wiggliness is caused by both

the sinc kernel and the fact that CV tends to select too small bandwidths. In each

case, f̂naive was strongly biased.

Figure 2 shows the results for density (iii). We took δ ∼ Lap∗Uni, δ ∼ Uni∗Uni,

or δ ∼ N(0, Var(δ)). In the latter case, when applying the estimator we pretended

that δ was Uni∗Uni. Of course, the true error was normal, but the idea was to see

if the method is relatively robust against error misspecification. In each case, we

compare our estimator using a SIMEX bandwidth, with f̂naive. The graphs show
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Figure 1: Estimates of fX for curve (ii) when δ ∼ Lap∗Uni, n = 250, and Var(δ) =

0.10 Var(X) (top) or Var(δ) = 0.25 Var(X) (bottom), using the estimator (2.12) with

hCV (left) hSIMEX (middle), or using f̂naive (right).

clearly that even if the error is misspecified, taking the error into account produces

estimators that are considerably less biased than f̂naive.

In the regression case we found that the CV approach had similar drawbacks and

hSIMEX often gave better results. For example, in Figure 3 we show the quartile curves

of the estimators of curve (iv), using (3.16) when n = 250 and the bandwidth was

hCV or hSIMEX. Although, as in the density case, the CV method with sinc kernel

recovered the peaks better than the method (in this case SIMEX) that used a finite

order kernel, it also produced unattractive wiggly curves away from the peaks. f̂naive

clearly targeted the wrong curve.

Figure 4 shows the quartile curves for estimators of curve (v) from samples of size

n = 100 to n = 500. We compare our estimator using hSIMEX, with f̂naive. Again,

we see that f̂naive is strongly biased and clearly outperformed by our method. In this

case too, we found that using hCV helped recover the peaks better, but overall gave

more variable estimators than hSIMEX.
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Figure 2: Estimates of fX for curve (iii) when Var(δ) = 0.25 Var(X) and n = 250, in

the case where δ ∼ Lap∗Uni (left), δ ∼ Uni∗Uni (center), or δ ∼ N(0, Var(δ)) but we

pretend it is Uni∗Uni, using the estimator (2.12) with hSIMEX (top), or using f̂naive

(bottom).
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Figure 3: Estimates of g for curve (iv) when δ ∼ Lap∗Uni, Var(δ) = 0.25 Var(X),

and n = 250, using the estimator (3.16) with hCV (left) or hSIMEX (middle), or using

f̂naive (right).

6.3 A data application

In an unpublished work by Sun, Wang and Woodroofe (2009), the authors suggest

that, when δ is very smooth (e.g. normal), better numerical results could be ob-
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Figure 4: Estimates of g for curve (v), when δ ∼ Lap∗Uni, Var(δ) = 0.25 Var(X) and

n = 100 (left), n = 250 (middle) and n = 500 (right), using the estimator (3.16) with

the SIMEX method (top), or using f̂naive (bottom).

tained by approximating its distribution by that of a sum of a few uniform random

variables (i.e., pretend that δ is a sum of uniforms even though it is not). Approxi-

mating a normal by a sum of uniforms can be justified by the Central Limit Theorem;

and simple algorithms generate a normal variable by taking the sum of a few i.i.d.

uniform random variables; see for example Ahrens and Dieter (1972); see also our

illustration in Figure 2. More general approximations could also be justified via small

error variance approximation, as in Carroll and Hall (2004) and Delaigle (2008). An

interesting application of Sun and Wang’s suggestion is that when we do not know

what fδ is, we could apply deconvolution pretending that δ was a convolution of a

small number of uniforms. This approach is attractive because such a convolution is

not very smooth (in the deconvolution terminology), and thus is less likely to cause

dramatic approximation errors. See the related work by Carroll and Hall (2004) and

Delaigle (2008).

Our method can be used to deconvolve a sum of uniform random variables, and
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Figure 5: Estimator of the density fX for the Nhanes data, using f̂naive or using our

estimator with ĥSIMEX, assuming that δ is a convolution of two uniforms (Uni2) or a

convolution of four uniforms (Uni4).

we applied it to data from the second National Health And Nutrition Examination

Survey (NHANES) study. The goal was to estimate the density of the long-term

log daily saturated fat intake based on a sample of size 4708, consisting of women

aged between 25 and 50 years. We employed the transformation used by Carroll

et al. (2006), Chapter 4, for the first NHANES, that is log(5+saturated fat). In

this study, the long-term intake was approximated by a 24 hour recall, causing large

measurement errors. The variance of δ could be approximated from the recalls, giving

Var(δ) ≈ 0.5 Var(X). However, fδ itself is unknown and we applied our estimator

assuming that δ was a convolution of two or of four identically distributed uniforms,

each time with Var(δ) as above. We compared the results with f̂naive.

The three estimators of the density are plotted in Figure 5. As is usual in de-

convolution, especially with this high level of noise, f̂naive seems to oversmooth the

data. The estimators using the two convolutions of uniforms seem to correct for some

error and give close results, although assuming a convolution of four uniforms gives

an estimator that seems visually less attractive – it is well known that deconvolving

smoother errors is more difficult in practice, especially if the noise level is high, see

Stefanski and Carroll (1990).
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7 Proofs

Proof of Theorem 4.1: By (2.10) and Fourier inversion of p ∈ L2(R), we have

f(x) =
1

2π

∫
exp(−itx)

( J∑

k=0

ηk exp(2kπit/λ)
)
pft(t)dt ,

for almost all x ∈ [a, b]. From (2.5) we deduce that, for such x,

f(x) =
1

2π

∫
exp(−itx)

( J∑

k=0

ηk exp(2kπit/λ)
)(

exp(2itπ/λ)− 1
)ν

f ft(t)dt. (7.30)

Therefore

E

∫ b

a

∣∣f̂(x)− f(x)
∣∣2dx ≤ E

∫ ∣∣∣ 1

2π

∫
e−itx

( J∑

k=0

ηke
2kπit/λ

)(
e2itπ/λ − 1

)ν

× [
K ft(th)Φ̂ξ(t)/f

ft
δ (t)− f ft(t)

]
dt

∣∣∣
2

dx

=
1

2π

∫ ∣∣∣
J∑

k=0

ηke
2kπit/λ

∣∣∣
2 ∣∣e2itπ/λ − 1

∣∣2ν
E

∣∣K ft(th)Φ̂ξ(t)/f
ft
δ (t)− f ft(t)

∣∣2dt , (7.31)

where the inequality in the first step comes from the extension of the integration

domain from [a, b] to R. In the second step, we have used Parseval’s identity. Fur-

thermore, we have

∣∣e2itπ/λ − 1
∣∣2ν

E
∣∣K ft(th)Φ̂ξ(t)/f

ft
δ (t)− f ft(t)

∣∣2

≤ 2
∣∣e2itπ/λ − 1

∣∣2ν ∣∣K ft(th)− 1
∣∣2∣∣f ft(t)

∣∣2

+ 2
∣∣K ft(th)

∣∣2∣∣e2itπ/λ − 1
∣∣2ν∣∣f ft

δ (t)
∣∣−2

E
∣∣Φ̂ξ(t)− ξft(t)

∣∣2 . (7.32)

Now from (2.2), we have, for almost all t ∈ R,

∣∣ exp(2itπ/λ)− 1
∣∣2ν∣∣f ft

δ (t)
∣∣−2 ≤ const. · (1 + |t|)2α .

where here and below, const. denotes a generic positive constant which may take

different values at different lines. Also, we employ (4.22) so that

E
∣∣ exp(2itπ/λ)− 1

∣∣2ν ∣∣K ft(th)Φ̂ξ(t)/f
ft
δ (t)− f ft(t)

∣∣2
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≤ const. · (
∣∣K ft(th)− 1

∣∣2∣∣f ft(t)
∣∣2 +

∣∣K ft(th)
∣∣2(1 + |t|)2α/n

)
.

Inserting that inequality into the integral in (7.31), we get the upper bound

const. ·
( ∫ ∣∣K ft(th)− 1

∣∣2∣∣f ft(t)
∣∣2 +

1

n

∫ ∣∣K ft(th)
∣∣2(1 + |t|)2αdt

)

on the MISE where const. does not depend on f . Applying the Sobolev condition

f ∈ FS
C,β and the conditions imposed on the kernel K, we obtain O

(
h2β +n−1h−1−2α

)

as a uniform upper bound on the MISE. Inserting the proposed bandwidth h com-

pletes the proof of the theorem. ¥

Proof of Theorem 4.2: We define

[
BqfX

]
(x) =

∫
yqK(y)fX(x + yh)dy ,

[
Bqm

]
(x) =

∫
yqK(y)

( p∑

l=0

(yh)lg(l)(x)/l!
)
fX(x + yh)dy ,

TB =
([

B0m
]
(x), . . . ,

[
Bpm

]
(x)

)T
, FB =

(
f(x), hg′(x), . . . , hpg(p)(x)/p!

)T
, and the

matrix SB =
{[

Bj+kfX

]
(x)

}
0≤j,k≤p

. Since FB = SB
−1SBFB = SB

−1TB, we have

SBFB = TB. Moreover, as h → 0, the matrix SB converges to fX(x) · S, with S

defined in the theorem, for almost all x ∈ [a, b]. Hence, we have

det(SB) → f p
X(x) · det(S) > ρ > 0 ,

so that SB is invertible and satisfies det(SB) > ρ for n sufficiently large. By Cramer’s

rule, we derive that g(l)(x) = l!h−l det(AB,l)/ det(SB) , for any l = 0, . . . , p where

AB,l is the matrix that has its lth column equal to TB and all other columns equal

to those of SB. Elementary calculations yield

∣∣ĝ(l)
p (x)− g(l)(x)

∣∣ ≤ l!h−lρ−1
(∣∣ det(Ân,l)− det(AB,l)

∣∣ + O(hl) ·
∣∣ det(Ŝn)− det(SB)

∣∣)

(7.33)

for n large enough.

Since we restrict our consideration to x ∈ (a, b), we have x + yh ∈ [a, b] for

n large enough, and thus it follows from (7.30) that EŜn,k(x) =
[
BkfX

]
(x) and
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∣∣ET̂n,k(x) − [
Bkm

]
(x)

∣∣ = O
(
hβ

)
, by Taylor approximation of f (remember that

p = β − 1).

For the distance between the determinants of two (p + 1) × (p + 1)-matrices X

and Y, we obtain, by the definition of the determinant, that

| det(X)− det(Y)| ≤ Cp ·max
σ∈Sp

max
A⊆{0,...,p},A6=∅

∏
j∈A

|Xj,σ(j)|
∏

j 6∈A

|Yj,σ(j) −Xj,σ(j)| , (7.34)

with a constant Cp > 0, where Sp denotes the collection of all permutations of

{0, . . . , p}, (σ(0), . . . , σ(p)) is a permutation of {0, . . . , p}, and Xj,k, Yj,k, j, k =

0, . . . , p, denote the components of X and Y, respectively.

We obtain that det(EŜn) = det(SB) and, by (7.34), that
∣∣ det

(
EÂn,l

)−det
(
AB,l

)∣∣ =

O
(
hβ

)
, where the expectation of a matrix is equal to the matrix consisting of its ex-

pected components.

In view of (7.34), since there exists a uniform upper bound on all components of

EÂn,l and EŜn, it remains to be shown that, for any coefficients k0 ∈ {0, . . . , p},
k1, . . . , kp ∈ {0, . . . , 2p}, and any set L ⊆ {1, . . . , p}, we have

E
[
|T̂n,k0 − ET̂n,k0|2

∏

l∈L

|Ŝn,kl
− EŜn,kl

|2
]

= O
(
n−1h−1−2α

)
, (7.35)

E
[
|Ŝn,k0 − EŜn,k0|2

∏

l∈L

|Ŝn,kl
− EŜn,kl

|2
]

= O
(
n−1h−1−2α

)
. (7.36)

The left side of these expressions can be written as

n−2(#L+1)

n∑
j0=1

n∑

j′0=1

· · ·
n∑

j#L=1

n∑

j′#L=1

E
(
Zp,j0,k0Zp,j′0,k′0

∏

l∈L

Z0,jl,kl
Z0,j′l ,k

′
l

)
,

where

Zq,j,k = Y q
j

1

h
Kδ,kl

(x−Wj

h

)
− EY q

j

1

h
Kδ,kl

(x−Wj

h

)
.

Taking into account that the Zq,j,k are centered, we obtain, as in the proof of Lemma

5.6 of Delaigle and Gijbels (2006), that

n−2(#L+1)

#L+1∑
i=0

nihi−(2α+2)(#L+1) ≤ O
(
n−1−#Lh−(2α+1)(#L+1)

) ≤ O
(
n−1h−(2α+1)

)
,
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which proves (7.35) and (7.36).

Applying (7.35) and (7.36) to the squared version of (7.33) gives us the desired

rate-efficient upper bound. ¥

Proof of Theorem 5.1: We restrict to rate-adaptivity of m̂ĥ, as that of f̂X;ĥ is included

as a special case by taking Yj ≡ 1 a.s..

Let Q(h) = n−1h−1−2α + h2β, which corresponds to the MISE of estimator (4.24)

up to a positive constant factor. We write h∗ ∈ H for the bandwidth that minimizes

Rn(h), and hence

Mn(h) = Rn(h) +
1

π

∫ ∣∣∣
J∑

k=0

ηk exp(2itkπ/λ)
∣∣∣
2∣∣pft(t)

∣∣2dt

under the constraint h ∈ H. Note that Mn(h) is the rate-efficient upper bound derived

in the proof of Theorem 4.1 and that the ratio Mn(h)/Q(h) is bounded above and

below by uniform positive constants. Moreover, the set {1/h : h ∈ H} is sufficiently

dense in the interval [1, n1/(1+2α)] so that there exists h ∈ H, h ³ n1/(1+2α+2β). Hence,

we have Q(h∗) ³ n−2β/(1+2β+2α) and m̂h∗ reaches the optimal convergence rate. Thus,

E

∫ b

a

|m̂ĥ(x)−m(x)|2dx =

bn1/(1+2α)c∑

k=1

E
[
1{ĥ=1/k} · ‖m̂1/k −m‖2

2

]

≤ const. ·
bn1/(1+2α)c∑

k=1

[P (ĥ = 1/k)]1/2 ·Q(1/k) , (7.37)

by the Cauchy-Schwarz inequality, and where we have used the fact that Eε4
1 < ∞

and m ∈ FA
β,C,c0,c1

imply
(
E‖m̂1/k −m‖4

2

)1/2 ≤ O
(
Q(1/k)

)
. Furthermore, we have

Rn(ĥ) − Rn(h∗) ≥ C · Q(ĥ) − D · Q(h∗) a.s. , for some appropriate constants

C, D > 0. On the other hand, we have R̂n(ĥ) − R̂n(h∗) ≤ 0 a.s. , by definition.

From there, we conclude that for any random variable Sn which does not depend on

h, one of ∣∣R̂n(ĥ)−Rn(ĥ)− Sn

∣∣ ≥ (C/2) ·Q(ĥ) − (D/2) ·Q(h∗) ,

∣∣R̂n(h∗)−Rn(h∗)− Sn

∣∣ ≥ (C/2) ·Q(ĥ) − (D/2) ·Q(h∗) ,
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holds a.s.

We can show that under appropriate selection of Sn we have

sup
m∈FA

β,C,c0,c1

E
∣∣R̂n(h)−Rn(h)− Sn

∣∣2s ≤ Ds · n−γs ·Q2s(h) , (7.38)

for all h ∈ H where γ > 0, Ds are some constants and s ≥ 1 is an integer. The

proof of (7.38), which is given in the long version of this paper, leans on partitionning

techniques and some combinational methods; therein, the condition m, fδ ∈ L2(R) is

essential.

We put K =
{
k = 1, . . . , bn1/(1+2α)c : Q(1/k) ≥ (2D/C) ·Q(h∗)

}
. By Markov’s

inequality, we conclude from (7.37) that

E‖m̂ĥ −m‖2
2 ≤ const. ·

(
Q(h∗) +

∑

k∈K

Q1−s(1/k) · (E
∣∣R̂n(1/k)−Rn(1/k)− Sn

∣∣2s

+ E
∣∣R̂n(h∗)−Rn(h∗)− Sn

∣∣2s)1/2
)

≤ const. · (Q(h∗) + n1/(1+2α)−γs/2
)
,

where we used (7.38) in the last step, and where all the constants are independent of

m. Taking s > 0 sufficiently large, the proof is completed. ¥
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