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Abstract: We consider estimating the conditional prevalence of a disease from data pooled
according to the group testing mechanism. Consistent estimators have been proposed in
the literature, but they rely on the data being available for all individuals. In infectious
disease studies where group testing is frequently applied, the covariate is often missing
for some individuals. There, unless the missing mechanism occurs completely at random,
applying the existing techniques to the complete cases without adjusting for missingness
does not generally provide consistent estimators, and finding appropriate modifications is
challenging. We develop a consistent spline estimator, derive its theoretical properties, and
show how to adapt local polynomial and likelihood estimators to the missing data problem.
We illustrate the numerical performance of our methods on simulated and real examples.
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1 Introduction

Group testing is a technique that was originally applied to test for syphilis during the

Second World War (Dorfman, 1943). It consists in pooling randomly individuals into

groups, and instead of observing the disease status of each individual, Y = 1 (infected) or

0 (not infected), we observe only the infection status Y ∗ of each group. Typically, Y ∗ is

obtained through a blood, serum, urine or other fluid test performed on the pooled fluid of

the individuals from the group, which is less time and cost consuming than testing the fluid

of each individual separately. The group testing technique is also applied in other contexts

such as pollution detection in water, milk, etc (e.g. Nagi and Raggi, 1972, Wahed et al.,

1



2006, Fahey et al., 2006 and Lennon, 2007) and plant disease or transgene (e.g. Fletcher

et al., 1999, Montesinos-López et al., 2012 and Montesinos-López et al., 2013).

As pointed by Lindan et al. (2005), in contexts where resources are limited, for example

in developing countries, testing of infectious diseases like chlamydia or gonorrhea is often

not performed routinely due to the prohibitive cost of individual testing. One of the keys

to wider use of group testing is the availability of methods for analysing data that have

been grouped. Therefore, in the group testing literature, a lot of effort has been dedicated

to developing methods for analysing group testing data, demonstrating that they give

reasonable results, and assessing the loss incurred when using such methods compared to

methods for non grouped data; see for example Verstraeten et al. (1998), Vansteelandt

et al. (2000), Sarov et al. (2007), Lewis et al. (2012) and Zhang et al. (2013).

In group testing studies, an important quantity is the prevalence p of the disease condi-

tional on an explanatory variable X. Many techniques have been suggested for estimating

p, using either parametric (e.g. Vansteelandt et al., 2000, Xie, 2001, Chen et al., 2009

and Huang and Tebbs, 2009), semiparametric (e.g. Li and Xie, 2012, Wang et al., 2013,

Wang et al., 2014 and Delaigle et al., 2014), or nonparametric approaches (e.g. Delaigle

and Meister, 2011, Delaigle and Hall, 2012, Delaigle et al., 2014, Delaigle and Zhou, 2015

and Delaigle and Hall, 2015).

The existing techniques for estimating p all rely on the fact that X is observed for each

individual. However, in practice, for reasons such as mechanism breakdowns or individuals

refusing to answer some questions, X is often subject to missingness. This is particularly the

case for sensitive studies such as those involving infectious disease, which are yet the ones

where group testing techniques are the most often used. In the missing data literature,

it is well known that in general, when data are missing, we cannot naively discard the

incompletely observed individuals and apply existing techniques to the complete cases.

In general, this approach, often referred to as the complete-case analysis, only provides
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satisfactory estimators when the data are missing completely at random (MCAR), that is,

when the probability of being missing is unrelated to the variables of interest (e.g. Little

and Rubin, 2014, chap. 3).

In practice, the data are often missing not completely at random, and applying the

existing techniques to the complete cases produces biased estimators. Following Rubin

(1976) and Little and Rubin (2014), this missing mechanism can be classified into two

categories: 1) missing at random (MAR), where given the value of the completely observable

variables, the probability that a variable is missing is independent of the value of the missing

variable. In our notation, if we let ∆ = 1 if X is observed and ∆ = 0 if X is missing and

if Y is fully observable, this means P(∆ = 1|Y,X) = P(∆ = 1|Y ) ; 2) missing not at

random (MNAR), where, given the completely observable variables, the probability of the

missingness still depends on the missing variable.

In the missing data literature (e.g. Little and Rubin, 2014), it is well known that both

mechanisms (MAR and MNAR) can lead to consistent estimators. However this requires

appropriate correction for missingness, which, under the MNAR mechanism, is often only

possible if we have a parametric model for the way the data are missing. In practice, it is

often not possible to determine whether the data are MAR or MNAR and we rarely know

the true parametric model for the missing mechanism. Moreover, even when the missing

mechanism is MNAR, estimators constructed under a MAR assumption can sometimes

give more accurate results than those constructed under a MNAR assumption based on a

wrong parametric model (see e.g. Rubin et al., 1995). Therefore, it is common in practice

to use the MAR assumption. Estimators obtained under a MAR assumption are often

considered to be a more useful starting point to analyse data with missing values than

a MCAR assumption; see e.g. Little and Rubin (2014), page 19 and Molenberghs et al.

(2014), page 281.

To our knowledge, despite the fact that there are often missing data in infectious studies
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where group testing techniques have the biggest potential to be used, statistical inference

with missing data in the group testing context has not been conducted before. Consistent

methods exist for missing data that are not grouped. In the parametric case, these are

often based on a likelihood function (see Chapters 5–12 of Little and Rubin, 2014). In the

nonparametric context, procedures are typically based on minimising an adjusted squared

error function of the type
∑
Q{Yi, p(Xi)}∆i /P(∆i = 1|Yi, Xi)}, where Q is a loss function

and P(∆i = 1|Yi, Xi) is estimated from the data, which can be done easily if the non-

grouped (Xi,∆i, Yi)’s are observed and the MAR mechanism or a parametric model for

P(∆i = 1|Yi, Xi) is assumed (e.g. Wang et al., 1998, Liang et al., 2007, Kim and Yu,

2012, Jiang et al., 2016). Imputation-based procedures also exist, where the missing data

are replaced by values computed from observed data, and standard regression methods are

directly applied to the “reconstructed data” (e.g. Chapter 4.5 of Little and Rubin, 2014, Oh

and Scheuren, 1983 and Little, 1986), but they often produce biased estimators (Dempster

and Rubin, 1983).

These methods cannot be applied in our context where the individual Yi’s are not ob-

served. In this paper, under a particular MNAR assumption for our observed grouped data

which derives from a standard MAR assumption on the individual non grouped (Xi, Yi)’s,

we develop consistent estimators of p in the case where the Yi’s are observed only in a

pooled form. In section 3, we propose a nonparametric spline estimator. Unlike other

methods, theoretical properties of spline estimators have never been studied in the group

testing literature, and we rigorously establish consistency of our estimator in section 4.1. In

section 5, we show how to adapt to our context two methods often used in the group testing

case without missing data: a nonparametric local polynomial estimator (section 5.1) and

a parametric likelihood estimator (section 5.2). We also show how to extend our ideas to

the multivariate context (section 5.3). We apply our methods to real and simulated data

in section 6, where we show that they work well in practice. Proofs and technical details
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are provided in the online appendix.

2 Model and data

We are interested in estimating the conditional prevalence p(x) = E(Y |X = x) of a disease

given a covariate X, where Y denotes the disease status of a patient (Y = 1 if infected

and Y = 0 if not infected). Instead of observing the disease status of each of n patients

in a study, the individuals are pooled into J groups of sizes n1, . . . , nJ , with
∑J

j=1 nj = n,

and only the disease status of each group is observed. The covariate X is observed at an

individual level, but is missing for some of the individuals.

More formally, for i = 1, . . . , nj, j = 1, . . . , J , let Yi,j and Xi,j denote, respectively, the

disease status (0 or 1) and the covariate of the ith individual in the jth group, and let

∆i,j = 1 if Xi,j is observed and 0 otherwise. We assume that the (∆i,j, Xi,j, Yi,j)’s are all

independent and identically distributed (i.i.d.), and P(Yi,j = 1|Xi,j = x) = E(Yi,j|Xi,j =

x) = p(x). Instead of observing these individual data, for i = 1, . . . , nj and j = 1, . . . , J ,

we observe only (∆i,j, Xi,j, Y
∗
j ), where

Y ∗j = max
i=1,...,nj

Yi,j . (2.1)

When ∆i,j = 0, the notation (∆i,j, Xi,j, Y
∗
j ) means that Y ∗j is observed but Xi,j is not.

We assume that

P(∆i,j = 1|Yi,j, Xi,j) = P(∆i,j = 1|Yi,j) , (2.2)

which, if the data were not grouped (i.e., if the Yi,j’s were observed), would correspond

to a MAR assumption on the the Xi,j’s. In our case, the Yi,j’s are not observed, but

this assumption implies a MNAR one on the observed (Xi,j, Y
∗
j )’s of a special type, which

makes nonparametric estimation possible. An illustration of (2.2) is the situation where

healthy individuals think they are safe because they feel fit, and are therefore less likely

to report personal information, while individuals with the disease feel sick, thereby being
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more willing to provide information. Finally we let fX and π(x) denote, respectively, the

density function of the Xi,j’s and P(∆i,j = 1|Xi,j = x). Our goal is to construct consistent

nonparametric and parametric estimators of p from the data (Xi,j,∆i,j, Y
∗
j ), i = 1, . . . , nj,

and j = 1, . . . , J .

3 Nonparametric spline estimator

In this section, we construct a consistent nonparametric spline estimator of p(x) = P(Yi,j =

1|Xi,j = x) from the data (Xi,j,∆i,j, Y
∗
j ), i = 1, . . . , nj, and j = 1, . . . , J, defined in

section 2. We denote by [a, b] a finite interval on which we estimate p(x), where a and b

are some fixed constants such that −∞ < a < b <∞.

3.1 Main ideas

We start by describing the main ideas leading to our estimator. Let Z∗j = 1 − Y ∗j =∏nj
i=1(1− Yi,j), and q0 = E{1− p(Xi,j)}, and assume temporarily that q0 is known (it can

be easily estimated from the Z∗j ’s by the
√
n-consistent estimator q̂0 of Delaigle and Meister,

2011; see Appendix A of the supplemental file). We know from Delaigle and Meister (2011)

that E(Z∗j |X1,j, X2,j, . . . , Xnj ,j) =
∏nj

i=1{1− p(Xi,j)} and

P(Z∗j = 1) = E(Z∗j ) = q
nj
0 , P(Z∗j = 1|Xi,j) = E(Z∗j |Xi,j) = q

nj−1
0 {1− p(Xi,j)} , (3.1)

so that

q
1−nj
0 P(Z∗j = 1|Xi,j = x) = E(q

1−nj
0 Z∗j |Xi,j = x) = 1− p(x) . (3.2)

Therefore, 1−p is a regression curve, and if the (Xi,j, Z
∗
j )’s were all observed, as in Delaigle

et al. (2014) we could estimate p using a standard nonparametric regression estimator

constructed from the (Xi,j, q
1−nj
0 Z∗j )’s.

However we cannot compute this estimator in our case where some of the Xi,j’s are

missing; as noted in the introduction, applying it to the complete cases only would lead to
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a non consistent estimator. On the other hand, a regression curve that can be consistently

estimated from our data using a standard nonparametric estimator is

g(x) ≡ E(q
1−nj
0 Z∗j |Xi,j = x,∆i,j = 1) = q

1−nj
0 P(Z∗j = 1|Xi,j = x,∆i,j = 1) , (3.3)

since it needs only the data for which ∆i,j = 1, i.e. for which Xi,j has been observed. We

will see how to estimate g by spline and kernel methods in sections 3.2 and 5.1, but for this

to be useful, it remains to see if we can express p in terms of g.

In order to do this, applying the result P(A,B|C) = P(A|B,C)P(B|C) to the events

A = {Z∗j = 1}, B = {∆i,j = 1} and C = {Xi,j = x}, we write

P(Z∗j = 1|Xi,j = x,∆i,j = 1)P(∆i,j = 1|Xi,j = x) = P(Z∗j = 1,∆i,j = 1|Xi,j = x) .

Then applying this result again, but swapping the role of A and B, we get

P(∆i,j = 1, Z∗j = 1|Xi,j = x) = P(∆i,j = 1|Xi,j = x, Z∗j = 1)P(Z∗j = 1|Xi,j = x) .

Combining those two equalities, using (3.2) and (3.3), and recalling the notation π(x) =

P(∆i,j = 1|Xi,j = x) from page 6, we deduce that

{1− p(x)}P(∆i,j = 1|Xi,j = x, Z∗j = 1) = g(x)π(x) . (3.4)

While we have expressed p in terms of g, (3.4) involves two unknown functions, P(∆i,j =

1|Xi,j = x, Z∗j = 1) and π(x). Since they depend on the Xi,j’s, some of which are missing,

in order to be able to estimate these functions, we first need to express them in a way that

depends only on the non missing data.

For the first function, using repeatedly the assumption at (2.2) and the fact that the

(Xi,j,∆i,j, Yi,j)’s are i.i.d., we prove in Appendix A.2 of the supplemental file that

P(∆i,j = 1|Xi,j = x, Z∗j = 1) = P(∆i,j = 1|Z∗j = 1) ≡ p0 . (3.5)

7



Thus, P(∆i,j = 1|Xi,j = x, Z∗j = 1) = p0 is constant in x and depends only on the ∆i,j’s

and the Z∗j ’s, which are observed. The function π is more problematic. Using the result

P(A,B|C) = P(A|B,C)P(B|C) and (2.2), we show in Appendix A.2 that

π(x) = P(∆i,j = 1|Xi,j = x) = p0{1− p(x)}+ p1p(x) , (3.6)

where p1 = P(∆i,j = 1|Yi,j = 1). We will see below how to estimate p0 and p1, but a problem

with the expression for π at (3.6) is that we are estimating π because we need it in order to

estimate p using (3.4), and (3.6) depends on p, which we cannot estimate since it depends

on π. However, plugging (3.6) into (3.4), we get {1−p(x)}p0 = g(x)
[
p0{1−p(x)}+p1p(x)

]
,

so that

p(x) = {1− g(x)}
/
{1 + (p1p

−1
0 − 1)g(x)} . (3.7)

(Under Assumption (A4) from section 4.1, the denominator of (3.7) does not vanish.)

In (3.7), p is expressed in terms of g, p0 and p1 only. In particular, estimating p no

longer requires estimating π, and we have resolved the circular argument. To estimate

p0, using (3.5) we write p0 = E(∆i,jZ
∗
j )/E(Z∗j ). Thus, using (3.1), we can estimate it

by p̂0 = max(p̃0, c0), where p̃0 =
∑J

j=1

∑nj
i=1 ∆i,jZ

∗
j /
∑J

j=1

∑nj
i=1 Z

∗
j and c0 > 0 is a small

number, taking the convention that 0/0 = 0. Here we use the constant c0 to ensure that

p̂0, which is a denominator of our estimator, is always strictly larger than zero. We will

discuss how to choose c0 in section 6.

To estimate p1, which depends on the unobserved Yi,j’s, we show in Appendix A.2 that

p1 = P(∆i,j = 1, Yi,j = 1)/P(Yi,j = 1) = (µ∆ − p0q0)/(1− q0) , (3.8)

where µ∆ ≡ E(∆i,j) = P(∆i,j = 1) can be estimated by the empirical mean ∆̄ =

n−1
∑J

j=1

∑nj
i=1 ∆i,j. Thus we can estimate p1 by p̂1 = max(p̃1, c0) where p̃1 = (∆̄ −

p̂0q̂0)/(1− q̂0), where again, we use c0 to ensure that our estimator of p1 is always strictly

greater than zero.
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Finally, recalling (3.7), we can estimate p(x) by

p̂(x) = {1− ĝ(x)}
/{

1 + (p̂1p̂
−1
0 − 1)ĝ(x)

}
, (3.9)

where ĝ is an estimator of g. We derive two estimators of g in sections 3.2 and 5.1.

3.2 Penalised spline estimator

In this section we construct a penalised spline estimator of g at (3.3); using (3.9) we deduce

a spline estimator of p. A spline function is a piecewise polynomial of a degree d ≥ 1, where

the pieces are such that the spline is d−1 times continuously differentiable. The pieces are

defined on intervals whose extremities are called knots. More formally, for any integer d ≥ 1,

given an interval [a, b] on the real line and a sequence t = {t−d, t−d+1, . . . , tK+d, tK+d+1} of

knots such that t−d = . . . = t0 = a < t1 < t2 < . . . < tK < b = tK+1 = . . . = tK+d+1, with

K a positive integer, a spline of degree d (equivalently, of order d + 1) with knots t is a

function s that is (d−1) times continuously differentiable on [a, b], i.e. s ∈ Cd−1[a, b], and is

such that on each [ti, ti+1], i = 0, . . . , K, s is a polynomial of degree d. The extreme knots

are repeated for technical convenience; see Appendix E.1 of the supplemental file where we

summarise some useful facts about splines. We denote the class of such spline functions by

Sd(t).

If the (Xi,j, Yi,j)’s were observed, then since p(x) = E(Yi,j|Xi,j = x) is a regression

curve, we could estimate it by the standard penalised spline estimator of degree d:

ŝ(x) = argmin
s(x)∈Sd(t)

[ J∑
j=1

nj∑
i=1

{Yi,j − s(Xi,j)}2 + λ

∫ b

a

{s(`)(x)}2 dx

]
, (3.10)

where the first term is a residual sum of squares, the second is a smoothness penalty term,

s(`) denotes the `th order derivative of s with 0 < ` < d, and λ > 0 is a smoothing parameter

controlling the strength of the penalty; see e.g. Ruppert et al. (2003) and Claeskens et al.

(2009).
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Of course, in our case we cannot compute (3.10) since we do not observe the Yi,j’s and

some of the Xi,j’s are missing. As suggested in section 3.1 (in particular, see (3.9)), instead

we focus on the curve g(x) = E(q
1−nj
0 Z∗j |Xi,j = x,∆i,j = 1), which depends only on our

observed data. Mimicking (3.10), replacing there Yi,j by q
1−nj
0 Z∗j and using only the data

for which ∆i,j = 1, we propose the following penalised spline estimator of g(x):

ĝ(x) = argmin
s(x)∈Sd(t)

[ J∑
j=1

nj∑
i=1

{q̂1−nj
0 Z∗j − s(Xi,j)}2∆i,j + λ

∫ b

a

{s(`)(x)}2 dx

]
, (3.11)

where q̂0 is the estimator of q0 defined in Appendix A.1 of the supplemental file.

A refined version of ĝ(x) can be defined in the case where the group sizes nj are un-

equal. As pointed by Delaigle et al. (2014), in that case data from different groups are not

identically distributed, and should not contribute to the estimator equally. Instead, each

group should be given a weight that depends on its size. Motivated by this, we introduce

the following weighted version of our estimator at (3.11):

ĝs(x) = argmin
s(x)∈Sd(t)

[
φ(q̂0)

J∑
j=1

nj∑
i=1

{q̂1−nj
0 Z∗j −s(Xi,j)}2ϕj(q̂0)∆i,j +λ

∫ b

a

{s(`)(x)}2 dx

]
, (3.12)

where ϕj, j = 1, . . . , J , are smooth positive functions similar to the weights of Delaigle

et al. (2014) and which can be chosen using the method described in section 4.2, and where

φ = n/(
∑J

j=1 njϕj) is a normalising factor. Expressed in this form, the estimator ĝs(x) at

(3.12) may seem difficult to compute, but in the next two paragraphs we derive a closed

form expression for ĝs(x), which is given at (3.14) below.

To find an analytic expression for ĝs, we use the fact that splines can be written explicitly

as a linear combination of spline basis functions. There are many theoretically equivalent

different ways to choose a spline basis, but some have more attractive properties. We use

the B-spline basis, which is one of the most popular ones and for which lots of theoretical

results exist in the literature (see e.g. Schumaker, 1981 and De Boor, 2001). We denote
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the B-spline basis functions of the spline space Sd(t) by Ni,d+1(x), for i = −d, . . . ,K (we

recall their definition in Appendix E.1). Any function s ∈ Sd(t) can be expressed as

s(x) =
∑K

i=−d βiNi,d+1(x), where the coefficients βi ∈ R.

In this notation, solving (3.12) is equivalent to minimising, w.r.t. the βi’s ∈ R,

φ(q̂0)
J∑
j=1

nj∑
i=1

{
q̂

1−nj
0 Z∗j −

K∑
k=−d

βkNk,d+1(Xi,j)

}2

ϕj(q̂0)∆i,j + λ

∫ b

a

{ K∑
k=−d

βkN
(`)
k,d+1(x)

}2

dx .

(3.13)

Let ∆ = diag(∆1,1,∆2,1, . . . ,∆nJ ,J), Q̂ = diag(q̂1−n1
0

×n1· · ·, · · · , q̂1−nJ
0

×nJ· · · ) and Φ(q̂0) =

diag
(
ϕ1(q̂0)

×n1· · ·, · · · , ϕJ(q̂0)
×nJ· · ·

)
be diagonal matrices, where

×nj· · · means that the quantity

is repeated nj times. Finally, let Z∗ = (Z∗1
×n1· · ·, · · · , Z∗J

×nJ· · · )>. Then the solution ĝs(x) to

(3.12), which is found by minimising (3.13), can be expressed as

ĝs(x) = φ(q̂0)N>(x){φ(q̂0)N>Φ(q̂0)∆N + λD`}−1N>Φ(q̂0)∆Q̂Z∗ , (3.14)

where N>(x) = {N−d,d+1(x), . . . , NK,d+1(x)}, N = {N (X1,1), . . . ,N (XnJ ,J)}> is an n ×
(K+d+ 1) matrix and D` is a matrix with elements (D`)ij =

∫ b
a
N

(`)
i,d+1(x)N

(`)
j,d+1(x) dx, for

i, j = −d, . . . ,K.

The expression for ĝs(x) at (3.14) can be computed easily since N ,N ,D`,∆, as well as

Z∗ defined above (3.1), depend only on the B-spline basis and on the observed data, both

of which are known. Recall too that q̂0 is defined in Appendix A, and that φ and Φ both

depend on the ϕj’s, which are computed in section 4.2. Finally, the number of knots K

and the smoothing parameter λ can be chosen by cross-validation as in section 6.1. Using

(3.7), we deduce an estimator of p(x) by taking

p̂s(x) = {1− ĝs(x)}
/{

1 + (p̂1p̂
−1
0 − 1)ĝs(x)

}
. (3.15)

Remark 1. Throughout the paper, the indices of vectors and matrices do not necessarily

start at 1. Each time they do not start at 1 we shall indicate their range.
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4 Asymptotic properties of p̂s and optimal ϕj’s

4.1 Asymptotic properties of p̂s

We derive asymptotic properties of p̂s(x) under the following assumptions, which we discuss

in Appendix A.3 of the supplemental file:

Assumption A

(A1) p is d+ 1 times continuously differentiable on [a, b].

(A2) supx∈[a,b] |p(j)(x)| <∞ for j = 1, . . . , d+ 1.

(A3) d and ` are positive integers such that 0 < ` < d <∞.

(A4) There exists a constant cp > 0 such that min(p0, p1) > cp.

(A5) 0 < πmin ≡ infx∈[a,b] π(x) ≤ supx∈[a,b] π(x) ≡ πmax < 1.

(A6) K →∞ as n→∞ and K(logK)2/n→ 0 as n→∞.

(A7) There exists a constant 1 ≤M <∞ such that δ/min0≤i≤K δi ≤M , where δi = ti+1−ti
for i = −d, . . . ,K+d, and δ = max0≤i≤K δi. Furthermore, max0≤i≤K |δi+1−δi| = o(δ).

(A8) fX is twice continuously differentiable on [a, b], supx∈[a,b] |f
(k)
X (x)| < ∞, for k = 1, 2,

and there exist constants fmin and fmax such that 0 < fmin ≤ infx∈[a,b] fX(x) ≤
supx∈[a,b] fX(x) ≤ fmax <∞.

(A9) supj=1,...,J nj <∞ and 0 < q0 < 1.

(A10) There exist constants φ1 and φ2 such that 0 < φ1 ≤ infj=1,...,J ϕj(q0) <

supj=1,...,J ϕj(q0) ≤ φ2 <∞.

(A11) 0 ≤ infn∈N λK
2`/n ≤ supn∈N λK

2`/n <∞ and λ = o(K).

(A12) For j = 1, . . . , J, ϕj depends on j only through nj, is uniformly bounded and has a

bounded derivative on (0, 1).

The next theorem establishes asymptotic properties of the estimator p̂s at (3.15).
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Theorem 1. Under Assumption A, we have, for any x ∈ [a, b],

p̂s(x)− p(x) = Bδ(x)ξ(x) + V
1/2
n,δ (x)ξ(x)Ψn,δ(x) + op

(
δd+1

)
+ op

{
(nδ)−1/2

}
, (4.1)

where Ψn,δ(x)
D→ N(0, 1) as n→∞, ξ(x) = π2(x)/(p0p1),

Bδ(x) =
g(d+1)(x)

(d+ 1)!

K∑
i=0

1[ti,ti+1)(x)δd+1
i Bd+1

(
x− ti
ti+1 − ti

)
, (4.2)

Vn,δ(x) =

∑J
j=1 njϕ

2
j(q0)

δ{
∑J

j=1 njϕj(q0)}2
N>(x)H−1

n,λGg,jH
−1
n,λN (x) � (nδ)−1 , (4.3)

and where

Bd+1(x) =
d+1∑
i=0

1

i+ 1

i∑
j=0

(−1)j
(
i
j

)
(x+ j)d+1 (4.4)

is the Bernoulli polynomial of degree d+ 1,

Gg,j = δ−1

∫ b

a

π(y)[g(y){q1−nj
0 − g(y)}]N (y)N>(y)fX(y) dy , (4.5)

Hn,λ = λ(nδ)−1D` + δ−1

∫ b

a

π(y)N (y)N>(y)fX(y) dy . (4.6)

Remark 2. Abusing terminology and following the literature, throughout we will often refer

to Bδξ and Vn,δξ
2 as asymptotic bias and variance. While they do play the role of bias and

variance, it is clear from the above expressions that they are in fact asymptotic expressions

coming from our convergence in distribution results.

The asymptotic bias of our estimator is equal to Bδ(x)ξ(x), and the term ξ(x) is the

effect that missing data have on bias (grouping has no effect); it reduces to 1 when there

are no missing data. Our asymptotic variance Vn,δ(x)ξ2(x) is affected by both grouping and

missingness. See Appendix A.4 for a short discussion about the non grouped i.i.d. case.

Note that Bδ(x) can vanish at some x (see Appendix A.4), in which case to find the dom-

inating part of the bias, one would need to investigate the higher order terms in op(δ
d+1).
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When Bδ(x) 6= 0, we see from (4.2) that Bδ(x) � δd+1. Combining with (4.3), in that

case the fastest rate of convergence of our estimator is n−(d+1)/(2d+3), obtained by taking

δd+1 � (nδ)−1/2, i.e. δ � n−1/(2d+3), so that K � n1/(2d+3) (recall Assumption (A7)). For

some d and x such that Bδ(x) = 0, our estimator converges faster than the n−(d+1)/(2d+3)

rate if we take δd+1 an order of magnitude larger than (nδ)−1/2, but the exact rate and

order depend on the exact rate of the op(δ
d+1) term. Comparing our results with those of

Stone (1980), we can see that our estimator reaches the optimal rate of the standard non-

parametric regression estimation problem with non grouped and non missing data, which

implies that our estimator is rate-optimal for our problem too.

4.2 Choosing the ϕj’s

We deduce from Theorem 1 that, to first order, the ϕj’s influence only the variance term

ξ2(x)Vn,δ(x). Together with the fact that we wish to use the same weights for all x, this

motivates us to choose the ϕj’s that minimise
∫ b
a
ξ2(x)Vn,δ(x) dx. In Appendix A.5, we show

that these are given by ϕ∗j(q0) = 1
/
Vj, where Vj =

∫ b
a
π4(x)N>(x)H̃−1

n,λG̃g,jH̃
−1
n,λN (x) dx,

with π defined at the end of section 2, H̃n,λ = λD`/n +
∫ b
a
N (y)N>(y)π(y)fX(y) dy and

G̃g,j =
∫ b
a
g(y){q1−nj

0 − g(y)}N (y)N>(y)π(y)fX(y) dy.

In practice, q0, g, π and fX in the definition of the Vj’s are unknown and need to be

estimated to produce an estimator ϕ̂∗j of each ϕ∗j . We can estimate q0 by q̂0 in Appendix A,

and g by a pilot estimator ĝpilot, which we take equal to ĝs with all the ϕj’s equal to 1.

To estimate π, note from (3.6) and (3.7) that π(x) = p1/{1 + (p1/p0 − 1)g(x)}. This

motivates us to estimate π(x) by π̂(x) = p̂1/{1 + (p̂1/p̂0 − 1)ĝpilot(x)}. Estimating fX is

more difficult. Recall that when there are no missing data, this density can be consistently

estimated by the kernel density estimator (nh)−1
∑J

j=1

∑nj
i=1 L{(x−Xi,j)/h}, where L is a

kernel function and h > 0 is a bandwidth (see e.g. Fan and Gijbels, 1996). In our case, all
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we can calculate is

f̂X,obs(x) = (nh)−1

J∑
j=1

nj∑
i=1

L{(x−Xi,j)/h}∆i,j , (4.7)

which, using a Taylor expansion, is easily seen to be a consistent estimator of π(x)fX(x),

but not of fX(x). Instead of being an issue, this is actually an advantage in our case

because looking at the definition of G̃g,j above, where fX and π appear, we can see that

all we need to estimate is precisely π(x)fX(x).

Combining the above calculations, we take

ϕ̂∗j(q̂0) = 1
/∫ b

a

π̂4(x)N>(x)Ĥ−1ĜjĤ
−1N (x) dx ,

with Ĥ = λD`/n +
∫ b
a
N (y)N>(y)f̂X,obs(y) dy and Ĝj =

∫ b
a
ĝpilot(y){q̂1−nj

0 −

ĝpilot(y)}N (y)N>(y)f̂X,obs(y) dy.

Of course when the groups sizes nj are all equal, the ϕ̂∗j(q0)’s are all equal, and since

they are invariant to scale, we set them equal to 1.

4.3 Confidence interval for p(x)

It is well known in the nonparametric regression literature that constructing genuine data-

driven confidence intervals for a regression curve is extremely complex. In particular, no

matter what approach is used, at some stage one needs to estimate quantities that are

not easy to estimate and/or select several tuning parameters in a very subtle way (see

e.g. Krivobokova et al., 2010 and the discussion in Appendices C1 and C2 of Delaigle et al.,

2015).

To understand the difficulty, note that it follows from Theorem 1 that, for x ∈ [a, b],

p̂s(x)− p(x)−Bδ(x)ξ(x)

V
1/2
n,δ (x)ξ(x)

D→ N(0, 1) , as n→∞ .
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We can use this result to construct asymptotic confidence intervals for p(x) based on the

asymptotic normal distribution, but since Bδ(x), ξ(x) and Vn,δ(x) are unknown, they have

to be estimated nonparametrically for this expression to be practical. However, estimating

Bδ(x) impacts the coverage rate of the confidence interval, and removing this coverage error

is difficult (see e.g. Delaigle et al., 2015).

The impact of estimating Bδ(x)ξ(x) can be avoided if the estimator p̂s(x) is under-

smoothed, so that the term Bδ(x)ξ(x) can be neglected in the asymptotic normality result

displayed in the previous paragraph. Specifically, if we take K � nr with r > 1/(2d + 3),

then we see from Theorem 1 that {p̂s(x)−p(x)}
/
{V 1/2

n,δ (x)ξ(x)} D→ N(0, 1), as n→∞, and

to construct an asymptotic confidence interval for p(x) from this result we only need to es-

timate ξ(x) and Vn,δ(x). However, in practice, proposing a genuine data-driven method to

choose the smoothing parameters involved while maintaining the coverage rate of the con-

fidence intervals is again a very hard problem, even in standard settings with non grouped

data.

A third possibility for constructing a confidence interval is to use bootstrap, but again

this requires the delicate choice of genuinely data-driven tuning parameters (see e.g. De-

laigle et al., 2015). In summary, while it is possible to construct nonparametric confidence

intervals for p(x), the issue is complex and typically requires whole papers dedicated entirely

to the issue (see e.g. Krivobokova et al., 2010 and Delaigle et al., 2015).

5 Other methods

In the group testing literature without missing data, two estimators of p are often in

use: a nonparametric local polynomial estimator and a parametric likelihood-based one.

Although the main focus of this paper is on nonparametric spline-based methods, which

have never been studied rigorously before in the group testing literature, here we show how
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the two usual estimators can be adapted to our setting. We also extend our nonparametric

procedure to the multivariate setting.

5.1 Local polynomial estimator

We start by showing how to construct an estimator of p based on local polynomial tech-

niques. Before we introduce the general local polynomial estimators that can be used

in our case, we start by showing how to construct a local constant estimator, also re-

ferred to as a Nadaraya-Watson estimator. If the (Xi,j, Yi,j)’s were available, we could

compute the Nadaraya-Watson estimator (Fan and Gijbels, 1996) of the regression curve

p(x) = E(Y |X = x), defined by

p̃NW(x) =
n−1

∑J
j=1

∑nj
i=1 YijLh(Xi,j − x)

n−1
∑J

j=1

∑nj
i=1 Lh(Xi,j − x)

,

where h > 0 denotes a bandwidth, L is a kernel function and Lh(·) = h−1L(·/h). Recalling

the definition of g at (3.3), this suggests estimating g(x) by

ĝNW(x) =
n−1

∑J
j=1

∑nj
i=1 q̂

1−nj
0 Z∗j∆i,jLh(Xi,j − x)

n−1
∑J

j=1

∑nj
i=1 ∆i,jLh(Xi,j − x)

. (5.1)

Using (3.7), we estimate p(x) by p̂NW(x) = {1− ĝNW(x)}/{1 + (p̂1p̂
−1
0 − 1)ĝNW(x)}.

To understand why this estimator is consistent, consider the version g̃NW(x) of ĝNW(x),

where q̂0 is replaced by q0. Under standard smoothness assumptions and if h→ 0 and nh→

∞ as n→∞, it is easy to check that the variance of the numerator and of the denominator

of g̃NW(x), denoted below by Num and Den, tends to zero. For their mean, using a Taylor

expansion we have E(Den) = E
{
E
(
∆i,j

∣∣Xij

)
Lh(Xi,j − x)

}
= E

{
π(Xi,j)Lh(Xi,j − x)

}
∼

π(x)fX(x) and E(Num) = E
{
E(q

1−nj
0 Z∗j |Xi,j,∆i,j)∆i,jLh(Xi,j − x)

}
=
∫
E(q

1−nj
0 Z∗j |Xi,j =

y,∆i,j = 1)P (∆i,j = 1|Xij = y)Lh(y−x)fX(y) dy ∼ g(x)π(x)fX(x) . We deduce that under

standard smoothness assumptions, g̃NW (x)
P−→ g(x) as n→∞.
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More generally, if the (Xi,j, Yi,j)’s were available, we could estimate p(x) by the

standard local polynomial estimator of order ` (Fan and Gijbels, 1996), defined by

p̃LP(x) = e>1 U−1
n Vn, where e>1 = (1, 0, . . . , 0) with 1 in the first position and 0 else-

where, and where Un = (Un,k,k′)0≤k,k′≤` and Vn = (Vn,0, . . . , Vn,`)
>, with Un,k,k′ =

(nhk+k′)−1
∑J

j=1

∑nj
i=1 Lh(Xi,j−x)(Xi,j−x)k+k′ and Vn,k = (nhk)−1

∑J
j=1 Yi,j

∑nj
i=1 Lh(Xi,j−

x)(Xi,j − x)k for k, k′ = 0, . . . , `. Following the above construction of the estimator ĝNW ,

in our case this suggests defining a local polynomial estimator of g(x), of order `, by

ĝLP(x) = e>1 S−1
n Tn, (5.2)

where Sn = (Sn,k,k′)0≤k,k′≤` and Tn = (Tn,0, . . . , Tn,`)
>, with, for k, k′ =

0, . . . , `, Sn,k,k′ = (nhk+k′)−1
∑J

j=1

∑nj
i=1 ∆i,jLh(Xi,j − x)(Xi,j − x)k+k′ and Tn,k =

(nhk)−1
∑J

j=1 q̂0
1−njZ∗j

∑nj
i=1 ∆i,jLh(Xi,j − x)(Xi,j − x)k. Then, using (3.7), we can esti-

mate p(x) by p̂LP(x) = {1− ĝLP(x)}/{1 + (p̂1p̂
−1
0 − 1)ĝLP(x)}.

5.2 Parametric estimator

Sometimes we have a parametric model for p, i.e. we know that p(x) = pθ(x), where the

function pθ is known up to the value of a parameter θ ∈ Θ ⊂ Rdp , with dp ∈ Z+ finite and

Θ a compact set. Let θ0 ∈ Θ denote the true value of θ. In this section we construct an

estimator of θ0 without making parametric assumptions on fX .

Recall that we observe Y ∗j and ∆i,j for all i = 1, . . . , nj, j = 1, . . . , J, and Xi,j when

∆i,j = 1. Let Y = {Y ∗j , j = 1 . . . , J}, ∆ = {∆i,j, i = 1, . . . , nj, j = 1, . . . , J} and X =

{Xobs,Xmis}, where Xobs and Xmis denote respectively the observed Xi,j’s and the missing

ones. In missing values problems, since we cannot compute the standard likelihood function

depending on the unobserved full data, a common approach for estimating θ (see Little

and Rubin, 2014) is to maximise the likelihood function obtained by integrating the full
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likelihood with respect to the unobserved data, i.e. in our case,

L(θ|Y ,∆,Xobs) =

∫
Ωmis

f(Y ,X ,∆;θ) dXmis , (5.3)

where f(Y ,X ,∆;θ) = P (Y ,∆|X ;θ)f(X ), with P (·|·;θ) and f(·) the conditional proba-

bility mass and joint density function, and where Ωmis denotes the outcome space for the

missing values. In standard non grouped settings, this method gives a consistent estimator

of θ0.

To compute (5.3), note that f(Y ,X ,∆;θ) =
∏J

j=1 P (Y ∗j ,∆j|Xj;θ)
∏nj

i=1 fX(Xi,j), where

Xj = {Xi,j, i = 1, . . . , nj} and ∆j = {∆i,j, i = 1, . . . , nj}. Thus we need to express

P (Y ∗j ,∆j|Xj;θ) in terms of pθ, and integrate the resulting expression for f(Y ,X ,∆;θ)

w.r.t. the missing Xi,j’s. The calculations are quite technical and are relegated to Ap-

pendix A.6, where we show that

L(θ|Y ,∆,Xobs) =
J∏
j=1

fθ(Y
∗
j ,Xj,obs,∆j) , (5.4)

with fθ(Y
∗
j ,Xj,obs,∆j) = (1− Y ∗j )f0,θ(Xj,obs,∆j) + Y ∗j {fX∆,θ(Xj,obs,∆j)− f0,θ(Xj,obs,∆j)},

Xj,obs denotes the observed Xi,j’s for group j, and where we used the notation

f0,θ(Xj,obs,∆j) =

nj∏
i=1

[
∆i,jp0{1− pθ(Xi,j)}fX(Xi,j)

+ (1−∆i,j)(1− p0)

∫ ∞
−∞
{1− pθ(x)}fX(x) dx

]
, (5.5)

fX∆,θ(Xj,obs,∆j) =

nj∏
i=1

(
∆i,j[p0{1− pθ(Xi,j)}+ p1pθ(Xi,j)]fX(Xi,j)

+ (1−∆i,j)

∫ ∞
−∞

(1− p0){1− pθ(x)}fX(x) + (1− p1)pθ(x)fX(x) dx

)
. (5.6)

Ideally, we could estimate θ0 by maximising `(θ) = log
{
L(θ|Y ,∆,Xobs)

}
/J . However,

p0, p1 and fX are unknown. While p0 and p1 can be estimated by p̂0 and p̂1 as in section 3.1,
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estimating fX nonparametrically is less easy. We have already seen in section 4.2 that

instead of fX , what the kernel estimator f̂X,obs at (4.7) consistently estimates from our

partially observed data is πfX . To deduce an estimator of fX , we use (3.6) to write

fX(x) = π(x)fX(x)/[p1p(x)+p0{1−p(x)}]. Then we estimate p0, p1 and πfX by p̂0, p̂1 and

f̂X,obs, respectively. However, p is unknown (recall that our goal is precisely to estimate

it), and on this occasion we cannot replace it by pθ because to estimate πfX we have used

f̂X,obs, which, because it is consistent, corresponds to θ0 and not θ. Instead, we suggest

using the Nadaraya-Watson estimator, p̂NW from section 5.1, which leads to the following

estimator of fX(x):

f̂X(x) = f̂X,obs(x)/[p̂1p̂NW(x) + p̂0{1− p̂NW(x)}] . (5.7)

Now, let f̂n,θ(Y
∗
j ,Xj,obs,∆j) = (1 − Y ∗j )f̂0,n,θ(Xj,obs,∆j) + Y ∗j {f̂X∆,n,θ(Xj,obs,∆j) −

f̂0,n,θ(Xj,obs,∆j)}, where f̂0,n,θ and f̂X∆,n,θ are defined as at (5.5) and (5.6), respectively,

but with p0, p1 and fX there replaced by respectively p̂0, p̂1 and f̂X . We propose to estimate

θ0 by θ̂n that maximises the following estimated log-likelihood function:

̂̀
n(θ) =

1

J

J∑
j=1

log
{
f̂n,θ(Y

∗
j ,Xj,obs,∆j)

}
, (5.8)

under the constraint f̂n,θ(Y
∗
j ,Xj,obs,∆j) > 0.

To establish asymptotic normality of the estimator θ̂n, we need Assumption P below,

which we discuss in Appendix A.7. Throughout, we let ∇θ denote the gradient operator,

∇θθ be the Hessian operator, ‖ · ‖2 denote the Euclidean norm, and ‖f‖Lq be the Lq norm

of a function f for 1 ≤ q ≤ ∞.

Assumption P

(P1) For all x ∈ R, pθ(x) is twice continuously differentiable w.r.t. θ for all

θ ∈ Θ, 0 < pmin = infθ∈Θ infx∈R pθ(x) ≤ supθ∈Θ supx∈R pθ(x) = pmax < 1,

supθ∈Θ supx∈R ‖∇θpθ(x)‖2 <∞ and supθ∈Θ supx∈R ‖∇θθpθ(x)‖2 <∞.
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(P2) Θ is a compact set and θ0 ∈ interior(Θ).

(P3) fX is a uniformly continuous and continuously differentiable density function such

that ‖f ′X‖L∞ <∞ and fmax ≡ ‖fX‖L∞ <∞.

(P4) For all x ∈ R, and Pθ = pθ, Pθ = ∇θpθ and Pθ = ∇θθpθ, there exist constants 0 <

C1,P , C2,P , α1,P , α2,P <∞ such that for all θ, θ̃ ∈ Θ, ‖Pθ(x)fX(x)− Pθ̃(x)fX(x)‖2 ≤
C1,P‖θ − θ̃‖

α1,P

2 and ‖
∫
R{Pθ(x)fX(x)− Pθ̃(x)fX(x)} dx‖2 ≤ C2,P‖θ − θ̃‖

α2,P

2 .

(P5) π is uniformly continuous and continuously differentiable such that ‖π′‖L∞ <∞ and

0 < infx∈R π(x) ≤ supx∈R π(x) < 1.

(P6) g is uniformly continuous and continuously differentiable such that ‖g′‖L∞ <∞ and

0 < infx∈R g(x) ≤ supx∈R g(x) < 1.

(P7) L is a symmetric, bounded and continuous probability density function such that∫
R |x|L(x) dx <∞.

(P8) h→ 0 and nh→∞ as n→∞.

(P9) For F = fXπ and F = gfXπ, we have
∫
R |F

′(x)| dx < ∞ and, for all x ∈ R and all

cx ∈ [−1, 1], we have
∫
R

√
F (x− cx) dx <∞.

(P10) There exists a constant cp > c0 > 0 such that min(p0, p1) > cp, where c0 is defined at

page 8.

(P11) For j = 1, . . . , J , E
[
∇θ log{fj(θ0)}∇θ log{fj(θ0)}>

]
is nonsingular.

The next theorem establishes asymptotic properties of θ̂n. Its proof is given in Ap-

pendix F of the supplemental file.

Theorem 2. Let `0(θ) = E{`(θ)}, where `(θ) is defined at page 19. Under Assump-

tions (A9) and P, if θ0 uniquely maximises `0(θ) subject to θ ∈ Θ ⊂ Rdp, then
√
JΣ

1/2
n (θ̂n−

θ0)
D→ N(0, Idp) as n→∞, where Σn = J−1

∑J
j=1 E[∇θ log{fj(θ0)}∇θ log{fj(θ0)}>], with

fj(θ) = fθ(Y
∗
j ,Xj,obs,∆j) for j = 1, . . . , J , and where Idp is the identity matrix of dimension

dp.
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Theorem 2 establishes asymptotic normality of our estimator and thus can be used to

construct confidence intervals for the components (θ0)i of θ0, for i = 1, . . . , dp. Since, in

practice, the covariance matrix Σn is unknown, it needs to be estimated, for example by

Σ̂n = ∇θθ ̂̀n(θ̂) , (5.9)

where ∇θθ is defined above Assumption P and ̂̀n is defined at (5.8). Using Lemma F.1,

(F.29) and (F.30) in Appendix F, one can check that
√
JΣ̂

1/2
n (θ̂n − θ0)

D→ N(0, Idp) as

n→∞. Therefore, we can compute an asymptotic 1− α confidence interval for (θ0)i, for

i = 1, . . . , dp, by taking

(θ̂n)i ± zα/2J−1/2

√
(Σ̂−1

n )ii . (5.10)

Using similar arguments, we can make simultaneous inference on dq < dp components

of θ0, say (θ0)idq with idq a set of indices in {1, . . . , dp}. We can obtain a simultaneous

asymptotic 1− α confidence region for (θ0)idq by taking the set of all θdq ∈ Rdq satisfying

J{(θ̂n)idq − θdq}
>(Σ̂n)idq{(θ̂n)idq − θdq} ≤ χ2

dq(1− α) , (5.11)

where (Σ̂n)idq denotes the submatrix of Σ̂n taking the rows and columns corresponding to

the index set idq . Another possibility, which is easier to compute, is to use a confidence box∏
i∈idp

{
(θ̂n)i± zα/(2dq)J−1/2

√
(Σ̂−1

n )ii
}
, but this generally provides conservative confidence

intervals (see e.g. Galambos and Simonelli, 1996).

5.3 Multivariate techniques

Our nonparametric procedures can be extended to the case where X is multivariate. Let

X> = (W>,V >) ∈ Rκ, κ > 1, denote the vector of covariates, where W ∈ Rκ1 , κ1 ≥ 0,

denotes the covariates that are always fully observed, V ∈ Rκ2 , κ2 > 1, denotes the

covariates that are subject to missingness and κ1 + κ2 = κ. The case where κ2 = 0 is the
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standard multivariate group testing problem with no missing data (Delaigle and Meister,

2011 and Delaigle et al., 2014). One way to generalise the assumption (2.2) on the missing

mechanism to the multivariate case is to assume that the probability that X is observed

depends on the response variable Y and all the fully observed covariates (e.g. Robins et al.,

1994, Chen, 2004, Efromovich, 2011, Liang et al., 2011 and Wei et al., 2012), that is, if we

let ∆ = 1{V is observed},

P(∆ = r|X, Y ) = P(∆ = r|W , Y ) , for r = 0, 1 . (5.12)

We show how to extend our nonparametric methodology to this setting.

Under (5.12), using arguments similar to those used to derive (3.4), it can be proved

that, for i = 1, . . . , nj, j = 1, . . . , J , we have

{1− p(x)}P(∆i,j = 1|Xi,j = x, Z∗j = 1) = g(x)π(x) , (5.13)

where x> = (w>,v>) ∈ Rκ, g(x) = E(q
1−nj
0 Z∗j |Xi,j = x,∆i,j = 1) and

π(x) = P(∆i,j = 1|Xi,j = x) = P0(w){1− p(x)}+ P1(w)p(x) , (5.14)

with P0(w) = P(∆i,j = 1|Wi,j = w, Yi,j = 0) and P1(w) = P(∆i,j = 1|Wi,j = w, Yi,j = 1).

Now, using (5.12) and arguments similar to those used in Appendix A.2, we have

P(∆i,j = 1|Xi,j = x, Z∗j = 1) = P(∆i,j = 1|Wi,j = w, Z∗j = 1) = P0(w) . (5.15)

Combining (5.13), (5.14) and (5.15) and assuming that P0(w) > 0 and P1(w) > 0, we get

p(x) =
{

1− g(x)
}/[
{P1(w)/P0(w)− 1}g(x) + 1

]
, (5.16)

and to estimate p nonparametrically, we need to estimate g, P1 and P0 nonparametrically.

When κ1 = 0, W is empty and P0(w) = p0 and P1(w) = p1, where p0 and p1 are

defined at page 8 and can be estimated using the methods described there. When κ1 > 0,
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things are more involved than in the univariate case because P0 and P1 depend also on W .

Now, P0 depends only on observed variables, but P1 depends on Yi,j which is not available.

However, using a decomposition similar to the one we used in Appendix A.2 for p1, we can

express P1 in a form that involves quantities that depend only on the observed data:

P1(w) =
{

Π(w)−Q0(w)P0(w)
}/{

1−Q0(w)
}
, (5.17)

where Π(w) = E(∆i,j|Wi,j = w) and Q0(w) = E(q
1−nj
0 Z∗j |Wi,j = w).

It follows from (5.16) and (5.17) that to estimate p we need to estimate g, P0,Π and

Q0. The latter three are standard regression curves which can be estimated by standard

nonparametric multivariate regression techniques, such as tensor product splines (De Boor,

2001 and Ruppert et al., 2003), local polynomial estimators (Fan and Gijbels, 1996), or

a dimension reduced version of them (Fan and Gijbels, 1996). We can estimate P0 by

applying such techniques to the pairs (Wi,j,∆i,j), where i = 1, . . . , nj with j = 1, . . . , J

such that Z∗j = 1. For Q0 and Π, respectively, we apply those techniques to, respectively,

the pairs (Wi,j, q
1−nj
0 Z∗j ) and (Wi,j,∆i,j), for i = 1, . . . , nj, j = 1, . . . , J . Below we use

P̂0, Π̂ and Q̂0 to denote the resulting estimators of P0,Π and Q0.

It remains to see how we can estimate g. A first approach is to use a fully non-

parametric estimator, for example a cubic tensor-product spline estimator, as follows.

Recall the definition of B-splines in Appendix E.1 and let ⊗ denote the usual tensor

product. Using notations similar to those under (3.14), for ` = 1, . . . , κ, let NK`(x`)

be the vector of cubic B-splines and K` knots for the `th component of X, and let

NK` =
(
NK`(X1,1,`), . . . ,NK`(XnJ ,J,`)

)>
. Our univariate spline estimator of g at (3.14)

can be extended to the following cubic tensor-product spline estimator of g(x):

ĝ(x) = φ(q̂0)B>(x){φ(q̂0)B>Φ(q̂0)∆B + λD}−1B>Φ(q̂0)∆Q̂Z∗ , (5.18)

where B(x) = NK1(x1) ⊗ · · · ⊗ NKκ(xκ), B =
(
B(X1,1), . . . ,B(XnJ ,J)

)>
and D =
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∑κ
`,k=1

∫
A

{
∂2B(x)/(∂x`∂xk)

}{
∂2B(x)/(∂x`∂xk)

}>
dx , with A ⊂ Rκ the range where we

want to estimate p, and where φ, q̂0, Φ, ∆, Q̂ and Z∗ are defined in section 3.2. See

Appendix A.8 for how to compute the φj’s needed for φ and Φ in this case.

When κ > 3, estimating g fully nonparametrically as above may not be a good choice

because nonparametric estimators suffer from the so-called curse of dimensionality (their

convergence rates degrade fast as dimension increases). Instead it is common to use meth-

ods that combine parametric and nonparametric components. A popular approach to this

is the partially linear model, which can handle discrete and continuous covariates simulta-

neously. See Delaigle et al. (2014) in the group testing case without missing data.

In the partially linear model, X is decomposed as X> = (T>,U>), where the contri-

bution from T ∈ Rκ3 is modelled nonparametrically and that from U ∈ Rκ−κ3 is modelled

parametrically. For example, a partially linear model on g assumes that, for i = 1, . . . , nj

and j = 1, . . . , J , g(Xi,j) = m(Ti,j) +U>i,jβ, where m is an unknown smooth function and

β ∈ Rκ−κ3 is a vector of unknown parameters. In the case where some of the covariates are

discrete and others are continuous, the discrete covariates typically contribute only to the

linear part; see e.g. Delaigle et al. (2014). Moreover, to avoid the curse of dimensionality,

we typically choose T so that κ3 ≤ 3.

Using the tensor product B-spline technique described above to estimate m, and taking

an approach similar to the one at (3.13), we can estimate m and β by

(m̂, β̂) = argmin
s∈S,β∈Rκ−κ3

[ J∑
j=1

nj∑
i=1

{q̂1−nj
0 Z∗j − s(Ti,j)−U>i,jβ}2∆i,j + λ

∫
AT

κ3∑
`,k=1

{
∂2s(t)

∂t`∂tk

}2

dt

]
,

where S is the κ3-dimensional cubic tensor-product spline space and AT ⊂ Rκ3 denotes

the range of t corresponding to the range of x> = (t>,u>) ∈ Rκ where we want to

estimate p(x). See Holland (2017) for tensor product spline estimators in the partially

linear model in the standard i.i.d. case without grouped nor missing data. It follows from
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standard calculations that β̂ = (Ũ>Ũ)−1Ũ>R̃ and m̂(t) = B>(t)C(R − U β̂), where

U = (U1,1, . . . ,UnJ ,J)>, R = (q̂1−n1
0 Z∗1

×n1· · ·, · · · , q̂1−nJ
0 Z∗J

×nJ· · · )>, Ũ = U − BCU and

R̃ = R − BCR, and where C = φ(q̂0){φ(q̂0)B>Φ(q̂0)∆B + λD}−1B>Φ(q̂0)∆, and B,

B, D are as above, but with X and x replaced by T and t. Finally the partially linear

estimator of g(x) is ĝ(x) = m̂(t) + u>β̂.

Let ĝ denote the fully nonparametric or the partially linear estimator of g derived above.

Using (5.16), we deduce that, in the multivariate case, we can estimate p(x) by

p̂(x) =

{{
1− ĝ(x)

}/{
(p̂1/p̂0 − 1)ĝ(x) + 1

}
if κ1 = 0 ,{

1− ĝ(x)
}/[
{P̂1(w)/P̂0(w)− 1}ĝ(x) + 1

]
if κ1 > 0 ,

(5.19)

where p̂0 and p̂1 are defined at page 8 and P̂1(w) =
{

Π̂(w)− Q̂0(w)P̂0(w)
}/{

1− Q̂0(w)
}

.

6 Numerical properties

6.1 Choosing K, λ and h by cross-validation

We suggest choosing the number of knots K and the smoothing parameter λ of our uni-

variate spline estimator by cross-validation. Specifically, motivated by (3.3), we choose K

and λ as the values which minimise the following criterion w.r.t. K and λ:

CV (K,λ) =
J∑
j=1

nj∑
i=1

∆i,j{q̂
1−nj
0 Z∗j − ĝ(−j)

s (Xi,j, K, λ)}2
1[ã,b̃](Xi,j) , (6.1)

where ã and b̃ are empirical quantiles of the Xi,j’s, and ĝ
(−j)
s denotes the spline estimator

obtained by minimising (3.13), but without using the observations from group j. Likewise,

to choose the bandwidth h of the local polynomial estimator, we take h that minimises

CV (h) =
J∑
j=1

nj∑
i=1

∆i,j

{
q̂

1−nj
0 Z∗j − ĝ

(−j)
LP (Xi,j)

}2
1[ã,b̃](Xi,j) ,
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where ĝ
(−j)
LP denotes the local polynomial estimator at (5.2) computed without using the

observations from group j. For both methods, in our simulations we took ã and b̃ to be

the 0.1 and 0.9 empirical quantiles.

6.2 Simulation results

We applied our new univariate estimators to data (∆i,j, Xi,j, Y
∗
j ), where i = 1, . . . , nj and

j = 1, . . . , J , generated according the model described in section 2, where we considered

three settings: (i) p(x) = exp(−4+2x)/{8+8 exp(−4+2x)} and X ∼ N(2, 1.52); (ii) p(x) =

min{1,max(0, 0.03−0.05x+0.04x2)}, X = 4−Z/4 and Z ∼ χ2(8); (iii) p(x) = {sin(πx/2)+

1.2}/[20 + 40x2{sign(x) + 1}] and X ∼ N(0, 1.52), with two missing mechanisms: (1)

P(∆i,j = 1|Yi,j = 0) = 0.7 and P(∆i,j = 1|Yi,j = 1) = 0.9; or (2) P(∆i,j = 1|Yi,j =

0) = 0.4 and P(∆i,j = 1|Yi,j = 1) = 0.6. In the parametric case, we used the following

parametric forms (a), (b) and (c) for p, for models (i), (ii) and (iii) respectively: (a)

pθ(x) = exp(θ1 + θ2x)/[θ3{1 + exp(θ1 + θ2x)}]; (b) pθ(x) = min{1,max(0, θ1 + θ2x+ θ3x
2)};

(c) pθ(x) = {sin(πx/2) + θ1}/[θ2 + θ3x
2{sign(x) + 1}].

We generated samples of size n = 2000 and 5000, and pooled the data into J groups

of equal sizes nj equal to 4 or 8. Following section 4.2, in that case we took all ϕj’s equal

to 1 but we also did simulations for unequal group sizes; see our results in Appendix B. For

each combination of n, nj and model setting, we generated 200 samples. For each sample,

we estimated p using each of the penalised spline estimator p̂s from section 3.2, the local

linear estimator p̂LL, that is p̂LP with ` = 1 from section 5.1 and the parametric estimator

pθ̂ from section 5.2. To compute p̂0 and p̂1 used by our procedures (see section 3.1), we

need to choose the small constant c0 used to ensure that p̂0 and p̂1 are bounded away from

zero. While this constant is required in our theoretical development, in practice it is largely

unnecessary because, as p0 and p1 are usually far away from zero, p̂0 and p̂1 are almost
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always positive even if c0 = 0. Therefore, we can take c0 equal to any small constant and

we took c0 = 0.001.

To highlight the importance of addressing missingness in the right way, we computed

the naive complete-case spline estimator that does not correct for the bias introduced by

the missing data, i.e. p̂naive,s = 1 − ĝs where ĝs is defined at (3.12). Finally, to illustrate

the loss incurred by the missing data, before deleting some Xi,j’s, we also computed two

estimators from the full data (Xi,j, Y
∗
j ), where i = 1, . . . , nj and j = 1, . . . , J : the local

linear estimator p̂oracle,LL of Delaigle and Meister (2011) and the spline estimator p̂oracle,s

which corresponds to (3.15) with p̂0 = p̂1 ≡ 1 and all ∆i,j’s equal to 1 (we call them oracle

since they require the full data which are not available in our missing data context).

Throughout, for all methods involving a kernel function, we took it equal to the standard

normal density. We selected the smoothing parameters of our new nonparametric methods

as in section 6.1, and for the parametric estimator, we selected the bandwidth in (4.7) by

the method of Sheather and Jones (1991). We chose the bandwidth h for p̂oracle,LL using

the plug-in method of Delaigle and Meister (2011).

To summarise, we applied six methods: our three new consistent estimators based on

the incomplete data, a naive inconsistent estimator computed from the incomplete data,

and two consistent estimators computed from the complete data before some Xi,j’s were

removed. For each method, we computed 200 estimators, each corresponding to one of the

200 samples. We measured the quality of each estimator p̂ of p by computing the integrated

squared error ISE =
∫ b
a
{p̂(x)− p(x)}2 dx, where a and b were, respectively, the 5th and the

95th percentile of the range of X.

Table 1 presents, for each estimator and for models (i) to (iii) and missing mechanism

(1), the mean and standard deviation of the 200 values of ISE obtained from the 200 sim-

ulated samples. We see that the behaviour of our nonparametric estimators p̂LL and p̂s
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Table 1: 104×Mean (Standard deviation) of 200 ISE values for six estimators of p, obtained
from 200 samples simulated from models (i) to (iii) and missing mechanism (1), when the
group sizes are equal to nj = 4 or nj = 8 and when n = 2000 or 5000.

nj = 4
Model n pθ̂ p̂LL p̂s p̂naive,s p̂oracle,LL p̂oracle,s

(i)
2 · 103 9.42(6.86) 18.62(19.24) 12.71(11.44) 36.85(24.61) 13.07(11.29) 11.41(10.39)
5 · 103 5.91(4.64) 9.61(7.59) 6.27(5.52) 26.46(15.87) 7.34(6.23) 6..52(5.94)

(ii)
2 · 103 10.33(9.65) 25.87(22.69) 16.78(16.12) 53.72(38.24) 19.73(14.17) 14.28(12.48)
5 · 103 5.62(4.51) 11.32(8.78) 7.26(6.75) 37.45(29.41) 9.60(6.57) 7.13(5.60)

(iii)
2 · 103 1.95(1.54) 17.76(11.42) 16.60(8.95) 24.82(13.65) 14.27(7.31) 15.93(8.01)
5 · 103 1.19(0.90) 7.93(4.93) 8.23(4.75) 14.80(8.41) 8.99(3.44) 8.49(4.69)

nj = 8
Model n pθ̂ p̂LL p̂s p̂naive,s p̂oracle,LL p̂oracle,s
(i) 2 · 103 14.27(11.63) 29.91(32.01) 24.39(23.67) 54.01(47.28) 29.27(27.37) 25.09(26.72)

5 · 103 10.24(7.19) 16.76(18.04) 11.14(9.92) 35.24(23.53) 13.62(11.28) 12.23(12.15)
(ii) 2 · 103 16.12(14.58) 53.51(52.69) 33.52(36.77) 80.21(64.00) 53.35(47.37) 34.13(38.19)

5 · 103 11.58(8.58) 30.16(24.19) 17.74(16.76) 51.18(32.06) 23.82(17.23) 17.19(14.34)
(iii) 2 · 103 2.23(1.73) 27.33(20.67) 24.75(14.61) 35.57(22.51) 21.80(14.74) 24.45(12.65)

5 · 103 1.62(1.02) 14.38(7.93) 14.32(7.17) 22.96(12.39) 12.52(6.28) 14.39(7.20)

computed from the grouped and incomplete data is reasonably close to that of the esti-

mators p̂oracle,LL and p̂oracle,s computed from the grouped but full data. This illustrates

the results from Theorem 1, which imply that having missing Xi,j’s at random does not

affect the convergence rates of nonparametric estimators. As expected, our new estimators

worked much better than the non consistent one, p̂naive,s. Confirming the theory, the perfor-

mance of our consistent estimators improved as sample size increased and degraded when

the group size increased. Overall the spline estimator worked better than the local linear

estimator. Finally, also unsurprisingly, our parametric estimator pθ̂ worked significantly

better than the nonparametric ones. However, in real data settings, it can only be applied

when we know the correct parametric form for p, which is not always possible.

Of course the more data are missing, the worse all estimators perform. This is illustrated

in Table B.2 in Appendix B, where we compare the results of our three estimators and
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Figure 1: True curve (—) and the 1st (- - -), 2nd (· · · ) and 3rd (− ·−·) quartile curves for
p̂LL (left), p̂s (center) and pθ̂ (right), obtained from 200 samples coming from model (iii)
and missing mechanism (1) when n = 2000 (row 1) and n = 5000 (row 2), with nj = 4.

the naive estimator under missing mechanisms (1) and (2). However, the estimator that

degrades the most is the non consistent naive estimator since its bias increases with the

missing rate.

Next we illustrate our estimators graphically by showing what we call quartile estimated

curves. For a given estimator and a given setting, these are the three estimated curves

corresponding to the three samples that gave the first, second and third quartiles of the

200 computed values of the ISE. In Figure 1 we illustrate the effect of increasing n by

depicting the quartile curves obtained for model (iii) and missing mechanism (1) when

nj = 4 with n = 2000 and n = 5000. The quartiles curves for model (ii) with sample
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Figure 2: True curve (—) and the 1st (- - -), 2nd (· · · ) and 3rd (− ·−·) quartile curves for
p̂LL (left), p̂s (center) and pθ̂ (right), obtained from 200 samples coming from model (ii)
when n = 5000 and nj = 4, under missing mechanism (1) (row 1) or missing mechanism
(2) (row 2).

size n = 5000 and group size nj = 4 and nj = 8 displayed in Figure 2 illustrate the

deterioration of all estimators when the missing rate increases. Finally, Figure 3 illustrates

the deterioration of our nonparametric estimators when the group sizes increase; there we

present the quartile curves obtained, in model (i), for p̂naive,s, p̂LL and p̂s when n = 5000,

nj = 4 and nj = 8. We see that as n is not too small, our nonparametric estimators can

work particularly well and significantly improve the naive estimator p̂naive,s.
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Figure 3: True curve (—) and the 1st (- - -), 2nd (· · · ) and 3rd (− ·−·) quartile curves for
p̂naive,s (left), p̂LL (center) and p̂s (right), obtained from 200 samples coming from model (i)
and missing mechanism (1) when n = 5000, nj = 4 (row 1) and nj = 8 (row 2).

6.3 Illustration with real data

Since group testing data do not usually come naturally grouped (pooling the data is often

a choice driven by time and cost saving issues), typically the goal of real analyses in the

group testing literature is to illustrate how new procedures designed for group testing data

work when real, non grouped data, are pooled artificially, and compare their performance

with that of standard estimators applied to individual data; in addition to references in the

introduction, see Delaigle and Meister (2011), Zhang et al. (2013), Wang et al. (2014) and

Delaigle and Zhou (2015). The idea of those analyses is to demonstrate that pooling can
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produce reasonable results, which could convince more labs worldwide to use this technique.

In this spirit, we applied our estimators to real data coming from Demographics and Health

Survey (DHS) available from https://dhsprogram.com/data. This very large survey was

carried out in over 90 countries. It collected many variables, among which HIV data. To

illustrate our method, we use a subset of the data, namely demographics and HIV data

collected in Rwanda between 2014 and 2015.

In this example, we take Y to be the indicator of HIV infection, and X = log(Z +

10) where Z is the age at first sexual intercourse. As is often the case for real data

illustrations from the group testing literature, in this example the individual observations

Y are available, and we group the data artificially to see the effect that grouping has on

estimators. In this dataset, only X is subject to missingness but some of the individuals

had not had sex when the survey was conducted, and since such cases are not of interest

here, we discarded those individuals, which leaves us with a sample of size n = 4979.

In this example, 57.9% of the individuals whose Y = 1 reported their X values, while

only 39.2% of those with Y = 0 reported it, which suggests that the missingness of X does

depend on the value of Y . Moreover, the missing rate is high, and the effective sample size

is much smaller than 4979.

We randomly pooled the data in groups of size nj = 4 and computed our local linear

estimator p̂LL, our penalised spline estimator p̂s and our parametric estimator pθ̂ from

the grouped data, where, for the parametric model, we took the logistic curve pθ(x) =

exp(θ1 + θ2x)/{1 + exp(θ1 + θ2x)}, which is often employed in prevalence studies. Finally

we also computed, from the grouped data, the naive spline, local linear and parametric

estimators, p̂naive,LL, p̂naive,s and pnaive,θ̂ which use the complete cases without any correction

for missingness. We repeated this process 200 times, that is, we grouped the data randomly

in groups of size nj = 4 in 200 different random ways, obtaining in this way 200 samples,
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Figure 4: DHS study: p̂oracle (−−), 2nd quartile curve for p̂naive (—), and 1st (- - -), 2nd
(· · · ) and 3rd (− · −·) quartile curves for p̂new, when using a local linear estimator (left), a
spline estimator (center) and a parametric estimator (right).

and thus, for each method, 200 estimated curves.

Unlike in the simulation section, we cannot compare our estimators with the true curve

p since we do not know it. However we have access to non grouped data, and from there

we can compute estimators of p that are close to the true curve: p̂oracle,LL, p̂oracle,s and

poracle,θ̂, which correspond to our local linear estimator p̂LL, our penalised spline estimator

p̂s and our parametric estimator pθ̂, computed with the ungrouped data with nj ≡ 1.

When assessing the quality of estimators, we treat those oracle curves as the true curve p.

Specifically, for each method (local linear, spline or parametric, with naive and consistent

versions), denoted here generically by p̂ for the estimator computed from grouped data,

and p̂oracle for the estimator computed from non grouped data which plays the role of the

truth, we calculated the 200 corresponding integrated squared differences ISD =
∫ b
a
{p̂(x)−

p̂oracle(x)}2 dx, where a = 3.136 and b = 3.584, which are the 5th and 95th percentile of the

range of X, respectively and correspond to age 13 to 26.

In Figure 4, for the three estimation techniques, we depict the oracle estimator, our

consistent estimator and the the naive estimator computed from the grouped and incom-

plete data, denoted generically by p̂oracle, p̂new and p̂naive, respectively, in the caption. For
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each version of p̂new, we show the three estimators that represent the first, second and third

quartiles of the 200 ISDs. For p̂naive we show only the second quartile curve.

As one could have expected, the conditional prevalence of HIV is a decreasing function

of age at first sexual intercourse, and this trend is captured by all estimators. Compared

to our consistent methods, the naive estimators tended to largely overestimate the preva-

lence of HIV because, in this example, the individuals without HIV have a higher missing

probability. Thus, by deleting them without any adjustment, the ratio of HIV infection for

each X value raises artificially.
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