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SUMMARY

Group testing methods are used widely to assess the presence of a contaminant, based on mea-
surements of the concentration of a biomarker, for example to test the presence of a disease in
pooled blood samples. The test would be perfect if it produced a positive result whenever the con- 10

taminant was present, and a negative result otherwise. However, in practice the test is always at
least somewhat imperfect, for example because it is sensitive to the proportion of contaminated
items in the group, rather than to the sheer existence of one or more contaminated items. We
develop a nonparametric method for accommodating this dilution effect. Our approach allows
us to estimate, under minimal assumptions, the probability m(x) that an item is contaminated, 15

conditional on the value x of an explanatory variable, and to estimate the probability, q, that an
individual chosen at random is disease free, and the specificity Sp, and the sensitivity Se, of the
test. These are all ill-posed problems, where poor convergence rates are usually encountered.
However, despite these pessimistic expectations, our estimators of q, Sp and Se are root-N con-
sistent, where N denotes the total number of individuals in all the groups, and our estimator of 20

m(x) converges at the rate it would enjoy if q, Sp and Se were known.

Some key words: Bandwidth choice; biomarker; blood testing; count data; kernel methods; local polynomial methods;
nonparametric regression; sensitivity; specificity.

1. INTRODUCTION

We consider studies where the interest is to model the relation m(x) = pr(Y = 1 |X = x) 25

between a binary random variable Y = 0 or 1 and an explanatory variable X . For example,
Y may represent the health status of a patient, the presence or absence of a toxic or polluting
substance in a water or milk sample, or the transgenic status of a plant; and X may represent
age, cholesterol level, or the location of a river or a field.

For reasons such as time and cost restrictions and technical complexity, it is not always possi- 30

ble to observe directly the status of each individual or item in the study. Instead, the individuals
are pooled randomly into J groups of respective sizes ν1, . . . , νJ , and we can observe only
independent group testing data (Xij , Y

∗
j ) (j = 1, . . . J ; i = 1, . . . , νj), where Y ∗

j denotes the
observed status of the jth group and Xij is an explanatory variable for the ith individual in the
jth group. See for example Dorfman (1943), Gastwirth and Hammick (1989), Chen and Swal- 35

low (1990) and Farrington (1992). For each group, the status Y ∗
j is usually obtained through a

test which is often imperfect, and which produces errors when Y ∗
j is not equal to the true status

of the jth group.
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Characteristics of the problem that are of practical interest include the curve m, and q, Sp
and Se introduced in the abstract. Methods for estimating m have been suggested by Vanstee-40

landt et al. (2000), Xie (2001), Chen et al. (2009), Delaigle and Meister (2011), Delaigle and
Hall (2012) and Li and Xie (2012). For simplicity, those authors assumed that the errors of the
tests from which one obtains the Y ∗

j s did not depend on the νjs nor the Xijs, but as pointed by
Wein and Zenios (1996) and Zenios and Wein (1998), they often depend on the group sizes, and
ignoring this leads to biased estimators. Taking these issues into account, McMahan et al. (2013)45

suggested parametric estimators. We construct nonparametric estimators, focusing on the case
where the Xijs are univariate. In the multivariate case, our techniques could be extended, for
example, by adapting to our setting semiparametric approaches such as the single index and
partially linear models developed by Delaigle et al. (2014).

2. ESTIMATING m WHEN SPECIFICITY AND SENSITIVITY OF THE TEST ARE KNOWN50

2·1. Model and data
Our model and main data are as in McMahan et al. (2013). We observe a sample of independent

vectors (X1j , . . . , Xνjj , Y
∗
j ) (j = 1, . . . , J), where the Xijs are independent and Y ∗

j is a binary
0/1 variable representing the result of a test carried on the jth group. The test is imperfect,
and Y ∗

j may differ from the true, unobserved, disease status, Ỹ ∗
j , of the jth group, where Ỹ ∗

j =55

maxi=1,...,νj Ỹij , with Ỹij denoting the unobserved true status, 0 or 1, of the ith individual from
the jth group, and with the (Xij , Ỹij)s independent and identically distributed. Our goal is to
estimate

m(x) = pr
(
Ỹij = 1

∣∣Xij = x
)
. (1)

As in Wein and Zenios (1996), Zenios and Wein (1998) and McMahan et al. (2013), Y ∗
j is

obtained through measurements of a continuous quantity B, for example, in the case of disease60

testing, a biomarker concentration, or, in more general settings, the continuous level or concentra-
tion of a chemical substance. Let Bij denote the unobserved concentration or level of a chemical
substance for the ith individual from the jth group. In the biomarker example, the concentration
in the jth pool is usually taken to be the average concentration B̄j = ν−1

j

∑νj
i=1 Bij . We shall

follow this convention here, although other models could be adopted, allowing for example the65

average biomarker concentration to take into account potential imperfect mixing or unequal vol-
umes in the samples. In practice, B̄j is measured through a complex process that typically incurs
measurement errors. For example, instead of the biomarker concentration B̄j we may observe
the optical density reading Wj ; see Wein and Zenios (1996) and Zenios and Wein (1998). Fol-
lowing McMahan et al.’s (2013) Section 4, we assume that the biomarker is measured with error,70

that is, we observe independent variables W1, . . . ,WJ satisfying

Wj = B̄j + Uj (j = 1, . . . , J ), (2)

where B̄j and Uj are independent and Uj ∼ fU , and that the result of the jth test is given by

Y ∗
j = 1

(
Wj > t

(j)
0

)
, (3)

with t
(j)
0 a cutoff point. As in McMahan et al. (2013) we shall treat t(j)0 as fixed and known. In

practice it can be chosen so as to minimise the variance of an estimator of m; see Section 5·3.
Other error models are possible, for example in the case where there are errors induced by the75

limit of detection of the measurement device.
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We adopt McMahan et al.’s (2013) assumption that the error density fU is known, although
the unknown error case could also be treated, using for example methods analogous to those
employed in Delaigle et al. (2008) or Delaigle and Hall (2015). Throughout we assume that

for all t , |ϕU (t)| ≠ 0, where ϕU (t) = E(eitU ), (4)

which is satisfied by many common distributions. As implicitly assumed by McMahan et 80

al. (2013), we assume throughout that Uj is independent of Ỹ ∗
j , and that, for all x,

pr

(
Wj ≤ x

∣∣∣∣ νj∑
i=1

Ỹij , X1j , . . . , Xνjj

)
= pr

(
Wj ≤ x

∣∣∣∣ νj∑
i=1

Ỹij

)
.

We let N =
∑J

j=1 νj denote the total number of individuals in the sample, we let

Sp(j) = pr
(
Wj ≤ t

(j)
0

∣∣ Ỹ ∗
j = 0

)
(5)

denote the specificity of a the test performed on a group of size νj , and we denote the sensitivity
of the test performed on a group of size νj , in which exactly k individuals are positive, by

Se(j,k) = pr

(
Wj > t

(j)
0

∣∣∣∣ νj∑
i=1

Ỹij = k

)
(k = 1, . . . , νj ). (6)

Remark 1. The estimator of m we introduce in Section 2·2 can be employed in the setting 85

where the biomarker is measured without error, i.e., when Uj = 0. As we shall see, it is easy to
adapt to this case the estimators of specificity and sensitivity developed in Sections 3·2 and 3·3.

2·2. Oracle local polynomial estimator of m for imperfectly observed grouped data
If the (Xij , Ỹij)s were observed, we could estimate m(x) at (1) nonparametrically

by a standard local polynomial estimator of order p. Let K be a function called ker- 90

nel, h0 > 0 a parameter called bandwidth, and Kh0 = h−1
0 K(·/h0). In the Supplementary

Material, we recall the construction of this estimator, which can be written as m̂(x) =
eT1 S

−1
N TN , where eT1 = (1, 0, . . . , 0) is a (p+ 1)-vector, SN is a (p+ 1)× (p+ 1) ma-

trix with (k + 1, ℓ+ 1)th element equal to SN,kℓ(x) = N−1 h−k−ℓ
0

∑J
j=1

∑νj
i=1 Kh0(Xij −

x) (Xij − x)k+ℓ, for k, ℓ = 0, . . . , p, and TN = (TN,0, . . . , TN,p)
T is a (p+ 1)-vector, with 95

TN,k(x) = N−1 h−k
0

∑J
j=1

∑νj
i=1 Ỹij Kh0(Xij − x) (Xij − x)k , for k = 0, . . . , p; see Fan and

Gijbels (1996). For example, the local polynomial estimator of order p = 0 is equal to m̂(x) =

N−1
∑

j,i Ỹij Kh0(Xij − x)
/
N−1

∑
j,i Kh0(Xij − x) and its denominator and numerator are

consistent estimators of, respectively, fX(x) and m(x) fX(x).
In our case we can only observe vectors (X1j , . . . , Xνjj ,Wj) (j = 1, . . . , J), where Wj fol- 100

lows the model at (2), and Y ∗
j is obtained from Wj through (3). Since the Ỹijs are not observed,

we cannot compute the standard estimator m̂ derived above. Delaigle and Meister (2011) sug-
gested a modified local polynomial estimator which can be computed from group testing data,
but it cannot be applied here, since they assumed that the error of the test in each group depends
only on the true status of the group. In this section we derive an oracle nonparametric estimator 105

of m, where it is assumed that q = 1− pr
(
Ỹij = 1

)
and the specificities and sensitivities at (5)

and (6) are known. The case where these quantities are unknown will be dealt with in Section 3·5.
To see how to construct a pth order local polynomial estimator in our context, recall the stan-

dard local polynomial estimator of order p = 0 derived above. By analogy, consider the esti-
mator m†(x) = N−1

∑
j,i Y

∗
j Kh0(Xij − x)

/
N−1

∑
j,i Kh0(Xij − x) where the unobserved 110
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Ỹijs are replaced by the Y ∗
j s. As in the standard case, the denominator of m† converges to fX(x).

However, as N → ∞, the numerator converges to the limit of fX(x)N−1
∑

j,i E
(
Y ∗
j

∣∣Xij =

x
)
, which is not equal to fX(x)m(x). Indeed, in the Supplementary Material, we prove that

E
(
Y ∗
j

∣∣Xij = x
)
= pr

(
Y ∗
j = 1

∣∣Xij = x
)
= Aj +m(x)Bj , (7)

with Aj = qνj−1(1− Sp(j)) + Se
(j)
2 , Bj = Se

(j)
1 − Se

(j)
2 − qνj−1(1− Sp(j)), and, recalling (6),

Se
(j)
ℓ =

νj+1−ℓ∑
k=1

Se(j,k)
(

νj − 1

k + ℓ− 2

)
(1− q)k+ℓ−2 qνj−k−ℓ+1 , ℓ = 1, 2 ; (8)

here, for ℓ = 2, the sum over k is interpreted as zero when νj = 1, so that in that case Se(j)2 = 0.115

Therefore m† does not converge to m. On the other hand, letting Z∗
j = Y ∗

j /Bj and D =

N−1
∑

j,i Aj/Bj , we deduce from those calculations that m̃(x) = N−1
∑

j,i Z
∗
j Kh0(Xij −

x)
/
N−1

∑
j,i Kh0(Xij − x)−D converges to m(x). More generally, a pth order local polyno-

mial estimator of m can be defined by

m̃ = eT1 S
−1
N VN −D, (9)

where SN is the matrix defined above and VN = (VN,0, . . . , VN,p)
T, with120

VN,k(x) = N−1 h−k
0

J∑
j=1

νj∑
i=1

Z∗
j Kh0(Xij − x) (Xij − x)k . (10)

3. ESTIMATORS WHEN q, SPECIFICITY AND SENSITIVITY ARE ESTIMATED

3·1. Model and data for the biomarker
In Section 2·2, we derived an estimator of m based on the assumption that q, Sp(j) and Se(j,k)

were known. In Sections 3·2 to 3·4 we shall construct estimators of these quantities from ad-
ditional data, and derive from there a modified estimator of m in Section 3·5. Recall from (5)125

and (6) that Sp(j) and Se(j,k) depend on the unknown distribution of B. Following Wein and
Zenios (1996), Zenios and Wein (1998) and McMahan et al. (2013), the distribution of Bij de-
pends on the status of the individual. Let fB+ and fB− denote the density of Bij given that
Ỹij = 1 and Bij given that Ỹij = 0, respectively, and let fB̄j;k

denote the density of B̄j in the jth
group, given that it contains exactly k ≤ νj positive individuals. As in Wein and Zenios (1996),130

we have

fB̄j;k
(x) = νj f

∗k
B+ ∗ f∗(νj−k)

B− (νj x) ,

where ∗ denotes convolution product, f∗k is the k-fold convolution of f , and we use the conven-
tion that f∗0

B+ ∗ f∗νj
B− = f

∗νj
B− and f

∗νj
B+ ∗ f∗0

B− = f
∗νj
B+ .

As in McMahan et al. (2013), in addition to the main sample in Section 2·1, we observe train-
ing samples of contaminated data W−

1 , . . . ,W−
n− and W+

1 , . . . ,W+
n+

obtained from, respectively,135

negative and positive individuals, where

W−
i = B−

i + U−
i , W+

i = B+
i + U+

i , (11)

with the B−
i s, the U−

i s, the B+
i s and the U+

i s totally independent, B−
i ∼ fB− , B+

i ∼ fB+ ,
U−
i ∼ fU and U+

i ∼ fU . See Wein and Zenios (1996) for an example with training data from
the National HIV Reference Laboratory in Australia.
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The analysis in our paper is based on the assumption that training sample size is of the same 140

order of magnitude as the total number of individuals in the sample. Specifically, n− ≍ N and
n+ ≍ N , where here and below, for any real a and b we use the notation a ≍ b when the ratio
a/b is bounded away from zero and infinity as N diverges. The larger N , the better. There does
not exist a specific value of training sample size such that performance decreases precipitously
for lower values of training sample size, or performance increases dramatically for larger values. 145

3·2. Nonparametric estimator of Sp(j)

Next we show how to estimate Sp(j) nonparametrically from data W−
1 , . . . ,W−

n− from the
model at (11). Since Ỹ ∗

j = 0 implies that there is no true positive in the jth group, then condi-
tional on Ỹ ∗

j = 0, the density of Wj = B̄j + Uj is fU ∗ fB̄j;0
. As in Wein and Zenios (1996),

Zenios and Wein (1998) and McMahan et al. (2013) it follows from (5) that in the jth group, 150

Sp(j) =

∫ t
(j)
0

−∞
fU ∗ fB̄j;0

(x) dx = νj

∫ t
(j)
0

−∞

∫ ∞

−∞
fU (x− y) f

∗νj
B− (νj y) dy dx . (12)

When νj = 1, Sp(j) = pr
(
W− ≤ t

(j)
0 ), which can be estimated at the parametric rate n

−1/2
− by

Ŝp
(j)

= n−1
−

∑n−
i=1 1

(
W−

i ≤ t
(j)
0

)
. Next we consider the more difficult case where νj > 1.

McMahan et al. (2013) proposed a parametric procedure for estimating Sp(j), and in their
numerical section they considered briefly a nonparametric estimator. There, they estimated fB−

by the deconvolution estimator f̂B− of Carroll and Hall (1988) and Stefanski and Carroll (1990) 155

with a second-order kernel and the bootstrap bandwidth of Delaigle and Gijbels (2004), and
approximated Sp(j) from data they generated from f̂B− ; see the Supplementary Material. While
their suggestion is of interest, in the present setting the procedure is rather complex and suffers
from slow convergence rates. For example, if fU is normally distributed, the rates are logarithmic.

These difficulties can be avoided by constructing a simple kernel estimator that converges to 160

Sp(j) at a much faster rate, indeed sometimes reaching the parametric rate n
−1/2
− . To motivate

this estimator, we first recall how to construct a kernel estimator of the density fZ of a random
variable Z using independent and identically distributed data Z1, . . . , Zn ∼ fZ . Let ϕZ denote
the characteristic function of Z. By the Fourier inversion theorem, if |ϕZ | is integrable we can
write fZ(x) = (2π)−1

∫
e−itx ϕZ(t) dt . Let K be a kernel, ϕK(t) =

∫
eitxK(x) dx, h > 0 be 165

a bandwidth and ϕ̂Z denote the empirical characteristic function of Z. The kernel estimator of
fZ(x) is defined by

f̂Z(x) =
1

nh

n∑
j=1

K
(x− Zj

h

)
=

1

2π

∫
e−itx ϕ̂Z(t)ϕK(ht) dt .

Using Fourier inversion, we rewrite Sp(j), at (12), as

Sp(j) =
1

2π

∫ t
(j)
0

−∞

∫ ∞

−∞
e−itx ϕU (t)ϕ

νj
B−(t/νj) dt dx . (13)

Then, parallelling the construction of f̂Z above, noting that ϕνj
B−(t/νj) = ϕ

νj
W−(t/νj)/ϕ

νj
U (t/νj)

where ϕU is known since fU is known, and recalling (4), we suggest estimating Sp(j) by 170

Ŝp(j) =
1

2π

∫ t
(j)
0

−∞

∫ ∞

−∞
e−ity ϕU (t) ϕ̂

νj
W−(t/νj)

{
ϕ
νj
U (t/νj)

}−1
ϕK(ht) dt dy . (14)



6 A. DELAIGLE AND P. HALL

Here, ϕ̂νj
W− denotes the unbiased estimator of ϕνj

W− defined by

ϕ̂
νj
W−(t) =

(
n−
νj

)−1 ∑
ℓ1<...<ℓνj

exp
{
it
(
W−

ℓ1
+ · · ·+W−

ℓνj

)}
,

and the kernel K is chosen so that ϕK(0) = 1 and the integral at (14) is well defined.

Remark 2. An estimator that is simpler to compute in practice, and which produces estimators
Ŝp(j) with the same convergence rates, is obtained by replacing ϕ̂

νj
W− in (14) by the empirical

characteristic function of W− raised to the power νj . We used this estimator in Section 5.

Remark 3. In the simpler error-free case where U ≡ 0, an estimator with the same parametric175

rates as the estimator at (14) can be computed without any smoothing. In that case, W− = B−

and ϕU ≡ 1, and we can take Ŝp(j) =
∑

ℓ1<...<ℓνj
1
{
(B−

ℓ1
+ · · ·+B−

ℓνj
)/νj ≤ t

(j)
0

}/(
n−
νj

)
.

3·3. Nonparametric estimator of Se(j,k)

Next we construct a nonparametric estimator of Se(j,k) from data W−
1 , . . . ,W−

n− and

W+
1 , . . . ,W+

n+
, generated by the model at (11). When νj = 1, Se(j,1) = pr(W+

j > t
(j)
0 ) can be180

estimated at the parametric rate n−1/2
+ by Ŝe

(j,1)
= n−1

+

∑n+

i=1 1
(
W+

i > t
(j)
0

)
. When νj > 1, we

use the ideas employed in Section 3·2. We start by rewriting Se(j,k) at (6) as

Se(j,k) = 1− 1

2π

∫ t
(j)
0

−∞

∫ ∞

−∞
e−ity ϕU (t)ϕ

k
B+(t/νj)ϕ

νj−k

B− (t/νj) dt dy . (15)

Next we note that ϕk
B+(t/νj)ϕ

νj−k

B− (t/νj) = ϕk
W+(t/νj)ϕ

νj−k

W− (t/νj)/ϕ
νj
U (t/νj) , where

ϕ
νj
W±(t) ≡ ϕk

W+(t)ϕ
νj−k

W− (t) can be estimated unbiasedly by

ϕ̂
νj
W±(t) =

1(n+

k

) 1( n−
νj−k

) ∑
ℓ1<...<ℓk , ℓk+1<...<ℓνj

exp
{
it
(
W+

ℓ1
+ · · ·+W+

ℓk
+W−

ℓk+1
+ · · ·+W−

ℓνj

)}
.185

Finally, we define our estimator by

Ŝe(j,k) = 1− 1

2π

∫ t
(j)
0

−∞

∫ ∞

−∞
e−ity ϕ̂

νj
W±(t/νj)ϕK(ht)ϕU (t)

{
ϕ
νj
U (t/νj)

}−1
dt dy .

Remark 4. As in the case of Ŝp(j) a simpler estimator, with the same convergence rates as
Ŝe(j,k), can be computed by replacing ϕ̂

νj
W± by the empirical characteristic function of W− raised

to the power νj − k, multiplied by the empirical characteristic function of W+ raised to the
power k. We used this estimator in Section 5.190

Remark 5. As in Remark 3, when U ≡ 0, noting that W− = B−, W+ = B+ and ϕU ≡ 1,
we can define a simpler estimator which has the same parametric rates as Ŝe(j,k) above, by

Ŝe
(j,k)

=
∑

ℓ1<...<ℓk , ℓk+1<...<ℓνj
1
{
(
∑k

i=1B
+
ℓi
+

∑νj
i=k+1B

−
ℓi
)/νj ≤ t

(j)
0

}/{(n+

k

) ( n−
νj−k

)}
.



7

3·4. Estimating q

In the Supplementary Material we prove that the likelihood of the data Y ∗
1 , . . . , Y

∗
J is 195

L(q) =
J∏

j=1

{ νj∑
k=1

Se(j,k)
(
νj
k

)
(1− q)k qνj−k + qνj

(
1− Sp(j)

)}Y ∗
j

×
{
1−

νj∑
k=1

Se(j,k)
(
νj
k

)
(1− q)k qνj−k − qνj

(
1− Sp(j)

)}1−Y ∗
j

.

We suggest estimating q by q̂ = argmaxq L̂(q), where L̂(q) is the version of L(q) obtained by
replacing Sp(j) and Se(j,k) by the estimators Ŝp(j) and Ŝe(j,k) developed in Sections 3·2 and 3·3.

3·5. Fully data-driven nonparametric estimator of m 200

It remains to modify the oracle estimator m̃ at (9), replacing there all unknown quantities by
estimators. Let D̂ and B̂j denote estimators of D and Bj , obtained by replacing q by q̂ defined in

Section 3·4, and Se
(j)
1 and Se

(j)
2 by Ŝe

(j)

1 and Ŝe
(j)

2 , where the latter are obtained by replacing, in
their definition at (8), q by q̂ and Sp(j) and Se(j,k) by the estimators Ŝp(j) and Ŝe(j,k) defined in
Sections 3·2 and 3·3. Put Ẑ∗

j = Y ∗
j /B̂j . We suggest estimating m(x) by 205

m̂(x) = eT1 S
−1
N V̂N − D̂ , (16)

where SN is as in Section 2·2 and V̂N = (V̂N,0, . . . , V̂N,p)
T, with

V̂N,k(x) = N−1 h−k
0

J∑
j=1

νj∑
i=1

Ẑ∗
j Kh0(Xij − x) (Xij − x)k . (17)

The problems of estimating the variance of m̂(x), and constructing confidence intervals for
that quantity, are more complex than their counterparts for conventional local polynomial esti-
mators; and even there the problems are awkward. The main difficulties centre around choice
of smoothing parameters, which should be different in each of the cases of estimating m̂(x), 210

either itself or its variance, and constructing a confidence interval. For example, the bootstrap
is an attractive approach to estimating variance or computing a confidence interval, but in the
context of nonparametric function estimation the bootstrap fails to estimate bias accurately, with
the result that the accuracy of the variance estimator, or the coverage of the confidence interval,
is compromised seriously. As a result, special methods have to be developed for implementing 215

the bootstrap, and that places the problem beyond the scope of the present paper.

4. THEORETICAL PROPERTIES OF ESTIMATORS

4·1. Theoretical properties of Ŝp(j) and Ŝe(j,k)

We saw in Sections 3·2 and 3·3 that when νj = 1, Sp(j) and 1− Se(j,k) are cumulative distri-
bution functions which can be estimated by empirical cumulative distribution functions. It is well 220

known that these have parametric convergence rates. Here we focus on the case where νj > 1,
where estimating Ŝp(j) and Ŝe(j,k) nonparametrically from the contaminated data W−

i and W+
i

is related to the deconvolution problem. In the standard deconvolution problem, the asymptotic
behaviour of estimators depends on the rate of decay of ϕU in the tails. We make the usual dis-
tinction between two cases. In the first case, which encompasses Laplace distributions and their 225
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convolutions, we assume that there exists M > 0 so that

d0 |t|−β−ℓ ≤ |ϕ(ℓ)
U (t)| ≤ d1 |t|−β−ℓ , |t| > M , ℓ = 0, 1, 2, (18)

for finite constants β > 0 and 0 < d0 ≤ d1. In the second case, which includes normal distribu-
tions, we assume that there exists M > 0 such that

d0 |t|β0+ℓβ−ℓ exp(−|t|β/γ) ≤ |ϕ(ℓ)
U (t)| ≤ d1 |t|β1+ℓβ−ℓ exp(−|t|β/γ), |t| > M , ℓ = 0, 1, 2,

(19)
for finite constants β > 0, 0 < d0 ≤ d1 and β0 ≤ β1.

In deconvolution problems, the faster ϕU decays to zero in the tails, the slower the rates of con-230

vergence of nonparametric estimators; see Carroll and Hall (1988) and Fan (1991). For example,
if ϕU is as at (19) then the mean squared error of estimators converges to zero at logarithmic
rates. The situation is different in our case because, unlike standard problems, the targets Sp(j)

and Se(j,k) also depend on ϕU ; see (13) and (15). As a consequence, if ϕU tends to zero very
fast, then as long as we choose K carefully, the bias of Ŝp(j) and Ŝe(j,k) is particularly small,235

and these estimators do not suffer from the slow deconvolution convergence rates.
We make the following assumptions:

(A1) For ℓ = 0, 1, 2, and for V = B+ and V = B−, we have ∥ϕ(ℓ)
V ∥∞ < ∞; and for

all t, |ϕ(ℓ)
V (t)| ≤ const. |t|−α−ℓ, where 1 < α < ∞ and const. denotes a finite positive

constant;
(A2)

∫
x2 {fB−(x) + fB+(x) + fU (x)} dx < ∞;

(A3) for all t, ϕU (t) ̸= 0;
(A4) K is the sinc kernel, defined through its Fourier transform as ϕK(t) = 1[−1,1](t).

Conditions (A1) and (A2) are rather basic, and condition (A3) is satisfied by common error240

distributions such as the normal. We use the sinc kernel in (A4) to benefit from the fast rates
discussed above. The next theorem states that, no matter whether the errors are as at (18) or as
at (19), the mean squared error, MSE, of our nonparametric estimator Ŝp(j) converges to zero at
the parametric rate. See the Supplementary Material for a proof.

THEOREM 1. Assume that (A1) to (A4) hold. (i) If ϕU satisfies (18) with β ≥ 1 and h ≍245

n
−1/(2β+η)
− , where η ∈ (0, 2 + 2αν], then MSE

(
Ŝp(j)

)
= O

(
n−1
−

)
. (ii) If ϕU satisfies (19) with

β > 1 and h < {(γ/2) lnn−}−1/β , then MSE
(
Ŝp(j)

)
= O

(
n−1
−

)
.

The same arguments as those used to derive Theorem 1 can be employed to prove similar
results for Ŝe(j,k). In this case the convergence rate depends on the relative sizes n− and n+. For
simplicity we assume that n− ≍ n+, which is satisfied in most realistic applications.250

THEOREM 2. Assume that (A1) to (A4) hold and n− ≍ n+. (i) If ϕU satisfies (18) with β ≥ 1

and h ≍ n
−1/(2β+η)
− , where η ∈ (0, 2 + 2αν], then MSE(Ŝe(j,k)) = O(n−1

− ). (ii) If ϕU satisfies
(19) with β > 1, and if h < {(γ/2) lnn−}−1/β , then MSE(Ŝe(j,k)) = O(n−1

− ).

4·2. Properties of the maximum likelihood estimator q̂
In Theorem 3 we derive the convergence rate of the maximum likelihood estimator q̂ defined255

in Section 3·4. As in the case of Theorem 2 this rate depends on the relative sample sizes n−
and n+ of the two biomarker samples, and like there, to make our discussion simpler we as-
sume in Theorem 3 that n− ≍ n+. The next theorem establishes n−1/2

− consistency of q̂. See the
Supplementary Material for a statement of its conditions and for a proof.
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THEOREM 3. Assume that the conditions of Theorems 1 and 2 hold, that supj νj < ∞, and 260

that (E32)–(E33) in the Supplementary Material hold. Let ηn− be any sequence converging to 0
and satisfying n

1/2
− ηn− → ∞ as n− → ∞, and assume that q0, the true value of q, lies in (0, 1).

Then, with probability converging to 1 as n− → ∞, the equation L̂′(q) = 0 has a solution q̂ in
the interval [q0 − ηn− , q0 + ηn− ], and q̂ − q0 = Op(n

−1/2
− ).

4·3. Properties of local polynomial estimator 265

Let µj =
∫
ujK(u) du, S =

(
Si,j

)
i,j=0,...,p

, S̃ =
(
S̃i,j

)
i,j=0,...,p

and S∗ =
(
S∗i,j

)
i,j=0,...,p

,

where Si,j = µi+j , S̃i,j = µi+j+1 and S∗i,j =
∫
ui+jK2(u) du. Finally, put µ =

(µp+1, . . . , µ2p+1)
T and µ̃ = (µp+2, . . . , µ2p+2)

T. We make the following assumptions,
which are standard conditions for local polynomial regression procedures:

(B1) K is real and symmetric, ∥K∥∞ < ∞,
∫
K(u) du = 1,

∫
|u|2p+3|K(u)| du < ∞,∫ (

|u|3p+1 + u4p
)
K2(u) du < ∞;

(B2) h0 → 0 and Nh0 → ∞;
(B3) fX(x) > 0 and fX is twice differentiable and satisfies ∥f (j)

X ∥∞ < ∞ for j = 0, 1, 2;
(B4) m is p+ 3 times differentiable, and ∥m(j)∥∞ < ∞ for j = 0, . . . , p+ 3.

270

As usual with local polynomial regression, instead of studying the bias and variance of m̂(x)
itself, which are not necessarily well defined, in Theorem 4 below, we derive asymptotic expres-
sions for the mean and variance of a random variable ZN (x) which is asymptotically equivalent
to m̂(x)−m(x). Abusing terminology a little, in the sequel we shall refer to the mean and vari- 275

ance of ZN (x) as the bias and the variance of m̂(x), respectively, and we shall write them as
bias{m̂(x)} and var{m̂(x)}. See the Supplementary Material for a proof of the theorem, where
we also prove that m̂(x) enjoys the same rate of convergence as the oracle estimator m̃(x) at (9).

THEOREM 4. Assume the conditions of Theorem 3, that conditions (B1) to (B4) hold, and that
n− ≍ n+ ≍ N . Then, for each x, we have m̂(x)−m(x) = ZN (x) {1 + oP (1)}, where ZN (x) 280

is a random variable with the following properties: if p is odd, E{ZN (x)} = eT1 S
−1 µ {(p+

1)!}−1 m(p+1)(x)hp+1
0 + o(hp+1

0 ); if p is even,

E{ZN (x)} = eT1S
−1µ̃

1

(p+ 2)!

{
m(p+2)(x) + (p+ 2)m(p+1)(x)

f ′
X(x)

fX(x)

}
hp+2
0 + o(hp+2

0 ).

Moreover, var{ZN (x)} = {Nh0fX(x)}−1 eT1 S
−1 S∗S−1 e1

{
CB +m(x)DB −m2(x)

}
{1 +

o(1)} , where CB = N−1
∑J

j=1 (νj Aj/B2
j )−D2 and DB = N−1

∑J
j=1 (νj/Bj)− 2D are to

be interpreted as computed for q = q0. 285

It follows from this theorem that the best convergence rate is obtained by choosing h0 so
that [E{ZN (x)}]2 ≍ var{ZN (x)}. When p is odd, this bandwidth satisfies h0 ≍ N−1/(2p+3),
and with this bandwidth, we have m̂(x)−m(x) = OP (N

−(p+1)/(2p+3)). When p is even, h0 ≍
N−1/(2p+5), and with this bandwidth, we have m̂(x)−m(x) = OP (N

−(p+2)/(2p+5)).
Although these results indicate that increasing the value of p improves the convergence rate 290

of the estimator, in standard local polynomial regression it is well known that, in finite samples,
increasing p tends to make the estimator too variable, and the most commonly used values are
p = 0 and p = 1, with a preference for p = 1; see Fan and Gijbels (1996). This is also the version
of our estimator that we recommend using in practice.
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5. SIMULATIONS AND REAL DATA EXAMPLE295

5·1. Choosing the bandwidths for Ŝp
(j)

and Ŝe
(j,k)

We propose a simulation extrapolation approach for choosing the bandwidths needed to com-

pute Ŝp
(j)

and Ŝe
(j,k)

. Simulation extrapolation bandwidth selectors were introduced by Delaigle
and Hall (2008) in a related context of errors-in-variables regression estimators. See Cook and
Stefanski (1994) for their introduction in the parametric context. We show the details only for300

Ŝp
(j)

, but it is straightforward to adapt our method for choosing a bandwidth for Ŝe
(j,k)

. As indi-
cated by our theory, the estimator is not very sensitive to h, and the same bandwidth can be used

for all k, using for example the bandwidth computed for Ŝe
(j,2)

or Ŝe
(j,3)

.
To understand how simulation extrapolation can be used in our context, write Sp(j) as Sp(j) =∫
fU (t

(j)
0 − u)FB̄j;0

(u) du, where FB̄j;0
is the distribution function of

∑νj
i=1B

−
i /νj . Suppose305

that, instead of estimating Sp(j), our goal was to estimate Sp
(j)
∗ =

∫
fU (t

(j)
0 − u)FW̄j;0

(u) du,
where W̄j;0 has the distribution of

∑νj
i=1W

−
i /νj . Then, since we have a sample of W−

i s, we
could estimate FW̄j;0

(u) and Sp
(j)
∗ by F̂W̄j;0

(u) =
∑

ℓ1<...<ℓνj
1
(∑νj

i=1W
−
ℓi
/νj ≤ u

)
/
(
n−
νj

)
and

S̃p
(j)

∗ =
∫
fU (t

(j)
0 − u) F̂W̄j;0

(u) du =
∑

ℓ1<...<ℓνj
FU

(
t
(j)
0 −

∑νj
i=1W

−
ℓi
/νj

)
/
(
n−
νj

)
.

In practice, to speed up the calculations, we would compute this sum only for a large number,310

M = 104 say, of randomly chosen indices. On the other hand, we could also generate a new
sample W−

∗i = W−
i + U∗i, where U∗i is generated from fU . Using that new sample, we could

estimate Sp
(j)
∗ by Ŝp

(j)

∗ , the version of Ŝp
(j)

obtained by replacing each W−
i by W−

∗i . Clearly,

S̃p
(j)

∗ is a better estimator of Sp
(j)
∗ than is Ŝp

(j)

∗ . Therefore, to choose the bandwidth h∗ for

computing Ŝp
(j)

∗ we could take h∗ = argminh
∣∣Ŝp(j)∗ (h)− S̃p

(j)

∗
∣∣.315

Similarly, if our goal was to estimate Sp
(j)
∗∗ =

∫
fU (t

(j)
0 − u)FW̄∗j;0(u) du, where W̄∗j;0 has

the distribution of
∑νj

i=1W
−
∗i/νj , we could use S̃p

(j)

∗∗ , the version of S̃p
(j)

∗ obtained by replacing
each W−

i by W−
∗i . We could also generate a new sample W−

∗∗i = W−
∗i + U∗∗i, where U∗∗i ∼ fU ,

and compute Ŝp
(j)

∗∗ , the version of Ŝp
(j)

∗ obtained by replacing each W−
∗i by W−

∗∗i. To choose the

bandwidth h∗∗ for Ŝp
(j)

∗∗ we could take h∗∗ = argminh
∣∣Sp(j)∗∗ (h)− S̃p

(j)

∗∗
∣∣. To reduce variability320

we can repeat the process, say R times, and replace
∣∣Ŝp(j)∗ (h)− S̃p

(j)

∗
∣∣ and

∣∣Sp(j)∗∗ (h)− S̃p
(j)

∗∗
∣∣

by the average of these quantities computed from R samples generated as described above. Here
R does not need to be large; for example, we can take R = 10 or R = 5, which is what we used
in our numerical work.

Let h† = argminh
∣∣Ŝp(j)(h)− S̃p

(j)∣∣, where S̃p
(j)

denotes the version of S̃p
(j)

∗ obtained by325

replacing each W−
i by B−

i , which we would compute if we had access to the B−
i s. Clearly,

h† would be a good bandwidth for Ŝp
(j)

, but it cannot be computed since we do not observe
the B−

i s. As in Delaigle and Hall (2008), since W−
∗∗i measures W−

∗i in the same way as W−
∗i

measures W−
i , we can expect that the relationship between Sp(j) and Sp

(j)
∗ is mimicked well by

that between Sp
(j)
∗ and Sp

(j)
∗∗ . Specifically, we can expect that the relationship between h†, and330

h∗ is well approximated by that between h∗ and h∗∗. That is, h†/h∗ ≈ h∗/h∗∗. This motivates

us to choose the bandwidth ĥ for computing Ŝp
(j)

by taking ĥ = (h∗)
2/h∗∗.
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5·2. Plug-in bandwidth for m̂
In this section we suggest a plug-in approach to bandwidth selection for our local linear esti-

mator m̂, based on the ideas used by Ruppert et al. (1995) in the standard local linear estimation 335

problem with independent and identically distributed data.
Recalling the notation bias{m̂(x)} and var{m̂(x)} introduced above Theorem 4, we

deduce from that theorem that, in the local linear case, bias{m̂(x)} = Abias{m̂(x)}+
o(h20) and var{m̂(x)} = Avar{m̂(x)}+ o

{
(Nh0)

−1
}

, where Abias{m̂(x)} = h20µ2m
′′(x)/2,

Avar{m̂(x)} = R(K) {Nh0fX(x)}−1
{
CB +m(x)DB −m2(x)

}
, and R(K) =

∫
K2(u) du. 340

As in more standard nonparametric regression problems, we base our bandwidth selection
method on the following weighted theoretical criterion:

AMISEw ≡
∫ b

a

[
Abias{m̂(x)}

]2
fX(x) dx+

∫ b

a
Avar{m̂(x)} fX(x) dx

=h40 µ
2
2 θ2/4 +R(K)(Nh0)

−1 v ,

where θ2 =
∫ b
a {m

′′(x)}2fX(x) dx, v =
∫ b
a

{
CB +m(x)DB −m2(x)

}
dx, and a and b are the 345

empirical quantiles 0·05 and 0·95 of the distribution of X .
Of course, AMISEw depends on unknown quantities which have to be estimated. In practice,

we choose h0 by minimising the following estimator of AMISEw:

ÂMISEw = h40 µ
2
2 θ̂2/4 +R(K)(Nh0)

−1 v̂ ,

where v̂ =
∫ b
a

{
ĈB + m̂0(x) D̂B − m̂2

0(x)
}
dx, with m̂0 denoting a pilot estimator of m,

ĈB and D̂B denoting the estimators of CB and DB obtained by replacing q, Sp(j),
Se

(j)
1 and Se

(j)
2 by their estimators, and where, using the notation w(x) = 1[a,b](x), θ̂2 =

N−1
∑J

j=1

∑νj
i=1 {m̂′′

(−j)(Xij)}2w(Xij) , with m̂′′
(−j) denoting a local polynomial estimator 350

of m′′ of order p = 3, constructed without employing the observations from the jth group, and
using a bandwidth h2 ̸= h0; see the Supplementary Material for details.

Since the pilot estimator m̂0 appears inside an integral, it can be rather crude. We
use a quadratic spline estimator with a small number, κ = 5 say, of knots. Let β =
(β0, β1, β2, β21, . . . , β2κ)

T, and let m0(x |β) =
∑2

j=0 βj x
j +

∑κ
k=1 β2k (x− ξk)

2
+ be a

quadratic spline with κ knots. Recalling (7) we take m̂0(x) = m0(x | β̂), where

β̂ = argminβ

J∑
j=1

νj∑
i=1

{
Y ∗
j B̂−1

j − Âj B̂−1
j −m0(Xij |β)

}2
.

5·3. Choosing t
(j)
0 from the data

The value of t(j)0 affects the quality of the estimator m̂. It follows from Theorem 4 that t(j)0
affects the asymptotic variance term of m̂(x), but not its asymptotic bias term. Therefore, to 355

optimise asymptotic performance of m̂(x) we can choose t
(j)
0 so as to minimise an estimator of

its asymptotic variance term. Motivated by the fact that, for each x, this term depends on t
(j)
0

only through CB +m(x)DB , if the value of t(j)0 is open to choice, we suggest choosing it by
minimising an estimator of CB + E{m(X)}DB . Recalling that q = 1− E{m(X)}, we choose

t
(j)
0 that minimises ĈB + (1− q̂) D̂B under the constraint that Ŝp

(j)
≥ 0·5 and Ŝe

(j,νj) ≥ 0·5 360

and where q̂, ĈB and D̂B are as in Sections 3·4 and 5·2.
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Table 1. Simulation results for models (i) to (iv), in the case where τ = {var(B+)}1/2 = 0·2.
The numbers show 103× median integrated squared error (interquartile range) calculated from
200 simulated samples. In each group of three rows, the first row is for our estimator m̂ with t

(j)
0

as in Section 5·3, the second is for Delaigle and Meister’s (2011) m̂DM estimator and the third
is for McMahan et al.’s (2013) parametric estimator with t

(j)
0 = 0·2.

ν = 5 ν = 10 ν = 15
Model J = 200 J = 500 J = 1000 J = 200 J = 500 J = 1000 J = 200 J = 500 J = 1000

(i) 4·0(4·7) 2·1(2·4) 1·1(0·9) 5·0(6·5) 2·3(3·4) 1·5(1·6) 4·7(6·0) 2·5(2·8) 1·3(1·5)
4·2(5·6) 1·8(1·7) 1·0(1·1) 19(13) 20(8) 20(5) 29(13) 29(9) 28(6)
1·5(2·4) 0·5(1·1) 0·2(0·5) 1·5(3·2) 0·7(1·6) 0·4(0·8) 1·11(2) 0·4(1·1) 0·3(0·6)

(ii) 4·5(5·8) 2·0(2·1) 1·2(1·0) 4·9(5·9) 2·5(3·0) 1·5(1·2) 4·5(5·1) 2·5(2·2) 1·4(1·5)
3·7(4·4) 2·0(2·2) 1·0(0·9) 13(9) 13(5) 12(4) 19(8) 18(5) 18(4)
1·6(2·6) 0·7(1·0) 0·4(0·1) 1·1(3·8) 1·2(1·7) 0·6(0·7) 1·9(3·7) 1·1(1·5) 0·5(0·8)

(iii) 26(16) 14(9) 9(7) 26(18) 15(9) 10(7) 25(17) 17(11) 10(6)
26(17) 16(9) 11(5) 55(24) 50(16) 43(12) 67(25) 59(21) 54(16)
40(5) 38(2) 37(1) 40(7) 38(3) 37(2) 40(8) 38(3) 38(2)

(iv) 18(11) 10(7) 6(3) 19(14) 10(7) 7(4) 20(16) 11(7) 7(4)
20(16) 11(8) 7(5) 43(17) 36(14) 36(10) 52(24) 49(16) 44(12)
40(62) 38(35) 38(2) 40(7) 38(3) 38(2) 40(9) 38(4) 38(3)

5·4. Simulated models
Following McMahan et al. (2013) we took B− ∼ N(0·1, 0·022) and B+ ∼ N(1, τ2), where

τ = 0·1, 0·2 or 0·3, and generated W−
1 , . . . ,W−

n− and W+
1 , . . . ,W+

n+
as at (11), where U+

i ∼
N(0, 0·012) and n− = n+ = 200. The true status Ỹij was generated from a Bernoulli distribu-365

tion, specifically Ỹij |Xij ∼ Be{m(Xij)} , as in (1). We used four models:
(i) m(x) = a(x)/{1 + a(x)} where a(x) = exp(−3 + 2x), and Xij ∼ N(0, 0·752);
(ii) m(x) = b(x)/{1 + b(x)} where b(x) = exp(−3 + x+ 0·5x2), and Xij ∼ N(0, 0·752);
(iii) m(x) = c(x)/{1 + c(x)} with c(x) = a(x){2 + cos(4x− 0·5)}2 and Xij ∼ N(0, 0·752);
(iv) m(x) = c(x)/{1 + c(x)} and Xij ∼ U [−1·6, 1·6].370

Models (i) and (ii) are simple and were considered by McMahan et al. (2013). In models (iii) and
(iv), we added a level of complexity by introducing a cosine function.

In the main sample, defined in Section 2·1, we partitioned the data into J groups of sizes ν = 5,
10 or 15, for J = 200, 500 or 1000. We generated the Wjs as in (2), where Uj ∼ N(0, 0·012).
Finally, we took Y ∗

j = 1(Wj > t
(j)
0 ). For our estimator m̂ we took t

(j)
0 as in Section 5·3, and for375

the other estimators, we took t
(j)
0 = 0·2 as in McMahan et al. (2013).

In each case we generated 200 samples. For each sample we computed our local linear esti-
mator of m, that is, m̂ at (16) with p = 1, using the bandwidths introduced in Sections 5·1 and

5·2, and where Ŝp
(j)

and Ŝe
(j,k)

were computed as in Remarks 2 and 4. We also computed the
local linear estimator m̂DM of Delaigle and Meister (2011), using their plug-in bandwidth. This380

estimator ignores the dilution effect and assumes that we observe the true statuses. Since m is
a probability, in each case we truncated these estimators to 0 or 1. We also considered the esti-
mator in Delaigle and Meister’s (2011) Section 5, where an error correction is applied without
taking dilution into account, assuming that specificity and sensitivity do not depend on group
sizes. With data from our model, these could be estimated by an average of specificity and sensi-385

tivity over various group sizes. However, in the examples we considered, this corrected estimator
performed too poorly to be considered here. Finally, we computed the parametric estimator m̂P
of McMahan et al. (2013), using the correct parametric model for m, fU and the biomarker dis-
tribution in cases (i) and (ii), and using the correct parametric model for fU and the biomarker
distribution, but the incorrect first order logistic regression in cases (iii) and (iv).390
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Fig. 1. m̂, - - -, and m̂DM , · · · , first two columns, m̂P, third column, and m, —, for three samples coming from
model (i) with τ = 0·2, and corresponding to the first three quartiles of ISENEW, ISEDM and ISEP, respectively,

when ν = 5, row 1, and ν = 15, row 2, and J = 200, first column, and J = 1000, last two columns.
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Fig. 2. m̂, - - -, and m̂DM , · · · , first two columns, m̂P, third column, and m, —, for three samples coming from
model (iv) with τ = 0·2, and corresponding to the first three quartiles of ISENEW, ISEDM and ISEP, respectively,

when J = 500, and ν = 5, first column, and ν = 15, last two columns.

To assess performance, in each case we computed 200 values of the integrated squared er-
rors ISENEW =

∫ d
c (m̂−m)2, ISEDM =

∫ d
c (m̂DM −m)2 and ISEP =

∫ d
c (m̂P −m)2, where

[c, d] = [−1·5, 1·5]. Table 1 reports, for each method and each model, the median and the in-
terquartile range of the 200 integrated squared errors in the case where τ = {var(B+)}1/2 = 0·2.
The results in other cases were similar; see the Supplementary Material. The table indicates that, 395

in these examples, when the group size was less than ν = 5, our new method worked slightly
better or slightly worse than the one that ignores dilution and errors. However, as ν increased, the
advantage of using our method became clearer. For example, when ν = 15 the median ISENEW
was up to 25 times smaller than the median ISEDM. The comparison with the parametric estima-
tor m̂P is as expected: in cases (i) and (ii), the parametric model is correct and m̂P outperforms 400

m̂; in cases (iii) and (iv), m̂P targets the wrong curve and provides a strongly biased estimator,
and our new, consistent, estimator m̂ performs considerably better; see also Fig. 1 and Fig. 2.

Figure 1 depicts, for the three estimators, the estimated curves corresponding to the samples,
coming from model (i), that resulted in the first three quartiles of the 200 values of ISENEW,
ISEDM and ISEP when ν = 5 and 15, and J = 200 and 1000. When ν = 5, we can see that 405

the two nonparametric methods gave very similar results, but when ν = 15 our new method
significantly outperformed m̂DM. The same conclusions can be drawn from Fig. 2, where we
show estimated curves for model (iv) when J = 500, and ν = 5 and 15. The figures also depict
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Fig. 3. Estimated curves for hepatitis C using the estimator m̂, left, m̂DM, middle, or m̂P, right, for three samples
of the Irish prisons data, corresponding to the first, −−−, second, − · −, and third, · · · , quartiles of ISENEW,

ISEDM and ISEP, respectively, when ν = 2, first row, and ν = 6, second row. The thick lines depict m̂LL.

the estimator m̂P. As noted above, it performs better than m̂ in Fig. 1 where the parametric model
is correct, but is strongly biased in Fig. 2, where the parametric model is incorrectly specified.410

5·5. Illustration with Irish prisons data
As in McMahan et al. (2013) we applied our technique to data collected on prisoners from nine

Irish prisons; see Allwright et al. (2000) for a description of the data and collection method. The
dataset contains information about the presence of antibodies to hepatitis B core antigen and to
hepatitis C virus, biomarker readings and individual covariates. As in McMahan et al. (2013), our415

goal is to estimate the prevalence of antibodies to hepatitis B core antigen given age, but we also
wish estimate the conditional prevalence of antibodies to hepatitis C virus. Let X be the age of
a prisoner; for each type of hepatitis, let Ỹ be the true status, here absence, Ỹ = 0, or presence,
Ỹ = 1, of antibodies; and let B denote the biomarker, which, for both types of hepatitis, was
obtained through oral fluid testing procedures.420

For hepatitis B, we have a sample of N = 1098 prisoners for which Ỹ , X and B were each
available, with N+ = 60 positive individuals. For hepatitis C, we have N = 1009 observations
with N+ = 290 positive individuals. Following McMahan et al. (2013), for both types of hepati-
tis, we pooled the data randomly in groups of size 2, 4, 6 and 10. Although this paper is about
random pooling, we should note that, when possible, homogeneous pooling of the type consid-425

ered by Delaigle and Hall (2012) is preferable because, as demonstrated there, it usually results in
better estimators. To assess the performance of our procedure, we did this 200 times and created
in each case 200 samples of pooled data. For each sample, we computed our estimator m̂ and
Delaigle and Meister’s (2011) m̂DM estimator which ignores error and dilution. In each case we
used the bandwidths described in Section 5·4 and took t

(j)
0 as in Section 5·3. We also computed430

the standard local linear estimator m̂LL from the non-grouped data (Xi, Ỹi), for i = 1, . . . , N ,
using the true statuses and a plug-in bandwidth. Since this estimator uses non-grouped data and
the true statuses, it is much closer to the true curve and we shall treat m̂LL as the truth. We es-
timated specificities and sensitivities as in Remarks 3 and 5, using a subsample of n− negative
Bs and n+ positive Bs, drawn randomly from the N− and the N+ available individuals, respec-435



15

tively. We took n− equal to 100 and 20 in the cases of hepatitis C and B, respectively, and we
took n+ = 100 in both cases.

As usual, it is difficult to compare parametric and nonparametric estimators. Parametric esti-
mators converge fast to the truth, but only when one can determine the correct parametric model.
Nonparametric estimators are consistent regardless of parametric assumptions, but they have 440

slower convergence rates. Thus, in practice, when it is possible to make good parametric approx-
imations to the truth, parametric estimators usually work better, but otherwise, they are biased
and nonparametric estimators are expected to perform better. Of course, guessing a correct para-
metric model is challenging for binary response variables, especially when the only information
available comes from grouped data. To illustrate this, we computed the parametric first order lo- 445

gistic estimator m̂P of McMahan et al. (2013) with t
(j)
0 chosen as at their page 293 and estimating

specificities and sensitivities parametrically like them, using the subsample of size n− + n+ de-
fined above and assuming, like them, that the biomarkers have a lognormal distribution. The
gamma and Weibull distributions they also considered lead to similar conclusions.

We summarize the results for two values of ν in Fig. 3 for hepatitis C, and in the Supple- 450

mentary Material for hepatitis B. There, each figure shows m̂LL, and three estimated curves
obtained using m̂, m̂DM or m̂P. These curves were chosen among the 200 estimated curves as
those corresponding to the first three quartiles of the 200 values of the integrated squared er-
ror ISENEW =

∫ d
c (m̂− m̂LL)

2 in the case of m̂, ISEDM =
∫ d
c (m̂DM − m̂LL)

2 for m̂DM and
ISEP =

∫ d
c (m̂P − m̂LL)

2 for m̂P, where c and d were, respectively, the 0·025 and 0·975 empir- 455

ical quantiles of the Xis. For both types of hepatitis, the shape of m̂LL confirms Allwright et
al.’s (2000) findings: for hepatitis B, prevalence increases to reach a peak around age 35, and
then decreases, whereas for hepatitis C, the peak is reached around age 25, then decreases to
reach a low value at age 45. Overall, m̂ is able to capture the right shape, but m̂P is not.

The figures show that the improvement of our estimator over the parametric estimator m̂P is 460

substantial in all cases, and indicate that the logistic model is not a good approximation to the

truth. In the cases of hepatitis C, as ν increases, the specificities Ŝe
(j,k)

differ widely over k, with
some of them being far from 1, and so our estimator improves on m̂DM substantially. However,

in the case of hepatitis B, Ŝp
(j)

and Ŝe
(j,k)

are all very close to 1, so that the improvement
of our estimator over m̂DM is marginal. For ν = 10, our estimator m̂ also outperformed m̂P 465

significantly, but the number of groups, J , was too small and all three methods performed poorly.
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