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Abstract: We develop parametric estimators of a conditional prevalence in the group testing
context. Group testing is applied when a binary outcome variable, often a disease indica-
tor, is assessed by testing a specimen for the presence of the disease. Instead of testing
all individual specimens separately, these are pooled in groups and the grouped specimens
are tested for the disease, which permits to significantly reduce the number of tests to be
performed. Various techniques have been developed in the literature for estimating a con-
ditional prevalence from group testing data, but most of them are not valid when the data
are subject to missingness. We consider this problem in the case where the specimen and
the covariates are subject to nonmonotone missingness. We propose parametric estimators
of the conditional prevalence, establish identifiability conditions for a logistic missing not at
random model, and introduce an ignorable missing at random model. In theory, our estima-
tors could be applied with multiple covariates missing, but in practice, they face numerical
challenges when more than one covariate is missing for given individuals. We illustrate the
method on simulated data and on a dataset from the Demographics and Health Survey.
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1 Introduction

In large epidemiological studies, the group testing technique introduced by Dorfman1 during

WWII is often employed to screen more individuals in less time and use less resources. When

a disease is detected through a specimen test, instead of testing each individual specimen,

the specimens of groups of individuals are pooled together, and a single test is applied to the

pooled specimens in each group, a technique that has been widely used during the covid-19

pandemic2,3. If a group tests negative, the individuals from the group are declared negative

whereas a positive test result for a group indicates that at least one individual in the group

may be positive. If we need to identify all infected individuals, the specimens from the

positive groups are retested individually whereas prevalence estimation can be done without

individual retesting4. This pooling strategy can significantly reduce the number of tests that

need to be performed when prevalence is low5; when prevalence is high, too many groups
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test positive for it to be useful. The ability to apply group testing can play an important

role during pandemics. For example, at the start of 2022 in Australia, the PCR covid-19

testing system collapsed in many parts of the country, with many testing centers unable to

process the tests in a timely manner due to the sudden massive increase of the number of

people needing to be tested combined with a too high prevalence for using group testing.

Since a large part of the statistics literature on group testing is concerned with disease

detection or identification, throughout we will use disease terminology. However, group

testing is employed in a variety of other applications, for example to detect contaminants in

food or water, to test batches of objects at once, to preserve the confidentiality of participants

in a study6, as well as for DNA screening or communication and security networks7.

In infectious disease studies, an important quantity is the prevalence of the disease con-

ditional on an explanatory random vector X. There is a rich literature estimating that

prevalence from group testing data; a variety of methods have been developed, including

parametric8–10 and nonparametric11–17 techniques. Motivated by the fact that data from

infectious disease studies often have missing values, Delaigle et al.18 suggested estimators

valid when the data on a subvector of X are missing at random (MAR) (for each individual,

the same subvector is either observed or entirely missing), but all specimens are observed;

under a MAR assumption, Delaigle and Tan19 studied the case where only specimens are

missing. Those works describe missingness by a univariate indicator (the same variable or

vector is subject to missingness for all individuals), and only X or the specimen is subject to

missingness, but not both; here we consider the case where both are subject to missingness.

We develop maximum likelihood estimators (MLEs) of the conditional prevalence that

can in principle be applied under any type of missing assumption on X and the speci-

men, including MAR and missing not at random (MNAR), and monotone or nonmonotone

missingness. Reflecting the applications of group testing where there is often no particular

ordering among the missing patterns of individuals, we focus on nonmonotone missingness,

where specifying a coherent and tractable missing model is often considered challenging. We

establish identifiability of the popular multinomial logistic MNAR model in our context, and

propose a class of ignorable MAR models. Our estimators are consistent under general miss-

ingness scenarios and with several covariates missing, but as in the non grouped case, they
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face numerical difficulties when more than one covariate is missing for the same individual.

This article is organised as follows. We introduce our main models and data in Section 2.

In Section 3, we develop MLEs of the conditional prevalence. In Section 4, we study the

multinomial logistic MNAR model and introduce a class of ignorable MAR models. We

illustrate our procedures on simulated data in Section 5 and on real data in Section 6. We

discuss extensions in Section 7. The supplementary file contains technical details.

2 Model and data

We are interested in the conditional prevalence of a disease or other phenomenon,

p(x) = P (D = 1|X = x) = E(D|X = x) , (2.1)

whereX = (X1, . . . , Xd) ∈ Rd is a random vector of explanatory variables such as age, weight

or time spent at a risky activity, and D is a binary variable indicating presence (D = 1) or

absence (D = 0) of the phenomenon of interest. In many situations, D cannot be directly

observed and is measured imperfectly by another binary variable Y . For example, in the case

of a disease, D is typically assessed through a specimen (e.g. blood, urine or swab) test whose

outcome Y = 1{specimen tests positive} is often error-prone, i.e. is not always equal to D.

Throughout, for simplicity we will use disease terminology (e.g. test, individuals, specimen)

but our methods can be applied to any phenomenon generating the data introduced below.

In large population screenings, it is often not possible to test all individuals of interest, for

example because of time constrains or limited resources. Group testing is an approach that

consists in pooling the individuals randomly into groups, and testing the pooled specimens

of each group. Using i,j to refer to the ith individual from the jth group (omitting the index

when referring to generic individuals), instead of observing the individual Di,j’s or Yi,j’s, we

observe a group version that will be defined formally below. The (Xi,j, Di,j)’s are generated

by (2.1) and are assumed to be independent and identically distributed (i.i.d). Throughout,

for all j we denote the size of the jth group by nj and the sample size by N .

In practice, X and the specimen can be subject to missingness. For example, not all

covariates are always reported and some patients may be less likely to provide their specimen

depending on their age or overall health condition. When a specimen for an individual is
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missing, none of the group test results contain information about the disease status D of that

individual. Reflecting this, we let RD = 1{specimen is available} and RX = (RX1 , . . . , RXd),

with RXk = 1{Xk is observed}, for k = 1, . . . , d. Throughout, we use To to denote the

observed (i.e. non missing) components of a random vector T.

When we pool the specimens and some of them are missing, their missing status has an

impact on estimation procedures. We need to distinguish between the case where the missing

status is known before the groups are created and that where it is known after. In both cases,

the test for the disease can only be applied to the pooled non missing specimens, but the

way in which we create the groups differs between the two cases, so that the distribution of

the group version of the test result Y differs too.

If we know the missing status before grouping, we have the possibility to group only

the individuals whose specimen is observed. There, given the N missing specimen statuses

RD
1 , . . . , R

D
N , we pool uniformly at random the N ′ =

∑N
i=1R

D
i individuals with non missing

specimen into the first J ′ groups of respective and potentially different sizes n1, . . . , nJ ′ ,

where we select J ′ and the nj’s as in the standard group testing setting with sample size N ′.

The remaining N −N ′ individuals are not pooled, i.e. are assigned to a group of size nj = 1,

for j = J ′ + 1, . . . , J ′ + N − N ′. Recalling the notation i,j from above, we define the true

group status of the individuals with non missing specimen from group j as

D̃∗
j =

maxi=1,...,nj
Di,j, for j = 1, . . . , J ′ ,

−1, for j = J ′ + 1, . . . , J ′ +N −N ′ .
(2.2)

Here, when j > J ′, since no specimen is observed in group j, D̃∗
j = −1 does not reflect the

disease status of the group but rather indicates that it is missing.

On the other hand, if the groups are defined before collecting the specimens and cannot

be redefined after collection (e.g. because of cost or experimental constraints), then we create,

uniformly at random, J groups of fixed and potentially different sizes n1, . . . , nJ using all

N individuals regardless of their missing status. Thus, each group is susceptible to contain

individuals with missing specimen. For j = 1, . . . , J , let Ij = {i = 1, . . . , nj : RD
i,j = 1}

denote the set of indices of individuals from group j with non missing specimen. Then only

the specimens of individuals in Ij can be grouped to be tested. Letting |Ij| =
∑nj

i=1R
D
i,j, we
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define the true group status for the individuals from group j with non missing specimen by

D∗
j =

maxi∈Ij Di,j if |Ij| > 0 ,

−1 if |Ij| = 0 .
(2.3)

As in (2.2), we use the value −1 in (2.3) to code the fact that the disease status is missing.

As mentioned above, often we can only observe an imperfect version of each group status,

which we refer to as the result of a test, following the disease terminology. That is, instead of

observing D̃∗
j (resp., D∗

j ), we observe the result Ỹ ∗
j (resp., Y ∗

j ) of a test performed on group

j. In practice, tests are prone to two types of errors: false positive (Ỹ ∗
j = 1 when D̃∗

j = 0 or

Y ∗
j = 1 when D∗

j = 0) and false negative (Ỹ ∗
j = 0 when D̃∗

j = 1 or Y ∗
j = 0 when D∗

j = 1).

When no specimen is available in group j, i.e. when D̃∗
j = −1 (resp., D∗

j = −1), we define

Ỹ ∗
j = −1 (resp., Y ∗

j = −1) to indicate that no test is performed for group j; in that case

there is no test error and we have P (Ỹ ∗
j = −1|D̃∗

j = −1) = P (Y ∗
j = −1|D∗

j = −1) = 1.

Quite naturally, we assume throughout that the specificity sp = P (Ỹ ∗
j = 0|D̃∗

j = 0) =

P (Y ∗
j = 0|D∗

j = 0) and sensitivity se = P (Ỹ ∗
j = 1|D̃∗

j = 1) = P (Y ∗
j = 1|D∗

j = 1) of the

test are larger than 0.5. Following common practice in the group testing literature8, we also

assume that sp and se do not depend on the group sizes, which is often reasonable when the

groups are not too large. Likewise, in the settings at (2.2) and (2.3), respectively, we assume

that the test result depends only on the true status, i.e., for y = 0, 1,

P (Ỹ ∗
j = y|D̃∗

j ,Xi,j,R
X
i,j, R

D
i,j, i = 1, . . . , nj) = P (Ỹ ∗

j = y|D̃∗
j ) , (2.4)

P (Y ∗
j = y|D∗

j ,Xi,j,R
X
i,j, R

D
i,j, i = 1, . . . , nj) = P (Y ∗

j = y|D∗
j ) . (2.5)

3 Maximum likelihood estimators

In Sections 3.1 and 3.2, we develop MLEs of p at (2.1) for the settings at (2.2) and (2.3),

respectively. We use parametric models fX(·; θ), p(·; γ) and fRX,RD|X,D(·|·;ϕ), where through-

out we let fZ denote joint density or probability mass function of a generic random vector

Z. The choice of a specific missing model for fRX,RD|X,D will be discussed in Section 4.
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3.1 Regression model and estimation for the setting at (2.2)

In this section, under (2.4), we propose a MLE of p constructed from data obtained from the

setting at (2.2). There, for i = 1, . . . , N , the incompletely observed (Di,Xi,R
X
i , R

D
i )’s are

i.i.d.; we observe the (Xo
i ,R

X
i , R

D
i )’s, and the group test results Ỹ ∗

j , j = 1, . . . , J ′ +N −N ′

obtained conditionally on the RD
i ’s. For i = 1, . . . , N , we let Wi = (Xi,R

X
i , R

D
i ). When

needed below, we reindex the variables with the double index notation i,j introduced earlier.

The full likelihood of Ỹ ∗
1 , . . . , Ỹ

∗
J ′+N−N ′ ,W1, . . . ,WN , equal to

fỸ ∗
1 ,...Ỹ ∗

J′+N−N′ |W1,...,WN
(Ỹ ∗

1 , . . . Ỹ
∗
J ′+N−N ′ |W1, . . . ,WN ; γ, ϕ)

×
N∏
i=1

{
fRX,RD|X(R

X
i , R

D
i |Xi; γ, ϕ)fX(Xi; θ)

}
, (3.1)

cannot be computed since it depends on missing data. Following the strategy used by Little

and Rubin20 in non-grouped missing data problems, we define our observed-data likelihood

function by integrating (3.1) with respect to the missing components Xm
i,j of the Xi,j’s. In

Appendix A, we prove that the observed-data log likelihood can be written as

logL1(θ, γ, ϕ) =
J ′∑
j=1

log
[
(−1)Ỹ

∗
j (sp+ se−1)

nj∏
i=1

∫
f0(Wi,j; θ, γ, ϕ) dX

m
i,j

+ seỸ
∗
j (1− se)1−Ỹ ∗

j

nj∏
i=1

∫ 1∑
d=0

fd(Wi,j; θ, γ, ϕ) dX
m
i,j

]
+

J ′+N−N ′∑
j=J ′+1

log
{∫ 1∑

d=0

fd(W1,j; θ, γ, ϕ) dX
m
1,j

}
, (3.2)

with fd(Wi,j;θ,γ,ϕ)=fRX,RD|X,D(R
X
i,j, R

D
i,j|Xi,j,d;ϕ)fX(Xi,j; θ){1−p(Xi,j;γ)}1−d{p(Xi,j;γ)}d.

Let (θ̂1, γ̂1, ϕ̂1) denote the argmax of (3.2). We define our estimator of p(x) by p̂MLE,1(x) =

p(x; γ̂1). If some of the components of X, say XF, are fully observed, we can reduce the

dimension of the parameters to estimate via (3.2) as long as some of the components, θF say,

of θ are identifiable from fXF
; let θFC denote the remaining components of θ. There, we can

estimate θF by θ̂F obtained by maximising the marginal likelihood of XF. Then, we can plug

θ̂F into (3.2) and maximise (3.2) only wrt to θFC , γ and ϕ.

Remark 1. This estimator is consistent under general nonmonotone missingness and stan-

dard regularity conditions for MLE21, as long as identifiability is ensured and the group sizes
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nj are bounded. In practice, computing it requires modelling the missing mechanism by a

coherent, identifiable model that needs to be estimated, unless missingness is ignorable. We

consider both situations in Section 4, where we establish identifiability of a MNAR logistic

model, and introduce a class of ignorable MAR models under which the estimator simplifies

considerably. As usual with parametric techniques, the practical success of our estimator is

limited by the number of parameters to estimate. In the non ignorable case, the dimensions

of θ, γ and ϕ can increase quickly with the number of missing covariates, making the number

of parameters to estimate prohibitively large if the specimen and more than one covariate are

subject to missingness, unless we can reduce the number of parameters of the model. In the

ignorable case, we only need to estimate θ and γ and the computations are more tractable.

However, for each individual, (3.2) involves computing a numerical integral of dimension

equal to the number of covariates missing for that individual, which can be difficult to do if

more than one covariate is missing for the same individual, especially in the non ignorable

case where the integrals take a more complex form.

3.2 Regression model and estimation for the setting at (2.3)

In this section, we propose a MLE of p in the case where we observe the (Xo
i,j, Y

∗
j ,R

X
i,j, R

D
i,j)’s

obtained from the setting at (2.3). Letting Wi,j = (Xi,j,R
X
i,j, R

D
i,j), in this case, the non

observable full likelihood of the (Y ∗
j ,Wi,j)’s can be written as

J∏
j=1

{
fY ∗

j |W1,j ,...,Wnj,j
(Y ∗

j |W1,j, . . . ,Wnj ,j; γ, ϕ)

nj∏
i=1

{
fRX,RD|X(R

X
i,j, R

D
i,j|Xi,j; γ, ϕ)fX(Xi,j; θ)

}
.

Proceeding as in Section 3.1, we estimate (θ, γ, ϕ) by (θ̂2, γ̂2, ϕ̂2) that maximises the

observed-data log likelihood function of the (Xo
i,j, Y

∗
j ,R

X
i,j, R

D
i,j)’s, obtained by taking the log

of the integrated above full likelihood with respect to the missing components Xm
i,j of the

Xi,j’s, which, taking fd as in Section 3.1, is equal to (see Appendix B)

logL(θ, γ, ϕ) =
J∑

j=1

1(Y ∗
j = −1)

nj∑
i=1

log

∫ 1∑
d=0

fd(Wi,j; θ, γ, ϕ) dX
m
i,j

+
J∑

j=1

1(Y ∗
j ̸= −1) log

{
seY

∗
j (1− se)1−Y ∗

j

nj∏
i=1

∫ 1∑
d=0

fd(Wi,j; θ, γ, ϕ) dX
m
i,j
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+(−1)Y
∗
j (sp+ se−1)

∏
i∈Ij

∫
f0(Wi,j; θ, γ, ϕ) dX

m
i,j ×

∏
i ̸∈Ij

∫ 1∑
d=0

fd(Wi,j; θ, γ, ϕ) dX
m
i,j

}
. (3.3)

We define our estimator of p(x) by p̂MLE,2(x) = p(x; γ̂2). As in Section 3.1, to reduce the

number of parameters to estimate by maximising (3.3), if some of the components, XF, of

X do not have missing values, and some components θF of θ are identifiable from fXF
, we

can estimate θF by maximising the marginal likelihood of XF, plug the estimator in (3.3)

and then maximise (3.3) only wrt to γ, ϕ and the remaining components of θ.

Remark 2. The discussion in Remark 1 applies to this estimator. In particular, it is con-

sistent under standard conditions and computing it requires either an explicit model, which

is easier to provide in the MNAR case than in the MAR case, or an ignorable MAR model;

both situations will be discussed in Section 4. Here too, good practical performance relies

on the number of parameters in the model being not too large and the numerical integrals

to be tractable, which makes the estimator difficult to compute if more than one covariate is

missing for the same individual.

4 Model for missing data mechanism

Our estimators for p require parametric models fX(x; θ) and p(x; γ), and unless missingness

is ignorable, fRX,RD|X,D(r
X, rD|x, d;ϕ). Specifying models for fX(x; θ) and p(x; γ) is easy,

e.g. the multivariate normal distribution for fX(x; θ) and the logistic regression model for

p(x; γ). In contrast, as in the standard non grouped case22, specifying a coherent, identifiable

missing data model for fRX,RD|X,D can be challenging. In Section 4.1, we show that, as in the

non grouped case22, the multinomial logistic MNAR model is coherent and identifiable. We

discuss MAR models in Section 4.2, where we introduce a class of ignorable missing models.

4.1 Logistic MNAR model

In this section, we show that as in the non grouped case22, the multinomial logistic MNAR

model is coherent and identifiable from our data. Of course, this popular model does not

necessarily always reflect the true missing pattern of the data, but it has the advantage
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of being a genuine MNAR mechanism that is computationally tractable, at least in the

case where D and one covariate are missing; see Remarks 1 and 2. We will examine its

practical performance as a working model in Section 5. In principle our estimators could

be computed with other identifiable MNAR models, but as in the standard non grouped

setting, the difficulty is to formulate explicitly such models. Another possibility is to assume

an ignorable MAR model; see Section 4.2.

Let R = (RX, RD) denote the joint missing indicator and 1 = (1, . . . , 1) be the pattern

with no missing component. The multinomial logistic model assumes that

fRX,RD|X,D(r
X, rD|x, d;ϕ) = exp{gr(x, d;ϕ)}/D(x, d;ϕ) ,

fRX,RD|X,D(1|x, d;ϕ) = 1/D(x, d;ϕ) ,
(4.1)

with ϕ an unknown parameter vector, gr a function associated with the pattern r = (rX, rD),

and D(x, d;ϕ) = 1 +
∑

r̸=1 exp{gr(x, d;ϕ)}. Throughout we use
∑

r̸=1 to denote the sum

over all possible missing data patterns different from 1.

To establish identifiability of the model, we assume that the complete pattern 1 arises

with strictly positive probability. Under this assumption, in the non-grouped case, Lit-

tle23 showed that for general models, if the components T1, . . . , Td of a random vector

T = (T1, . . . , Td) are subject to missingness, then the joint distribution of (T,RT) is identi-

fied by that of (To,RT) under the so-called complete case missing value (CCMV) restriction;

in the particular case of model (4.1), Tchetgen Tchetgen et al.22 showed that the CCMV

restriction is equivalent to imposing that for all r ̸= 1,

gr(x, d;ϕ) = gr(x
o
r, d

o
r;ϕ) , (4.2)

where (xo
r, d

o
r) denotes the observed part of (x, d) for pattern r. Note that although, for a

given missing data pattern r, the gr’s depend only on observed data, D at (4.1) depends on

unobserved data, which makes the mechanism MNAR.

The next lemma establishes that (4.2) ensures identifiability also in our two group testing

settings with imperfect tests defined in Section 2; see Appendix C for a proof.

Lemma 4.1. Under model (4.1) and the identifiability condition (4.2):

(i) in the setting at (2.2), recalling that Ỹj = −1 for j = J ′ + 1, . . . , J ′ + N − N ′, the dis-

tribution of (X, D,RX, RD) is identifiable from those of (Xo
1,J ′+1, Ỹ

∗
J ′+1,R

X
1,J ′+1, R

D
1,J ′+1) and

9



(Xo
1,j, . . . ,X

o
nj ,j

, Ỹ ∗
j ,R

X
1,j, . . . ,R

X
nj ,j

, RD
1,j, . . . , R

D
nj ,j

), where j denotes any integer in {1, . . . , J ′};

(ii) in the setting at (2.3), the distribution of (X, D,RX, RD) is identifiable from that of

(Xo
1,j, . . . ,X

o
nj ,j

, Y ∗
j ,R

X
1,j, . . . ,R

X
nj ,j

, RD
1,j, . . . , R

D
nj ,j

), where j denotes any integer in {1, . . . , J}.

We deduce from this lemma that with model (4.1), our target p(x) = E(D|X = x) is

identified under condition (4.2) as long as the distributions in the lemma are identifiable

from our data for at least one j, as well as for J ′ + 1 in case (i). The former is usually

satisfied since the group sizes nj are bounded, so that there exists at least one group j for

which the number of groups of size nj tends to infinity as N → ∞. Likewise, in case (i),

since P (RD = 0) > 0, the number of individuals from which we can consistently estimate

the distribution of group J ′ + 1 tends to infinity as N → ∞.

Remark 3. These results can be applied to the case where only X is subject to missingness.

There, Ỹ ∗
j = Y ∗

j , the test result measuring the usual group testing disease status D∗
j =

maxi=1,...,nj
Di,j, there is no RD and the estimators from Sections 3.1 and 3.2 are equal.

4.2 MAR models

Instead of assuming a logistic MNAR model, another possibility is to assume that the data

are MAR. In its most general form, a MAR model assumes that fRX,RD|X,D = fRX,RD|Xo,Do ,

where Do = D if RD = 1 and Do = ∅ otherwise, and the realisations of RX and RD can

differ between individuals. Under this assumption, in the standard non grouped i.i.d. case

(nj = 1) without test errors (sp = se = 1), it is well known that missingness is ignorable for

MLEs20; there, computing MLEs with MAR models is much simpler than with MNAR ones:

it requires neither the estimation nor the explicit specification of the MAR model. MAR is

often assumed even in cases where MNAR may seem more natural, and it can give better

practical performance; see e.g. Example 1.13 in Little and Rubin20.

By contrast, in our setting, missingness is non ignorable under this general MAR assump-

tion: fRX,RD|Xo,Do cannot be factored out of the likelihood equations in Sections 3.1 and 3.2,

so that we need to specify (and estimate) an explicit MAR model to apply our method.

However, specifying a coherent MAR and computationally tractable model for nonmontone

missing data is often considered challenging24. For example, Robins and Gill25 and Sun and
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Tchetgen Tchetgen24 noted that if 0 = (0, . . . , 0) is one of the possible patterns, the only way

to satisfy the assumption that the data on (X, D) are MAR under the multinomial logistic

model at (4.1) is to reduce it to a MCAR model. Those authors proposed MAR models that

do not systematically reduce to MCAR, but they are computationally intractable, at least

when combined with MLEs24. This makes general MAR models unattractive in our setting.

However, if we are willing to make the stronger assumption that fRX,RD|X,D = fRX,RD|Xo ,

then missingness becomes ignorable in our case too. To see this, in the setting from Sec-

tion 3.1 (resp., Section 3.2), let K = J ′+N −N ′ and Y †
j = Ỹ ∗

j (resp., K = J and Y †
j = Y ∗

j ).

In Appendix D, we show that if we assume that fRX,RD|X,D = fRX,RD|Xo , the likelihoods at

(3.2) and (3.3) simplify into ℓ(θ, γ)+C(ϕ), where C(ϕ) =
∑N

i=1 log fRX,RD|Xo(RX
i , R

D
i |Xo

i ;ϕ)

does not depend on θ or γ, and where

ℓ(θ, γ) =
K∑
j=1

1(Y †
j ̸= −1) log

[
(1− se)1−Y †

j seY
†
j

nj∏
i=1

fXo(Xo
i,j; θ) + (−1)Y

†
j (sp+ se−1)

×
nj∏
i=1

∫
fX(Xi,j; θ){1− p(Xi,j; γ)}R

D
i,j dXm

i,j

]
+

K∑
j=1

nj∑
i=1

1(Y †
j = −1) log fXo(Xo

i,j; θ) .

Therefore, to estimate θ and γ it suffices to maximise ℓ(θ, γ) without specifying or esti-

mating the missing model. In practice, in the same way as MAR models are often used in

the non grouped i.i.d. case, the simplified MAR assumption fRX,RD|X,D = fRX,RD|Xo could

be used as a working model for computing estimators more simply than under the logistic

MNAR model. Indeed, under ignorable MAR, these are easier to compute as they involve

estimating less parameters; see Section 5 for practical investigation.

Remark 4. In the case where only X is subject to missingness, the estimators from Sec-

tion 3.1 and 3.2 are equal, with the adaptations discussed in Remark 3. In the general

nonmonotone MAR case, missingness of X is non ignorable and we run into the difficulties

discussed above, but as above, missingness is ignorable if we assume that fRX|X,D = fRX|Xo.

Delaigle et al.18 considered the simpler case where sp = se = 1 and a single covariate or the

same subvector V is subject to missingness for all individuals, and fRV |X,D = fRV |T,D, with

T the components of X not subject to missingness; there they propose semi- and nonpara-

metric estimtors of p. Our estimators can also be applied in the case where the specimens are
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Table 1: Simulation results for all estimators: median (interquartile range) ISE×104 in cases

(i) and (ii), and ISE×103 in cases (iii) to (v), computed from 200 samples.

Grouping N p̂LOG
MLE,1 p̂MISP

MLE,1 p̂ IGN
MLE,1 p̂LOG

MLE,2 p̂MISP
MLE,2 p̂ IGN

MLE,2 p̂UMLE

(i)

(A) 3000 8.80 (17.55) 9.44 (19.46) 18.16 (32.08) 7.50 (18.89) 8.36 (19.66) 15.53 (26.97) 4.11 (8.65)

6000 5.91 (11.82) 6.46 (12.01) 14.24 (19.53) 5.86 (14.81) 5.98 (14.98) 12.17 (20.65) 1.86 (3.20)

12000 2.50 (5.67) 2.65 (6.14) 8.51 (11.45) 2.45 (4.24) 2.75 (4.59) 8.38 (10.42) 1.05 (2.38)

(B) 2500 12.02 (21.08) 12.09 (20.89) 18.10 (30.43) 9.22 (17.25) 9.39 (17.51) 15.02 (28.45) 5.09 (9.11)

5000 4.90 (9.40) 4.77 (10.47) 10.71 (18.25) 4.85 (9.12) 4.96 (10.22) 10.01 (14.36) 2.56 (4.36)

10000 2.39 (5.94) 2.56 (6.21) 9.30 (12.75) 2.56 (4.95) 2.85 (4.97) 8.97 (9.76) 1.05 (2.25)

(ii)

(A) 3000 24.35 (53.29) 24.20 (54.17) 24.32 (49.79) 21.84 (38.47) 21.52 (37.88) 22.66 (36.77) 7.04 (13.45)

6000 11.93 (24.66) 11.99 (23.72) 14.75 (25.51) 11.17 (19.66) 11.60 (18.59) 11.61 (20.56) 3.49 (5.41)

12000 6.28 (9.67) 6.03 (9.89) 8.09 (11.04) 5.29 (7.52) 5.34 (7.29) 6.16 (8.55) 1.46 (2.44)

(B) 2500 23.52 (53.36) 22.32 (51.06) 26.59 (45.42) 18.24 (34.92) 17.65 (33.36) 18.56 (29.20) 9.22 (11.00)

5000 10.86 (20.38) 10.83 (18.39) 11.58 (17.70) 10.21 (16.33) 9.48 (15.43) 10.30 (16.41) 3.73 (6.56)

10000 6.42 (9.17) 6.11 (8.78) 6.54 (11.07) 4.66 (6.08) 4.25 (6.10) 5.40 (7.49) 2.03 (2.79)

(iii)

(A) 3000 2.55 (3.10) 2.45 (3.09) 2.79 (4.33) 2.19 (2.11) 2.12 (2.29) 2.29 (3.09) 1.03 (1.68)

6000 1.41 (1.89) 1.38 (1.68) 1.44 (2.02) 1.29 (1.80) 1.27 (1.66) 1.09 (1.44) 0.44 (0.61)

12000 0.53 (0.82) 0.56 (0.86) 0.62 (1.05) 0.43 (0.71) 0.45 (0.68) 0.53 (0.74) 0.18 (0.23)

(B) 2500 2.57 (3.18) 2.36 (2.64) 2.44 (3.54) 2.17 (2.26) 2.15 (2.09) 2.42 (2.90) 1.31 (1.77)

5000 1.26 (1.99) 1.27 (1.93) 1.27 (1.83) 0.98 (1.51) 0.96 (1.44) 0.93 (1.60) 0.49 (0.86)

10000 0.54 (0.85) 0.54 (0.86) 0.65 (0.91) 0.44 (0.82) 0.43 (0.81) 0.55 (0.84) 0.23 (0.32)

(iv)

(A) 3000 24.74 (40.31) 24.78 (41.44) 27.36 (45.70) 18.25 (25.30) 17.61 (23.75) 18.86 (28.45) 1.84 (2.97)

6000 10.82 (19.23) 10.17 (20.43) 15.50 (24.21) 6.17 (10.28) 6.34 (10.32) 8.22 (13.62) 0.89 (1.25)

12000 6.22 (7.35) 6.20 (8.35) 8.81 (11.00) 3.76 (5.54) 3.86 (5.66) 5.81 (8.67) 0.57 (0.67)

(B) 2500 26.57 (36.03) 24.89 (36.09) 30.72 (41.89) 16.68 (20.60) 16.58 (22.12) 21.47 (30.99) 2.33 (3.38)

5000 7.93 (12.12) 7.82 (12.98) 10.70 (18.32) 5.91 (8.05) 5.82 (7.52) 8.42 (12.17) 1.18 (1.48)

10000 4.32 (6.81) 4.58 (6.85) 6.93 (8.57) 3.32 (4.92) 3.27 (5.02) 5.30 (7.89) 0.66 (0.71)

(v)

(A) 3000 23.40 (36.37) 70.82 (97.66) 33.68 (44.39) 22.72 (19.61) 45.88 (63.62) 20.96 (25.55) 1.99 (2.64)

6000 12.46 (18.44) 49.92 (75.14) 17.13 (23.69) 15.70 (11.73) 27.75 (43.57) 11.76 (13.39) 1.06 (1.17)

12000 5.60 (9.14) 31.10 (33.29) 8.45 (12.00) 11.59 (5.81) 21.23 (35.66) 7.39 (7.82) 0.52 (0.74)

(B) 2500 21.31 (35.88) 57.90 (90.61) 31.75 (52.73) 19.65 (19.00) 35.57 (40.54) 18.84 (24.03) 2.74 (3.21)

5000 10.02 (16.01) 42.02 (70.70) 15.85 (20.09) 13.51 (9.50) 22.34 (26.74) 10.02 (14.69) 1.10 (1.67)

10000 4.87 (6.37) 21.65 (48.55) 7.59 (11.09) 10.62 (4.48) 15.83 (20.54) 6.58 (8.72) 0.64 (0.86)

MAR and X is not subject to missingness. That setting is simpler (Xo = X) as even though

missingness is non ignorable, the likelihoods do not involve numerical integration; there too,

it is possible to construct a nonparametric estimator19.

5 Simulation study

We applied two versions of our estimators p̂MLE,1 and p̂MLE,2 from Section 3 to simulated

data with X and specimen both MNAR: p̂LOG
MLE,1 and p̂LOG

MLE,2, which assume that the data
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Figure 1: True curve (—), first (- - -), second (- · - · -) and third (· · ·) quartile estimated curves

of, from left to right: p̂LOG
MLE,1 with N = 3000, p̂LOG

MLE,1, p̂
MISP
MLE,1 and p̂LOG

MLE,2 with N = 12000 for

model (i) with grouping (A) (first row), and p̂LOG
MLE,1, p̂

IGN
MLE,2, p̂

LOG
MLE,2 and p̂UMLE for model (ii)

with grouping (B) and N = 5000 (second row).

are MNAR with the logistic model from Section 4.1, and p̂ IGN
MLE,1 and p̂ IGN

MLE,2, which wrongly

make the ignorable MAR assumption from Section 4.2, but are easier to compute because

they require estimating less parameters. As noted in Remarks 1 and 2 (see also Section 7),

the computations are challenging when several covariates are missing for a given individual.

Therefore, as in the non grouped setting of Tchetgen Tchetgen et al.22, we only consider

examples where at most one covariate is missing for each individual, although in one of

our examples, two covariates are subject to missingness. Performing J tests on N pooled

individuals usually incurs a loss of information compared to performing N individual tests;

to illustrate this, we compared our estimators with the estimator p̂UMLE obtained from N

non-grouped individuals, which is computed by taking p̂LOG
MLE,2 with N groups of size nj = 1.

To generate the (Xo
i,j, Ỹ

∗
j ,R

X
i,j, R

D
i,j)’s and the (Xo

i,j, Y
∗
j ,R

X
i,j, R

D
i,j)’s, we generated the in-

dividual (Xo
i , Di,R

X
i , R

D
i )’s, then grouped them to obtain the (Xo

i,j,R
X
i,j, R

D
i,j)’s and the Ỹ ∗

j ’s

and the Y ∗
j ’s following (2.2)–(2.5). We chose sp = 0.99, se = 0.85, and took X to be of di-

mension one or two. In the one dimensional case, we took X = X ∼ N(0, 0.752) and D|X ∼

13



Figure 2: True p for model (iii) (top left) and, from column 2 to 4, p̂LOG
MLE,1, p̂

LOG
MLE,2 and p̂MISP

MLE,2

corresponding to the median ISEs with grouping (A), and N = 3000 (first row) or N = 6000

(second row), and (bottom left) p̂ IGN
MLE,2 when N = 6000.

Be{p(X)}, where (i) p(x) = 1/{1+exp(2x+3)} or (ii) p(x) = 1/{1+exp(x2−3x+3)}. Follow-

ing (4.1), for r = (rX , rD) = (0, 0), (1, 0) and (0, 1) we generated the (RX
i , R

D
i )’s according to

the model fRX ,RD|X,D(r
X , rD|X,D) = exp{gr,1(X,D)}/D1(X,D), fRX ,RD|X,D(1, 1|X,D) =

1/D1(X,D) , where g00,1(X,D) = −3, g10,1(X,D) = X − 1.8, g01,1(X,D) = D − 1.5 and

D1(X,D) = 1 + exp{g00,1(X,D)}+ exp{g10,1(X,D)}+ exp{g01,1(X,D)}.

We considered three 2-dimensional cases, where X = (X1, X2) ∼ N(µ,Σ), with µ =

(0, 0) and Σ = (σij)i,j=1,2 with σ11 = σ22 = 0.752 and σ12 = σ21 = 0.52. For the first

two, we took (iii) p(x) = 1/{8 + exp(8x1 − 8x2 + 8)} and (iv) p(x) = 1/{1 + exp(x2
1 +

0.5x2 + 1)}, and as in our real data example, we assumed that X1 was fully observed and

X2 and D were subject to missingness. There, using RX to denote the missing indicator

of X2, for r = (rX , rD) = (0, 0), (1, 0) and (0, 1) we generated the (RX
i , R

D
i )’s according to

the model fRX ,RD|X,D(r
X , rD|X, D) = exp{gr,2(X, D)/D2(X, D)}, fRX ,RD|X,D(1, 1|X, D) =

1/D2(X, D), where g00,2(X, D) = 0.5X1 − 3, g10,2(X, D) = X1 + X2 − 1.8, g01,2(X, D) =

−0.5X1+D− 1.5, D2(X, D) = 1+ exp{g00,2(X1)}+exp{g10,2(X1, X2)}+exp{g01,2(X1, D)}.

In our third 2-dimensional case (model (v)), X1, X2 and D were all subject to miss-
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Figure 3: True p for model (iv) (top left) and, from column 2 to 4, p̂LOG
MLE,1 p̂LOG

MLE,2, p̂UMLE

corresponding to the median ISEs with grouping (B) and N = 2500 (first row) or N = 5000

(second row), and (bottom left) p̂MISP
MLE,2 with N = 5000.

ingness but at most one of them was missing per individual. We took p(x) = 1/{1 +

exp(x2
1 + 0.5x2 + 1)}, and for r = (rX1 , rX2 , rD) = (0, 1, 1), (1, 0, 1) and (1, 1, 0), the

(RX1
i , RX2

i , RD
i )’s were generated according to the model fRX1 ,RX2 ,RD|X,D(r

X
1 , r

X
2 , r

D|X, D) =

exp{gr,3(X, D)}/D3(X, D), fRX1 ,RX2 ,RD|X,D(1, 1, 1|X, D) = 1/D3(X, D), where g011,3(X, D) =

0.5X2 +D− 2.5, g101,3(X, D) = X1 +D− 1.5, g110,3(X, D) = −0.5X1 +X2 − 1, D3(X, D) =

1 + exp{g011,3(X2, D)}+ exp{g101,3(X1, D)}+ exp{g110,3(X1, X2)}.

On average, about 54% to 63% of the individuals are completely observed (RX = RD = 1)

in the data generating models defined above. To assess the model sensitivity, we also com-

puted p̂MISP
MLE,1 (resp., p̂MISP

MLE,2), our estimator p̂MLE,1 (resp., p̂MLE,2) with misspecified MNAR

model obtained by pretending that g10,1(X,D) = ϕ1X
2 + ϕ2 in the univariate X case,

or g00,2(X, D;ϕ) = ϕ1X
2
1 + ϕ2, g10,2(X, D;ϕ) = ϕ3X1 + ϕ4X

2
2 + ϕ5 and g011,3(X, D;ϕ) =

ϕ1X
2
2 + ϕ2D + ϕ3 in the bivariate case (we correctly specified the other functions). For all

the estimators of p that we computed in models (iii) and (iv), since X1 was fully observed, we

estimated the mean and variance of X1 by the empirical mean and variance of X1 and only

optimized the log likelihood with respect to the remaining parameters, as discussed in Sec-
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Figure 4: From left to right: true p for model (v) and p̂LOG
MLE,2, p̂

MISP
MLE,2 and p̂ IGN

MLE,2 corresponding

to the median ISEs with grouping (A) and N = 3000.

tion 3. We computed all estimators using the fminunc function in Matlab, where as initial

values, we took the empirical mean and variance of X|RX = 1 and empirical (co)variance of

X|RX = 1 for the parameters of fX and set the other parameters to zero.

For the setting at (2.3), we considered J = 500, 1000 and 2000 groups of sizes nj chosen

in two ways: (A) J/2 groups of size nj = 4 and J/2 groups of size nj = 8; (B) J groups

of size nj = 5. These correspond to samples of size N = 3000, 6000 and 12000 in case

(A) and N = 2500, 5000 and 10000 in case (B); for p̂LOG
MLE,1 and p̂MISP

MLE,1 we took the same

nj’s but replaced J by the random J ′ in each sample. For each model combination, we

applied each method on 200 simulated samples. We summarize the results through the

integrated square error, ISE =
∫ 1.5

−1.5
{p̂(x) − p(x)}2 dx in the univariate case and ISE =∫ 1.5

−1.5

∫ 1.5

−1.5
{p̂(x1, x1)−p(x1, x2)}2 dx1 dx2 in the bivariate case, where p̂ denotes any estimator

of p we computed; the probability that X lies in the range of integration is about 95% in

the univariate case and 92% in the bivariate case.

Table 1 shows, for each estimator and all configurations, the median and interquartile

range of the 200 ISEs multiplied by 104 in the univariate case, and by 103 in the bivariate

case. Note that we cannot really compare the estimators from data grouped under the setting

at (2.2) with those under the setting at (2.3), since they are computed from observations

grouped differently. We learn from the table that, except for model (v) where two covariates

are subject to missingness, the consistent p̂LOG
MLE,1 and p̂LOG

MLE,2 that assumes the right MNAR

model outperformed p̂ IGN
MLE,1 and p̂ IGN

MLE,2 which wrongly assumes an ignorable MAR model,

but the differences between them are often relatively small, suggesting that the ignorable

MAR assumption can often be a reasonable working assumption. To support this further, in
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Table 2: Estimators of p for the HIV infection dataset with groupings (C) and (D). The

numbers shown are the median (interquartile range) ISD×104 computed from 200 samples.

p̂LOG
MLE,1 p̂LOG

MLE,2 p̂ IGN
MLE,1 p̂ IGN

MLE,2

sp = se = 1
(C) 3.24 (4.03) 1.83 (2.42) 3.00 (3.53) 2.45 (2.89)

(D) 0.94 (1.39) 0.66 (0.94) 1.24 (1.51) 0.75 (1.05)

sp = se = 0.99
(C) 3.36 (4.53) 2.03 (2.30) 3.27 (3.63) 2.45 (3.04)

(D) 0.90 (1.29) 0.68 (0.95) 1.24 (1.57) 0.84 (1.01)

model (v), p̂ IGN
MLE,2 performed better than p̂LOG

MLE,2. Likewise, while p̂
LOG
MLE,1 and p̂LOG

MLE,2 performed

very similarly to their versions p̂MISP
MLE,1 and p̂MISP

MLE,2 with misspecified MNAR mechanism in

models (i) to (iv), the latter two performed much worse than the former two in model (v).

Of course, p̂UMLE performed the best since this estimator was computed using the non-

grouped observations. Since the bivariate case is more complex, estimators there require

larger effective sample sizes to perform well; therefore, in that case grouping the data had

more impact on the estimators than in the univariate case, especially for the smallest sample

sizes we considered. Of course, in that case, the ISE is computed on a surface, so that small

errors in the estimation of p accumulate along the surface, whence the large numbers in the

table. Summary results for the estimators γ̂ of γ provided in Appendix E are similar to

those for p̂, except in case (iii); there, p is less sensitive to the value of γ, so that γ̂ is a poor

estimate of γ for small sample sizes, even though p̂ is not too far from p.

To illustrate the results visually, we show, for a few univariate settings, the true curve

and three estimated curves corresponding in each setting to the samples that gave the first,

second and third quartile values out of the 200 ISEs. For bivariate cases, we plot the true

surfaces and the estimated surfaces corresponding in each setting to the samples giving the

median ISE. The first row of Figure 1 illustrates the fact that p̂LOG
MLE,1 performed better with

larger sample size, and it performed similarly to p̂MISP
MLE,1 and p̂LOG

MLE,2 for model (i). The second

row of Figure 1 shows that p̂LOG
MLE,1, p̂

LOG
MLE,2 and p̂ IGN

MLE,2 performed reasonably well, and through

the estimator p̂UMLE, we can see the loss incurred by grouping the data. The first row of

Figure 2 shows that for model (iii), the estimators were able to capture the main trend of the

true surface, but the coefficients tended to be overestimated when the sample size was small.

The second row illustrates a significant improved performance of all estimators as sample
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size increases. Figure 3 illustrates similar properties for model (iv); there we also show

the estimator p̂UMLE computed from non grouped data, and we see that while it performed

much better than the estimators computed from grouped data for N = 2500, our estimators

performed reasonably well for larger sample size, even with a misspecified missing model.

Finally, Figure 4 shows some of the estimated surfaces for model (v) when N = 5000.

6 Real data application

We applied our methods from Section 3 to a dataset from the Demographics and Health

Survey, which contains men’s HIV and nutrition data from Zimbabwe collected from 2010 to

2011. We are interested in p(x1, x2) = E(D|X1 = x1, X2 = x2) where D is the HIV infection

status of an individual, X1 is the log of the individual’s age at the test and X2 is the log of

the individual’s age at the first sexual intercourse (we took the log because X1 and X2 had

skewed distributions with long right tails). X1 and X2 range from 2.71 to 3.99 and 2.40 to

3.91, respectively. The sample size is N = 7480; X1 is fully observed, X2 is missing for 2049

individuals (27.39% of the individuals), D is missing for 1435 individuals (19.18% of the

individuals) and 4436 individuals (59.3% of the individuals) have fully observed (X1, X2, D).

Since X1 is fully observed, below we use RX to denote the missing indicator of X2 and model

the missing data mechanism by the linear multinomial logistic model as in Section 5. In this

sample, 811 individuals have positive HIV status.

As usual in real data analyses from the group testing literature, our goal was to compare

our estimators based on grouped data with usual estimators based on non-grouped data, to

illustrate the effect that using group testing would have on statistical analysis. As in that

literature4,10,26, in our datasets we had access to individual test results which we treated as

perfect, i.e. Di,j ≡ Yi,j
27. Then, like there, we grouped the individuals into groups of size (C)

nj = 6 and (D) nj = 3, except for the last group which had a smaller size since N/3 > 0. For

the setting at (2.3), this corresponds to J = 1247 groups in case (C) and J = 2494 groups in

case (D). For the setting at (2.2), we grouped only the individuals with observed specimens,

resulting in J ′ = 1008 groups for grouping (C) and J ′ = 2015 groups for grouping (D); there,

individuals with missing specimens are seen as additional groups of size nj = 1.
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Figure 5: First row from left to right: p̂LOG
ideal , p̂

LOG
MLE,2 for grouping (D), p̂ IGN

ideal and p̂ IGN
MLE,2 for

grouping (D). Here the estimated surfaces correspond to the median ISDs with sp = se = 1.

We chose different values of sp and se to generate Ỹ ∗ and Y ∗ following (2.2) to (2.5):

either sp = se = 1 or, to illustrate the impact of imperfect tests, sp = se = 0.9928. In

each case, we grouped the data randomly 200 times and applied all estimators to each

grouped sample. As often done in practice, we assumed that (X1, X2) ∼ N(µ,Σ), and

p was a logistic regression curve, i.e. p(x1, x2; γ) = 1/{1 + exp(γ1x1 + γ2x2 + γ3)}. We

computed our estimators p̂LOG
MLE,1, p̂

LOG
MLE,2, p̂

IGN
MLE,1 and p̂ IGN

MLE,2 as in Section 5. Since the true

prevalence curve and the true missing data mechanism are unknown, we considered two

targets: p̂LOG
ideal = p̂LOG

MLE,2 and p̂ IGN
ideal = p̂ IGN

MLE,2, both obtained from non grouped data with

sp = se = nj = 1, which gave p̂LOG
ideal (x1, x2) = 1/{1 + exp(−2.60x1 + 1.18x2 + 7.21)} and

p̂ IGN
ideal(x1, x2) = 1/{1 + exp(−2.57x1 + 1.19x2 + 7.11)}, so that the targets are very close to

each other, suggesting some robustness against missing model specification.

We evaluated the results of each estimator p̂ applied to grouped data by computing ISD

=
∫ b2
a2

∫ b1
a1
{p̂(x1, x2) − p̂ideal(x1, x2)}2 dx1 dx2, where p̂ideal = p̂LOG

ideal for p̂ = p̂LOG
MLE,1 and p̂LOG

MLE,2,

and p̂ideal = p̂ IGN
ideal for p̂ = p̂ IGN

MLE,1 and p̂ IGN
MLE,2, (a1, b1) = (2.71, 3.95) and (a2, b2) = (2.64, 3.33)

the (2.5, 97.5)% empirical quantiles of X1 and X2|RX = 1, respectively.

The results are summarised in Table 2, where we show the median and interquartile range

of ISD×104 computed from the 200 grouped samples we randomly created. In Figure 5 we

show p̂LOG
ideal , p̂

IGN
ideal, and p̂LOG

MLE,2 and p̂ IGN
MLE,2 corresponding to the median ISDs for grouping (D);

see Figure 1 in Appendix F for additional plots. We see that the surfaces are close to their

respective target, and close to each other, despite assuming a different missing model.

Our estimators computed from grouped data were able to capture the main trend of the

target prevalence curves p̂LOG
ideal and p̂ IGN

ideal. In particular, they all show that HIV infection
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is strongly associated to the age at the test, which can be expected since the older the

individuals, the more chances they have had to be infected by HIV. We also see a negative

association with age at first sexual intercourse, which corresponds to the fact that the younger

the first sexual intercourse, the larger the number of years the person was exposed to HIV.

This is in line with known facts about HIV in the literature29,30.

7 Discussion

We have developed a MLE of the conditional prevalence p in a group testing setting where

covariates X and the specimen measuring D are both subject to nonmonotone missingness.

In the particular case of the multinomial logistic MNAR mechanism, we have established

identifiability under the CCMV restriction. This restriction cannot be tested, but what could

be done is to assess the sensitivity of the model to this assumption, using the strategy sug-

gested by Tchetgen Tchetgen et al22. We have also demonstrated that under the assumption

that missingness depends only on the observed part of X, the missing model is ignorable

and our estimators simplify considerably.

In theory, our methods are designed for general nonmonotone missing data. In practice,

like their standard non grouped i.i.d. counterpart, they are difficult to compute if there are

multiple missing covariates, especially in the MNAR case where the number of parameters

to estimate can quickly become too large. We have introduced an ignorable MAR model

which significantly reduces the number of parameters to estimate. However, even under this

ignorable model, our estimators faces a challenge encountered in the MNAR case and in the

case without grouped data: computing numerical integrals of dimension equal to the number

of missing covariates. An interesting topic for future research would be to develop efficient

procedures for computing these integrals numerically, such as importance sampling31,32.

It would also be interesting to investigate ways of computing standard errors and con-

fidence intervals. It seems very difficult to derive the explicit asymptotic variances of our

estimators because of the integral over the nonmonotone missing data patterns in the like-

lihoods. Alternatively, we could investigate a bootstrap procedure. We leave this for future

research as implementing it correctly would require to determine a consistent bootstrap
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resampling approach that takes grouping, missingness, and test errors into account.
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