
A Design-Adaptive Local Polynomial Estimator
for the Errors-in-Variables Problem ∗

Aurore Delaigle, Jianqing Fan, and Raymond J. Carroll

Abstract: Local polynomial estimators are popular techniques for nonparametric re-
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version, the local constant estimator, can be easily extended to the errors-in-variables

context by exploiting its similarity with the deconvolution kernel density estimator.

The generalization of the higher order versions of the estimator, however, is not

straightforward and has remained an open problem for the last 15 years, since the
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provide methodological contributions to error-in-variable regression, including local

polynomial estimation of derivative functions.
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1 Introduction

Local polynomial estimators are popular techniques for nonparametric regression es-

timation. Their simplest version, the local constant estimator, can be easily extended

to the errors-in-variables context by exploiting its similarity with the deconvolution

kernel density estimator. The generalization of the higher order versions of the estima-

tor, however, is not straightforward and has remained an open problem for the last 15

years, since the publication of Fan and Truong (1993). The purpose of this paper is to

describe a solution to this long-standing open problem: we also make methodological

contributions to errors-in-variable regression, including local polynomial estimation

of derivative functions.

Suppose we have an i.i.d. sample (X1, Y1), . . . , (Xn, Yn) distributed like (X, Y ) and

we want to estimate the regression curve m(x) = E(Y |X = x) or its νth derivative

m(ν)(x). Let K be a kernel function and h > 0 a smoothing parameter called the

bandwidth. When X is observable, at each point x, the local polynomial estimator of

order p approximates the function m by a pth order polynomial mp(z) ≡ ∑p
k=0 βx,k(z−

x)k, where the local parameters βx = (βx,0, . . . , βx,p) are fitted locally by a weighted

least squares regression problem, via minimization of

n∑
j=1

[
Yj −mp(Xj)

]2
Kh(Xj − x), (1.1)

where Kh(x) = h−1K(x/h). Then m(x) is estimated by m̂p(x) = β̂x,0 and m(ν)(x)

is estimated by m̂
(ν)
p (x) = ν!β̂x,ν ; see Fan and Gijbels (1996). Local polynomial

estimators of order p > 0 have many advantages over other nonparametric estimators

such as the Nadaraya-Watson estimator (p = 0). One of their attractive features is

their capacity to adapt automatically to the boundary of the design points, thereby

offering the potential of bias reduction with no or little variance increase.

In this paper, we consider the more difficult errors-in-variables problem, where the
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goal is still to estimate the curve m(x) or its derivative m(ν)(x), but the only obser-

vations available are an i.i.d. sample (W1, Y1), . . . , (Wn, Yn) distributed like (W,Y ),

where W = X + U with U independent of X and Y . Here, X is not observable and

instead we observe W , which is a version of X contaminated by a measurement error

U with density fU . In this context, when p = 0, mp(Xj) = βx,0 and a consistent es-

timator of m can simply be obtained after replacing the weights Kh(Xj − x) in (1.1)

by appropriate weights depending on Wj; see Fan and Truong (1993). For p > 0,

however,

mp(Xj) =

p∑

k=0

βx,k(Xj − x)k

depends on the unobserved Xj. As a result, despite the popularity of the measurement

error problem, no one has yet been able to extend the minimization problem (1.1)

and the corresponding local pth order polynomial estimators for p > 0 to the case

of contaminated data. An exception is the recent paper by Zwanzig (2007), who

constructed a local linear estimator of m in the context where the Ui’s are normally

distributed, the density of the Xi’s is known to be uniform U [0, 1], and the curve m

is supported on [0, 1].

We propose a solution to the general problem and thus generalize local polynomial

estimators to the errors-in-variable case. The methodology consists of constructing

simple unbiased estimators of the terms depending on Xj which are involved in the

calculation of the usual local polynomial estimators. Our approach also provides an

elegant estimator of the derivative functions in the errors-in-variables setting.

The errors-in-variables regression problem has been considered by many authors in

both the parametric and the nonparametric context. See for example Fan and Masry

(1992), Cook and Stefanski (1994), Stefanski and Cook (1995), Ioannides and Alevi-

zos (1997), Koo and Lee (1998), Carroll, Maca and Ruppert (1999), Stefanski (2000),

Taupin (2001), Berry, Carroll and Ruppert (2002), Carroll and Hall (2004), Stau-
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denmayer and Ruppert (2004), Liang and Wang (2005), Comte and Taupin (2007),

Delaigle and Meister (2007), Hall and Meister (2007) and Delaigle, Hall and Meister

(2008); see also Carroll et al. (2006) for an exhaustive review of this problem.

2 Methodology

In this section, we will first review local polynomial estimators in the error-free case,

in order to show exactly what has to be solved in the measurement error problem.

After that, we give our solution.

2.1 Local polynomial estimator in the error-free case

In the usual error-free case (i.e. when the Xi’s are observable), the local polynomial

estimator of m(ν)(x) of order p can be written in matrix notation as

m̂(ν)
p (x) = ν!e>ν+1(X

>KX)−1X>Ky,

where e>ν+1 = (0, , . . . , 0, 1, 0, . . . , 0) with 1 on the (ν+1)th position, y> = (Y1, . . . , Yn),

X = {(Xi − x)j}1≤i≤n,0≤j≤p and K = diag{Kh(Xj − x)}. See for example Fan and

Gijbels (1996), page 59.

Using standard calculations, this estimator can be written in various equivalent

ways. An expression that will be particularly useful in the context of contaminated

errors, where we observe neither X nor K, is the one used in Fan and Masry (1997),

which follows from equivalent kernel calculations of Fan and Gijbels (1996, page 63).

Let

Sn =




Sn,0(x) . . . Sn,p(x)
...

. . .
...

Sn,p(x) . . . Sn,2p(x)


 ,Tn =




Tn,0(x)
...

Tn,p(x)


 ,
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where

Sn,k(x) =
1

n

n∑
j=1

(Xj − x

h

)k

Kh(Xj − x), Tn,k(x) =
1

n

n∑
j=1

Yj

(Xj − x

h

)k

Kh(Xj − x).

Then the local polynomial estimator of m(ν)(x) of order p can be written as

m̂(ν)
p (x) = ν!h−νe>ν+1S

−1
n Tn.

2.2 Extension to the error-case

Our goal is to extend m̂
(ν)
p (x) to the errors-in-variables setting, where the data are

a sample (W1, Y1), . . . , (Wn, Yn) of contaminated i.i.d. observations coming from the

model

Yj = m(Xj) + ηj, Wj = Xj + Uj, E(ηj|Xj) = 0,

with Xj ∼ fX and Uj ∼ fU ,
(2.1)

where Uj are the measurement errors, independent of (Xj, Yj, ηj), and fU is known.

For p = 0, a rate-optimal estimator has been developed by Fan and Truong

(1993). Their technique is similar to the one employed in density deconvolution

problems studied in Stefanski and Carroll (1990), see also Carroll and Hall (1988). It

consists of replacing the unobserved Kh(Xj−x) by an observable quantity Lh(Wj−x)

satisfying

E[Lh(Wj − x)|Xj] = Kh(Xj − x).

In the usual nomenclature of measurement error models, this means that Lh(Wj −x)

is an unbiased score for the kernel function Kh(Xj − x).

Following this idea, we would like to replace (Xj − x)kKh(Xj − x) in Sn,k and

Tn,k by (Wj − x)kLk,h(Wj − x), where Lk,h(x) = h−1Lk(x/h), and each Lk potentially

depends on h and satisfies

E
{

(Wj − x)kLk,h(Wj − x)
∣∣∣Xj

}
= (Xj − x)kKh(Xj − x). (2.2)
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That is, we propose to find unbiased scores for all components of the kernel functions.

Thus, using the substitution principle, we propose to estimate m(ν)(x) by

m̂(ν)
p (x) = ν!h−νe>ν+1Ŝ

−1
n T̂n, (2.3)

where Ŝn = {Ŝn,j+`(x)}0≤j,`≤p and T̂n = {T̂n,0(x), . . . , T̂n,p(x)}> with

Ŝn,k(x) = n−1

n∑
j=1

(Wj − x

h

)k

Lk,h(Wj − x),

T̂n,k(x) = n−1

n∑
j=1

Yj

(Wj − x

h

)k

Lk,h(Wj − x).

The method explained above seems relatively straightforward but its actual imple-

mentation is difficult, and this is the reason that the problem has remained unsolved.

The main difficulty has been that it is very hard to find an explicit solution Lk,h(·) to

the integral equation (2.2). In addition, a priori it is not clear that the solution will

be independent of other quantities such as Xj, x, and other population parameters.

Therefore, this problem has remained unsolved for more than 15 years.

The key to finding the solution is the Fourier transform. Instead of solving (2.2)

directly, we solve its Fourier version

E
[
φ{(Wj−x)kLk,h(Wj−x)}(t)

∣∣∣Xj

]
= φ{(Xj−x)kKh(Xj−x)}(t), (2.4)

where, for a function g, we let φg denote its Fourier transform, while for a random

variable T , we let φT denote the characteristic function of its distribution.

We make the following basic assumptions:

Condition A:
∫ |φX | < ∞; φU(t) 6= 0 for all t; φ

(`)
K is not identically zero and

∫ |φ(`)
K (t)/φU(t/h)| dt <

∞ for all h > 0 and 0 ≤ ` ≤ 2p.
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Condition A generalizes standard conditions of the deconvolution literature, where

it is assumed to hold for p = 0. It is easy to find kernels which satisfy this condition.

For example, kernels defined by φK(t) = (1− t2)q · 1[−1,1](t), with q ≥ 2p, satisfy this

condition.

Under these conditions, we show in the appendix that the solution to (2.4) is

found by taking Lk (in the definition of Lk,h) equal to

Lk(u) = u−kKU,k(u),

with KU,k(x) =i−k 1

2π

∫
e−itx φ

(k)
K (t)

φU(−t/h)
dt.

In other words, our estimator is defined by (2.3), where

Ŝn,k(x) = n−1

n∑
j=1

KU,k,h(Wj − x) and T̂n,k(x) = n−1

n∑
j=1

YjKU,k,h(Wj − x), (2.5)

with KU,k,h(x) = h−1KU,k(x/h). Note that the functions KU,k depend on h, even

though, to simplify the presentation, we did not indicate this dependence explicitly

in the notations.

In what follows, for simplicity, we drop the p index from m̂
(ν)
p (x). It is also

convenient to rewrite (2.3) as

m̂(ν)(x) = h−νν!

p∑

k=0

Ŝν,k(x)T̂n,k(x),

where Ŝν,k(x) denotes the (ν + 1, k + 1)th element of the inverse of the matrix Ŝn.

3 Asymptotic normality

3.1 Conditions

To establish asymptotic normality of our estimator, we need to impose some regularity

conditions. Note that these conditions are stronger than those needed to define the
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estimator, and to simplify the presentation, we allow overlap of some of the conditions,

e.g., compare condition A and condition (B1) below.

As expected because of the unbiasedness of the score, and as we will show pre-

cisely, the asymptotic bias of the estimator, defined as the expectation of the limiting

distribution of m̂(ν)(x)−m(ν)(x), is exactly the same as in the error-free case. There-

fore, exactly the same as in the error-free case, the bias depends on the smooth-

ness of m and fX , and on the number of finite moments of Y and K. Define

τ 2(u) = E
[{Y − m(x)}2|X = u

]
. Note that, to simplify the notation, we do not

put an index x into the function τ , but it should be obvious that the function de-

pends on the point x where we wish to estimate the curve m. We make the following

assumptions:

Condition B:

(B1) K is a real and symmetric kernel such that
∫

K(x) dx = 1 and has finite mo-

ments of order 2p + 3 ;

(B2) h → 0 and nh →∞ as n →∞;

(B3) fX(x) > 0 and fX is twice differentiable such that ‖f (j)
X ‖∞ < ∞ for j = 0, 1, 2;

(B4) m is p+3 times differentiable, τ 2(·) is bounded, ||m(j)||∞ < ∞ for j = 0, . . . , p+

3, and for some η > 0, E
{|Yi −m(x)|2+η|X = u

}
is bounded for all u.

These conditions are rather mild and, apart from the assumptions on the conditional

moments of Y , they are fairly standard in the error-free context. Boundedness of

moments of Y are standard in the measurement error context; see Fan and Masry

(1992) and Fan and Truong (1993).

The asymptotic variance of the estimator, defined as the variance of the limiting

distribution of m̂(ν)(x) − m(ν)(x), differs from the error-free case since, as usual in

deconvolution problems, it depends strongly on the type of measurement errors that
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contaminate the X-data. Following Fan (1991a,b,c), we consider two categories of

errors. An ordinary smooth error of order β is such that

lim
t→+∞

tβφU(t) = c and lim
t→+∞

tβ+1φ′U(t) = −cβ (3.1)

for some constants c > 0 and β > 1. A supersmooth error of order β > 0 is such that

d0|t|β0 exp(−|t|β/γ) ≤ |φU(t)| ≤ d1|t|β1 exp(−|t|β/γ) as |t| → ∞, (3.2)

with d0, d1, γ, β0 and β1 some positive constants. For example, Laplace errors,

Gamma errors and their convolutions are ordinary smooth, whereas Cauchy errors,

Gaussian errors and their convolutions are supersmooth. Depending on the type of the

measurement error, we need different conditions on K and U to establish the asymp-

totic behavior of the variance of the estimator. These conditions mostly concern the

kernel function, which we can choose; they are fairly standard in deconvolution prob-

lems, and are easy to satisfy. See for example Fan (1991a,b,c) and Fan and Masry

(1992). We assume:

Condition O (ordinary smooth case):

||φ′U ||∞ < ∞ and for k = 0, . . . , 2p+1, ||φ(k)
K ||∞ < ∞ and

∫ [|t|β + |t|β−1] |φ(k)
K (t)| dt <

∞ and, for 0 ≤ k, k′ ≤ 2p,
∫ |t|2β|φ(k)

K (t)| · |φ(k′)
K (t)| dt < ∞.

Condition S (supersmooth case):

φK is supported on [−1, 1] and, for k = 0, . . . , 2p, ||φ(k)
K ||∞ < ∞;

In the sequel, we let Ŝ = Ŝn, µj =
∫

ujK(u) du,, S =
(
µk+`

)
0≤k,`≤p

, S̃ =
(
µk+`+1

)
0≤k,`≤p

, µ = (µp+1, . . . , µ2p+1)
>, µ̃ = (µp+2, . . . , µ2p+2)

>, and, for any square

integrable function g, we define R(g) =
∫

g2. Finally, we let Si,j denote the (i+1, j +
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1)th element of the matrix S−1f−1
X (x) and, for c as in (3.1),

S∗ =
(
(−1)k′ik

′−k 1

2πc2

∫
|t|2βφ

(k)
K (t)φ

(k′)
K (t) dt

)
0≤k,k′≤p

.

Note that this matrix is always real since its (k, k′)th element is zero when k + k′ is

odd, and ik
′−k = (−1)(k′−k)/2 otherwise.

3.2 Asymptotic results

Asymptotic properties of the estimator depend on the type of error that contaminates

the data. The theorem below establishes asymptotic normality in the ordinary smooth

error case.

Theorem 3.1. Assume (3.1). Under Conditions A, B and O, if nh2β+2ν+1 →∞ and

nh2β+4 →∞, we have

m̂(ν)(x)−m(ν)(x)− Bias{m̂(ν)(x)}√
var{m̂(ν)(x)}

L−→ N(0, 1)

where var{m̂(ν)(x)} = e>ν+1S
−1S∗S−1eν+1

(ν!)2(τ 2fX) ∗ fU(x)

f 2
X(x)nh2β+2ν+1

+ o
( 1

nh2β+2ν+1

)
, and

(a) if p− ν is odd

Bias{m̂(ν)(x)} = e>ν+1S
−1µ

ν!

(p + 1)!
m(p+1)(x)hp+1−ν + o(hp+1−ν);

(b) if p− ν is even

Bias{m̂(ν)(x)} = e>ν+1S
−1µ̃

ν!

(p + 2)!

[
m(p+2)(x) + (p + 2)m(p+1)(x)

f ′X(x)

fX(x)

]
hp+2−ν

− e>ν+1S
−1S̃S−1µ

ν!

(p + 1)!
m(p+1)(x)

f ′X(x)

fX(x)
hp+2−ν + o(hp+2−ν).

From this theorem we see that, as usual in nonparametric kernel deconvolution

estimators, the bias of our estimator is exactly the same as the bias of the local
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polynomial estimator in the error-free case and the errors-in-variables only affect the

variance of the estimator. Compare the bias formulae above with Theorem 3.1 of Fan

and Gijbels (1996), for example. In particular, our estimator has the design-adaptive

property discussed in section 3.2.4 of that book.

The optimal bandwidth is found by the usual trade-off between the squared bias

and the variance, which gives h ∼ n−1/(2β+2p+3) if p− ν is odd and h ∼ n−1/(2β+2p+5)

if p − ν is even. The resulting convergence rates of the estimator are, respectively,

n−(p+1−ν)/(2β+2p+3) if p−ν is odd and n−(p+2−ν)/(2β+2p+5) if p−ν is even. For p = ν = 0,

our estimator of m is exactly the estimator of Fan and Truong (1993), and has the

same rate as there, that is n−2/(2β+5) (remember that we only assume that fX is

twice differentiable). For p = 1 and ν = 0, our estimator is different from Fan and

Truong (1993), but it converges at the same rate. For p > 1 and ν = 0, our estimator

converges at faster rates.

Remark 3.1. Which p should one use? This problem is essentially the same as in

the error-free case (see Fan and Gijbels, 1996, section 3.3). In particular, although, in

theory using higher values of p reduces the asymptotic bias of the estimator without

increasing the order of its variance, the theoretical improvement for p− ν > 1 is not

generally noticeable in finite samples. In particular, the constant term of the domi-

nating part of the variance can increase rapidly with p. However, the improvement

from p − ν = 0 to p − ν = 1 can be quite significant, especially in cases where fX

or m are discontinuous at the boundary of their domain, in which case the bias for

p− ν = 1 is of smaller order than the bias for p− ν = 0. In other cases, the biases of

the estimators of orders p and p + 1, where p− ν is even, are of the same order. See

sections 3.3 and 5.

Remark 3.2. Higher order deconvolution kernel estimators. As usual, it is possible

to reduce the order of the bias by using higher order kernels, i.e., kernels that have
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all their moments up to order k, say, vanishing, and imposing the existence of higher

derivatives of fX and m, as was done in Fan and Truong (1993). However, such

kernels are not very popular, because it is well known that, in practice, they increase

the variability of estimators and can make them quite unattractive. See for example

Marron and Wand (1992). Similarly, one can also use the infinite order sinc kernel,

which has the appealing theoretical property that it adapts automatically to the

smoothness of the curves, see Diggle and Hall (1993) and Comte and Taupin (2007).

However, the trick of the sinc kernel does not apply to the boundary setting. In

addition, this kernel can only be used when p = ν = 0, since φ
(`)
K ≡ 0 ∀` > 0, where

it can sometimes work poorly in practice, especially in cases where fX or m have

boundary points, see section 5 for illustration.

The next theorem establishes asymptotic normality in the supersmooth error case.

In this case, the variance term is quite complicated and asymptotic normality can

only be established under a technical condition, which generalizes Condition 3.1 (and

Lemma 3.2) of Fan and Masry (1992). This condition is nothing but a refined ver-

sion of the Lyapounov condition, and it essentially says that the bandwidth can not

converge to zero too fast. It should be possible to derive more specific lower bounds

on the bandwidth, but this would require considerable technical detail and therefore

will be omitted here. In the next theorem we first give an expression for the asymp-

totic bias and variance of m̂(ν)(x), defined as, respectively, the expectation and the

variance of h−νν!Zn, the asymptotically dominating part of the estimator, and where

Zn is defined in (A.3). Then, under the additional assumption, we derive asymptotic

normality.

Theorem 3.2. Assume (3.2). Under conditions A, B and S, if h = d(2/γ)1/β(ln n)−1/β

with d > 1, then
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(i) Bias{m̂(ν)(x)} is as in Theorem 3.1 and var{m̂(ν)(x)} = o(Bias2{m̂(ν)(x)});

(ii) In addition, if, for Un,1 defined in the appendix at equation (A.5), there exists

r > 0 such that, for bn = hβ/(2r+10), E[U2
n,1] ≥ C2

1f
−2
X (x)h2β0·1{β0<1/2}−1 exp

(
2−4βbn

hβγ

)
,

with 0 < C1 < ∞ independent of n, then we also have

m̂(ν)(x)−m(ν)(x)− Bias{m̂(ν)(x)}√
var{m̂(ν)(x)}

L−→ N(0, 1).

When h = d(2/γ)1/β(ln n)−1/β with d > 1, as in the theorem, it is not hard to see

that, as usual in the supersmooth error case, the variance is negligible compared to the

squared bias and the estimator converges at the logarithmic rate {log(n)}−(p+1−ν)/β

if p − ν is odd, and {log(n)}−(p+2−ν)/β if p − ν is even. Again, for p = ν = 0, our

estimator is equal to the estimator of Fan and Truong (1993) and thus has the same

rate.

3.3 Behavior near the boundary

Since the bias of our estimator is the same as in the error-free case, it suffers from the

same boundary effects when the design density fX is compactly supported. Without

loss of generality, suppose that fX is supported on [0, 1] and, for any integer k ≥ 0 and

any function g defined in [0, 1] which is k times differentiable on ]0, 1[, let g̃(k)(x) =

g(k)(0+) ·1{x=0}+ g(k)(1−) ·1{x=1}+ g(k)(x) ·1{0<x<1}. We derive asymptotic normality

of the estimator under the following conditions, which are the same as those usually

imposed in the error-free case:

Condition C:

(C1)–(C2) Same as (B1)–(B2);

(C3) fX(x) > 0 for x ∈]0, 1[ and fX is twice differentiable such that ‖f (j)
X ‖∞ < ∞ for

j = 0, 1, 2;
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(C4) m is p + 3 times differentiable on ]0, 1[, τ 2 is bounded on [0, 1] and continuous

on ]0, 1[, ||m(j)||∞ < ∞ on [0, 1] for j = 0, . . . , p + 3 and there exists η > 0 such

that E
{|Yi −m(x)|2+η|X = u

}
is bounded for all u ∈ [0, 1].

We also define µk(x) =
∫ (1−x)/h

−x/h
xkK(x) dx, SB(x) =

(
µk+k′(x)

)
0≤k,k′≤p

, µ(x) =

{µp+1(x), . . . , µ2p+1(x)}> and

S∗
B(x) =

{∫
τ̃ 2(x− u + hz)f̃X(x− u + hz)KU,k(z)KU,k′(z)fU(u) du dz

}
0≤k,k′≤p

.

For brevity, we only show asymptotic normality in the ordinary smooth error case.

Our results can be extended to the supersmooth error case: all our calculations for

the bias are valid for supersmooth errors, and the only difference is the variance,

which is negligible in that case.

The proof of the next theorem is similar to the proof of Theorem 3.1 and hence is

omitted. It can be obtained from the sequence of Lemmas B.10 to B.13 of Delaigle,

Fan and Carroll (2008). As for Theorem 3.2, a technical condition, which is nothing

but a refined version of the Lyapounov condition, is required to deal with the variance

of the estimator.

Theorem 3.3. Assume (3.1). Under Conditions A, C and O, if nh2β+2ν+1 →∞ and

nh2β+4 →∞ as n →∞, and e>ν+1S
−1
B (x)S∗

B(x)S−1
B (x)eν+1 ≥ C1h

−2β for some finite

constant C1 > 0, we have

m̂(ν)(x)−m(ν)(x)− Bias{m̂(ν)(x)}√
var{m̂(ν)(x)}

L−→ N(0, 1)

where Bias{m̂(ν)(x)} = e>ν+1S
−1
B (x)µ(x)

ν!

(p + 1)!
m̃(p+1)(x)hp+1−ν + o(hp+1−ν)

and var{m̂(ν)(x)} = e>ν+1S
−1
B (x)S∗

B(x)S−1
B (x)eν+1

(ν!)2

f̃ 2
X(x)nh2ν+1

+ o
( 1

nh2β+2ν+1

)
.
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As before, the bias is the same as in the error-free case, and thus all well known

results of the boundary problem extend to our context. In particular, the bias of the

estimator for p − ν even is of order hp+1−ν , instead of hp+2−ν in the case without a

boundary, whereas the bias of the estimator for p − ν odd remains of order hp+1−ν ,

as in the no-boundary case. In particular, the bias of the estimator for p− ν = 0 is of

order h, whereas it is of order h2 when p − ν = 1. For this reason, local polynomial

estimators with p− ν odd, and in particular with p− ν = 1, are often considered to

be more natural.

Note that since, in deconvolution problems, kernels are usually supported on the

whole real line (see Delaigle and Hall, 2006), the presence of the boundary can affect

every point of the type x = ch or x = 1 − ch, with c a finite constant satisfying

0 ≤ c ≤ 1/h. For x = ch, it can be shown that

Bias{m̂(ν)(x)} = e>ν+1S
−1
B (x)µ(x)

ν!

(p + 1)!
m(p+1)(0+)hp+1−ν + o(hp+1−ν),

whereas if x = 1− ch, we have

Bias{m̂(ν)(x)} = e>ν+1S
−1
B (x)µ(x)

ν!

(p + 1)!
m(p+1)(1−)hp+1−ν + o(hp+1−ν).

4 Generalizations

In this section, we show how our methodology can be extended to provide estimators

in two important cases: (a) when the measurement error distribution is unknown;

and (b) when the measurement errors are heteroscedastic. In the interest of space we

focus on methodology and do not give detailed asymptotic theory.

4.1 Unknown measurement error distribution

In empirical applications, it can be unrealistic to assume that the error density is

known. However, it is only possible to construct a consistent estimator of m if we are

14



able to consistently estimate the error density itself. Several approaches for estimating

this density fU have been considered in the nonparametric literature. Diggle and Hall

(1993) and Neumann (1997) assume that a sample of observations from the error

density is available and estimate fU nonparametrically from those data. A second

approach, applicable when the contaminated observations are replicated, consists in

estimating fU from the replicates. Finally, in some cases, if we have a parametric

model for the error density fU and additional constraints on the density fX , it is

possible to estimate an unknown parameter of fU without any additional observation,

see Butucea and Matias (2005) and Meister (2006).

We give details for the replicated data approach, which is by far the most com-

monly used. In the simplest version of this model, the observations are a sample of

i.i.d. data (Wj1,Wj2, Yj), j = 1, . . . , n, generated by the model

Yj = m(Xj) + ηj, Wjk = Xj + Ujk, k = 1, 2, E(ηj|Xj) = 0,

with Xj ∼ fX and Ujk ∼ fU ,
(4.1)

where the Ujk’s are independent, and independent of the (Xj, Yj, ηj)’s.

In the measurement error literature, it is often assumed that the error density,

fU(; θ) is known up to a parameter θ which has to be estimated from the data. For

example, if θ = var(U), the unknown variance of U , a
√

n consistent estimator is

given by

θ̂ = {2(n− 1)}−1
∑

(Wj1 −Wj2 −W 1 + W 2)
2, (4.2)

where W k = n−1
∑n

j=1 Wjk. See for example Carroll et al. (2006), equation (4.3).

Taking φU(; θ̂) to be the characteristic function corresponding to fU(; θ̂), we can ex-

tend our estimator of m(ν) to the unknown error case by replacing φU by φU(; θ̂)

everywhere.

In the case where no parametric model for fU is available, some authors suggest

using a nonparametric estimator of fU . For general settings, see Li and Vuong (1997),
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Schennach (2004a,b) and Hu and Schennach (2008). In the common case where the

error density fU is symmetric, Delaigle, Hall and Meister (2008) propose to estimate

φU(t) by φ̂U(t) =
∣∣n−1

∑n
j=1 cos{it(Wj1−Wj2)}

∣∣1/2
. Following the approach they use

for the case p = ν = 0, we can extend our estimator of m(ν) to the unknown error

case by replacing φU by φ̂U everywhere, adding a small positive number to φ̂U when

it gets too small. Detailed convergence rates of this approach have been studied by

Delaigle, Hall and Meister (2008) in the local constant case (p = 0), where they show

that the convergence rates of this version of the estimator is the same as that of the

estimator with known fU , as long as fX is sufficiently smooth relative to fU . Their

conclusion can be extended to our setting.

4.2 Heteroscedastic measurement errors

Our local polynomial methodology can be generalized to the more complicated set-

ting where the errors Ui are not identically distributed. In practice, this could happen

when observations have been obtained in different conditions, for example if they were

collected from different laboratories. Recent references on this problem include De-

laigle and Meister (2007,2008) and Staudenmayer, Ruppert and Buonaccorsi (2008).

In this context, the observations are a sample (W1, Y1), . . . , (Wn, Yn) of i.i.d. obser-

vations coming from the model

Yj = m(Xj) + ηj, Wj = Xj + Uj, E(ηj|Xj) = 0,

with Xj ∼ fX and Uj ∼ fUj
,

(4.3)

where the Uj’s are independent of the (Xj, Yj)’s. Our estimator cannot be applied

directly to such data because there is no common error density fU , and therefore KU,k

is not defined. Rather, we need to construct appropriate individual functions KUj ,k
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and then replace Ŝn,k(x) and T̂n,k(x) in the definition of the estimator, by

ŜH
n,k(x) = n−1

n∑
j=1

KUj ,k,h(Wj − x) and T̂H
n,k(x) = n−1

n∑
j=1

YjKUj ,k,h(Wj − x), (4.4)

where we use the superscript H to indicate that we are treating the heteroscedastic

case. As before, we require that E{ŜH
n,k(x)|X1, . . . , Xn} = Sn,k(x) and E{T̂H

n,k(x)|X1,

. . . , Xn} = Tn,k(x).

A straightforward solution would be to define KUj ,k by

KUj ,k(x) =i−k 1

2π

∫
e−itxφ

(k)
K (t)/φUj

(−t/h) dt,

where φUj
is the characteristic function of the distribution of Uj. However, theoretical

properties of the corresponding estimator are generally not good, because the order

of its variance is dictated by the least favorable error densities, see Delaigle and

Meister (2007, 2008). This problem can be avoided by extending the approach of

those authors to our context, that is by taking

KUj ,k(x) =i−k 1

2π

∫
e−itx φUj

(−t)φ
(k)
K (t)

n−1
∑n

j=1 |φUj
(t/h)|2 dt.

Alternatively, in the case where the error densities are unknown but replicates are

available as at (4.1) we can use instead

ŜH
n,k(x) = n−1

n∑
j=1

KUj ,k,h(W j − x) and T̂H
n,k(x) = n−1

n∑
j=1

YjKUj ,k,h(W j − x), (4.5)

where W j = (Wj1 + Wj2)/2 and

K̃Uj ,k(x) =i−k 1

2π

∫
e−itx φ

(k)
K (t)

n−1
∑n

j=1 eit(Wj1−Wj2)/2
dt,

adding a small positive number to the denominator when it gets too small. This is a

generalization of the estimator of Delaigle and Meister (2008).
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5 Finite sample properties

5.1 Simulation settings

Comparisons between kernel estimators and other methods have been carried out by

many authors in various contexts, with or without measurement errors. One of their

major advantages is that they are simple and can be easily applied to problems such

as heteroscedasticity (see section 4.2), nonparametric variance or mode estimation

and detection of boundaries. See also the discussion in Delaigle and Hall (2008). As

for any method, in some cases, kernel methods outperform, and in other cases, are

outperformed by, other methods. Our goal is not to re-derive these well known facts,

but rather to illustrate the new results of our paper.

We applied our technique for estimating m and m(1) to several examples compris-

ing curves with several local extrema and/or an inflection point, as well as monotonic,

convex and/or unbounded functions. To summarize the work we are about to present,

our simulations illustrate in finite samples:

• the gain that can be obtained by using a local linear estimator (LLE) in the

presence of boundaries, in comparison with a local constant estimator (LCE);

• properties of our estimator of m(1) for p = 1 (LPE1) and p = 2 (LPE2);

• properties of our estimator when the error variance is estimated from replicates;

• the robustness of our estimator against misspecification of the error density;

• the gain obtained by using our estimators compared to their naive versions (de-

noted respectively by NLCE, NLLE, NLPE1 or NLPE2), which pretend there

is no error in the data;

• the properties of the LCE using the sinc kernel (LCES) in the presence of

boundary points.
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We considered the following examples: (i) m(x) = x3 exp(x4/1000) cos(x) and

η ∼ N(0, 0.62); (ii) m(x) = 2x exp(−10x4/81), η ∼ N(0, 0.22); (iii) m(x) = x3,

η ∼ N(0, 1.22); (iv) m(x) = x4, η ∼ N(0, 42). In cases (i) and (ii) we took X ∼
0.8X1 + 0.2X2, where X1 ∼ fX1(x) = 0.1875x21[−2,2](x) and X2 ∼ U[−1, 1]. In cases

(iii) and (iv) we took X ∼ N(0, 1).

In each case considered, we generated 500 samples of various sizes from the dis-

tribution of (W,Y ), where W = X + U with U ∼ Laplace or normal of zero mean,

for several values of the noise-signal-ratio var(U)/ var(X). Except otherwise stated,

we used the kernel whose Fourier transform is given by

φK(t) = (1− t2)8 · 1[−1,1](t). (5.6)

In order to illustrate the potential gain of using local polynomial estimators without

confounding the effect of an estimator with that of the smoothing parameter selection,

we used, for each method, the theoretical optimal value of h; that is, for each sample,

we selected the value h minimizing the Integrated Squared Error ISE =
∫ {m(ν)(x)−

m̂(ν)(x)}2 dx, where m̂(ν) is the estimator considered.

In the case where ν = 0, a data-driven bandwidth procedure has been developed

by Delaigle and Hall (2008). For example, for the LLE of m, NW and DW in section

3.1 of that paper are equal to NW = T̂n,2Ŝn,0 − T̂n,1Ŝn,1 and DW = Ŝn,2Ŝn,0 − Ŝ2
n,1,

respectively; see also Figure 2 in that paper. Note that the fully automatic procedure

of Delaigle and Hall (2008) also includes the possibility of using a ridge parameter in

cases where the denominator DW (x) gets too small. It would be possible to extend

their method to cases where ν > 0, by combining their SIMEX idea with data-driven

bandwidths used in the error-free case, in much the same way as they combined their

SIMEX idea with cross-validation for the case ν = 0. Although not straightforward,

this is an interesting topic for future research.
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Figure 1: Estimated curves for case (ii) when U is Laplace, var(U) = 0.2 var(X) and

n = 500. Estimators: local linear estimator (LLE, top left), local constant estimator

(LCE, top center), the naive local linear estimator that ignores measurement error,

(NLLE, top right) and the local constant estimators using the sinc kernel (LCES,

bottom left); and box plots of the ISEs (bottom center). Bottom right: Box plots of

the ISEs for case (i) when U is normal, var(U) = 0.2 var(X) and n = 250; data are

averaged replicates and var(U) is estimated by (4.2).

5.2 Simulation results

In the figures below, we show box plots of the 500 calculated ISEs corresponding to

the 500 generated samples. We also show graphs with the target curve (solid line)

and three estimated curves (q1, q2 and q3) corresponding to, respectively, the first,

second and third quartiles of these 500 calculated ISEs for a given method.

Figure 1 shows the quantile estimated curves of m at (ii) and box plots of the ISEs,

for samples of size n = 500, when U is Laplace and var(U) = 0.2 var(X). As expected

by the theory, the LCE is more biased than the LLE near the boundary. Similarly,

the LCES is more biased and variable than the LLE. As usual in measurement error
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Figure 2: Estimates of the density function m(1) for curve (iv) when U is Laplace,

var(U) = 0.4 var(X) and n = 250, using our local linear method (LPE1, left) and

the naive local linear method that ignores measurement error (NLPE1, center), when

data are averaged and var(U) is estimated by (4.2). Right: box plots of ISEs, var(U)

estimated by (4.2). Data averaged except for boxes 3 and 5. Box 2 wrongly assumes

Laplace error.

problems, the naive estimators which ignore the error are oversmoothed, especially

near the modes and the boundary. The box plots show that the LLE tends to work

better than the LCE, but also tends to be more variable. Except in a few cases, both

outperform the LCES and the naive estimators.

Figure 1 also shows box plots of ISEs for curve (i) in the case where U is normal,

var(U) = 0.2 var(X) and n = 250. Here we pretended var(U) was unknown, but

generated replicated data as at (4.1) and estimated var(U) via (4.2). Since the error

variance of the averaged data W i = (Wi1 +Wi2)/2 is half the original one, we applied

each estimator with these averaged data, either assuming U was normal, or wrongly

assuming it was Laplace, with unknown variance estimated. We found that the

estimator was quite robust again error misspecification, as already noted by Delaigle

(2008) in closely connected deconvolution problems. Like there, assuming Laplace

distribution often worked reasonably well. See also Meister (2004). Except in a few

cases, the LLE worked better than the LCE, and both outperformed the LCES and

the NLLE (which itself outperformed the NLCE – not shown here).
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Figure 3: Estimates of the derivative function m(1) for case (iii) when U is normal

with var(U) = 0.4 var(X) and n = 500, using our local linear method (LPE1, top

left) and local quadratic method (LPE2, top center) assuming that U is normal,

using the LPE1 (top right) and LPE2 (bottom left) wrongly assuming that the error

distribution is Laplace, or using the NLPE2 (bottom center). Box plots of the ISEs

(bottom right). Data are averaged replicates and var(U) is estimated by (4.2).

At Figure 2 we show results for estimating the derivative of curve (iv) in the case

where U is Laplace, var(U) = 0.4 var(X) and n = 250. We assumed the error variance

was unknown and we generated replicated data and estimated var(U) by (4.2). We

applied the LPE1 on both the averaged data and the original sample of non averaged

replicated data. For the averaged data, the errors distribution is that of a Laplace

convolved with itself, and we took either that distribution, or wrongly assumed that

the errors were Laplace. We compared our results with the naive NPLE1. Again,

taking the error into account worked better than ignoring the error, even when a

wrong error distribution was used, and whether we used the original data or the

averaged data.

Finally Figure 3 concerns estimation of the derivative function m(1) in case (iii)
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when U is normal with var(U) = 0.4 var(X) and n = 500. We generated replicates

and calculated the LPE1 and LPE2 estimators assuming normal errors or wrongly

assuming Laplace errors, and pretended the error variance was unknown and esti-

mated it via (4.2). In this case as well, taking the measurement error into account

gave better results than ignoring the errors, even when the wrong error distribution

was assumed. The LPE2 worked better at the boundary than the LPE1, but at the

interior it is the LPE1 that worked better.

6 Concluding Remarks

In the 20 years since the invention of the deconvoluting kernel density estimator and

the 15 years of its use for local constant, Nadaraya-Watson kernel regression, the

discovery of a kernel regression estimator for a function and its derivatives that has

the same bias properties as in the no-measurement-error case has remained unsolved.

By working with estimating equations and using the Fourier domain, we have shown

how to solve this problem. The resulting kernel estimators are readily computed, and

with the right degrees of the local polynomials, have the design adaptation properties

that are so valued in the no-error case.
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A Appendix

A.1 Derivation of the estimator

We have that

φ{(Xj−x)kKh(Xj−x)}(t) =

∫
eitx(Xj − x)kKh(Xj − x) dx

=hkeitXj

∫
e−ithuukK(u) du

=i−khkeitXjφ
(k)
K (−ht),
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where we used the fact that φ
(k)
K (t) = ik

∫
eituuk K(u) du. Similarly, we find that

φ{(Wj−x)kLk,h(Wj−x)}(t) =i−khkeitWjφ
(k)
Lk

(−ht).

Therefore, from (2.4) and using E[eitWj |Xj] = eitXjφU(t), Lk satisfies

φ
(k)
Lk

(−ht) = φ
(k)
K (−ht)/φU(t).

From φ
(k)
Lk

(t) = ik
∫

eituuk Lk(u) du and the Fourier inversion theorem, we deduce that

ikukLk(u) =
1

2π

∫
e−ituφ

(k)
Lk

(t) dt =
1

2π

∫
e−ituφ

(k)
K (t)/φU(−t/h) dt.

A.2 Proofs of the results of section 3

We show only the main results and refer to a longer version of this paper, Delaigle,

Fan and Carroll (2008), for technical results which are straightforward extensions of

results of Fan (1991a), Fan and Masry (1992) and Fan and Truong (1993).

In what follows, we will first give the proofs, referring to detailed Lemmas and

Propositions that follow. A longer version with many more details is given by Delaigle,

Fan and Carroll (2008).

Before we provide detailed proofs of the theorems, note that, since Ŝν,k, k =

0, · · · , p represents the (ν + 1)th row of Ŝ−1
n , we have

p∑

k=0

Ŝν,kŜn,k+j = 0, if j 6= ν and 1 if j = ν.

Consequently, it is not hard to show that

hν(ν!)−1[m̂(ν)(x)−m(ν)(x)] =

p∑

k=0

Ŝν,k(x)T̂ ∗
n,k(x), (A.1)

where

T̂ ∗
n,k(x) = T̂n,k(x)−

p∑
j=0

hj m
(j)(x)

j!
Ŝn,k+j(x). (A.2)

28



Proof of Theorem 3.1. We give the proof in the case where p− ν odd. The case p− ν

even is treated similarly by replacing everywhere Sν,k(x) by Sν,k(x)− hS̆ν,k.

From (A.1) and Lemma A.1, we have

hν(ν!)−1{m̂(ν)(x)−m(ν)(x)} =Zn(x) + OP (hp+3), (A.3)

where

Zn(x) =

p∑

k=0

Sν,k(x)T̂ ∗
n,k(x). (A.4)

We deduce from Propositions A.1 and A.2 that the OP (hp+3) term in (A.3) is negligi-

ble. Hence, hν(ν!)−1[m̂(ν)(x)−m(ν)(x)] is dominated by Zn, and to prove asymptotic

normality of m̂(ν)(x), it suffices to show asymptotic normality of Zn. In order to do

this, write Zn = n−1
∑n

i=1 Un,i, where

Un,i ≡Pn,i + Qn,i, (A.5)

Pn,i =

p∑

k=0

Sν,k(x){Yi −m(x)}KU,k,h(Wi − x),

Qn,i =−
p∑

k=0

p∑
j=1

Sν,k(x)hj m
(j)(x)

j!
KU,k+j,h(Wi − x).

As in Fan (1991a), to prove that
∑n

j=1 Un,j − nEUn,j√
n var Un,j

L−→ N(0, 1), (A.6)

it suffices to show that for some η > 0,

lim
n→∞

E |Un,1|2+η

nη/2[E U2
n,1]

(2+η)/2
= 0. (A.7)

Take η as in (B4) and let κ(u) = E{|Y −m(x)|2+η|X = u}. We have

E|Pn,j|2+η =

∫∫
κ(v)

∣∣∣
p∑

k=0

h−1Sν,k(x)KU,k

(x− u− v

h

)∣∣∣
2+η

fX(v)fU(u) du dv

≤Ch−1−η max
0≤k≤p

||KU,k||η∞ ·
∫
|KU,k(u)|2 du ≤ Ch−β(2+η)−1−η,
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from Lemma B.5 of Delaigle, Fan and Carroll (2008), and where, here and below, C

denotes a generic positive and finite constant. Similarly, we have

E|Qn,j|2+η = E
∣∣∣

p∑

k=0

p∑
j=1

Sν,k(x)hj m
(j)(x)

j!
KU,k+j,h(Wi − x)

∣∣∣
2+η

= O(h1−β(2+η)),

and thus E|Un,j|2+η ≤ Ch−β(2+η)−1−η.

For the denominator, it follows from Proposition A.2 and Lemma B.7 of Delaigle,

Fan and Carroll (2008) that

E[U2
n,j] = h−2β−1f−2

X (x)(τ 2fX) ∗ fU(x)e>ν+1S
−1S∗S−1eν+1 = Ch−2β−1{1 + o(1)}.

We deduce that (A.7) holds and the proof follows from the expressions of E(Un,j) and

var(Un,j) given in Propositions A.1 and A.2.

Proof of Theorem 3.2. Using similar techniques as in the ordinary smooth error case

and Lemmas B.8 and B.9 of the more detailed version of this paper (Delaigle, Fan

and Carroll, 2008), it can be proved that (A.3) holds in the supersmooth case as well,

and under the conditions of the theorem, the OP (hp+3) is negligible. Thus, as in the

ordinary smooth error case, it suffices to show that, for some η > 0, (A.7) holds.

With Pn,i and Qn,i as in the ordinary smooth error case, we have

E|Pn,i|2+η ≤Ch−1−η max
0≤k≤p

||KU,k||η∞ ·
∫
|KU,k(u)|2 du

≤Chβ2(2+η)−1−η exp{(2 + η)h−β/γ},

E|Qn,j|2+η ≤Ch max
1≤k≤2p

∫
|KU,k(y)|2+η dy ≤ Chβ2(2+η)+1 exp{(2 + η)h−β/γ},

with β2 = β0 ·1{β0 < 1/2}, where, here and below, C denotes a generic finite constant,

and where we used Lemma B.9 of Delaigle, Fan and Carroll (2008). It follows that

E[U2+η
n,i ] ≤ Chβ2(2+η)−1−η exp{(2 + η)h−β/γ}. Under the conditions of the theorem,

we conclude that (A.7) holds for any η > 0 and (A.6) follows.
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Lemma A.1. Under the conditions of Theorem 3.1, suppose that, for all 0 ≤ k ≤ 2p,

we have, when p− ν is odd, (nh)−1/2{R(KU,k)}1/2 = O(hp+1) and when p− ν is even,

(nh)−1/2{R(KU,k)}1/2 = O(hp+2). Then,

p∑

k=0

Ŝν,k(x)T̂ ∗
n,k(x) =

p∑

k=0

Rν,k(x)T̂ ∗
n,k(x) + OP (hp+3), (A.8)

where Rν,k(x) = Sν,k(x) if p − ν is odd and Rν,k(x) = Sν,k(x) − hS̆ν,k(x) if p − ν is

even, and where S̆i,j denotes f ′X(x)f−2
X (x)(S−1S̃S−1)i,j.

Proof. The arguments are an extension of the calculations of Fan and Gijbels (1996),

pages 62 and 101–103. We have

T̂ ∗
n,k(x) = E{T̂ ∗

n,k(x)}+ OP

[√
var{T̂ ∗

n,k(x)}].

By construction of the estimator, E[T̂ ∗
n,k(x)] is equal to the expected value of its error-

free counterpart T ∗
n,k(x) = Tn,k(x)−∑p

j=0 hj(j!)−1m(j)(x) Sn,k+j(x), which, by Taylor

expansion, is easily found to be

E[T ∗
n,k(x)] =

m(p+1)(x)

(p + 1)!
fX(x)µk+p+1 hp+1

+
[m(p+1)(x)

(p + 1)!
f ′X(x) +

m(p+2)(x)

(p + 2)!
fX(x)

]
µk+p+2 hp+2 + o(hp+2). (A.9)

Since K is symmetric, it has zero odd moments, and thus E[T ∗
n,k(x)] ³ hp+1 if k + p

is odd and E[T ∗
n,k(x)] ³ hp+2 if k + p is even. Moreover,

var{T̂ ∗
n,k(x)} = var

{
T̂n,k(x)−m(x)Ŝn,k(x)−

p∑
j=1

hj(j!)−1m(j)(x)Ŝn,k+j(x)
}

=O
[
var{T̂n,k(x)−m(x)Ŝn,k(x)}] + O

[ p∑
j=1

var{Ŝn,k+j(x)}]

=O
{
R(KU,k)/(nh)

}
+ O

{ p∑
j=1

R(KU,j+k)/(nh)
}
,

where we used

var[T̂n,k(x)−m(x)Ŝn,k(x)] ≤(nh2)−1E
[{Y −m(x)}2K2

U,k{(W − x)/h}]
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=(nh2)−1E
(
E

[{Y −m(x)}2K2
U,k{(W − x)/h}

∣∣X])

=(nh2)−1E
(
τ 2(X)K2

U,k{(W − x)/h}
∣∣X])

=(nh2)−1

∫∫
τ 2(y)K2

U,k{(y + u− x)/h}fX(y)fU(u) dy du

≤(nh)−1||τ 2fX ||∞R(KU,k)

and results derived in the proof of Lemma B.1 of Delaigle, Fan and Carroll (2008).

Using our calculations above, we see that when k + p is odd,

T̂ ∗
n,k(x) = c1h

p+1 + oP (hp+1)

whereas, for k + p even,

T̂ ∗
n,k(x) = c2h

p+2 + oP (hp+2),

where c1 and c2 denote some finite non zero constants (depending on x but not on n).

Now, it follows from Lemmas B.1 and B.5 of Delaigle, Fan and Carroll (2008) that,

under the conditions of the lemma, Ŝ = fX(x)S + hf ′X(x)S̃ + OP (h2). Let I denote

the identity matrix. By Taylor expansion, we deduce that

Ŝ−1 =
{
fX(x)S + hf ′X(x)S̃

}−1
+ OP (h2)

=(I + hf ′X(x)f−1
X (x)S−1S̃)−1S−1f−1

X (x) + OP (h2)

=S−1f−1
X (x)− hS−1S̃S−1f ′X(x)f−2

X (x) + OP (h2).

Thus we have Ŝi,j = Si,j − hS̆i,j + OP (h2), where, due to the symmetry properties

of the kernel, Si,j = 0 when i + j is odd, whereas S̆i,j = 0 when i + j is even. This

concludes the proof.

Proposition A.1. Under Conditions A, B and O, we have, for p− ν odd

E[ν!h−νZn] = e>ν+1S
−1µ

ν!

(p + 1)!
m(p+1)(x)hp+1−ν + o(hp+2−ν)

and, for p− ν even,

E[ν!h−νZn] = e>ν+1S
−1µ̃

ν!

(p + 2)!

[
(p + 2)m(p+1)(x)

f ′X(x)

fX(x)
+ m(p+2)(x)

]
hp+2−ν
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− e>ν+1S
−1S̃S−1µ

ν!

(p + 1)!
m(p+1)(x)

f ′X(x)

fX(x)
hp+2−ν + o(hp+2−ν).

Proof. From (A.4), we have E[Zn] =
∑p

k=0 Rν,k(x)E[T ∗
n,k(x)], where E[T ∗

n,k(x)] is

given at (A.9) . It follows that

E[Zn] =

p∑

k=0

Sν,k(x)
m(p+1)(x)

(p + 1)!
fX(x)µk+p+1h

p+1

+

p∑

k=0

Sν,k(x)
[m(p+1)(x)

(p + 1)!
f ′X(x) +

m(p+2)(x)

(p + 2)!
fX(x)

]
µk+p+2h

p+2

−
p∑

k=0

S̆ν,k(x)
m(p+1)(x)

(p + 1)!
fX(x)µk+p+1h

p+2 + o(hp+2).

Recall that Sν,k(x) = 0 unless k + ν is even and S̆ν,k(x) = 0 unless k + ν is odd, and

write k + p = (k + ν) + (p− ν). If k + ν is even and p− ν is odd, or if k + ν is odd

and p− ν is even, then k + p is odd and thus µk+p+2 = 0. If k + ν is odd and p− ν

is odd, or if k + ν is even and p − ν is even, then using similar arguments we find

µk+p+1 = 0.

Proposition A.2. Under Conditions A, B and O, we have

var(ν!h−νZn) = e>ν+1S
−1S∗S−1eν+1

(ν!)2(τ 2fX) ∗ fU(x)

f 2
X(x)nh2β+2ν+1

+ o
( 1

nh2β+2ν+1

)
.

Proof. Let Un as in the proof of Theorem 3.1. We have

var(Un,i) = var(Pn,i) + var(Qn,i) + 2 cov(Pn,i, Qn,i).

We split the proof in three parts.

(i) To calculate var(Pn,i), note that

E[{Yi −m(x)}KU,k,h(Wi − x)] =

∫
{m(x + hv)−m(x)}vkK(v)fX(x + hv) dv

=O(h),

and, noting that each KU,k is real, we have,

E
[
{Yi−m(x)}2KU,k,h(Wi − x)KU,k′,h(Wi − x)

]
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=

∫
E

[{Yi −m(x)}2
∣∣X = v

]
E

[
KU,k,h(Wi − x)KU,k′,h(Wi − x)

∣∣X = v
]
fX(v) dv

=

∫∫
τ 2(v)KU,k,h(v + u− x)KU,k′,h(v + u− x)fU(u)fX(v) du dv

=h−1

∫∫
τ 2(x + hz − u)KU,k(z)KU,k′(z)fU(u)fX(x + hz − u) du dz

=h−2β−1(τ 2fX) ∗ fU(x)(−1)k′i−k−k′ 1

2πc2

∫
|t|2βφ

(k)
K (t)φ

(k′)
K (t) dt + o(h−2β−1),

where we used (B.1) of Delaigle, Fan and Carroll (2008), which states that

lim
n→∞

h2β

∫
KU,k(v)KU,k′(v)g(x− hv) dv

=i−k−k′(−1)−k′ g(x)

c2

1

2π

∫
|t|2βφ

(k)
K (t)φ

(k′)
K (t) dt

with c as in (3.1). Finally

cov
[
{Yi −m(x)}KU,k,h(Wi − x), {Yi −m(x)}KU,k′,h(Wi − x)

]

=h−2β−1(τ 2fX) ∗ fU(x)(−1)k′i−k−k′ 1

2πc2

∫
|t|2βφ

(k)
K (t)φ

(k′)
K (t) dt + o(h−2β−1),

and thus

var(Pn,i) =h−2β−1(τ 2fX) ∗ fU(x)

p∑

k,k′=0

Sν,k(x)Sν,k′(x)S∗k,k′ + o(h−2β−1).

Now (Sν,0, . . . , Sν,p) = e>ν+1S
−1f−1

X (x),which implies that

var(Pn,i) =h−2β−1f−2
X (x)(τ 2fX) ∗ fU(x)e>ν+1S

−1S∗S−1eν+1 + o(h−2β−1).

(ii) To calculate var(Qn,i), note that E{KU,k+j,h(Wi − x)} =
∫

vk+jK(v)fX(x +

hv) dv = O(1) and |E{KU,k+j,h(Wi − x)KU,k′+j′,h(Wi − x)}| = O(h−2β−1), by Lemma

B.6 of Delaigle, Fan and Carroll (2008), which implies that

cov{KU,k+j,h(Wi − x), KU,k′+j′,h(Wi − x)} = O(h−2β−1)

and var(Qn,i) = O(h−2β+1), which is negligible compared to var(Pn,i).

(iii) We conclude from (i) and (ii) that var(Un,i) = var(Pn,i){1 + o(1)}, which proves

the result.

34



B Supplementary material of the long version of

the paper – not for publication

B.1 Ordinary smooth errors

Lemma B.1. Under Conditions A and B, if R(KU,k)/(nh3) → 0 as n →∞, we have

Ŝn,k(x) = fX(x)µk + hf ′X(x)µk+1 + OP (h2) + Op

{√
R(KU,k)/(nh)

}
.

Proof of Lemma B.1. By construction of the estimator, we have

E
[
Ŝn,k(x)

]
=

∫
(u− x)kh−kKh(u− x)fX(u) du

=

∫
fX(x + hv)vkK(v) dv

=fX(x)µk + hf ′X(x)µk+1 + O(h2).

Let Vk(x) = KU,k{(W − x)/h}. Then

var[Ŝn,k(x)] =
1

nh2
E[V 2

k (x)]− 1

nh2
{E[Vk(x)]}2,

where

E
[
V 2

k (x)
]

=h

∫
K2

U,k(u)fW (x + hu) du ≤ h‖fW‖∞ R(KU,k).

We deduce that var
[
Ŝn,k(x)

]
= O

{
R(KU,k)/(nh)

}
+ O(n−1) and

Ŝn,k(x) =E[Ŝn,k(x)] + OP (

√
var[Ŝn,k(x)])

=fX(x)µk + hf ′X(x)µk+1 + O(h2) + OP

{√
R(KU,k)/(nh)

}
.

Note that, it follows from (3.1) that there exists M > 0 such that, for all |t| > M ,

c

2
|t|−β ≤ |φU(t)| ≤ 2c|t|−β

cβ

2
|t|−β−1 ≤ |φ′U(t)| ≤ 2cβ|t|−β−1.

The next six lemmas are useful to prove the main results.
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Lemma B.2. Suppose that ||φ(k)
K ||∞ < ∞, ||φ(k+1)

K ||∞ < ∞, φU(t) 6= 0 for all t,

||φ′U ||∞ < ∞ and
∫ [|t|β + |t|β−1]

[|φ(k+1)
K (t)|+ |φ(k)

K (t)|] dt < ∞. Then, we have

h2β|KU,k(x)|2 ≤ c min(1, |x|−2).

Proof. By integration by parts, we have, for all k

KU,k(x) =i−k 1

2π

∫
e−itx φ

(k)
K (t)

φU(−t/h)
dt

=i−k 1

2πix

∫
e−itx φ

(k+1)
K (t)

φU(−t/h)
dt + i−k 1

2πixh

∫
e−itx φ

(k)
K (t)φ′U(−t/h)

φU(−t/h)2
dt

≡I + II,

where

|I| = 1

2π|x|
∣∣∣
∫

e−itx φ
(k+1)
K (t)

φU(−t/h)
dt

∣∣∣

≤ 1

2π|x|
∫

|t|≤Mh

|φ(k+1)
K (t)|

|φU(t/h)| dt +
1

2π|x|
∫

|t|>Mh

|φ(k+1)
K (t)|

|φU(t/h)| dt

≤ inf
|t|≤M

|φU(t)|−1 1

2π|x|
∫

|t|≤Mh

|φ(k+1)
K (t)| dt +

1

2π|x|
∫

|t|>Mh

|φ(k+1)
K (t)|

c
2
|t/h|−β

dt

≤ c1

|x|
∫

|t|≤Mh

|φ(k+1)
K (t)| dt + h−β c2

|x|
∫

|t|>Mh

|t|β|φ(k+1)
K (t)| dt

≤h
c1

|x| + h−β c2

|x|
≤ch−β c2

|x| .

For the second integral we have

|II| = 1

2π|x|h
∣∣∣
∫

e−itx φ
(k)
K (t)φ′U(−t/h)

φU(−t/h)2
dt

∣∣∣

≤ 1

2π|x|h
∫

|t|≤Mh

|φ(k)
K (t)| · |φ′U(t/h)|
|φU(t/h)|2 dt +

1

2π|x|h
∫

|t|>Mh

|φ(k)
K (t)| · |φ′U(t/h)|
|φU(t/h)|2 dt

≤ inf
|t|≤M

|φU(t)|−2||φ′U(t)||∞ 1

2π|x|h
∫

|t|≤Mh

|φ(k)
K (t)| dt
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+
1

2π|x|h
∫

|t|>Mh

|φ(k)
K (t)| · 2cβ|t/h|−β−1

c2

4
|t/h|−2β

dt

≤C|x|−1 + Ch−β|x|−1

≤Ch−β|x|−1,

where, here and below C > 0 denotes a generic finite constant. We conclude that

h2β|KU,k(x)|2 ≤ C|x|−2.

On the other hand we also have that

|KU,k(x)| ≤ 1

2π

∫ |φ(k)
K (t)|

|φU(t/h)| dt ≤ Ch−β.

Lemma B.3. Suppose that ||φ(k)
K ||∞ < ∞, φU(t) 6= 0 for all t,

∫ |t|β|φ(k)
K (t)| dt < ∞.

Then, we have

lim
n→∞

hβKU,k(x) =i−k 1

2πc

∫
e−itx|t|βφ

(k)
K (t) dt,

Proof. We have

hβ
∣∣∣e−itx φ

(k)
K (t)

φU(t/h)

∣∣∣ ≤ hβ max|t|≤Mh |φ(k)
K (t)|

min|t|≤M |φU(t)| 1{|t|≤Mh} +
2

c
|t|β|φ(k)

K (t)|1{|t|>Mh}

≤ C
max|t|≤M |φ(k)

K (t)|
min|t|≤M |φU(t)| 1{|t|≤M} +

2

c
|t|β|φ(k)

K (t)|,

which is integrable, and where, here and below, C > 0 denotes a generic finite constant

and with c given in (3.1). We deduce by the Lebesgue dominated convergence theorem

that

lim
n→∞

hβKU,k(x) = lim
n→∞

i−khβ 1

2π

∫
e−itx φ

(k)
K (t)

φU(−t/h)
dt

=i−k 1

2π

∫
e−itx lim

n→∞
|t|βφ

(k)
K (t)

(|t|/h)βφU(−t/h)
1{|t|>Mh} dt

=i−k 1

2πc

∫
e−itx|t|βφ

(k)
K (t) dt.
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Lemma B.4. Assume that the conditions of the above two lemmas are satisfied for k

and k′ and let Kn(x) = h2βKU,k(x)KU,k′(x) and g a bounded function. Then we have

at any continuity point x of g

lim
n→∞

h2β

∫
KU,k(v)KU,k′(v)g(x− hv) dv

=i−k−k′(−1)−k′ g(x)

c2

1

2π

∫
|t|2β phi

(k)
K (t)φ

(k′)
K (t) dt (B.1)

with c as in (3.1).

Proof. It follows from Lemma B.3 that

lim
n→∞

Kn(x) = i−k−k′ 1

4π2c2

∫
e−itx|t|βφ

(k)
K (t) dt

∫
e−itx|t|βφ

(k′)
K (t) dt.

We also have, from the last line of the proof of Lemma B.2 that

sup
n
|Kn(x)| ≤ K∗(x)

where K∗(x) = C min(1, |x|−2) is such that
∫

K∗(x) dx < ∞ and limx→∞ |xK∗(x)| =
0, and C denotes a generic finite constant. Therefore, from Lemma 2.1 of Fan (1991a),

we have, at any point x of continuity of g

lim
n→∞

h2β

∫
KU,k(v)KU,k′(v)g(x− hv) dv

=i−k−k′ g(x)

c2

∫ ( 1

2π

∫
e−itx|t|βφ

(k)
K (t) dt

)( 1

2π

∫
e−isx|s|βφ

(k′)
K (s) ds

)
dx

=i−k−k′(−1)−k′ g(x)

c2

1

2π

∫
|t|2βφ

(k)
K (t)φ

(k′)
K (t) dt.

Lemma B.5. Suppose that ||φ(k)
K ||∞ < ∞, φU(t) 6= 0 for all t,

∫ |t|β|φ(k)
K (t)| dt < ∞

and
∫ |t|2β|φ(k)

K (t)|2 dt < ∞. Then, we have

‖KU,k‖∞ ≤ Ch−β and

∫
K2

U,k ≤ Ch−2β

for some finite constant C.
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Proof. We have

|KU,k(x)| ≤ 1

2π

∫ |φ(k)
K (t)|

|φU(t/h)| dt

=
1

2π

∫

|t|≤Mh

|φ(k)
K (t)|

|φU(t/h)| dt +
1

2π

∫

|t|>Mh

|φ(k)
K (t)|

|φU(t/h)| dt

≤ inf
|t|≤M

|φU(t)|−1 1

2π

∫

|t|≤Mh

|φ(k)
K (t)| dt +

1

2π

∫

|t|>Mh

|φ(k)
K (t)|

c
2
|t/h|−β

dt

≤C

∫

|t|≤Mh

|φ(k)
K (t)| dt + Ch−β

∫

|t|>Mh

|t|β|φ(k)
K (t)| dt

≤Ch + Ch−β

≤Ch−β,

with c as in (3.1) and where C denotes some generic finite constant. The proof for

the other result is similar and requires application of Parseval’s theorem.

Lemma B.6. Suppose that, for j = k and k′, ||φ(j)
K ||∞ < ∞, φU(t) 6= 0 for all t, and∫ |t|2β|φ(j)

K (t)|2 dt < ∞. Then, we have

∣∣∣
∫

KU,k(v)KU,k′(v) dv
∣∣∣ ≤ Ch−2β

for some finite constant C.

Proof. Follows from Lemma B.5, if we note that

∣∣∣
∫

KU,k(v)KU,k′(v) dv
∣∣∣
2

≤
∫
|KU,k(v)|2 dv

∫
|KU,k′(v)|2 dv = O(h−4β).

Lemma B.7. Suppose that K is real and symmetric and such that, for all 0 ≤ k, k′ ≤
p,

∫ |t|2β|φ(k)
K (t)| · |φ(k′)

K (t)| dt < ∞ and
∣∣∣∑p

k=0 i−kSν+1,kφ
(k)
K (t)

∣∣∣
2

> 0 on an interval

included in [−1, 1]. Then, if the error is ordinary smooth of order β > 0, we have

e>ν+1S
−1S∗S−1eν+1 ≥ C,

for some finite positive constant C.
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Proof. Under the conditions of the theorem, we have

e>ν+1S
−1S∗S−1eν+1 =

p∑

k,k′=0

Sν+1,kSν+1,k′ (−1)k′

2πc2ik+k′

∫
|t|2βφ

(k)
K (t)φ

(k′)
K (t) dt

=
1

2πc2

∫
|t|2β

∣∣∣
p∑

k=0

i−kSν+1,kφ
(k)
K (t)

∣∣∣
2

dt

>0.

B.2 Supersmooth errors

Lemma B.8. Suppose that φK is supported on [−1, 1], ||φ(k)
K ||∞ < ∞, and φU(t) 6= 0

for all t. Then, we have

‖KU,k‖∞ ≤ Chβ2 exp(h−β/γ) and

∫
K2

U,k ≤ Ch2β2 exp(2h−β/γ)

for some finite constant C > 0 and where

β2 = β0 · 1{β0 < 1/2}. (B.2)

Proof. We have, for a constant M > 0 large enough,

|KU,k(x)| ≤ 1

2π

∫

|t|≤Mh

|φ(k)
K (t)|

|φU(t/h)| dt +
1

2π

∫

Mh<|t|≤1

|φ(k)
K (t)|

|φU(t/h)| dt

≤ inf
|t|≤M

|φU(t)|−1 1

2π

∫

|t|≤Mh

|φ(k)
K (t)| dt +

1

2π

∫

Mh<|t|≤1

|φ(k)
K (t)|

d0

2
|t/h|β0 exp(−|t/h|β/γ)

dt

≤C

∫

|t|≤Mh

|φ(k)
K (t)| dt + Chβ0 exp(h−β/γ)

∫

Mh<|t|≤1

|t|−β0 dt,

where C ≥ 0 denotes some generic finite constant, and the conclusion follows from

∫

Mh<|t|≤1

|t|−β0 dt =





C
[
t−β0+1

]1

Mh
= O(1) if β0 < 1

C
[
ln(t)

]1

Mh
= O{ln(h)} = O(h−β0) if β0 = 1

C
[
t−β0+1

]1

Mh
= O(h−β0+1) if β0 > 1.

The proof for the other result is similar and requires Parseval’s theorem.
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Lemma B.9. Suppose that φK is supported on [−1, 1], φU(t) 6= 0 for all t, and, for

j = k and k′, ||φ(j)
K ||∞ < ∞. Then, we have, for β2 as in (B.2),

∣∣∣
∫

KU,k(v)KU,k′(v) dv
∣∣∣ ≤ ch2β2 exp(2h−β/γ).

Proof. Follows from Lemma B.8, if we note that

∣∣∣
∫

KU,k(v)KU,k′(v) dv
∣∣∣
2

≤
∫
|KU,k(v)|2 dv

∫
|KU,k′(v)|2 dv.

B.3 Proofs of the results of section 3.3

Let Zn =
∑p

k=0 Sν,k(x)T̂ ∗
n,k(x), T̂ ∗

n,k(x) = T̂n,k(x)−∑p
j=0 hj(j!)−1m̃(j)(x) Ŝn,k+j(x) and

where Si,j(x) denotes the (i + 1, j + 1)th element of S−1
B (x)f−1

X (x).

Lemma B.10. Under conditions A,C and O, if e>ν+1S
−1
B (x)S∗

B(x)S−1
B (x)eν+1 ≥

C1h
−2β for some finite constant C1 > 0, we have

var(ν!h−νZn) = e>ν+1S
−1
B (x)S∗

B(x)S−1
B (x)eν+1

(ν!)2

f̃ 2
X(x)nh2ν+1

+ o
( 1

nh2β+2ν+1

)
.

Proof of Lemma B.10. We calculate the variance of Zn = n−1
∑n

i=1 Un,i, where we

used the notation Un,i = Pn,i + Qn,i, with

Pn,i =

p∑

k=0

Sν,k(x){Yi − m̃(x)}KU,k,h(Wi − x)

Qn,i =−
p∑

k=0

p∑
j=1

Sν,k(x)hj m̃
(j)(x)

j!
KU,k+j,h(Wi − x).

We have var(Un,i) = var(Pn,i) + var(Qn,i) + 2 cov(Pn,i, Qn,i). We split the proof into

two parts.

(i) To calculate var(Pn,i), note that

E[{Yi − m̃(x)}KU,k,h(Wi − x)] = h−k

∫
{m̃(u)− m̃(x)}(u− x)kKh(u− x)f̃X(u) du

7



=

∫
{m̃(x + hv)− m̃(x)}vkK(v)f̃X(x + hv) dv

=O(h)

and

E
[
{Yi−m̃(x)}]2KU,k,h(Wi − x)KU,k′,h(Wi − x)

}

=h−1

∫∫
τ̃ 2(x + hz − u)KU,k(z)KU,k′(z)fU(u)f̃X(x + hz − u) du dv.

Finally

cov
[
{Yi −m(x)}KU,k,h(Wi − x), {Yi −m(x)}KU,k′,h(Wi − x)

]

=h−1

∫∫
τ̃ 2(x + hz − u)KU,k(z)KU,k′(z)fU(u)f̃X(x + hz − u) du dv{1 + o(1)}

and thus

var(Pn,i) =h−1

∫∫
τ̃ 2(x + hz − u)

[ p∑

k=0

Sν,k(x)KU,k(z)
]2

fU(u)f̃X(x + hz − u) du dv{1 + o(1)}.

Now (Sν , . . . , Sν+p) = e>ν+1S
−1
B (x)f̃−1

X (x) + O(h), which implies that

var(Pn,i) =f̃−2
X (x)e>ν+1S

−1
B (x)S∗

B(x)S−1
B (x)eν+1{1 + o(1)}.

(ii) To calculate var(Qn,i), note that

E{KU,k+j,h(Wi − x)} =

∫
vk+jK(v)f̃X(x + hv) dv = O(1)

and

E{KU,k+j,h(Wi − x)KU,k′+j′,h(Wi − x)} = h−1

∫
KU,k+j(v)KU,k′+j′(v)fW (x + hv) dv,

which implies that

cov{KU,k+j,h(Wi − x)], KU,k′+j′,h(Wi − x)}

=h−1

∫
KU,k+j(v)KU,k′+j′(v)fW (x + hv) dv{1 + o(1)}
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and

var(Qn,i) =

p∑

k,k′=0

p∑

j,j′=1

Sν,k(x)Sν,k′(x)hj+j′ m̃
(j)(x)

j!

m̃(j′)(x)

j′!

× cov{KU,k+j,h(Wi − x)], KU,k′+j′,h(Wi − x)}

=

p∑

k,k′=0

p∑

j,j′=1

Sν,k(x)Sν,k′(x)hj+j′ m̃
(j)(x)

j!

m̃(j′)(x)

j′!

× h−1

∫
KU,k+j(v)KU,k′+j′(v)fW (x + hv) dv{1 + o(1)}

=O(h−2β+1),

which is negligible compared to var(Pn,i).

Lemma B.11. Under conditions A and C, we have

E[T̂ ∗
n,k(x)] =

m̃(p+1)(x)

(p + 1)!
f̃X(x)µk+p+1(x) hp+1 + o(hp+1).

and

E(Zn) =e>ν+1S
−1
B (x)µ(x)

m̃(p+1)(x)

(p + 1)!
hp+1 + o(hp+1).

Proof. Same as in the error-free case, see Fan and Gijbels (1996).

Lemma B.12. Under the conditions of Theorem 3.3, suppose that, for all 0 ≤ k ≤ 2p,

we have (nh)−1/2{R(KU,k)}1/2 = O(hp+1). Then, we have

p∑

k=0

Ŝν,k(x)T̂ ∗
n,k(x) = {

p∑

k=0

Sν,k(x)T̂ ∗
n,k(x)}{1 + oP (1)}.

Proof. Similar to the proof of Lemma A.1, except that, here, for all k, T̂ ∗
n,k(x) =

c1h
p+1 + oP (hp+1), with c1 6= 0 some finite constant. Therefore,

p∑

k=0

Ŝν,k(x)T̂ ∗
n,k(x) =

p∑

k=0

Sν,k(x)T̂ ∗
n,k(x) + oP{T̂ ∗

n,1(x)},
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whereas
p∑

k=0

Sν,k(x)T̂ ∗
n,k(x) = c2T̂

∗
n,1(x) + oP{T̂ ∗

n,1(x)},

with c2 6= 0 some finite constant, which proves the result.

Lemma B.13. Under Conditions A and C, if R(KU,k)/nh → 0, we have

Ŝn,k(x) = f̃X(x)µk(x) + OP (h) + Op

{√
R(KU,k)/(nh)

}
.

Proof of Lemma B.13. We have

E{Ŝn,k(x)} =

∫
f̃X(x + hv)vkK(v) dv

=

∫ (1−x)/h

−x/h

{f̃X(x) + O(h)}vkK(v) dv

=f̃X(x)µk(x) + O(h).

Take Vk(x) = KU,k{(x−W )/h}. Then we have

E[Ŝ2
n,k(x)] =

1

nh2
E{V 2

k (x)} − 1

nh2
[E{Vk(x)}]2,

where

E
{
V 2

k (x)
}

=h

∫
K2

U,k(u)fW (x + hu) du

≤h sup
x

fW (x)

∫
|KU,k(u)|2 du

=
h

2π
sup

x
fW (x)

∫ |φ(k)
K (t)|2

|φU(t/h)|2 du

=hO
{
R(KU,k)

}

and we conclude as in the continuous case.
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