	<i>Biometrika</i> (2012), xx , <i>x</i> , <i>pp</i> . 1–11
1	© 2007 Biometrika Trust
2	Printed in Great Britain
3	Supplementary Material for Componentwise classification
4	
5	and clustering of functional data
6	BY A. DELAIGLE, P. HALL
7	Department of Mathematics and Statistics, University of Melbourne, Parkville,
8	Victoria 3010, Australia
9	A.Delaigle@ms.unimelb.edu.au halpstat@ms.unimelb.edu.au
10	
11	AND N. BATHIA
12	Jump Trading, 600 West Chicago Avenue, Chicago, Illinois 60654, United States of America
13	nbathia@jumptrading.com
14	
15	1. PROCEDURES FOR BREAKING TIES
16	Since $\hat{\operatorname{err}}_r$ can take at most $n+1$ different values, its minimum is not always unique. For the
17	linear and quadratic discriminant methods, as well as for the nonparametric Bayes procedure, we
18	suggest breaking ties as follows. First, note that these three methods are based on the Bayes rule.
19	They assign x to population 0, i.e. in the notation above, $J(x, \mathcal{D} t_{(r)}) = 0$, if
20	$\pi_0 \tilde{f}_0(x t_{(r)}) > \pi_1 \tilde{f}_1(x t_{(r)}), \tag{1}$
21	and to population 1 i.e. $I(x, \mathcal{D} t) = 1$ otherwise. For the population parametric Paulo rule
22	and to population 1, i.e. $J(x, \mathcal{D} t_{(r)}) = 1$, otherwise. For the nonparametric Bayes rule,
23	$f_k(x t_{(r)}) = f_k(x t_{(r)})$; for Fisher's linear and quadratic discriminant methods, the $f_k(x t_{(r)})$ s
24	are <i>r</i> -variate normal densities with means $\bar{X}_k(t_{(r)})$ and covariance matrix $\hat{\Sigma}(t_{(r)})$ for linear dis-
25	criminant, or covariance matrices $\hat{\Sigma}_k(t_{(r)})$ for quadratic discriminant. In the case of ties, we
26	
27	
28	

2

choose among them the vector $t_{(r)}$ that minimizes

50
51
$$\frac{1}{n} \sum_{i=1}^{n} |\breve{f}_{0}(X_{i} | t_{(r)}) - \breve{f}_{1}(X_{i} | t_{(r)})| / \max\{\breve{f}_{0}(X_{i} | t_{(r)}), \breve{f}_{1}(X_{i} | t_{(r)})\}, \quad (2)$$

52 where, for $k = 0, 1, \check{f}_k$ denotes an estimator of f_k . In the linear and quadratic discriminant cases, 53 we took $\check{f}_k = \tilde{f}_k$ defined above; in the nonparametric case we took $\check{f}_k = \tilde{f}_{k,i}$, where $\tilde{f}_{k,i}$ de-54 notes the estimator of f_k constructed without using X_i . The criterion at (2) is an empirical mean 55 distance between \tilde{f}_0 and \tilde{f}_1 , relative to the magnitude of \tilde{f}_0 and \tilde{f}_1 .

56 For the classifier based on nonparametric regression, we break ties by choosing among 57 them the one that minimizes the leave-one-out absolute error of the regression fit, $\sum_{i=1}^{n} |I_i|$ 58 $\hat{g}_i(X_i \mid t_{(r)})|$, where \hat{g}_i denotes the estimator of g constructed without using X_i . For the clas-59 sifier based on logistic regression, we choose among ties the one that minimizes the Akaike 60 information criterion; if there are still ties with this criterion, we create a noisy version of the 61 training data X_i by adding to each component a normal random variable with mean zero and 62 variance 0.1 times the empirical variance of the component, and then break the ties by calculat-63 ing the estimator of error rate from these perturbed data, followed, if necessary, by the Akaike 64 information criterion.

- 65
- 66

68

69

71

2. ADDITIONAL SIMULATION RESULTS

67

$2 \cdot 1.$ Comparison of nonparametric Bayes and regression-based classifiers

As indicated in §4.2 of the paper, the nonparametric Bayes classifier gave results similar to the nonparametric regression-based one. This is illustrated in Fig. 1 below, which compares the 70 results of the nonparametric Bayes and regression classifiers for the three datasets considered in the paper, and for training samples of sizes n = 30, 50 and 100. The boxplots were constructed 72 from 200 Monte Carlo replications, as in the paper.

- 73
- 74
- 75 76
- 77

	6 A. DELAIGLE, P. HALL AND N. BATHIA
241	Table 1. Mean (standard deviation) of the percentage of misclassified observations calculated
242	from $M = 200$ Monte Carlo replications from the rainfall data (Rain), the Tecator data (Tec),
243	cases I and II, and the phoneme data (Phon). The results are shown for the nonparametric
244	regression-based methods combined with our approach (NP), with principal components (NPC)
245	or with partial least-squares (NPLS), the boosting version of NP (NPb), the logistic regression
246	methods combined with our approach (LOG), with partial least-squares (LOGPLS) and with
247	boosting (LOGb), the linear discriminant method combined with our approach (LD) and with
248	partial least-squares (LDPLS), and the quadratic discriminant method (QD).

249	Data	n	NPC	NP	NPb	NPPLS	LOG	LOGb	LOGPLS	QD	LD	LDPLS
	Rain	30	13 (5.0)	13 (5.5)	11 (4.8)	10 (4.6)	8.0 (4.2)	8.0 (4.2)	8.8 (4.0)	14 (5.1)	12 (3.7)	11 (3.8)
250		50	9.2 (4.0)	9.2 (3.8)	8.3 (3.4)	8.6 (3.7)	5.5 (3.0)	5.5 (3.0)	8.1 (3.4)	11 (4.4)	11 (3.1)	9.7 (3.5)
0.51		100	5.9 (2.8)	6.4 (2.7)	5.2 (2.3)	8.0 (3.3)	4.3 (2.5)	4.2 (2.5)	7.4 (2.9)	8.2 (3.5)	9.9 (3.7)	9.1 (3.4)
251	Tec I	30	7.0 (3.3)	5.6 (3.3)	5.3 (3.1)	5.5 (2.4)	6.0 (3.3)	6.0 (3.3)	5.9 (3.1)	9.6 (5.1)	9.1 (3.9)	7.1 (3.4)
252		50	5.8 (1.9)	4.2 (2.5)	4.1 (2.4)	4.5 (1.5)	4.2 (2.6)	4.2 (2.6)	4.7 (1.9)	7.7 (3.4)	7.7 (3.1)	6.5 (2.3)
		100	5.4 (1.6)	3.3 (1.7)	3.2 (1.7)	4.0 (1.5)	2.2 (1.6)	2.2 (1.6)	4.0 (1.5)	5.5 (2.6)	6.6 (2.7)	6.5 (2.3)
253	Tec II	30	22 (6.5)	15 (6.5)	15 (6.2)	33 (4.4)	34 (4.4)	26 (6.8)	33 (4.4)	23 (6.5)	35 (5.8)	35 (5.6)
254		50	19 (4.2)	12 (3.9)	12 (3.7)	33 (3.7)	32 (3.3)	20 (5.2)	32 (3.4)	18 (4.6)	33 (4.7)	34 (5.0)
234		100	16 (3.5)	10 (2.9)	10 (3.0)	33 (3.7)	31 (3.0)	14 (2.8)	30 (3.7)	15 (3.6)	31 (3.4)	32 (3.7)
255	Phon	30	33 (4.9)	28 (6.9)	28 (6.4)	27 (4.6)	27 (6.2)	27 (5.9)	27 (3.7)	31 (7.8)	26 (6.1)	27 (3.4)
		50	31 (4.6)	26 (4.2)	26 (3.9)	25 (3.8)	24 (3.6)	24 (3.3)	24 (2.8)	26 (4.8)	23 (2.6)	25 (3.1)
256		100	30 (4.3)	24 (2.4)	24 (2.3)	23 (2.5)	21 (1.9)	21 (1.6)	22 (2.0)	23 (2.4)	21 (1.7)	23 (2.7)

258

259

260

3. TECHNICAL ARGUMENTS

Proof of Theorem 1. Let \mathcal{A} , depending on n, represent a lattice in \mathcal{I}_r of edge width n^{-B} in each of the r components, for some B > 0. For any $t_{(r)} \in \mathcal{I}_r$, let $t^*_{(r)}$ be the element of \mathcal{A} that is nearest to $t_{(r)} \in \mathcal{I}_r$. Then $\sup_{t_{(r)} \in \mathcal{I}_r} ||t_{(r)} - t^*_{(r)}|| = O(n^{-B})$. In the arguments below, B can be chosen arbitrarily large.

Step 1: Part (i) of the theorem

- 265
- 266
- 267 268
- 269

289 *Step 1.1.* Here we prove that

290

$$\sup_{t_{(r)}\in\mathcal{J}_{r}(c)} |\hat{\operatorname{err}}_{r}(t_{(r)}) - \operatorname{err}_{r}(t_{(r)}^{*})| = o_{P}(1). \tag{3}$$

For random variables $R_{i,1}(t_{(r)})$, $R_{i,2}(t_{(r)})$ and $R_3(t_{(r)})$ we can write:

292
293
$$\hat{\operatorname{err}}_{r}(t_{(r)}) = \frac{1}{n} \sum_{k=0}^{n} \sum_{i=1}^{n_{k}} I\left\{\pi_{k} \hat{f}_{k}(X_{i} \mid t_{(r)}) < \pi_{1-k} \hat{f}_{1-k,n_{1-k}}(X_{i} \mid t_{(r)})\right\}$$

294
$$= \frac{1}{n} \sum_{k=0}^{1} \sum_{i=1}^{n_k} I \Big\{ \pi_k f_k(X_i \mid t_{(r)}) < \pi_{1-k} f_{1-k}(X_i \mid t_{(r)}) + R_{i,1}(t_{(r)}) \Big\}$$

295
296
$$= \frac{1}{n} \sum_{k=0}^{1} \sum_{i=1}^{n_k} I \Big\{ \pi_k f_k(X_i \mid t_{(r)}^*) < \pi_{1-k} f_{1-k}(X_i \mid t_{(r)}^*) + R_{i,2}(t_{(r)}) \Big\}$$

297
$$= \frac{1}{n} \sum_{k=0}^{1} \sum_{i=1}^{n_k} I \Big\{ \pi_k f_k(X_i \mid t^*_{(r)}) < \pi_{1-k} f_{1-k}(X_i \mid t^*_{(r)}) \Big\} + R_3(t_{(r)})$$
(4)

$$\equiv \tilde{\operatorname{err}}(t^*_{(r)}) + R_3(t_{(r)}) = \operatorname{err}_r(t^*_{(r)}) + R_3(t_{(r)}) + R_4(t^*_{(r)}),$$
299

300 where

301

$$\tilde{\operatorname{err}}_{r}(t_{(r)}^{*}) = \frac{1}{n} \sum_{k=0}^{1} \sum_{i=1}^{n_{k}} I \Big\{ \pi_{k} f_{k}(X_{i} \mid t_{(r)}^{*}) < \pi_{1-k} f_{1-k}(X_{i} \mid t_{(r)}^{*}) \Big\}.$$
302

$$\tilde{\operatorname{err}}_{r}(t_{(r)}^{*}) = \frac{1}{n} \sum_{k=0}^{1} \sum_{i=1}^{n_{k}} I \Big\{ \pi_{k} f_{k}(X_{i} \mid t_{(r)}^{*}) < \pi_{1-k} f_{1-k}(X_{i} \mid t_{(r)}^{*}) \Big\}.$$

For all $\epsilon > 0$ and all $k \ge 1$,

303
304
$$\operatorname{pr}\left\{\sup_{\substack{t_{(r)}^* \in \mathcal{A}}} |R_4(t_{(r)}^*)| > \epsilon\right\} = \operatorname{pr}\left\{\sup_{\substack{t_{(r)}^* \in \mathcal{A}}} |\tilde{\operatorname{err}}(t_{(r)}^*) - \operatorname{err}(t_{(r)}^*)| > \epsilon\right\}$$

305
$$= \Pr\left[\sup_{\substack{t^*_{(r)} \in \mathcal{A}}} |\tilde{\operatorname{err}}(t^*_{(r)}) - E\{\tilde{\operatorname{err}}(t^*_{(r)})\}| > \epsilon\right]$$

$$\leq c_1 n^B \sup_{\substack{t_{(r)}^* \in \mathcal{A}}} \Pr\left[\left|\tilde{\operatorname{err}}(t_{(r)}^*) - E\{\tilde{\operatorname{err}}(t_{(r)}^*)\}\right| > \epsilon\right] = O(n^{-C_2}),$$

where $c_1 > 0$ is a finite constant, and for all $C_2 > 0$, where the $O(n^{-C_2})$ bound follows using Bernstein's inequality. Therefore $\sup_{t_{(r)}^* \in \mathcal{A}} |R_4(t_{(r)}^*)| \to 0$ in probability. Result (3) is a consequence of this property and the next two results, which we derive next: for $\ell = 1, 2$,

310

$$\sup_{i,t_{(r)}\in\mathcal{J}_r(c)}|R_{i,\ell}(t_{(r)})| = o_P(1),$$
(5)

$$\sup_{t_{(r)}\in\mathcal{J}_r(c)}|R_3(t_{(r)})| = o_P(1).$$
(6)

313

311

- 314
- 315316
- 317

A. DELAIGLE, P. HALL AND N. BATHIA

Under the conditions of the theorem, standard arguments based on approximating $\hat{f}_k(x \mid t_{(r)}) - E\{\hat{f}_k(x \mid t_{(r)})\}$ and $E\{\hat{f}_k(x \mid t_{(r)})\} - f_k(x \mid t_{(r)})$, for values x and $t_{(r)}$ on lattices

of polynomial denseness, can be used to prove that, for k = 0, 1,

341
$$\sup_{x \in \mathbb{R}^r} \sup_{t_{(r)} \in \mathcal{J}_r(c)} |\hat{f}_k(x \mid t_{(r)}) - f_k(x \mid t_{(r)})| = o_P(1).$$
(7)

Therefore,

343

$$|R_{i,1}(t_{(r)})| \le \sum_{k=0}^{1} \pi_k |f_k(X_i | t_{(r)}) - \hat{f}_k(X_i | t_{(r)})| \to 0$$
344

in probability, uniformly in $t_{(r)} \in \mathcal{J}_r(c)$. This proves that (5) holds for $\ell = 1$.

To show that (5) holds for
$$\ell = 2$$
, note that

$$|R_{i,2}(t_{(r)})| \le |R_{i,1}(t_{(r)})| + \sum_{k=0}^{1} \pi_k |f_k(X_i \mid t_{(r)}) - f_k(X_i \mid t_{(r)}^*)|$$

349
$$\leq |R_{i,1}(t_{(r)})| + \sup_{x \in \mathbb{R}^r} \max_{k=0,1} \sup_{t_{(r)} \in \mathcal{J}_r(c)} |f_k(x \mid t_{(r)}) - f_k(x \mid t_{(r)}^*)|.$$

These bounds, (5) for $\ell = 1$, and Condition A(e) imply that (5) holds for $\ell = 2$. To prove (6), recall from the definition of $R_3(t_{(r)})$ at (4), and (5) for $\ell = 2$, that, for all $\eta > 0$, the following result holds uniformly in $t_{(r)} \in \mathcal{J}(c)$:

354
$$R_{3}(t_{(r)}) \leq R_{5}(t_{(r)},\eta) + \frac{1}{n} \sum_{k=0}^{1} \sum_{i=1}^{n_{k}} I\{|R_{i,2}(t_{(r)})| > \eta\} = R_{5}(t_{(r)},\eta) + o_{p}(1), \quad (8)$$
355

where

357
$$R_5(t_{(r)},\eta) = \frac{1}{n} \sum_{k=0}^{n} \sum_{i=1}^{n_k} I\Big\{ \big| \pi_k f_k(X_i \,|\, t_{(r)}^*) - \pi_{1-k} f_{1-k}(X_i \,|\, t_{(r)}^*) \big| \le \eta \Big\}$$

358

$$= \frac{1}{n} \sum_{k=0}^{1} \sum_{i=1}^{n_k} (1-E) I \Big\{ \Big| \pi_k f_k(X_i \,|\, t^*_{(r)}) - \pi_{1-k} f_{1-k}(X_i \,|\, t^*_{(r)}) \Big| \le \eta \Big\}$$
359

360
$$+ \frac{1}{n} \sum_{k=0}^{1} n_k \operatorname{pr}_k \Big\{ \Big| \pi_k f_k(X \,|\, t^*_{(r)}) - \pi_{1-k} f_{1-k}(X \,|\, t^*_{(r)}) \Big| \le \eta \Big\}.$$

Bernstein's inequality can be used to prove that the double series after the second inequality 385 386 converges to zero uniformly in points $t_{(r)}^*$ on the lattice. In view of Condition A(i), the single series converges to zero uniformly in $t^*_{(r)}$ as η converges to zero. These results and (8) imply (6). 387 388 Step 1.2. Here we show that 389 $\sup_{t_{(r)} \in \mathcal{J}_r(c)} |\operatorname{err}_r(t_{(r)}) - \operatorname{err}(t_{(r)}^*)| = o(1).$ (9)390 The arguments leading to (4) can be used to prove that 391 $\left|\operatorname{err}_{r}(t_{(r)}) - \operatorname{err}(t_{(r)}^{*})\right| \leq \sum_{k=0}^{1} \frac{n_{k}}{n} \operatorname{pr}_{k} \Big\{ \Big| \pi_{k} f_{k}(X \mid t_{(r)}^{*}) - \pi_{1-k} f_{1-k}(X \mid t_{(r)}^{*}) \Big| \leq |R_{6}(t_{(r)})| \Big\},$ 392 393 (10)394 where $\sup_{t_{(r)} \in \mathcal{J}_r(c)} |R_6(t_{(r)})| = o_P(1)$. The latter result implies that, for each $\epsilon > 0$, 395 $b_1(t_{(r)}^*) \equiv \operatorname{pr}_k\{|R_6(t_{(r)}^*)| > \epsilon\} \to 0 \quad \text{uniformly in} \quad t_{(r)} \in \mathcal{J}_r(c).$ (11)396 It follows from Condition A(g) that 397 398 $b_2(t_{(r)}^*) \equiv \operatorname{pr}_k \left\{ \left| \pi_k f_k(X \mid t_{(r)}^*) - \pi_{1-k} f_{1-k}(X \mid t_{(r)}^*) \right| \le \epsilon \right\}$ (12)399 uniformly in $t_{(r)} \in \mathcal{J}_r(c)$. Result (10) implies that $|\operatorname{err}_r(t_{(r)}) - \operatorname{err}(t^*_{(r)})| \le b_1(t^*_{(r)}) + b_2(t^*_{(r)})$, 400 and hence, by (11) and (12), that (9) holds. 401 Part (i) of Theorem 1 follows from (3) and (9). 402 Step 2: Part (ii) of the theorem. Part (i) of the theorem implies that $\hat{err}(t^0_{(r)}) = err(t^0_{(r)}) + o_P(1)$ 403 and $\hat{err}(\hat{t}_{(r)}) = err(\hat{t}_{(r)}) + o_P(1)$. Recall that $t^0_{(r)}$ is contained within a sphere which in turn is 404 contained within $\mathcal{J}_r(c)$. Therefore, 405 $\operatorname{err}(\hat{t}_{(r)}) + o_P(1) = \widehat{\operatorname{err}}(\hat{t}_{(r)}) \le \widehat{\operatorname{err}}(t^0_{(r)}) = \operatorname{err}(t^0_{(r)}) + o_P(1) \le \operatorname{err}(\hat{t}_{(r)}) + o_P(1),$ (13)406 407 from which it follows that $\operatorname{err}(\hat{t}_{(r)}) = \operatorname{err}(t^0_{(r)}) + o_P(1)$, i.e. for all $\delta > 0$, 408 $\operatorname{pr}\{|\operatorname{err}(\hat{t}_{(r)}) - \operatorname{err}(t^0_{(r)})| > \delta\} \to 0.$ (14)409 410 411 412

	10 A. DELAIGLE, P. HALL AND N. BATHIA
433	Condition A(f) implies that, for each $\epsilon > 0$, there exist $\delta > 0$ and $n_0 \ge 1$ such that, for all
434	$n \ge n_0$, $\operatorname{pr}(\ \hat{t}_{(r)} - t^0_{(r)}\ > \epsilon) \le \operatorname{pr}\{ \operatorname{err}(\hat{t}_{(r)}) - \operatorname{err}(t^0_{(r)}) > \delta\}$, and in conjunction with (14)
435	this implies that $pr(\ \hat{t}_{(r)} - t^0_{(r)}\ > \epsilon) \to 0$ for all $\epsilon > 0$, which is equivalent to the second part
436	of Theorem 1.
437	
438	<i>Proof of Theorem 2.</i> We only prove part (i) since the proof of part (ii) is similar. In the string
439	of identities at (15), the first holds with probability 1 and follows from the definition of \hat{p} ; the
440	second holds for a random variable $R_7 = R_7(n)$ which, by (13), satisfies $\sup_{r \le r_0} R_7 = o_P(1)$;
441	the third holds with probability not less than
442	$q_r \equiv \Pr \left[R_7 < \inf \left\{ r \le r_0 : \operatorname{err}(t^0_{(r+1)}) - (1-\rho) \operatorname{err}(t^0_{(r)}) \right\} \right];$
443	
444	and the fourth follows from the definition of p :
445	$\hat{p} = \inf\{r \le r_0 : (1 - \rho)\operatorname{err}(\hat{t}_{(r)}) \le \operatorname{err}(\hat{t}_{(r+1)}^0)\}$
446	$= \inf\{r \le r_0 : (1 - \rho)\operatorname{err}(t^0_{(r)}) \le \operatorname{err}(t^0_{(r+1)}) + R_7\}$
447	
448	$= \inf\{r \le r_0 : (1-\rho)\operatorname{err}(t^0_{(r)}) \le \operatorname{err}(t^0_{(r+1)})\} = p. $ (15)
449	Now, (A3) and the fact that $R_7 = o_P(1)$ imply that $q_r \to 1$. Hence (15) implies that $pr(\hat{p} =$
450	$p) \rightarrow 1 \text{ as } n \rightarrow \infty.$
451	Note too that
452	
453	$\operatorname{err}^{\operatorname{emp}} = \frac{n_0}{n} \operatorname{pr}_0 \{ J(X, \mathcal{D} \mid \hat{t}_{(\hat{p})}) = 1 \} + \frac{n_1}{n} \operatorname{pr}_1 \{ J(X, \mathcal{D} \mid \hat{t}_{(\hat{p})}) = 0 \}$
454	$= \frac{n_0}{n} \operatorname{pr}_0 \{ J(X, \mathcal{D} \mid \hat{t}_{(p)}) = 1 \} + \frac{n_1}{n} \operatorname{pr}_1 \{ J(X, \mathcal{D} \mid \hat{t}_{(p)}) = 0 \} + o(1)$
455	$= \frac{n_0}{n} \operatorname{pr}_0 \left\{ \pi_0 f_0(X \mid \hat{t}_{(p)}) < \pi_1 f_1(X \mid \hat{t}_{(p)}) + R_8 \right\}$
456	$+ \frac{n_1}{n} \operatorname{pr}_1 \{ \pi_0 f_0(X \hat{t}_{(p)}) > \pi_1 f_1(X \hat{t}_{(p)}) + R_9 \} + o(1), \tag{16}$
457	
458	
459	
460	

481	where, using the uniform convergence of \hat{f}_k to f_k , see (7), R_8 and R_9 denote random variable	es
482	that equal $o_P(1)$. Remember that the notation $f_k(x t_{(p)})$ refers to the <i>p</i> -dimensional density	of
483	$X(t_{(p)})$ calculated at $x(t_{(p)})$, when X comes from population k.	
484	The uniform convergence of \hat{f}_k to f_k implies that $\hat{f}_k(x \mid t_{(p)}) = f_k(x \mid t_{(p)}) + o_P(1)$ uniform	ıly
485	in x and $t_{(p)} \in \mathcal{J}_p(c)$, which entails $\hat{f}_k(x \mid \hat{t}_{(p)}) = f_k(x \mid \hat{t}_{(p)}) + o_P(1)$. Hence, by (16),	
486	$\operatorname{err}^{\operatorname{emp}} = \frac{n_0}{n} \operatorname{pr}_0 \left\{ \pi_0 \hat{f}_0(X \mid t^0_{(p)}) < \pi_1 \hat{f}_1(X \mid t^0_{(p)}) + R_{10} \right\}$	
487	$n = \frac{n}{n} \operatorname{pr}_1 \{ \pi_0 \hat{f}_0(X \mid t^0_{(p)}) > \pi_1 \hat{f}_1(X \mid t^0_{(p)}) + R_{11} \} + o(1)$	
488	$= \frac{n_0}{n} \operatorname{pr}_0 \left\{ \pi_0 \hat{f}_0(X \mid t^0_{(p)}) < \pi_1 \hat{f}_1(X \mid t^0_{(p)}) \right\}$	
489		
490	$+\frac{n_1}{n}\operatorname{pr}_1\{\pi_0\hat{f}_0(X \mid t^0_{(p)}) < \pi_1\hat{f}_1(X \mid t^0_{(p)})\} + o(1) = \operatorname{err}(t^0_{(p)}) + o(1),$	
491	where the second last equality is obtained using calculations similar to those in the proof	of
492	Theorem 1.	
493		
494		
495		
496		
497		
498		
499		
500		
501		
502		
503		
504		
505		
506		
507		
508		