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1. PROCEDURES FOR BREAKING TIES

Since êrrr can take at most n+ 1 different values, its minimum is not always unique. For the

linear and quadratic discriminant methods, as well as for the nonparametric Bayes procedure, we

suggest breaking ties as follows. First, note that these three methods are based on the Bayes rule.

They assign x to population 0, i.e. in the notation above, J(x,D | t(r)) = 0, if

π0 f̃0(x | t(r)) > π1 f̃1(x | t(r)), (1)

and to population 1, i.e. J(x,D | t(r)) = 1, otherwise. For the nonparametric Bayes rule,

f̃k(x | t(r)) = f̂k(x | t(r)); for Fisher’s linear and quadratic discriminant methods, the f̃k(x | t(r))s

are r-variate normal densities with means X̄k(t(r)) and covariance matrix Σ̂(t(r)) for linear dis-

criminant, or covariance matrices Σ̂k(t(r)) for quadratic discriminant. In the case of ties, we
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2 A. DELAIGLE, P. HALL AND N. BATHIA

choose among them the vector t(r) that minimizes

1

n

n∑
i=1

|f̆0(Xi | t(r))− f̆1(Xi | t(r))|/max{f̆0(Xi | t(r)), f̆1(Xi | t(r))}, (2)

where, for k = 0, 1, f̆k denotes an estimator of fk. In the linear and quadratic discriminant cases,

we took f̆k = f̃k defined above; in the nonparametric case we took f̆k = f̃k,i, where f̃k,i de-

notes the estimator of fk constructed without using Xi. The criterion at (2) is an empirical mean

distance between f̃0 and f̃1, relative to the magnitude of f̃0 and f̃1.

For the classifier based on nonparametric regression, we break ties by choosing among

them the one that minimizes the leave-one-out absolute error of the regression fit,
∑n

i=1 |Ii −

ĝi
(
Xi

∣∣ t(r))|, where ĝi denotes the estimator of g constructed without using Xi. For the clas-

sifier based on logistic regression, we choose among ties the one that minimizes the Akaike

information criterion; if there are still ties with this criterion, we create a noisy version of the

training data Xi by adding to each component a normal random variable with mean zero and

variance 0·1 times the empirical variance of the component, and then break the ties by calculat-

ing the estimator of error rate from these perturbed data, followed, if necessary, by the Akaike

information criterion.

2. ADDITIONAL SIMULATION RESULTS

2·1. Comparison of nonparametric Bayes and regression-based classifiers

As indicated in §4.2 of the paper, the nonparametric Bayes classifier gave results similar to

the nonparametric regression-based one. This is illustrated in Fig. 1 below, which compares the

results of the nonparametric Bayes and regression classifiers for the three datasets considered in

the paper, and for training samples of sizes n = 30, 50 and 100. The boxplots were constructed

from 200 Monte Carlo replications, as in the paper.
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Fig. 1. Comparison of results for the Bayes (B) method and the nonparametric regression (NP) procedure, for

training samples of sizes n = 30, 50 and 100. Top: Tecator data, where the left panel shows case I and the right

panel shows case II. Bottom left: rainfall data, bottom right: phoneme data.

We can see that overall the regression-based classifier outperformed its Bayes counterpart

for n ≤ 50, but the Bayes classifier improves when n = 100. In part, this can be explained by

the fact that the regression-based classifier requires only one bandwidth, constructed from the

entire sample, whereas the Bayes classifier requires two bandwidths (one for each group), each

constructed from observations in one group only. For n small, the groups can be of rather low

size, which makes the bandwidth choice too variable, but when n is larger, the group sizes are

adequate for these bandwidths to be reliable, and hence for the Bayes classifier to work well.

2·2. Number of selected points

Fig. 2 shows the frequency at which k = 1, . . . , 5 points were selected over 200 Monte Carlo

simulations, for training samples of sizes n = 30, 50 and 100 and for each of the four examples

considered in our numerical work.
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Fig. 2. Number of selected points. The graphs show the frequency at which k = 1, . . . , 5 points were selected

over 200 Monte Carlo simulations, for training samples of size n = 30 (◦), 50 (△) and 100 (▽). The graphs

are for the rainfall data (top left), the Tecator data, case I (top right), the Tecator data, case II (bottom left) and

the phoneme data (bottom right).

2·3. Effect of ρ

As mentioned below equation (3) in §2.2 of the paper, our method is not very sensitive to

choice of the threshold. To illustrate this point, in Figure 3 below we show, for training samples

of sizes n = 30, 50 and 100, boxplots of the classification error rates, calculated from 200 Monte

Carlo replications, and obtained when applying our method with nonparametric regression-

based, logistic, linear discriminant and quadratic discriminant classifiers when ρ = 0, 0·1 and

0·2. We can see that the results for ρ = 0 and ρ = 0·1 are almost identical, and the results for

ρ = 0·2 do not differ much.
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Fig. 3. Effect of ρ on the nonparametric regression-based method combined with our approach (NP), the logistic

regression methods combined with our approach (LOG), the linear discriminant method combined with our

approach (LD) and the quadratic discriminant method (QD). In each group of three boxplots, the first is for

ρ = 0, the second for ρ = 0·1 and the third for ρ = 0·2. The first column is for training samples of size n = 30,

the second column is for n = 50, and the third column is for n = 100. Rows 1 to 4 show, respectively the

Phoneme, Rain, Tecator, case I and Tecator, case II data.

2·4. Tables

Table 1 shows means and standard deviations of the percentage of misclassified observations

calculated from M = 200 Monte Carlo replications for each of the data sets considered in our

numerical work, and for training samples of sizes n = 30, 50 and 100.
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Table 1. Mean (standard deviation) of the percentage of misclassified observations calculated

from M = 200 Monte Carlo replications from the rainfall data (Rain), the Tecator data (Tec),

cases I and II, and the phoneme data (Phon). The results are shown for the nonparametric

regression-based methods combined with our approach (NP), with principal components (NPC)

or with partial least-squares (NPLS), the boosting version of NP (NPb), the logistic regression

methods combined with our approach (LOG), with partial least-squares (LOGPLS) and with

boosting (LOGb), the linear discriminant method combined with our approach (LD) and with

partial least-squares (LDPLS), and the quadratic discriminant method (QD).

Data n NPC NP NPb NPPLS LOG LOGb LOGPLS QD LD LDPLS

Rain 30 13 (5.0) 13 (5.5) 11 (4.8) 10 (4.6) 8.0 (4.2) 8.0 (4.2) 8.8 (4.0) 14 (5.1) 12 (3.7) 11 (3.8)

50 9.2 (4.0) 9.2 (3.8) 8.3 (3.4) 8.6 (3.7) 5.5 (3.0) 5.5 (3.0) 8.1 (3.4) 11 (4.4) 11 (3.1) 9.7 (3.5)

100 5.9 (2.8) 6.4 (2.7) 5.2 (2.3) 8.0 (3.3) 4.3 (2.5) 4.2 (2.5) 7.4 (2.9) 8.2 (3.5) 9.9 (3.7) 9.1 (3.4)

Tec I 30 7.0 (3.3) 5.6 (3.3) 5.3 (3.1) 5.5 (2.4) 6.0 (3.3) 6.0 (3.3) 5.9 (3.1) 9.6 (5.1) 9.1 (3.9) 7.1 (3.4)

50 5.8 (1.9) 4.2 (2.5) 4.1 (2.4) 4.5 (1.5) 4.2 (2.6) 4.2 (2.6) 4.7 (1.9) 7.7 (3.4) 7.7 (3.1) 6.5 (2.3)

100 5.4 (1.6) 3.3 (1.7) 3.2 (1.7) 4.0 (1.5) 2.2 (1.6) 2.2 (1.6) 4.0 (1.5) 5.5 (2.6) 6.6 (2.7) 6.5 (2.3)

Tec II 30 22 (6.5) 15 (6.5) 15 (6.2) 33 (4.4) 34 (4.4) 26 (6.8) 33 (4.4) 23 (6.5) 35 (5.8) 35 (5.6)

50 19 (4.2) 12 (3.9) 12 (3.7) 33 (3.7) 32 (3.3) 20 (5.2) 32 (3.4) 18 (4.6) 33 (4.7) 34 (5.0)

100 16 (3.5) 10 (2.9) 10 (3.0) 33 (3.7) 31 (3.0) 14 (2.8) 30 (3.7) 15 (3.6) 31 (3.4) 32 (3.7)

Phon 30 33 (4.9) 28 (6.9) 28 (6.4) 27 (4.6) 27 (6.2) 27 (5.9) 27 (3.7) 31 (7.8) 26 (6.1) 27 (3.4)

50 31 (4.6) 26 (4.2) 26 (3.9) 25 (3.8) 24 (3.6) 24 (3.3) 24 (2.8) 26 (4.8) 23 (2.6) 25 (3.1)

100 30 (4.3) 24 (2.4) 24 (2.3) 23 (2.5) 21 (1.9) 21 (1.6) 22 (2.0) 23 (2.4) 21 (1.7) 23 (2.7)

3. TECHNICAL ARGUMENTS

Proof of Theorem 1. Let A, depending on n, represent a lattice in Ir of edge width n−B in

each of the r components, for some B > 0. For any t(r) ∈ Ir, let t ∗(r) be the element of A that is

nearest to t(r) ∈ Ir. Then supt(r)∈Ir ∥t(r) − t ∗(r)∥ = O(n−B). In the arguments below, B can be

chosen arbitrarily large.

Step 1: Part (i) of the theorem
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Step 1.1. Here we prove that

sup
t(r)∈Jr(c)

|êrrr(t(r))− errr(t
∗
(r))| = oP (1). (3)

For random variables Ri,1(t(r)), Ri,2(t(r)) and R3(t(r)) we can write:

êrrr(t(r)) =
1

n

1∑
k=0

nk∑
i=1

I
{
πkf̂k(Xi | t(r)) < π1−kf̂1−k,n1−k

(Xi | t(r))
}

=
1

n

1∑
k=0

nk∑
i=1

I
{
πkfk(Xi | t(r)) < π1−kf1−k(Xi | t(r)) +Ri,1(t(r))

}
=

1

n

1∑
k=0

nk∑
i=1

I
{
πkfk(Xi | t ∗(r)) < π1−kf1−k(Xi | t ∗(r)) +Ri,2(t(r))

}
=

1

n

1∑
k=0

nk∑
i=1

I
{
πkfk(Xi | t ∗(r)) < π1−kf1−k(Xi | t ∗(r))

}
+R3(t(r)) (4)

≡ ẽrr(t ∗(r)) +R3(t(r)) = errr(t
∗
(r)) +R3(t(r)) +R4(t

∗
(r)),

where

ẽrrr(t
∗
(r)) =

1

n

1∑
k=0

nk∑
i=1

I
{
πkfk(Xi | t ∗(r)) < π1−kf1−k(Xi | t ∗(r))

}
.

For all ϵ > 0 and all k ≥ 1,

pr

{
sup

t ∗
(r)

∈A
|R4(t

∗
(r))| > ϵ

}
= pr

{
sup

t ∗
(r)

∈A
|ẽrr(t ∗(r))− err(t ∗(r))| > ϵ

}

= pr

[
sup

t ∗
(r)

∈A
|ẽrr(t ∗(r))− E{ẽrr(t ∗(r))}| > ϵ

]

≤ c1n
B sup

t ∗
(r)

∈A
pr
[
|ẽrr(t ∗(r))− E{ẽrr(t ∗(r))}| > ϵ

]
= O

(
n−C2

)
,

where c1 > 0 is a finite constant, and for all C2 > 0, where the O(n−C2) bound follows using

Bernstein’s inequality. Therefore supt ∗
(r)

∈A |R4(t
∗
(r))| → 0 in probability. Result (3) is a conse-

quence of this property and the next two results, which we derive next: for ℓ = 1, 2,

sup
i,t(r)∈Jr(c)

|Ri,ℓ(t(r))| = oP (1), (5)

sup
t(r)∈Jr(c)

|R3(t(r))| = oP (1). (6)



337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

8 A. DELAIGLE, P. HALL AND N. BATHIA

Under the conditions of the theorem, standard arguments based on approximating

f̂k(x | t(r))− E{f̂k(x | t(r))} and E{f̂k(x | t(r))} − fk(x | t(r)), for values x and t(r) on lattices

of polynomial denseness, can be used to prove that, for k = 0, 1,

sup
x∈Rr

sup
t(r)∈Jr(c)

|f̂k(x | t(r))− fk(x | t(r))| = oP (1). (7)

Therefore,

|Ri,1(t(r))| ≤
1∑

k=0

πk|fk(Xi | t(r))− f̂k(Xi | t(r))| → 0

in probability, uniformly in t(r) ∈ Jr(c). This proves that (5) holds for ℓ = 1.

To show that (5) holds for ℓ = 2, note that

|Ri,2(t(r))| ≤ |Ri,1(t(r))|+
1∑

k=0

πk|fk(Xi | t(r))− fk(Xi | t ∗(r))|

≤ |Ri,1(t(r))|+ sup
x∈Rr

max
k=0,1

sup
t(r)∈Jr(c)

|fk(x | t(r))− fk(x | t ∗(r))|.

These bounds, (5) for ℓ = 1, and Condition A(e) imply that (5) holds for ℓ = 2. To prove (6),

recall from the definition of R3(t(r)) at (4), and (5) for ℓ = 2, that, for all η > 0, the following

result holds uniformly in t(r) ∈ J (c):

R3(t(r)) ≤ R5(t(r), η) +
1

n

1∑
k=0

nk∑
i=1

I{|Ri,2(t(r))| > η} = R5(t(r), η) + op(1), (8)

where

R5(t(r), η) =
1

n

1∑
k=0

nk∑
i=1

I
{∣∣πkfk(Xi | t ∗(r))− π1−kf1−k(Xi | t ∗(r))

∣∣ ≤ η
}

=
1

n

1∑
k=0

nk∑
i=1

(1−E)I
{∣∣πkfk(Xi | t ∗(r))− π1−kf1−k(Xi | t ∗(r))

∣∣ ≤ η
}

+
1

n

1∑
k=0

nkprk

{∣∣πkfk(X | t ∗(r))− π1−kf1−k(X | t ∗(r))
∣∣ ≤ η

}
.
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Bernstein’s inequality can be used to prove that the double series after the second inequality

converges to zero uniformly in points t ∗(r) on the lattice. In view of Condition A(i), the single

series converges to zero uniformly in t ∗(r) as η converges to zero. These results and (8) imply (6).

Step 1.2. Here we show that

sup
t(r)∈Jr(c)

|errr(t(r))− err(t ∗(r))| = o(1). (9)

The arguments leading to (4) can be used to prove that

|errr(t(r))− err(t ∗(r))| ≤
1∑

k=0

nk

n
prk

{∣∣πkfk(X | t ∗(r))− π1−kf1−k(X | t ∗(r))
∣∣ ≤ |R6(t(r))|

}
,

(10)

where supt(r)∈Jr(c) |R6(t(r))| = oP (1). The latter result implies that, for each ϵ > 0,

b1(t
∗
(r)) ≡ prk{|R6(t

∗
(r))| > ϵ} → 0 uniformly in t(r) ∈ Jr(c). (11)

It follows from Condition A(g) that

b2(t
∗
(r)) ≡ prk

{∣∣πkfk(X | t ∗(r))− π1−kf1−k(X | t ∗(r))
∣∣ ≤ ϵ

}
(12)

uniformly in t(r) ∈ Jr(c). Result (10) implies that |errr(t(r))− err(t ∗(r))| ≤ b1(t
∗
(r)) + b2(t

∗
(r)),

and hence, by (11) and (12), that (9) holds.

Part (i) of Theorem 1 follows from (3) and (9).

Step 2: Part (ii) of the theorem. Part (i) of the theorem implies that êrr(t0(r)) = err(t0(r)) + oP (1)

and êrr(t̂(r)) = err(t̂(r)) + oP (1). Recall that t0(r) is contained within a sphere which in turn is

contained within Jr(c). Therefore,

err(t̂(r)) + oP (1) = êrr(t̂(r)) ≤ êrr(t0(r)) = err(t0(r)) + oP (1) ≤ err(t̂(r)) + oP (1), (13)

from which it follows that err(t̂(r)) = err(t0(r)) + oP (1), i.e. for all δ > 0,

pr{|err(t̂(r))− err(t0(r))| > δ} → 0. (14)
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Condition A(f) implies that, for each ϵ > 0, there exist δ > 0 and n0 ≥ 1 such that, for all

n ≥ n0, pr(∥t̂(r) − t0(r)∥ > ϵ) ≤ pr{|err(t̂(r))− err(t0(r))| > δ}, and in conjunction with (14)

this implies that pr(∥t̂(r) − t0(r)∥ > ϵ) → 0 for all ϵ > 0, which is equivalent to the second part

of Theorem 1. �

Proof of Theorem 2. We only prove part (i) since the proof of part (ii) is similar. In the string

of identities at (15), the first holds with probability 1 and follows from the definition of p̂; the

second holds for a random variable R7 = R7(n) which, by (13), satisfies supr≤r0 |R7| = oP (1);

the third holds with probability not less than

qr ≡ pr
[
|R7| < inf

{
r ≤ r0 : err(t

0
(r+1))− (1− ρ) err(t0(r))

}]
;

and the fourth follows from the definition of p:

p̂ = inf{r ≤ r0 : (1− ρ) err(t̂(r)) ≤ err(t̂0(r+1))}

= inf{r ≤ r0 : (1− ρ) err(t0(r)) ≤ err(t0(r+1)) +R7}

= inf{r ≤ r0 : (1− ρ) err(t0(r)) ≤ err(t0(r+1))} = p. (15)

Now, (A3) and the fact that R7 = oP (1) imply that qr → 1. Hence (15) implies that pr(p̂ =

p) → 1 as n → ∞.

Note too that

erremp =
n0

n
pr0

{
J
(
X,D

∣∣ t̂(p̂)) = 1
}
+

n1

n
pr1

{
J
(
X,D

∣∣ t̂(p̂)) = 0
}

=
n0

n
pr0

{
J
(
X,D

∣∣ t̂(p)) = 1
}
+

n1

n
pr1

{
J
(
X,D

∣∣ t̂(p)) = 0
}
+ o(1)

=
n0

n
pr0

{
π0f0(X | t̂(p)) < π1f1(X | t̂(p)) +R8

}
+

n1

n
pr1

{
π0f0(X | t̂(p)) > π1f1(X | t̂(p)) +R9}+ o(1), (16)
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where, using the uniform convergence of f̂k to fk, see (7), R8 and R9 denote random variables

that equal oP (1). Remember that the notation fk(x | t(p)) refers to the p-dimensional density of

X(t(p)) calculated at x(t(p)), when X comes from population k.

The uniform convergence of f̂k to fk implies that f̂k(x | t(p)) = fk(x | t(p)) + oP (1) uniformly

in x and t(p) ∈ Jp(c), which entails f̂k(x | t̂(p)) = fk(x | t̂(p)) + oP (1). Hence, by (16),

erremp =
n0

n
pr0

{
π0f̂0(X | t0(p)) < π1f̂1(X | t0(p)) +R10

}
+

n1

n
pr1

{
π0f̂0(X | t0(p)) > π1f̂1(X | t0(p)) +R11}+ o(1)

=
n0

n
pr0

{
π0f̂0(X | t0(p)) < π1f̂1(X | t0(p))

}
+

n1

n
pr1

{
π0f̂0(X | t0(p)) < π1f̂1(X | t0(p))}+ o(1) = err(t0(p)) + o(1),

where the second last equality is obtained using calculations similar to those in the proof of

Theorem 1. �


