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C Additional results for asymptotic confidence bands

C.1 Pointwise confidence bands based on central limit theory

In standard error-free nonparametric curve estimation problems, a common method for con-

structing confidence bands is through the limiting distribution of estimators (see e.g. Härdle,

1989a, Eubank and Speckman, 1993, and Xia, 1998). In theory, such procedures could be

employed in the errors-in-variables setting too, as we show now.

First, as in the error-free case, confidence bands for g are easier to construct from the

limiting distribution obtained when undersmoothing ĝ, i.e. when taking the bandwidth h

smaller than the optimal size for estimating g. Without undersmoothing, constructing the

bands in practice requires estimation of a complex bias term, which cannot be done without

introducing a non negligible coverage error; see Section C.2 of the Supplementary Material

for details. If we undersmooth ĝ, that is, take h2 = o{(nh)−1
∫
K2

U} = o(1), then it can be

proved that

ĝ(x)− g(x) = Zn(x)
√
Vn(x), (C.1)

where Zn(x) asymptotically has the N(0, 1) distribution and Vn(x) = (nh)−1ν2(x)f−2
X (x)

∫
K2

U ,

with ν2(x) = σ2 fW (x) +
∫∞
−∞{g(q)− g(x)}2 fU(x− q) fX(q) dq and σ2 denoting the variance

of V in the model at (2.1); see Theorem C.1 in Section C of the Supplementary Material.

Therefore, provided we can construct consistent estimators f̂X of fX and ν̂ of ν, we can esti-

mate Vn(x) by V̂n(x) = (nh)−1 ν̂2(x)/f̂−2
X (x)

∫
K2

U , and an asymptotic pointwise confidence

band with nominal coverage 1− α can take the form:

Bα(I) =
{
(x, y) : x ∈ I and ĝ(x)− V̂ 1/2

n (x) z1−α/2 ≤ y ≤ ĝ(x) + V̂ 1/2
n (x) z1−α/2

}
, (C.2)

where I denotes a compact interval, and z1−α/2 is the (1− α/2)-level quantile of the N(0, 1)

distribution.

In view of (C.1), under modest regularity conditions, including the assumption that fX

is bounded away from zero on I, it can be proved that the pointwise band at (C.2) has

approximately correct coverage. We can easily estimate fX , using for example f̂X at (2.5).

However, unlike the error-free case or density deconvolution problems, there does not seem

to be an attractive way of estimating ν consistently. See Section C.3 in the Supplementary

Material, where we introduce two possible ways of estimating ν and discuss the difficulties

with these approaches. Therefore, while they can be defined, confidence bands based on

limiting distributions are not really practicable in the errors-in-variables context.
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C.2 First-order properties of ĝ

Let R(KU) =
∫
K2

U(v) dv, κ2 =
∫
u2K(u) du, b(x) = g′′(x) + 2 f ′

X(x) g
′(x) f−1

X (x), recall

the definition of s2(h) in (5.3) and of ν2(x) in Section C.1, and recall that E(V ) = 0 and

varV = σ2, where σ2 denotes the variance of V in the model at (2.1). The following theorem

is essentially due to Delaigle et al. (2009).

Theorem C.1. Assume that (2.2) and Condition A hold, that fU , fX and g are continuous

and uniformly bounded, that fX and g have two continuous derivatives in a neighbourhood

of x, that fX(x) > 0, that varV < ∞, that h = h(n) → 0, and that R(KU) = o(nh).

Then, ĝ(x;h) − g(x) is asymptotically normally distributed with mean 1
2
h2 κ2 b(x) + o(h2)

and variance s2(h) ν2(x) f−2
X (x) + o{s2(h)}.

Abusing terminology a little, we refer to the mean and variance of the asymptotic dis-

tribution as the asymptotic bias and variance of ĝ. An asymptotic confidence band with

nominal coverage 1 − α could be defined via this result, replacing b and ν by estimators.

However, estimating b is quite complex, and like the error-free case, the resulting asymptotic

band would have coverage error that does not vanish asymptotically, and which would need

to be corrected, for example by adding to the finite endpoints of the band, a correction factor

(which would also need to be estimated). This issue can be avoided by undersmoothing ĝ

when constructing the band. In particular, an immediate consequence of Theorem C.1 is

that, provided h is chosen such that h2 = o{s2(h)} and R(KU) = o(nh), (C.1) holds. Conse-

quently, the central limit theory-based confidence band at (C.2) has asymptotically correct

coverage at each point.

C.3 Estimating ν

A consistent estimator of ν2(x) can be defined by

ν̂2(x) = σ̂2 f̂W (x) + E
[
{ĝ(X∗)− ĝ(x)}2 fU(x−X∗)

∣∣∣ Z]
, (C.3)

where σ̂ is defined at (3.1); ĝ is given by (2.4); the resampled datum X∗ is drawn from the

population with distribution function F̃X , introduced in Section D.2; and f̂W is a standard

error-free kernel estimator:

f̂W (x) =
1

nhW

n∑
i=1

K1

(
x−Wi

hW

)
,

withK1 a kernel of standard type for density estimation, and hW a bandwidth of conventional

size for error-free kernel density estimation. Assuming that, on a compact interval J , ĝ is
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bounded; and supposing in addition that the support of F̃X is confined to J ; the value of ν̂

is guaranteed to be finite.

We could also define ν̂ by replacing the second term on the right-hand side of (C.3) by∫ ∞

−∞
{ĝ(q)− ĝ(x)}2 fU(x− q) f̂X(q) dq ,

but this quantity can be awkward to calculate since f̂X , as defined at (2.5), generally takes

negative values on part of the real line.

The complexity of the problem of estimating ν is apparent not just in terms of the

cumbersome nature of its formula, which depends on σ, fW , fX and g. Not only are these

quantities estimated using different smoothing parameters, there is good reason to use dif-

ferent versions of those parameters for computing the estimator ν̂ than we would employ in

other parts of the confidence-band problem. For example, to get best performance of ν̂ we

would use, in the construction of ĝ for (C.3), a bandwidth that was an order of magnitude

smaller than would be employed if we were interested only in estimation of g, and also of

different size than we would use if we were undersmoothing ĝ for a confidence band.

D Additional concerning the bootstrap bands

D.1 Other bootstrap bands

An alternative equal-tailed band can be defined by

CBα(I) =
{
(x, y) : x ∈ I and t̂

(2)
α/2(x) 6 y 6 t̂

(2)
1−α/2(x)

}
, (D.1)

where, for each x, t̂
(2)
α/2(x) and t̂

(2)
1−α/2(x) are such that

P
{
ĝ∗(x;h2) 6 t̂

(2)
α/2(x)

∣∣Z}
= P

{
ĝ∗(x;h2) > t̂

(2)
1−α/2(x)

∣∣Z}
= α

2
, (D.2)

A symmetric band can be defined by

CBα(I) =
{
(x, y) : x ∈ I and ĝ(x;h)− t̂

(3)
α/2(x) 6 y 6 ĝ(x;h) + t̂

(3)
α/2(x)

}
, (D.3)

where, for each x, t̂
(3)
α/2(x) is such that

P
{∣∣ĝ∗(x;h2)− ĝ(x;h0)

∣∣ 6 t̂
(3)
α/2(x)

∣∣Z}
= 1− α. (D.4)

These bands give approximately correct coverage at individual points x, i.e., as n → ∞

P
{
t̂
(2)
α/2(x) 6 g(x) 6 t̂

(2)
1−α/2(x)

}
→ 1− α for all x ∈ I, (D.5)
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P
{
ĝ(x;h)− t̂

(3)
α/2(x) 6 g(x) 6 ĝ(x;h) + t̂

(3)
α/2(x)

}
→ 1− α for all x ∈ I. (D.6)

Theoretical results similar to those in Section 5.1 can be established for such bands too.

More specifically, let

P2(w) = P
[
δ(h)−1|ĝ(x;h)− g1(x)| 6 A0w

]
,

let α ∈ (0, 1), and define z2α and w2α to be the solutions of Φ(z) = 1
2
(1 +α) and P2(w) = α,

respectively. Theorem D.1 and Corollary D.1 give, respectively, Edgeworth and Cornish-

Fisher expansion relating to the distribution of ĝ − g1.

Theorem D.1. If Conditions A, B and C hold then∣∣∣P2(w)−
{
2Φ(w)− 1 + 2 δ2p2(w)ϕ(w)

}∣∣∣ 6 B1

{
δ3 + (nh)−1 + δ (nh)−1/2

}
,

for all n > n0, all h ∈ (0, H0] and all 0 6 w 6 B2, where B1, h and n0 depend only on I,
the constants C4, . . . , C9 and ϵ introduced in Condition B, on the length of the interval I1

there (the constant is larger for shorter intervals), on the distributions of U and V , on the

kernel K and on B2. If the distribution of V is either N(0, σ2) or gamma, as at (3.2), then

dependence on the distribution of V , above, can be replaced by dependence on the constants

C1, C2 and C3 in (B1).

Corollary D.1. If Conditions A, B and C hold then∣∣w2α −
{
z2α − δ2p2(z2α)

}∣∣ 6 B1

{
δ3 + (nh)−1 + δ (nh)−1/2

}
,

for all n > n0, all h ∈ (0, H0] and all α ∈ [B2, 1− B2], where B2 denotes any number in the

interval (0, 1), and B1, H0 and n0 have the dependence itemised in Theorem D.1.

Simultaneous analogues of the pointwise confidence bands defined in (D.1) and (D.3)

can be constructed by altering equations (D.2) and (D.4) to

P
{
ĝ∗(x;h2) 6 t̂

(2)
α/2(x) ∀x ∈ I

∣∣Z}
= P

{
ĝ∗(x;h2) > t̂

(2)
1−α/2(x)

∣∣Z ∀x ∈ I|Z
}
= α

2
,

P
{∣∣ĝ∗(x;h2)− ĝ(x;h0)

∣∣ 6 t̂
(3)
α/2(x) ∀x ∈ I

∣∣Z}
= 1− α.

In this case, and modulo appropriate assumptions, the following approximations would pre-

vail in place of (D.5) and (D.6):

P
{
t̂
(2)
α/2(x) 6 g(x) 6 t̂

(2)
1−α/2(x) ∀x ∈ I

}
→ 1− α,

P
{
ĝ(x;h)− t̂

(3)
α/2(x) 6 g(x) 6 ĝ(x;h) + t̂

(3)
α/2(x) ∀x ∈ I

}
→ 1− α.
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D.2 Estimating the distribution of X

In order to generate the bootstrap versions X∗
i of Xi, we need to estimate the distribution

function FX of X. We use the estimator of Hall and Lahiri (2008), which is defined from (2.5)

by

F̂X(x;h) =

∫ x

−∞
f̂X(z;h) dz = n−1

n∑
j=1

L1(x−Wj;h),

where

L1(u;h) =
1
2
+

1

2π

∫ ∞

−∞

sin tu

t

ϕK(ht)

ϕU(t)
dt. (D.7)

In particular, if ϕK is compactly supported, if h > 0 and if (2.2) holds, then the integral in

(D.7) is well-defined and finite.

Generally, F̂X is not monotone and can take values outside the interval [0, 1]. We convert

it to a proper distribution function in the same way as in Hall and Lahiri (2008), by taking

F̃X(v;h) = min

[
1, sup

{
F̂X(z;h) : z 6 v

}]
.

Bootstrap samples can then be constructed from F̃−1
X , the inverse of F̃X , which can be

constructed by

F̃−1
X (u;h) = sup

{
v : F̃X(v;h) 6 u

}
,

where 0 < u < 1. Our estimator F̃−1
X of F−1

X is such that if, for real numbers u, v1 and v2

with v1 < v2, we have F̂X(v1;h) 6 u 6 F̂X(v2;h), then v1 6 F̃−1
X (u;h) 6 v2.

D.3 Consistency of moment estimators of FV

To justify the definitions of the estimators σ̂2 and ζ̂ at (3.1), observe from (2.1) that

µ̂2 = A20 + 2A11 + A02 , µ̂3 = A30 + 3A21 + 3A12 + A03 ,

where Ajk = n−1
∑

i g(Xi)
j V k

i . Assume that E(V 6) + E{g(X)6} < ∞. Then, since V

and X are independent and E(V ) = 0, we have for j = 2, 3: Aj0 = ξj + Op(n
−1/2), A02 =

σ2 +Op(n
−1/2), A03 = ζ +Op(n

−1/2), A12 = ξ1 σ
2 +Op(n

−1/2) and |A11|+ |A21| = Op(n
−1/2).

Therefore, µ̂2 = ξ2 + σ2 + Op(n
−1/2) and µ̂3 = ξ3 + 3 ξ1 σ

2 + ζ + Op(n
−1/2), whence σ2 =

µ̂2 − ξ2 +Op(n
−1/2) and ζ = µ̂3 − ξ3 − 3 ξ1 σ

2 +Op(n
−1/2). Therefore, provided ξ̂1 and ξ̂3 are

consistent for ξ1 and ξ3, respectively, the estimators σ̂2 and ζ̂ at (3.1) are consistent for σ2

and ζ. This can be proved using arguments similar to those in Delaigle and Hall (2011).
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D.4 Theoretical arguments for the SIMEX bandwidth method

In this section, we give theoretical arguments justifying the SIMEX procedure suggested in

Section 3.2. In particular, we prove that the bandwidth h0 suggested there is an order of

magnitude larger than the bandwidths h, h1 and h2, as required. We assume throughout

that the errors Ui are ordinary smooth of order β > 1 (see Appendix A).

D.4.1 Theoretical bandwidth h0

Our methodology for constructing confidence bands involves bandwidths h, h0, h1 and h2.

The bandwidths h and h2 are of conventional size for estimating g in the context of errors-

in-variables regression, and can in fact be taken to be identical (see Section 5.2). We take

h2 = h and use the SIMEX procedure of Delaigle and Hall (2008) to choose h, resulting

in h and h2 being of conventional size, i.e. n−1/(2β+5). Our method for selecting h1 is also

conventional, although this time for deconvolution density estimation rather than regression,

and in consequence, h1 is also of size n−1/(2β+5).

The bandwidth h0, however is chosen in a nonstandard way, in principle to minimise

average coverage error,

ACE(h0) =

∫
J

{
CP(x;h0)− (1− α)

}2
dx , (D.8)

where CP(x;h0) denotes the coverage probability of our confidence interval for g(x) (see

Section 3.2). Here and throughout this section, we replace the notation CP(x; c) used in

Section 3.2 by CP(x;h0), that is we use the notation CP(x;h0) = P{g(x) ∈ CBh0(x)},
and give our arguments directly in terms of h0 rather than in terms of c0. This makes the

theoretical arguments much simpler to present, without altering the key steps of the method.

We start by showing that choosing h0 to minimise ACE(h0) results in h0 being an order

of magnitude larger than h, h1 or h2, as requested. Recall that our confidence interval for

g(x) has the form

CI(x) =
(
ĝ(x)− t̂1−(α/2)(x) , ĝ(x)− t̂α/2(x)

)
, (D.9)

where ĝ(x) is a deconvolution estimator of g(x), computed using a conventional deconvolution

bandwidth of size n−1/(2β+5); and the quantile estimator t̂γ(x), for each γ ∈ (0, 1), is computed

by bootstrapping from an empirical model where g is replaced by an estimator based on the

bandwidth h0:

Y ∗
i = ĝ(X∗

i ;h0) + V ∗
i , (D.10)

in which the pairs (X∗
i , V

∗
i ) are resampled as suggested in section 2.3. Then,

CP(x;h0) = P
{
g(x) ∈

(
ĝ(x)− t̂1−(α/2)(x) , ĝ(x)− t̂α/2(x)

)}
. (D.11)
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We can expand t̂γ as follows:

t̂γ(x) = tγ(x) + n−2/(2β+5)W (x) + op

[
n−2/(2β+5)

{(
nh2β+5

0 )−1/2 + h2
0

}]
, (D.12)

where

W (x) =
(
nh2β+9

0

)−1/2
a1(x)Q1(x) + h2

0 b1(x) ,

a1 and b1 are functions, a1 > 0, the random variable Q1(x), depending on n, has the standard

normal distribution, and tγ(x) solves the equation P{ĝ(x) − g(x) ≤ tγ(x)} = γ. We can

expand tγ as follows:

tγ(x) = n−2/(2β+5) a2(x) zγ + n−2/(2β+5) b2(x) + o
(
n−2/(2β+5)

)
, (D.13)

where a2 and b2 are functions, b2 is proportional to g′′, and zγ is the γ-level quantile of the

standard normal distribution. Moreover, for the same functions a2 and b2,

ĝ(x) = g(x) + n−2/(2β+5) a2(x)Q2(x) + n−2/(2β+5) b2(x) + op
(
n−2/(2β+5)

)
, (D.14)

where the random variable Q2(x) has the standard normal distribution.

Together, (D.11)–(D.14) imply that

CP(x;h0) = P
[
n−2/(2β+5) a2(x)Q2(x) + n−2/(2β+5) b2(x)

− t1−(α/2)(x)− n−2/(2β+5)W (x) + op
(
n−2/(2β+5)

)
,

≤ 0 ≤ n−2/(2β+5) a2(x)Q2(x) + n−2/(2β+5) b2(x)

− tα/2(x)− n−2/(2β+5)W (x) + op
(
n−2/(2β+5)

)]
= P

[
n−2/(2β+5) a2(x)Q2(x)− n−2/(2β+5) a2(x) z1−(α/2)

− n−2/(2β+5)W (x) + op
(
n−2/(2β+5)

)
,

≤ 0 ≤ n−2/(2β+5) a2(x)Q2(x)− n−2/(2β+5) a2(x) zα/2

− n−2/(2β+5)W (x) + op
(
n−2/(2β+5)

)]
= P

[
zα/2 + op(1) ≤ Q2(x)−W (x)/a2(x) ≤ z1−(α/2) + op(1)

]
. (D.15)

The pair (Q1(x), Q2(x)) is jointly normally distributed, although the coefficient of the corre-

lation depends on the size of nh2β+5
0 ; if nh2β+5

0 ≍ 1 then the absolute value of the coefficient

is bounded away from 0 and 1, whereas if nh2β+5
0 → ∞ then the coefficient converges to 0.

Therefore,

ACE(h0) =

∫
J

{
p(x;h0)− (1− α)

}2

dx+ o(1) , (D.16)
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where

p(x;h0) = P
{
zα/2 ≤ Q2(x)−W (x)/a2(x) ≤ z1−(α/2)

}
. (D.17)

If h0 → 0 then the probability in (D.17) converges to 1− α if and only if nh2β+5
0 → ∞.

In particular, minimising ACE(h0) necessarily produces a bandwidth h0 that is larger, by

an order of magnitude, than the one of size n−1/(2β+5) that is optimal for estimating g at a

point.

D.4.2 Behaviour of the practical bandwidth h+
0

As described in Section 3.2, since ACE(h0) is not known in practice, we use instead:

ÂCE
+
(h0) =

∫
J

{
ĈP+(x;h0)− (1− α)

}2

dx , (D.18)

where ĈP+(x;h0) is an estimator of the version CP+(x;h0) of CP(x;h0) that arises in a

related, but slightly different, deconvolution problem, in which g(x) is replaced by g+(w) =

E(Y |W = w), and the observed, noisy explanatory variables are not the Wis but the Wis

contaminated by more noise having the distribution of U . (The superscript “+” signifies,

here and below, that the variable W now plays the role that had been played previously

by X.)

Next we shall prove that ÂCE
+
(h0), defined at (D.18), admits an asymptotic formula

similar to (D.16):

ÂCE
+
(h0) =

∫
J

{
p+(x;h0)− (1− α)

}2

dx+ op(1) , (D.19)

uniformly in h0 such that 0 < h0 ≤ n−C1 and nh2β+9
0 ≥ C2, for any constants C1 ∈ (0, 1) and

C2 > 0, where

p+(x;h0) = P
{
zα/2 ≤ Q+

2 (x)−W+(x)/a+2 (x) ≤ z1−(α/2)

∣∣∣ Z}
and the random variables Q+

2 (x) and W+(x) have the same definitions as before except that

the quantities aj and bj used in their definition are replaced by a+j and b+j , say. Therefore

the conclusion drawn in the last paragraph of Section D.4.1 applies to ÂCE
+
(h0) as well

as to ACE(h0). In particular, minimising ÂCE
+
(h0) necessarily produces a bandwidth h+

0

that is larger, by an order of magnitude, than the one of size n−1/(2β+5) that is optimal for

estimating g+ at a point.

It remains to derive (D.19). Recall that ÂCE
+
(h0) is defined using a SIMEX argument,

starting from an estimator of g+(w) = E(Y |W = w) rather than an estimator of g(x) =
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E(Y |X = x). Conditional on the data Z, let U1,1, . . . , U1,n denote independent random

variables sampled from the known error distribution and independent of the original data,

and put

W1,i = Wi + U1,i .

Consider the problem of estimating g+ using the data (W1,1, Y1), . . . , (W1,n, Yn) rather than

the original data in Z. We can solve this problem as before, by deconvolution, obtaining a

point estimator ĝ+ = ĝ+( · |h), where h is a conventional deconvolution bandwidth of size

n−1/(2β+5), and constructing a confidence interval CI+(x) analogous to the interval at (D.9).

That involves computing a deconvolution estimator f̂W of the density fW of W , using the

dataW1,1, . . . ,W1,n and again employing a bandwidth of size n−1/(2β+5); simulating, from this

distribution, the bootstrap datasetW+
1 = {W+

1 , . . . ,W+
n }, which here replaces X ; simulating

U∗ = {U∗
1 , . . . , U

∗
n} from the distribution of U , and V∗ = {V ∗

1 , . . . , V
∗
n } from the distribution

of V , as before; putting W ∗
1,i = W+

i + U∗
i for 1 ≤ i ≤ n, which replaces W ∗

i at (2.9); and

using the bootstrap dataset Z∗
1 = {(W ∗

1,1, Y
∗
1 ), . . . , (W

∗
1,i, Y

∗
1 )} in place of Z∗.

For each choice of W+
1 , computed as above, we can construct a confidence interval

CI+(x;h0) for g
+. Of course, we do not know g+, and so in practice we cannot find CI+(x;h0)

exactly, but we can estimate g+(w) = E(Y |W = w) relatively accurately by treating the

data pairs (Wi, Yi) as though they came from a conventional, error free regression problem,

obtaining an estimator ĝ+EF say, where the subscript EF denotes “error free.” In this

notation, the quantity ĈP+(x;h0) appearing in (D.18) is defined by

ĈP+(x;h0) = P
{
ĝ+EF(x) ∈ CI+(x;h0)

∣∣∣ Z}
,

where the expected value is taken over all choices of W+
1 , conditional on the data. This is a

slightly simplified version of the definition of ĈP+ in Section 3.3, which does not change the

conclusions we shall draw, but makes the arguments briefer and more transparent.

The confidence interval CI+(x) is, analogously to CI(x) at (D.9), given by

CI+(x) =
(
ĝ+(x)− t̂+1−(α/2)(x) , ĝ

+(x)− t̂+α/2(x)
)
,

where the quantile estimator t̂+γ (x) is computed by resampling data from the empirical model

Y ∗
i = ĝ+

(
W+∗

i ;h0

)
+ V ∗

i , (D.20)

and W+∗
i has the distribution of W+

i . The empirical model at (D.20) is a version of (D.10)

in the present setting. Using this notation,

ĈP+(x;h0) = P
{
ĝ+EF(x) ∈

(
ĝ+(x)− t̂+1−(α/2)(x) , ĝ

+(x)− t̂+α/2(x)
) ∣∣∣ Z}

,
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which formula is analogous to that at (D.11). The arguments leading to (D.12), (D.13),

(D.14) and (D.15) give, on this occasion, the respective results:

t̂+γ (x) = t+γ (x) + n−2/(2β+5) W+(x) + op

[
n−2/(2β+5)

{(
nh2β+5

0 )−1/2 + h2
0

}]
,

t+γ (x) = n−2/(2β+5) a+2 (x) zγ + n−2/(2β+5) b+2 (x) + o
(
n−2/(2β+5)

)
,

ĝ+(x) = g+(x) + n−2/(2β+5) a+2 (x)Q
+
2 (x) + n−2/(2β+5) b+2 (x) + op

(
n−2/(2β+5)

)
,

ĈP+(x;h0)

= P
[
n−2/(2β+5) a+2 (x)Q

+
2 (x) + n−2/(2β+5) b+2 (x)

− t1−(α/2)(x)− n−2/(2β+5) W+(x) + op
(
n−2/(2β+5)

)
,

≤ 0 ≤ n−2/(2β+5) a+2 (x)Q
+
2 (x) + n−2/(2β+5) b+2 (x)

− tα/2(x)− n−2/(2β+5)W+(x) + op
(
n−2/(2β+5)

) ∣∣∣ Z]
= P

[
n−2/(2β+5) a+2 (x)Q

+
2 (x)− n−2/(2β+5) a+2 (x) z1−(α/2)

− n−2/(2β+5)W+(x) + op
(
n−2/(2β+5)

)
,

≤ 0 ≤ n−2/(2β+5) a+2 (x)Q
+
2 (x)− n−2/(2β+5) a+2 (x) zα/2

− n−2/(2β+5)W+(x) + op
(
n−2/(2β+5)

) ∣∣∣ Z]
= P

[
zα/2 + op(1) ≤ Q+

2 (x)−W+(x)/a+2 (x) ≤ z1−(α/2) + op(1)
∣∣∣ Z]

, (D.21)

In these results,

W+(x) =
(
nh2β+9

0

)−1/2
a+1 (x)Q

+
1 (x) + h2

0 b
+
1 (x) ;

the random variables Q+
j (x) each have a standard normal distribution, conditional on Z; the

functions a+j are nonnegative; and the remainders are of the stated orders uniformly in h0

such that 0 < h0 ≤ n−C1 and nh2β+9
0 ≥ C2, for any constants C1 ∈ (0, 1) and C2 > 0. (See

the following paragraph for a note on how this is interpreted conditional on Z.) In deriving

(D.21) we also used the fact that ĝ+EF(x) = g+(x) +Op(n
−2/5) = g+(x) + op(n

−2/(2β+5)).

The two remainder terms, R1 and R2 say, that are denoted by op(1) in (D.21), are of

that size unconditionally, in the sense that P (|Rj| > η) → 0, and so P (|Rj| > η | Z) → 0

in probability, for j = 1, 2. (The other remainder terms admit an analogous interpretation.)

Therefore, in view of (D.21) and the definition of ÂCE
+
at (D.18), (D.19) holds.

D.4.3 Conclusion

We conclude that the bandwidth ĥ+
0 chosen to minimise ÂCE

+
satisfies the conditions that

the bandwidth h0 should satisfy, i.e. it has the right order of magnitude to guarantee consis-
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tency of our band. However, its constant multiple can often be improved by the extrapolation

step of SIMEX, which involves using also the version ++ of the problem. Here, the ++ quan-

tities are defined in the obvious way from Section 3.3. In particular,

ÂCE
++

(h0) =

∫
J

{
ĈP

++
(x;h0)− (1− α)

}2

dx ,

where ĈP
++

(x;h0) is an estimator of the version CP++(x;h0) of CP(x;h0) that arises in the

deconvolution problem in which g(x) is replaced by g++(w) = E(Y |W + U = w), and the

observed, noisy explanatory variables are not the Wis but the W2,is, defined in Section 3.3.

Arguments similar to those employed for the + version can be used to prove that min-

imising ACE++(h0) necessarily produces a bandwidth ĥ++
0 that is larger, by an order of

magnitude, than the one of size n−1/(2β+5) that is optimal for estimating g++ at a point.

Moreover, since, in the + and ++ versions, the variables are contaminated with errors of

the same distribution, ĥ+
0 and ĥ++

0 necessarily have the same magnitude, that is ĥ+
0 ≍ ĥ++

0

where this notation is used to indicate that 0 < limn→∞ ĥ+
0 /ĥ

++
0 < ∞, and the convergence

is in probability. For the same reason, ĥ+ ≍ ĥ++, where these bandwidths denote the re-

gression bandwidth ĥ of Delaigle and Hall (2008), computed with data coming from the

model with regression curves g+ and g++. In particular, they are of size n−1/(2β+5). Letting

ĉ+0 = ĥ+
0 /ĥ

+ and ĉ++
0 = ĥ++

0 /ĥ++ as in Section 3.2, we deduce that ĉ+0 ≍ ĉ++
0 . Therefore,

ĉ0 = (ĉ+0 )
2/ĉ++

0 → ∞ as n → ∞, which proves that ĥ0 = ĉ0 ĥ is an order of magnitude larger

than ĥ, as required (in fact, ĥ0 ≍ ĥ+
0 ≍ h++

0 ).

As indicated above, the extra step involving the ++ quantities usually permits a better

approximation of h0 because the relation between the original quantities and the + quantities

is mimicked well by the relation between the + quantities and the ++ quantities. In other

words, ĉ0 ĥ is usually a better approximation to the theoretical h0 than is h+
0 . This can be

proved formally using arguments employed by Delaigle and Hall (2008) in their regression

bandwidth context, but that is beyond the scope of this paper.

E Proofs

E.1 Proof of Theorem 5.1

Preliminaries:

Recall that a = fg, where f = fX and is assumed to be evaluated at a particular x ∈ I.
Put f̂ = f̂X , g1 = (E â)/(E f̂), ∆a = â − E â and ∆f = f̂ − E f̂ . Let z denote a real

number, and set T = T (z) = ∆a − (g1 + z)∆f and z′ = z E f̂ . In this notation, ĝ − g1 =
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(∆a − g1∆f )/(E f̂ +∆f ), from which it follows that,

P (ĝ − g1 6 z) = P (T 6 z′) + θ P (∆f 6 −E f̂), (E.1)

where θ = 1− 2P (T 6 z′|∆f 6 −E f̂) which implies |θ| 6 1. (The added term takes care of

the possibility that the denominator in the definition of ĝ is not strictly positive.)

Observe that, for x ∈ I,

|f(x)− E{f̂(x)}| 6
∫

|K(u)| |f(x)− f(x− hu)|du 6 C6 h
ϵ

∫
|u|ϵ|K(u)|du,

where C6 is as in (B2). A similar bound can be derived for |a(x) − E{â(x)}|, using (B3)

in place of (B2). Therefore, if H0 > 0 is sufficiently small, its value depending only on I,
C4, . . . , C8, ϵ and K, we have |f(x)− E{f̂(x)}| 6 H

ϵ/2
0 and |g1(x)− g(x)| 6 H

ϵ/2
0 . We shall

use these bounds at several places in the proof, without explicit mention.

Note too that, T = (nh)−1{R(KU)}1/2
∑

j

(
Sj − E Sj

)
, where

Sj = {R(KU)}−1/2
[
g(Xj) + Vj − {g1(x) + z}

]
KU{(x−Wj)/h}.

Furthermore, defining i =
√
−1 for the moment, and writing ϕS(t) = E(eitS) for the charac-

teristic function of S = Sj, we have:

ϕS(t) =E

{
exp

(
it

R(KU)1/2
[
g(X) + V − {g1(x) + z}

]
KU{(x−W )/h}

)}
=h

∫∫
exp

(
it
[
g(q)− {g1(x) + z}

]
L0(u)

)
ϕV {tL0(u)}

× fU(x− q − uh)fX(q) du dq, (E.2)

where the integrals are over the whole real hyperplane.

Cramér continuity condition on the distribution of S:

It follows from Cramér’s continuity condition on the distribution of V (see (B1)) that,

for each ϵ1 > 0, there exists ϵ2 > 0 such that |ϕV (t)| 6 1− ϵ2 for all |t| > ϵ1. (E.3)

See e.g. Theorem 5, p. 59 of Gnedenko and Kolmogorov (1954). If the distribution of V is

either N(0, σ2) or gamma, as at (3.2), then ϵ2 depends only on C1, C2 and C3 in (B1).

In view of (C2) there exist constants B1, H0 > 0, depending only on K and the distri-

bution of U , such that, for a nondegenerate interval I2, |L0(u)| > B1 for all u ∈ I2 and all

h ∈ (0, H0]. Given η > 0, and taking ϵ1 = B1 η at (E.3), if |t| > η we have

|tL0(u)| > |t|B1 > η B1 = ϵ1, (E.4)
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for all u ∈ I2 and all h ∈ (0, H0]. Then from (E.3) and (E.4) we deduce that there exists

ϵ2 > 0, such that

|ϕV {t L0(u)}| 6 1− ϵ2, for all |t| > η, all u ∈ I2 and all h ∈ (0, H0]. (E.5)

Hence, for all h ∈ (0, H0] and all |t| > η, it follows from (E.2), (E.5), (B2)–(B4) and

(C3) that

|ϕS(t)| 6 h

∫∫ ∣∣ϕV {tL0(u)}
∣∣fU(x− q − uh)fX(q) du dq

= 1− ϵ2 h

∫ ∞

−∞

∫
u∈I2

fU(x− q − uh)fX(q) du dq

6 1− ϵ2 h

∫
q∈I1

fX(q)

∫
u∈I2

fU(x− q − uh) du dq

6 1− ϵ2 h

∫
q∈I1

∫
u∈I2

fX(q)fU(x− q)du dq + ϵ2 h
2 (sup|f ′

U |)(sup fX)|I1|
∫
I2
|u| du

6 1−B2h, (E.6)

where I1 is as in (B4), I2 is as in (C2), B2 > 0 and H0 is chosen smaller if necessary (with

both B2 and H0 depending only on I, the constants C4, . . . , C9 in (B), the kernel K, the

length of the interval I1 (the constant is larger for shorter intervals), on I2 and the distribu-

tions of U and V (with dependence on the distribution of V replaced by dependence on C1,

C2 and C3 in (B1) if the distribution of V is known to be normal or gamma)). Result (E.6)

implies that,

for each η > 0 there exist H0, η
′ > 0, depending only on the quantities noted

above, such that, for all |t| > η, all x ∈ I, all real values of z, and all h ∈ (0, H0],

we have |ϕS(t)| 6 1− η′ h.

(E.7)

Moments of distribution of Si:

For r = 2, 3, 4,

E(Sr
i ) = E

([
g(Xi) + Vi − {g1(x) + z}

]r
L0{(x−Wi)/h}r

)
= h

∫ [
g(q) + v − {g1(x) + z}

]r
L0(u)

rfU(x− q − hu)dFV (v)fX(q) dq du, (E.8)

and

R(KU)
1/2h−1E(Si) = E{â(x)} − {g1(x) + z}E{f̂X(x)} = −z E{f̂X(x)}. (E.9)

Hence, under the conditions of Theorem 5.1,
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|E(Sr
i )|/h 6 B3 < ∞, uniformly in integers 1 6 r 6 4, in h ∈ (0, H0], in

x ∈ I and in z such that |z| 6 B4, for any B4 > 0, where B3 and H0 depend

only on I, C4, . . . , C9 in (B), on the length of the interval I1 (the constant is

larger for shorter intervals), and on I2 and the distributions of U and V , with

dependence on the distribution of V replaced by dependence on C1, C2 and C3

in (B1) if the distribution of V is known to be normal or gamma.

(E.10)

First step in derivation of expansion of distribution of (nh)−1/2
∑

i(Si − ESi):

Let w ∈ R and put ν2
h = h−1 var(Si) and

z = (nh)−1/2R(KU)
1/2νhw/E(f̂). (E.11)

Note that νh depends on z, and that therefore, (E.11) defines z as a function of w; see (E.17)

below. In view of (E.1),

P

[
(nh)1/2R(KU)

−1/2E(f̂){ĝ(x;h)− g1(x)} 6 νhw

]
= P (T 6 z′) + θ P (∆f 6 −E f̂)

= P3(w) + θ P (∆f 6 −E f̂), (E.12)

where

P3(w) = P (T 6 z′) = P

{
1

(nh)1/2

∑
j

(
Sj − E Sj

)
6 νhw

}
. (E.13)

Define γh = E(Si − E Si)
3/(h ν3

h), a measure of the skewness of the distribution of Si.

The standard form of an Edgeworth expansion of the distribution of a sum of independent

random variables, if it is valid for
∑

i(Si − E Si), asserts that∣∣P3(w)−
{
Φ(w) + (nh)−1/2 1

6
γh (1− w2)ϕ(w)

}∣∣ 6 B5(nh)
−1, (E.14)

for a constant B5 > 0. See, for example, Petrov (1975, pp. 134–139). In fact, (E.14) is valid:

Lemma E.1. Under the conditions of Theorem 5.1, (E.14) holds uniformly in x ∈ I and

in values of w satisfying |w| 6 B4, for each B4 > 0, where B5 and H0 depend only on I,
C4, . . . , C9 in (B), on the length of the interval I1 (the constant is larger for shorter intervals),

on I2, on the distributions of U and V , and on B4. Dependence on the distribution of V

can be replaced by dependence on C1, C2 and C3, in (B1), if the distribution of V is known

to be normal or gamma.

Lemma E.1 follows using arguments almost identical to those in section 5.5 of Hall

(1992a). For example, note that the Cramér-type continuity condition (E.6), i.e. |ϕS(t)| 6
1 − B2 h for all H0, t such that |t| > η and 0 < H0 6 1, is the analogue of the Cramér’s
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condition given in Lemma 5.6 of Hall (1992a). Also, taking r = 4 in (E.10), we obtain the

fourth-moment bound E|Si|4/h 6 B3 < ∞.

Second step in derivation of expansion of distribution of (nh)−1/2
∑

i(Si − ESi):

Taking r = 2 in (E.8), we have

E(S2
i ) = h

∫ [
{g(q)− g1(x)}2 + σ2 + z2 − 2z {g(q)− g1(x)}

]
L0(u)

2

× fU(x− q − hu)fX(q) dq du

= h (A2
0 + A1 z

2 − 2 a2 z), (E.15)

where σ2 = E(V 2) and A0, A1 and a2 are as at (5.4), (5.5) and (5.7), respectively.

Results (E.9) and (E.15) imply that

ν2
h = h−1 var(Si) = A2

0 + 2A3 z
2 − 2 a2 z, (E.16)

where

2A3 = A1 − hR(KU)
−1 {E f̂X}2 ∼

(∫
ℓ2
)∫

fU(x− q)fX(q) dq > 0.

Recall that

δ = (nh)−1/2 R(KU)
1/2/E{f̂(x)},

which converges to zero, uniformly in x ∈ I and |w| 6 B4, and uniformly in the sense of

Theorem 5.1, as h → 0. The definition (E.11) entails z = δ νhw, whence by (E.16),

z2/(δ w)2 = A2
0 + 2A3 z

2 − 2 a2 z,

whence, after solving a quadratic equation for z, we obtain:

z = δ w
[A2

0{1− 2A3 (δ w)
2}+ a22 (δ w)

2]1/2 − a2 δ w

1− 2A3 (δ w)2
.

By Taylor expansion, we obtain

z = A0δ w
{
1− A−1

0 a2(δ w) + (A3 +
1
2
A−2

0 a22)(δ w)
2 +O(δ3)

}
, (E.17)

uniformly in H0 ∈ (0, 1], in |w| 6 B4, in x and in the sense of Theorem 5.1. In (E.17) and

below, if η > 0 then “O(η)” denotes a quantity dominated by A3 η, uniformly in h ∈ (0, H0],

|w| 6 B4 and x ∈ I, with the quantity η depending only on I, C4, . . . , C9 in (B), on the

length of the interval I1, on I2 (the constant is larger for shorter intervals) and on the

distributions of U and V (with dependence on the distribution of V replaced by dependence

on C1, C2 and C3, in (B1), if the distribution of V is known to be normal or gamma).
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By Taylor expansion again, we deduce that

ν2
h = A2

0

{
1 + 2A3 (δ w)

2 − 2 a2 A
−1
0 δ w (1− A−1

0 a2 δ w) +O(δ3)
}
.

and

νh = A0

{
1− A−1

0 a2 δw + (A3 +
1
2
A−2

0 a22) (δw)
2 +O(δ3)

}
. (E.18)

Also, by (E.9) and (E.17), we have

E(Si) = −R(KU)
−1/2h z E(f̂) = O{R(KU)

−1/2h δ} = O{(h/n)1/2}, (E.19)

uniformly in the above sense. From (E.19), (E.16) and (E.18), we deduce that, uniformly in

the same sense,

γh =
E(S3

i )− 3E(Si)var(Si)− E(Si)
3

hν3
h

=
E(S3

i )

h ν3
h

+O{(h/n)1/2}. (E.20)

Note too that, by (E.8),

E(S3
i ) = h

∫∫∫ [
{g(q)− g1(x)}3 + 3 (v − z){g(q)− g1(x)}2

+ 3 (v − z)2{g(q)− g1(x)}+ (v − z)3
]

× L0(u)
3 fU(x− q − hu)dFV (v) fX(q) dq du

= h

∫∫ (
{g(q)− g1(x)}3 + E(V 3)− 3

[
{g(q)− g1(x)}2 + σ3

]
z

+ 3 (σ2 + z2) {g(q)− g1(x)} − z3
)

× L0(u)
3 fU(x− q − hu) fX(q) dq du

= h
{
A2 − 3A4 z + 3 (σ2 + z2) a3 − A5 z

3
}
,

where A2 is as at (5.6), a3 is as at (5.7), and

A4 =

∫∫ [
{g(g)− g1(x)}2 + σ2

]
L0(u)

3 fU(x− q − hu) fX(q) dq du, (E.21)

A5 =

∫∫
L0(u)

3 fU(x− q − hu) fX(q) dq du.

Using (E.17), (E.18), (E.20) and (E.21), we find that

γh = (A2 − 3A4 A0 δw + 3 σ2 a3)A
−3
0 (1 + 3A−1

0 a2 δw) +O{δ2 + (h/n)1/2}

= (A2 + 3 σ2 a3 + 3A−1
0 A2 a2 δw − 3A0 A4 δw + 9 σ2 a3 A

−1
0 a2 δw)A

−3
0

+O{δ2 + (h/n)1/2}. (E.22)
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Next we replace, in (E.12) and (E.13), νhw by A0w, where A0 is as at (5.4). This

involves replacing w by A0w/νh on the left-hand side of (E.14); A0 w/νh can be written as

follows by using (E.18) and Taylor expansion:

A0 w/νh = w
{
1 + A−1

0 a2 δw + (1
2
A−2

0 a22 − A3)(δw)
2
}
+O(δ3). (E.23)

On combining (E.12), (E.14), (E.22) and (E.23), and recalling the definition of δ at (5.2),

we obtain,∣∣∣∣P[
(nh)1/2R(KU)

−1/2 {ĝ(x)− g1(x)} ≤ A0w
]

= P (A0w/νh) + θ P (∆f ≤ −Ef̂)

= Φ(A0w/νh) + (nh)−1/2 1
6
γh

{
1− (A0w/νh)

2
}
ϕ(A0w/νh)

+ θ P (∆f ≤ −Ef̂) +O
{
(nh)−1

}
= Φ(w) +

{
A−1

0 a2 δw +
(
1
2
A−2

0 a22 − A3

)
(δw)2

}
w ϕ(w)

+ 1
2

(
A−1

0 a2 δw
)2

w2 ϕ′(w)

+ (nh)−1/2 1
6

(
A2 + 3 σ2 a3

)
A−3

0

(
1− w2

)
ϕ(w)

+ θ P (∆f ≤ −Ef̂) +O
{
δ3 + (nh)−1 + δ (nh)−1/2

}
= Φ(w) +

{
A−1

0 a2 δw + 1
2

(
A−2

0 a22 − A1

)
(δw)2

− 1
2
A−2

0 a22 (δw)
2w2

}
w ϕ(w)

+ (nh)−1/2 1
6

(
A2 + 3 σ2 a3

)
A−3

0

(
1− w2

)
ϕ(w)

+ θ P (∆f ≤ −Ef̂) +O
{
δ3 + (nh)−1 + δ (nh)−1/2

+ δ2 h (KU)
−1
}
. (E.24)

Since δ (nh)−1/2 = δ2 (KU)
−1/2 ≫ δ2 (KU)

−1 then the term above in δ2 h (KU)
−1 is redundant.

Also, by Hölder’s inequality,

P (∆f ≤ −Ef̂) ≤ (Ef̂)−4E
(
∆4

f

)
= O

(
δ4
)
.

Result (5.8) follows from these results and (E.24).

E.2 Proof of Corollary 5.1

Below we use the notation Rj, for j = 1, . . . , 8, to denote quantities that satisfy |Rj| ≤
Cj{δ3 + (nh)−1 + δ (nh)−1/2} for some finite constant Cj. By Taylor expansion of the left
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hand side of (5.8), we can write w1α = z1α +∆+R1, where

∆ = δχ1 + δ2χ2 + (nh)−1/2χ3,

and the χjs are functions of w1α, bounded uniformly in n, and in the argument of the

functions on any compact interval. To determine the χjs, note that, using the right hand

side of (5.8), we find

P1(w1α) = Φ(w1α) + δ p1(w1α)ϕ(w1α) + δ2 p2(w1α)ϕ(w1α) + (nh)−1/2p3(w1α)ϕ(w1α) +R2.

Taylor expanding each term of the right hand side of the above equality around zα, and

recalling that P1(w1α) = α, we deduce that

α =α + {δχ1 + δ2χ2 + (nh)−1/2χ3}ϕ(z1α)−
δ2χ2

1

2
z1αϕ(z1α) + δp1(z1α)ϕ(z1α)

+ δ2χ1(p1ϕ)
′(z1α) + δ2 p2(z1α)ϕ(z1α) + (nh)−1/2p3(z1α)ϕ(z1α) +R4.

This implies that

δχ1 = −δp1(z1α) +R5,

δ2χ2 −
δ2χ2

1

2
z1α + δ2χ1{p′1(z1α)− z1αp1(z1α)}+ δ2 p2(z1α) = R6,

(nh)−1/2χ3 = −p3(z1α) +R7.

In particular,

w1α =z1α − δp1(z1α) +
δ2p21(z1α)

2
z1α + δ2p1(z1α){p′1(z1α)− z1αp1(z1α)} − δ2 p2(z1α)

− (nh)−1/2p3(z1α) +R8

=z1α − δp1(z1α)− δ2 p2(z1α) + δ2p4(z1α)− (nh)−1/2p3(z1α) +R8,

if we define p4(z1α) = p21(z1α)z1α/2 + p1(z1α){p′1(z1α) − z1αp1(z1α)}. Recalling that p1(z) =

A−1
0 a2 z

2, we conclude that

p4(z) =
1
2
(A−1

0 a2)
2 z5 + 2 (A−1

0 a2)
2 z3 − (A−1

0 a2)
2 z5 = 1

2
(A−1

0 a2)
2 (4− z2) z3.

This establishes (5.9).

E.3 Consistency of confidence band

For a related problem in the nonparametric density case, see (4.101) of Hall (1992c). Four

bandwidths are involved in our procedure: h, h0, h1 and h2. Let b denote any one of these.

We assume here that Conditions A, B and C are satisfied and that

b = o(1) and δ(b) = o(1). (E.25)
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To simplify the discussion, we also assume that the curves g and fX satisfy sufficient smooth-

ness conditions (typically, that they have enough bounded derivatives) required for our re-

sults. We assume that K is a second order kernel.

To establish (2.10) we shall prove that

P{ĝ(x;h)− g(x) 6 t̂α} = α + o(1). (E.26)

It is not hard to check that we have t̂α = δ(h2)Â0ŵα+δ(h2)Â0η̂, where ŵα is defined in (5.14)

and η̂ ≡ {ĝ1(x;h2)− ĝ(x;h0)}/{δ(h2)Â0(x)}. Using Corollary 5.1, we have ŵα = zα + op(1).

Moreover, under Conditions A, B, C and (E.25), Â0
P−→ A0 > 0, and if we assume that

h ∼ h2, then δ(h)/δ(h2) → 1. Under these conditions we deduce that

δ(h2)Â0ŵα = δ(h)A0zα + oP{δ(h)}.

To analyse η̂ we note that, for second order kernels, g1(x) − g(x) = h2b1(x) + o(h2),

where b1 depends on g′, g′′, fX and f ′
X , but not on h. Moreover, ĝ1(x;h2) − ĝ(x;h0) =

h2
2 b̂1(x;h0, h1) + op(h

2
2) is the version of g1(x;h) − g(x) with g(j)(x) and f

(j)
X (x) replaced

by ĝ(j)(x;h0) and f̂
(j)
X (x;h1), respectively, these being the jth derivatives of ĝ(x;h0) and

f̂X(x;h1). Under smoothness conditions on fX and g, we have f̂
(j)
X (x;h1) = f

(j)
X (x)+O(h2

1)+

Op{δ(h1)/h
j
1} for j = 0, 1, and ĝ(j)(x;h0) = g(j)(x) +O(h2

0) +Op{δ(h0)/h
j
0} for j = 1, 2.

Therefore, if h0 and h1 are of standard size, i.e. h2
0 ≍ δ(h0) and h2

1 ≍ δ(h1), then b̂1

does not consistently estimate b1, but if we take h and h2 smaller than usual, i.e. h2 ∼ h2
2 =

o{δ(h)}, then we have t̂α = δ(h)A0zα+oP{δ(h)} and ĝ(x;h)−g1(x) = ĝ(x;h)−g(x)+o{δ(h)}.
Therefore, using Theorem 5.1,

P{ĝ(x;h)− g(x) 6 t̂α} = P{ĝ(x;h)− g1(x) 6 δ(h)A0zα}+ o(1) = α+ o(1).

On the other hand, if we take h, h1 and h2 of conventional size, i.e. h
2 ≍ δ(h), h2

1 ≍ δ(h1)

and h2
2 ≍ δ(h2), and choose h0 of larger than conventional size, so that δ(h0)/h

2
0 = o(1), then

b̂1 consistently estimates b1, and δ(h2)Â0η̂ = g1(x) − g(x) + oP{δ(h)}. We deduce that

t̂α = δ(h)A0zα + g1(x)− g(x) + oP{δ(h)}, and, using Theorem 5.1,

P{ĝ(x;h)− g(x) 6 t̂α} = P{ĝ(x;h)− g1(x) 6 δ(h)A0zα}+ o(1) = α+ o(1).

F Complements to the numerical section

Figure F1 shows graphs of estimated coverage probabilities for x ∈ [−5, 5], calculated from

100 samples and derived using our bootstrap method in the LAP and EST cases, and the
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Figure F1: Coverage probability curves derived from the naive approach with n = 100 (thin

dashed line) and n = 200 (thin solid line), and from our bootstrap method with n = 100

(thick dashed line) and n = 200 (thick solid line), in the LAP case (row 1) and the EST case

(row 2); left: g = g4, and error ED; middle: g = g1 and error EC ; right: g = g3 and error

EE. The horizontal dotted line indicates 0.95 for reference.

naive approach, for samples of size n = 100 and 200, and for various combinations of curves

and error distributions corresponding to cases (d)–(f) of Figure 1 in the paper.

Figures F2–F4 show, in the KNE case, the confidence bands constructed by our bootstrap

method, for the four samples ranked 20, 40, 60 and 80, using the ranking defined in Section

4.3. The figures show the graphs for n = 100 and n = 200, and for various combinations of

regression curves g and error distributions. The figures also show the estimator ĝ calculated

as in (2.4).

To illustrate the effect of estimating the error or misspecifying it, Figures F5–F10 show,

for various combinations of regression curves g and error distributions error distribution, and

for n = 100 and n = 200, the confidence bands constructed by our bootstrap method for

four contaminated samples as above, in each of the KNE, LAP and EST settings. Note that

the four confidence bands shown in each setting were not computed using the same sample:

rather, for each setting we used the samples ranked 20, 40, 60 and 80. As could be expected,

the graphs show that the confidence bands corresponding to the KNE case are usually the
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Figure F2: ĝ (thin solid line), g = g2 (thick solid line) and 95% confidence bands (dashed

lines) for g constructed from the samples ranked 20, 40, 60 and 80 (from left to right), when

n = 100 (row 1) or 200 (row 2) with error distribution EA, in the KNE case.
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Figure F3: ĝ (thin solid line), g = g2 (thick solid line) and 95% confidence bands (dashed

lines) for g constructed from the samples ranked 20, 40, 60 and 80 (from left to right), when

n = 100 (row 1) or 200 (row 2) with error distribution EB, in the KNE case.

most attractive ones, but the bands obtained in the LAP and KNE case are also quite good.

In particular, they have good coverage without being too wide.
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Figure F4: ĝ (thin solid line), g = g4 (thick solid line) and 95% confidence bands (dashed

lines) for g constructed from the samples ranked 20, 40, 60 and 80 (from left to right), when

n = 100 (row 1) or 200 (row 2) and with error distribution EB, in the KNE case.
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Figure F5: ĝ (thin solid line), g = g4 (thick solid line) and 95% confidence bands (dashed

lines) for g constructed from the samples ranked 20, 40, 60 and 80 (from left to right), when

n = 100, with error distribution ED. Row 1: KNE case, row 2: LAP case, row 3: EST case.
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Figure F6: ĝ (thin solid line), g = g4 (thick solid line) and 95% confidence bands (dashed

lines) for g constructed from the samples ranked 20, 40, 60 and 80 (from left to right), when

n = 200, with error distribution ED. Row 1: KNE case, row 2: LAP case, row 3: EST case.
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Figure F7: ĝ (thin solid line), g = g1 (thick solid line) and 95% confidence bands (dashed

lines) for g constructed from the samples ranked 20, 40, 60 and 80 (from left to right), when

n = 100 and with error distribution EC . Row 1: KNE case, row 2: LAP case, row 3: EST

case.
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Figure F8: ĝ (thin solid line), g = g1 (thick solid line) and 95% confidence bands (dashed

lines) for g constructed from the samples ranked 20, 40, 60 and 80 (from left to right), when

n = 200 and with error distribution EC . Row 1: KNE case, row 2: LAP case, row 3: EST

case.
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Figure F9: ĝ (thin solid line), g = g3 (thick solid line) and 95% confidence bands (dashed

lines) for g constructed from the samples ranked 20, 40, 60 and 80 (from left to right), when

n = 100 and with error distribution EE. Row 1: KNE case, row 2: LAP case, row 3: EST

case.



NOT FOR PUBLICATION SUPPLEMENTAL MATERIAL 28

−4 −2 0 2 4

−
2

−
1

0
1

2

x

g(
x)

−4 −2 0 2 4

−
2

−
1

0
1

2

x

g(
x)

−4 −2 0 2 4

−
2

−
1

0
1

2

x

g(
x)

−4 −2 0 2 4

−
2

−
1

0
1

2

x

g(
x)

−4 −2 0 2 4

−
2

−
1

0
1

2

x

g(
x)

−4 −2 0 2 4

−
2

−
1

0
1

2

x

g(
x)

−4 −2 0 2 4

−
2

−
1

0
1

2

x

g(
x)

−4 −2 0 2 4

−
2

−
1

0
1

2

x

g(
x)

−4 −2 0 2 4

−
2

−
1

0
1

2

x

g(
x)

−4 −2 0 2 4

−
2

−
1

0
1

2

x

g(
x)

−4 −2 0 2 4

−
2

−
1

0
1

2

x

g(
x)

−4 −2 0 2 4

−
2

−
1

0
1

2

x

g(
x)

Figure F10: ĝ (thin solid line), g = g3 (thick solid line) and 95% confidence bands (dashed

lines) for g constructed from the samples ranked 20, 40, 60 and 80 (from left to right), when

n = 200 and with error distribution EE. Row 1: KNE case, row 2: LAP case, row 3: EST

case.


