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Abstract: Student’s t statistic is finding applications today that were never envis-

aged when it was introduced more than a century ago. Many of these applications

rely on properties, for example robustness against heavy tailed sampling distributions,

that were not explicitly considered until relatively recently. In this paper we explore

these features of the t statistic in the context of its application to very high dimen-

sional problems, including feature selection and ranking, the simultaneous testing of

many different hypotheses, and sparse, high dimensional signal detection. Robustness

properties of the t-ratio are highlighted, and it is established that those properties

are preserved under applications of the bootstrap. In particular, bootstrap methods

correct for skewness, and therefore lead to second-order accuracy, even in the extreme

tails. Indeed, it is shown that the bootstrap, and also the more popular but less ac-

curate t-distribution and normal approximations, are more effective in the tails than

towards the middle of the distribution. These properties motivate new methods, for

example bootstrap-based techniques for signal detection, that confine attention to the

significant tail of a statistic.
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1 Introduction

Modern high-throughput devices generate data in abundance. Gene microarrays com-

prise an iconic example; there, each subject is automatically measured on thousands

or tens of thousands of standard features. What has not changed, however, is the

difficulty of recruiting new subjects, with the number of the latter remaining in the

tens or low hundreds. This is the context of so-called “p ≫ n problems,” where p

denotes the number of features, or the dimension, and n is the number of subjects,

or the sample size.

For each feature the measurements across different subjects comprise samples from

potentially different underlying distributions, and can have quite different scales and

be highly skewed and heavy tailed. In order to standardise for scale, a conventional

approach today is to use t-statistics, which, by virtue of the central limit theorem,

are approximately normally distributed when n is large. W. S. Gosset, when he

introduced the Studentised t-statistic more than a century ago (Student, 1908), saw

that quantity as having principally the virtue of scale invariance. In more recent

times, however, other noteworthy advantages of Studentising have been discovered.

In particular, the t statistic’s high degree of robustness against heavy-tailed data

has been quantified. For example, Giné, Götze and Mason (1997) have shown that a

necessary and sufficient condition for the Studentised mean to have a limiting standard

normal distribution is that the sampled distribution lie in the domain of attraction

of the normal law. This condition does not require the sampled data to have finite

variance. Moreover, the rate of convergence of the Studentised mean to normality

is strictly faster than that for the conventional mean, normalised by its theoretical

(rather than empirical) standard deviation, in cases where the second moment is only

just finite (Hall and Wang, 2004). Contrary to the case of the conventional mean,

its Studentised form admits accurate large deviation approximations in heavy-tailed

cases where the sampling distribution has only a small number of finite moments

(Shao, 1999).

All these properties are direct consequences of the advantages conferred by divid-

ing the sample mean, X̄, by the sample standard deviation, S. Erratic fluctuations

in X̄ tend to be cancelled, or at least dampened, by those of S, much more so than

if S were replaced by the true standard deviation of the population from which the
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data were drawn.

The robustness of the t-statistic is particularly useful in high dimensional data

analysis, where the signal of interest is frequently found to be sparse. For any given

problem (e.g. classification, prediction, multiple testing), only a small fraction of

the automatically measured features are relevant. However the locations of the useful

features are unknown, and we must separate them empirically from an overwhelmingly

large number of more useless ones. Sparsity gives rise to a shift of interest away from

problems involving vectors of conventional size to those involving high dimensional

data.

As a result, a careful study of moderate and large deviations of the Studentised

ratio is indispensable to understanding even common procedures for analysing high

dimensional data, such as ranking methods based on t-statistics, or their applications

to highly multiple hypothesis testing (that is, the simultaneous testing of many dif-

ferent hypotheses). See, for example, Benjamini and Hochberg (1995), Pigeot (2000),

Finner and Roters (2002), Kesselman et al. (2002), Dudoit et al. (2003), Bernhard

et al. (2004), Genovese and Wasserman (2004), Lehmann et al. (2005), Donoho and

Jin (2006), Sarkar (2006), Jin and Cai (2007), Wu (2008), Cai and Jin (2010) and

Kulinskaya (2009). The same issues arise in the case of methods for signal detection,

for example those based on Student’s t versions of higher criticism; see Donoho and

Jin (2004), Jin (2007) and Delaigle and Hall (2009). Work in the context of multiple

hypothesis testing includes that of Lang and Secic (1997, p. 63), Tamhane and Dun-

nett (1999), Takada et al. (2001), David et al. (2005), Fan et al. (2007) and Clarke

and Hall (2009).

In the present paper we explore moderate and large deviations of the Studentised

ratio in a variety of high dimensional settings. Our results reveal several advantages

of Studentising. We show that the bootstrap can be particularly effective in relieving

skewness in the extreme tails. Attractive properties of the bootstrap for multiple

hypothesis testing were apparently first noted by Hall (1990), although in the case of

the mean rather than its Studentised form.

Section 2.1 draws together several known results in the literature in order to

demonstrate the robustness of the t ratio in the context of high level exceedences.

Sections 2.2 and 2.3 show that, even for extreme values of the t ratio, the bootstrap

captures particularly well the influence that departure from normality has on tail
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probabilities. We treat cases where the probability of exceedence is either polynomi-

ally or exponentially small. Section 2.4 shows how these properties can be applied

to high dimensional problems, involving potential exceedences of high levels by many

different feature components. One example of this type is the use of t-ratios to imple-

ment higher criticism methods, including their application to classification problems.

This type of methodology is taken up in section 3. The conclusions drawn in sec-

tions 2 and 3 are illustrated numerically in section 4, the underpinning theoretical

arguments are summarised in section 5, and detailed arguments are given by Delaigle

et al. (2010).

2 Main conclusions and theoretical properties

2.1 Advantages and drawbacks of studentising in the normal

approximation

Let X1, X2, . . . denote independent univariate random variables all distributed as X,

with unit variance and zero mean, and suppose we want to test H0 : µ = 0 against

H1 : µ > 0. Two common test statistics for this problem are the standardised mean

Z0 and the Studentised mean T0, defined by Z0 = n1/2 X̄ and T0 = Z0/S where

X̄ =
1

n

n∑
i=1

Xi , S2 =
1

n

n∑
i=1

(Xi − X̄)2 (2.1)

denote the sample mean and sample variance, respectively, computed from the dataset

X1, . . . , Xn.

In practice, experience with the context often suggests the standardisation that

defines Z0. Although both Z0 and T0 are asymptotically normally distributed, di-

viding by the sample standard deviation introduces a degree of extra noise which

can make itself felt in terms of greater impact of skewness. However, we shall show

that, compared to the normal approximation to the distribution of Z0, the normal

approximation to the distribution of T0 is valid under much less restrictive conditions

on the tails of the distribution of X.

These properties will be established by exploring the relative accuracies of normal

approximations to the probabilities P (Z0 > x) and P (T0 > x), as x increases, and

the conditions for validity of those approximations. This approach reflects important
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applications in problems such as multiple hypothesis testing, and classification or

ranking involving high dimensional data, since there it is necessary to assess the

relevance, or statistical significance, of large values of sample means.

We start by showing that the normal approximation is substantially more robust

for T0 than it is for Z0. To derive the results, note that if

E|X|3 <∞ (2.2)

then the normal approximation to the probability P (T0 > x) is accurate, in relative

terms, for x almost as large as n1/6. In particular, P (T0 > x)/{1 − Φ(x)} → 1

as n → ∞, uniformly in values of x that satisfy 0 < x ≤ ϵ n1/6, for any positive

sequence ϵ that converges to zero (Shao, 1999). This level of accuracy applies also

to the normal approximation to the distribution of the nonstudentised mean, X̄,

except that we must impose a condition much more severe than (2.2). In particular,

P (Z0 > x)/{1 − Φ(x)} → 1, uniformly in 0 < x ≤ n(1/6)−η, for each fixed η > 0, if

and only if

E
{
exp

(
|X|c

)}
<∞ for all c ∈

(
0, 1

2

)
; (2.3)

see Linnik (1961). Condition (2.3), which requires exponentially light tails and implies

that all moments of X are finite, is much more severe than (2.2).

Although dividing by the sample standard deviation confers robustness, it also

introduces a degree of extra noise. To quantify deleterious effects of Studentising we

note that

P (T0 > x) = {1− Φ(x)}
{
1− n−1/2 1

3
x3 γ + o

(
n−1/2 x3

)}
, (2.4)

P (Z0 > x) = {1− Φ(x)}
{
1 + n−1/2 1

6
x3 γ + o

(
n−1/2 x3

)}
, (2.5)

uniformly in x satisfying λn ≤ x ≤ n1/6λn, for a sequence λn → ∞, and where Φ is

the standard normal distribution function and γ = E(X3) (Shao, 1999; Petrov, 1975,

Chap. 8). (Property (2.2) is sufficient for (2.4) if x→ ∞ and n−1/2 x3 → 0 as n→ ∞,

and (2.5) holds, for the same range of values of x, provided that, for some u > 0,

E{exp(u |X|)} < ∞.) Thus it can be seen that, if γ ̸= 0 and n−1/2 x3 is small, the

relative error of the normal approximation to the distribution of T0 is approximately

twice that of the approximation to the distribution of Z0.
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Of course, Student’s t distribution with n or n−1 degrees of freedom is identical to

the distribution of T0 when X is normal N(0, σ2), and therefore relates to the case of

zero skewness. Taking γ = 0 in (2.4) we see that, when T0 has Student’s t distribution

with n or n−1 degrees of freedom, we have P (T0 > x) = {1−Φ(x)}
{
1+o

(
n−1/2 x3

)}
.

It can be deduced that the results derived in (2.4) and (2.5) continue to hold if

we replace the role of the normal distribution by that of Student’s t distribution

with n or n − 1 degrees of freedom. Similarly, the results on robustness hold if we

replace the role of the normal distribution by that of Student’s t distribution. Thus,

approximating the distributions of T0 and Z0 by that of a Student’s t distribution,

as is sometimes done in practice, instead of that of a normal distribution, does not

alter our conclusions. In particular, even if we use the Student’s t distribution, T0 is

still more robust against heavy tailedness than Z0, and in cases where the Student

approximation is valid, this approximation is slightly more accurate for Z0 than it is

for T0.

2.2 Correcting skewness using the bootstrap

The arguments in section 2.1 show clearly that T0 is considerably more robust than Z0

against heavy-tailed distributions, arguably making T0 the test statistic of choice even

if the population variance is known. However, as also shown in section 2.1, this added

robustness comes at the expense of a slight loss of accuracy in the approximation.

For example, in (2.4) and (2.5) the main errors that arise in normal (or Student’s t)

approximations to the distributions of T0 are the result of uncorrected skewness. In

the present section we show that if we instead approximate the distribution of T0 using

the bootstrap then those errors can be quite successfully removed. Similar arguments

can be employed to show that a bootstrap approximation to the distribution of Z0 is

less affected by skewness than a normal approximation. However, as for the normal

approximation, the latter bootstrap approximation is only valid if the distribution

of X is very light tailed. Therefore, even if we use the bootstrap approximation, T0

remains the statistic of choice.

Let X ∗ = {X∗
1 , . . . , X

∗
n} denote a resample drawn by sampling randomly, with
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replacement, from X = {X1, . . . , Xn}, and put

X̄∗ =
1

n

n∑
i=1

X∗
i , S∗2 =

1

n

n∑
i=1

(X∗
i − X̄∗)2 , T ∗

0 = n1/2 (X̄∗ − X̄)/S∗ . (2.6)

The bootstrap approximation to the distribution function G(t) = P (T0 ≤ t) is Ĝ(t) =

P (T ∗
0 ≤ t | X ), and the bootstrap approximation to the quantile tα = (1−G)−1(α) is

t̂α =
(
1− Ĝ

)−1
(α) . (2.7)

Theorem 1, below, addresses the effectiveness of these approximations for large values

of x.

To appreciate why the bootstrap, when used appropriately, can be expected to

correct for at least some of the effects of skewness, observe that if F denotes the

distribution of a genericXi then the distribution function G of T0, defined below (2.6),

can be written as G(t) = H(t |F ), where H( · |F ) is a functional. In this notation

the bootstrap distribution Ĝ is just H( · | F̂ ), where F̂ is the empirical distribution

function of the data. Now, the skewness of the distribution of X∗
i given the data,

i.e. of the distribution F̂ , is a consistent estimator of the skewness of the distribution

of Xi, and so skewness can be expected to be captured accurately by Ĝ because it is

inherited from F̂ .

As usual in hypothesis testing problems, to calculate the level of the test we take

a generic variable that has the distribution of the test statistic and we calculate the

probability that the generic variable is larger than the estimated 1 − α quantile.

This generic variable is independent of the sample, and since the quantile t̂α of the

bootstrap test is random and constructed from the sample then, to avoid confusion,

we should arguably use different notations for T0 and the generic variable. However,

to simplify notation we keep using T0 for a generic random variable distributed like

T0. This means that we write the level of the test as P (T0 > t̂α), but here T0 denotes

a generic random variable independent of the sample, whereas t̂α denotes the random

variable defined at (2.7) and calculated from the sample. In particular, here T0 is

independent of t̂α.

Define zα = (1 − Φ)−1(α), and write PF for the probability measure when X
is drawn from the population with distribution function F . Here we highlight the

dependence of the probabilities on F because we shall use the results in subsequent

sections where a clear distinction of the distribution will be required.
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Theorem 1. For each B > 1 and D1 > 0 there exists D2 > 2, increasing no faster

than linearly in D1 as the latter increases, such that

PF (T0 > t̂α) = α
[
1 +O

{
(1 + zα)n

−1/2 + (1 + zα)
4 n−1

}]
+O

(
n−D1

)
(2.8)

as n → ∞, uniformly in all distributions F of the random variable X such that

E(|X|D2) ≤ B (EX2)D2/2 and E(X) = 0, and in all α satisfying 0 ≤ zα ≤ B n1/4.

The theorem can be deduced by taking c = 0 in Theorem B in section 5.1, and

shows that using the bootstrap to approximate the distribution of T0 removes the

main effects of skewness. To appreciate why, note that if we were to use the normal

approximation to the distribution of T0 we would obtain, instead of (2.8), the following

result, which can be deduced from Theorem A in section 5.1 for each B > 1 such that

E|X|4 < B and 0 ≤ zα ≤ B n1/4:

PF (T0 > zα) = α exp
(
− n−1/2 1

3
z3α γ

) [
1 +O

{
(1 + zα)n

−1/2 + (1 + zα)
4 n−1

}]
.

(2.9)

Comparing (2.8) and (2.9) we see that the bootstrap approximation has removed the

skewness term that describes first-order inaccuracies of the standard normal approx-

imation.

The term in (1 + zα)n
−1/2 in (2.8) can be dropped if the distribution of X is

assumed to be sufficiently smooth. The version of (2.8) that results reflects second-

order accuracy of the bootstrap; see, for example, Efron (1987) and Hall (1988).

However, the term in (1 + zα)n
−1/2 cannot be dropped in the case of (2.9), since

neither the normal approximation implicit in the use of zα on the left-hand side of

(2.9), nor the factor exp(−n−1/2 1
3
γ) on the right-hand side, adequately compensates

for skewness.

To appreciate that the 1 + O{. . .} remainder term in (2.8) is of relatively minor

importance in the problem of discovering large means in large-p small-n problems,

note that the remainder can be removed by multiplying t̂α by a factor 1+O(n−1/2 z−1
α +

n−1 z2α). However, since t̂α = zα [1 − n−1/2 1
3
{1 + op(1)} z2α γ], where the skewness

correction −n−1/2 1
3
{1+ op(1)} z2α γ is of strictly larger order than n−1/2 z−1

α +n−1 z2α,

then an adjustment for the remainder in (2.8) would be minor relative to the skewness

correction. In this sense the remainder term in (2.8), and in related formulae below,

has a relatively minor impact on the process of knowledge discovery which, in most
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large-p small-n problems, motivates multiple hypothesis testing. Importantly, the

aim in such cases is not to test the intersection of all p null hypotheses, but to rank

a relatively small number of them in terms of the extent of evidence against them.

These arguments show that the bootstrap applied to Student’s t statistic can have a

significant, positive effect on our capacity for avoiding false discoveries using methods

such as those of Benjamini and Hochberg (1995), Blair et al. (1996), Storey (2002)

and Genovese and Wasserman (2006).

The size of the O(n−D1) remainder in (2.8) is important if we wish to use the

bootstrap approximation in the context of detecting p weak signals, or of hypothesis

testing for a given level of false discovery rate among p populations or features. (Here

and below it is convenient to take p to be a function of n, which we treat as the main

asymptotic parameter.) In all these cases we generally wish to take α of size p−1, in

the sense that pα is bounded away from zero and infinity as n → ∞. This property

entails zα = O{(log p)1/2}, and therefore Theorem 1 implies that the tail condition

E(|X|D2) <∞, for some D2 > 0, is sufficient for it to be true that “PF (T0 > t̂α)/α =

1 + o(1) for p = o(nD1) and uniformly in the class of distributions F of X for which

E(X) = 0 and E(|X|D2) ≤ B (EX2)D2/2.”

On the other hand, if, as in Fan and Lv (2008), p is exponentially large as a

function of n, then we require a finite exponential moment of X. The following

theorem addresses this case. In the theorem, D2 < 2 unless D1 = 3
8
, in which case

D2 = 2. The proof of the theorem is given in section 5.2.

Theorem 2. For each B > 1 and D1 ∈ (0, 3
8
] there exists D2 ∈ (0, 2], increasing no

faster than linearly in D1 as the latter increases, such that

PF (T0 > t̂α) = α
[
1 +O

{
(1 + zα)n

−1/2 + (1 + zα)
4 n−1

}]
+O

{
exp

(
− nD1

)}
(2.10)

as n → ∞, uniformly in all distributions F of the random variable X such that

P{|X| > x/(EX2)1/2} ≤ C exp(−xD2) (where C > 0) and E(X) = 0, and in all α

satisfying 0 ≤ zα ≤ B n1/4.

Theorem 2 allows us to repeat all the remarks made in connection with Theorem 1

but in the case where p is exponentially large as a function of n. Of course, we need

to assume that exponential moments of X are finite, but in return we can control a
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variety of statistical methodologies, such as sparse signal recovery or false discovery

rate, for an exponentially large number of potential signals or tests. Distributions with

finite exponential moments include exponential families and distributions of variables

supported on a compact domain. Note that our condition is still less restrictive than

assuming that the distribution is normal, as is done in many papers treating high

dimensional problems, such as for example Fan and Lv (2008).

2.3 Effect of a nonzero mean on the properties discussed in

section 2.2

We have shown that, in a variety of problems, when making inference on a mean it

is preferable to use the Studentised mean rather than the standardised mean. We

have also shown that, when the skewness of the distribution of X is non zero, the

level of the test based on the Studentised mean is better approximated when using

the bootstrap than when using a normal distribution. Our next task is to check that,

when H0 : µ = 0 is not true, the probability of rejecting H0 is not much affected by

the bootstrap approximation. Our development is notationally simpler if we continue

to assume that E(X) = 0 and var (X) = 1, and consider the test H0 : µ = −cn−1/2

with c > 0 a scalar that potentially depends on n but which does not converge to

zero. We define

Zc = n1/2
(
X̄ + c n−1/2

)
, Tc = Zc/S . (2.11)

Here we take µ of magnitude n−1/2 because this represents the limiting case where

inference is possible. Indeed, a population with mean of order o(n−1/2) could not be

distinguished from a population with mean zero. Thus we treat the statistically most

challenging problem.

Our aim is to show that the probability PF (Tc > tα) is well approximated by

PF (Tc > t̂α), where c > 0 and t̂α is given by (2.7), and when Tc and t̂α are computed

from independent data. We claim that in this setting the results discussed in sec-

tion 2.2 continue to hold. In particular, versions of (2.8) and (2.10) in the present

setting are:

PF (Tc > t̂α) = PF (Tc > tα)
[
1 +O

{
(1 + zα)n

−1/2 + (1 + zα)
4 n−1

}]
+R , (2.12)
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where the remainder term R has either the form in (2.8) or that in (2.10), depending

on whether we assume existence of polynomial or exponential moments, respectively.

In particular, if we take R = O(n−D1) then (2.12) holds uniformly in all distributions

F of the random variable X such that E(|X|D2) ≤ B (EX2)D2/2 and E(X) = 0, and

in all α satisfying 0 ≤ zα ≤ B n1/4, provided that D2 is sufficiently large; and in the

same sense, but with R = O{exp(−nD1)} where D1 ∈ (0, 3
8
], (2.12) holds if we replace

the assumption E(|X|D2) ≤ B (EX2)D2/2 by P{|X| > x/(EX2)1/2} ≤ C exp(−xD2),

provided that D2 ∈ (0, 2] is sufficiently large. (We require D2 = 2 only if D1 = 3
8
.)

Result (2.12) is derived in section 5.3. Hence to first order, the probability of rejecting

H0 when H0 is not true is not affected by the bootstrap approximation. In particular,

to first order, skewness does not affect the approximation any more than it would if

H0 were true (compare with (2.8) and (2.10)).

An alternative form of (2.12), which is useful in applications (e.g. in section 3), is

to express the right hand side there more explicitly in terms of α. This can be done

if we note that, in view of Theorem A in section 5.1,

PF (Tc > tα) = {1− Φ(tα)} exp
{
− n−1/2 1

6

(
2 t3α − 3 c t2α + c3

)
γ
} 1− Φ(tα − c)

1− Φ(tα)

×
[
1 + θ(c, n, tα)

{
(1 + tα)n

−1/2 + (1 + tα)
4 n−1

}]
= α exp

{
n−1/2 1

6
c
(
3 t2α − c2

)
γ
} 1− Φ(tα − c)

1− Φ(tα)

×
[
1 + θ1(c, n, tα)

{
(1 + tα)n

−1/2 + (1 + tα)
4 n−1

}]
, (2.13)

where γ denotes skewness, θ1 has the same interpretation as θ in Theorem A, and the

last identity follows from the definition of tα. Combining this property with (2.12) it

can be shown that

PF (Tc > t̂α) = α exp
{
n−1/2 1

6
c
(
3 t2α − c2

)
γ
} 1− Φ(tα − c)

1− Φ(tα)

×
[
1 +O

{
(1 + zα)n

−1/2 + (1 + zα)
4 n−1

}]
+R, (2.14)

where R satisfies the properties given below (2.12).

2.4 Relationships among many events Tc > t̂α

So far we have treated only an individual event (i.e. a single univariate test), exploring

its likelihood. However, since our results for a single event apply uniformly over many
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choices of the distribution of X then we can develop properties in the context of many

events, and thus for simultaneous tests. The simplest case is that where the values

of Tc are independent; that is, we observe T
(j)

c(j)
for 1 ≤ j ≤ p, where c(1), . . . , c(p) are

constants and the random variables T
(j)

c(j)
are, for different values j, computed from

independent datasets. We assume that T
(j)

c(j)
is defined as at (2.11) but with c = c(j).

We could take the values of n = nj to depend on j, and in fact the theoretical

discussion below remains valid provided that C1 n ≤ nj ≤ C2 n, for positive constants

C1 and C2, as n increases. (Recall that n is the main asymptotic parameter, and

p is interpreted as a function of n.) As in the case of a single event, treated in

Theorems 1 and 2, it is important that the t-statistic T
(j)

c(j)
and the corresponding

quantile estimator t̂
(j)
α be independent for each j. However, as noted in section 2.2,

this is not a problem since T
(j)

c(j)
represents a generic random variable, and only t̂

(j)
α is

calculated from the sample.

It is often unnecessary to assume, as above, that the quantile estimators t̂
(j)
α are

independent of one another. To indicate why, we note that the method for deriving

expansions such as (2.8), (2.10) and (2.12) involves computing P (Tc > t̂α) by first

calculating the conditional probability P (Tc > t̂α | t̂α), where the independence of Tc

and t̂α is used. Versions of this argument can be given for the case of short-range

dependence among many different values of t̂
(j)
α , for 1 ≤ j ≤ p.

Cases where the statistics are computed from weakly dependent data can be ad-

dressed using results of Hall and Wang (2010). That work treats instances where the

variables T
(j)

c(j)
are computed from the first n components in respective data streams

Sj = (Xj1, Xj2, . . .), with Xj1, Xj2, . . . being independent and identically distributed

but correlated between streams. As in the discussion above, since we are treating t-

statistics then it can be assumed without loss of generality that the variables in each

data stream have unit variance. (This condition serves only to standardise scale, and

in particular places the means c(j) on the same scale for each j.) Assuming this is

the case, we shall suppose too that third moments are uniformly bounded. Under

these conditions it is shown by Hall and Wang (2010) that, provided that (a) the

correlations are bounded away from 1, (b) the streams S1,S2, . . . are k-dependent for

some fixed k ≥ 1, (c) zα is bounded between two constant multiples of (log p)1/2,

(d) log p = o(n), and (e) for 1 ≤ j ≤ p we have 0 ≤ c(j) = c(j)(n) ≤ ϵ n−1/2 (log p)1/2,

where ϵ → 0 as n → ∞; and excepting realisations that arise with probability no
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Figure 1: Comparison of the joint distribution function of (T
(1)
0 , . . . , T

(p)
0 ) (denoted by

“True cdf”) with the product of the distributions of the univariate components T
(k)
0 ,

k = 1, . . . , p (denoted by “Assume indep”), when ϵk ∼ standardised Pareto(5,5), n =

50 and, from left to right, (p, θ) = (100, 0.5), (p, θ) = (100, 0.2), (p, θ) = (10000, 0.2).

The vertical axis gives values of P (T
(1)
0 ≤ x, . . . , T

(p)
0 ≤ x) where x is given on the

horizontal axis.

greater than 1 − O{p exp(−C z2α)}, where C > 0; the t-statistics T
(j)

c(j)
can be con-

sidered to be independent. In particular, it can be stated that with probability

1−O{p exp(−C z2α)} there are no clusters of level exceedences caused by dependence

among the data streams.

These conditions, especially (d), permit the dimension p to be exponentially large

as a function of n. Assumption (e) is of interest; without it the result can fail and

clustering can occur. To appreciate why, consider cases where the data streams are

k-dependent but in the degenerate sense that Srj+1 = . . . = Srj+k for r ≥ 0. Then,

for relatively large values of c, the value of T
(j)
c is well approximated by that of c/Sj,

where S2
j = n−1

∑
i≤n (Xji − X̄j)

2 is the empirical variance computed from the first

n data in the stream Sj. It follows that, for any r ≥ 1, the values of T
(rj+i)
c , for

1 ≤ i ≤ k, are also very close to one another. Clearly this can lead to data clustering

that is not described accurately by asserting independence. There is evidence that, for

genomic data, the strength of dependence can range from weak (Mansilla et al., 2004)

to strong (Almirantis and Provata, 1999), and in the latter case the assumption of

independence would be questionable.

To illustrate these properties we calculated the joint distribution of (T
(1)
0 , . . . , T

(p)
0 )

for short-range dependent p-vectors (X1, . . . , Xp), and compared this distribution with

the product of the distributions of the p univariate components T
(k)
0 , k = 1, . . . , p.
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For k = 1, . . . , p we took Xk = (Uk − EUk)/
√
varUk and Uk =

∑10
j=0 θ

jϵj+k. Here,

0 < θ < 1 is a constant and ϵ1, . . . , ϵp+10 denote i.i.d. random variables. Figure 1

depicts the resulting distribution functions for several values of θ and p, when the

sample size n was 50 and the ϵjs were from a standardised Pareto(5,5) distribution.

We see that the independence assumption gives a good approximation to the joint

cumulative distribution function, but, unsurprisingly, the approximation degrades as

θ (and thus the dependence) increases. The figure also suggests that the independence

approximation degrades as p becomes very large (105, in this example).

3 Application to higher criticism for detecting sparse

signals in non-Gaussian noise

In this section we develop higher criticism methods where the critical points are

based on bootstrap approximations to distributions of t statistics, and show that the

advantages established in section 2 for bootstrap t methods carry over to sparse signal

detection.

Assume we observe X1j, . . . , Xnj, for 1 ≤ j ≤ p, where all the observations are

independent and where, for each j, X1j, . . . , Xnj are identically distributed. For ex-

ample, in gene microarray analysis Xij if often used to represent the log-intensity

associated with the ith subject and the jth gene, µj represents the mean expression

level associated with the jth feature (i.e. gene), and the Zijs represent measurement

noise. The distributions of the Xijs are completely unknown, and we allow the dis-

tributions to differ among components. Let E(X1j) = c(j). The problem of signal

detection is to test

H0: all c
(j)s are zero, against H

(n)
1 : a small fraction of the c(j)s is nonzero. (3.1)

For simplicity, in this section we assume that each c(j) ≥ 0, but a similar treatment

can be given where nonzero c(j)s have different signs.

To perform the signal detection test we use the ideas in section 2 to construct a

bootstrap t higher criticism statistic that can be calculated when the distribution of

the data is unknown, and which is robust against heavy-tailedness of this distribution.

(Higher criticism was originally suggested by Donoho and Jin (2004) in cases where

14



the centered data have a known distribution, non-Studentised means were used, and

the bootstrap was not employed.) As in section 2.4, let T
(j)

c(j)
be the Studentised

statistic for the jth component, and let t̂
(j)
α be the bootstrap estimator of the 1 − α

quantile of the distribution of T
(j)
0 , both calculated from the data X1j, . . . Xnj. We

suggest the following bootstrap t higher criticism statistic:

hcn(α0) = max
α=i/p, 1≤i≤α0p

{pα (1− α)}−1/2

p∑
j=1

{
I
(
T

(j)

c(j)
> t̂(j)α

)
− α

}
, (3.2)

where α0 ∈ (0, 1) is small enough for the statistic hcn at (3.2) to depend only on

indices j for which T
(j)

c(j)
is relatively large. This exploits the excellent performance

of bootstrap approximation to the distribution of the Studentised mean in the tails,

as exemplified by Theorems 1 and 2 in section 2, while avoiding the “body” of the

distribution, where the bootstrap approximations are sometimes less remarkable. We

reject H0 if hcn(α0) is too large.

We could have defined the higher criticism statistic by replacing the bootstrap

quantiles in definition (3.2) by the respective quantiles of the standard normal dis-

tribution. However, the greater accuracy of bootstrap quantiles compared to normal

quantiles, established in section 2, suggest that in the higher criticism context, too,

better performance can be obtained when using bootstrap quantiles. The superiority

of the bootstrap approach will be illustrated numerically in section 4.

Theorem 3 below provides upper and lower bounds for the bootstrap t higher

criticism statistic at (3.2), under H0 and H
(n)
1 . We shall use these results to prove

that the probabilities of type I and type II errors converge to zero as n → ∞. The

standard “test pattern” for assessing higher criticism is a sparse signal, with the same

strength at each location where it is nonzero. It is standard to take c(j) = 0 for all

but a fraction ϵn of js, and c(j) = τn n
−1/2 elsewhere, where τn ̸= 0 is chosen to make

the testing problem difficult but solvable. As usual in the higher criticism context we

take

ϵn = p−β = n−β/θ, (3.3)

where β ∈ (0, 1) is a fixed parameter. Among these values of β the range 0 < β < 1
2

is the least interesting, because there the proportion of nonzero signals is so high

that it is possible to estimate the signal with reasonable accuracy, rather than just

determine its existence. See Donoho and Jin (2004). Therefore we focus on the most
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interesting range, which is 1
2
< β < 1. For β ∈ (1

2
, 1) the most interesting values of τn

are τn ≍
√
2 log p, with τn <

√
2 log p. Taking τn = o(

√
2 log p) would render the two

hypotheses indistinguishable, whereas taking τn ≥
√
2 log p would render the signal

relatively easy to discover, since it would imply that the means that are nonzero are

of the same size as, or larger than, the largest values of the signal-free T
(j)

c(j)
s. In light

of this we consider nonzero means of size

τn =
√

2r log p =
√
2(r/θ) log n , (3.4)

where 0 < r < 1 is a fixed parameter.

Before stating the theorem we introduce notation. Let Lp > 0 be a generic multi-

log term which may be different from one occurrence to the other, and is such that

for any constant c > 0, Lp · pc → ∞ and Lp · p−c → 0 as p → ∞. We also define the

“phase function” by

ρθ(β) =


(√

1− θ −
√

1−θ
2

+ 1
2
− β

)2

, 1
2
< β ≤ 1

2
+ 1−θ

4
,

β − 1
2
, 1

2
+ 1−θ

4
< β ≤ 3

4
,

(1−
√
1− β)2, 3

4
< β < 1.

In the β-r plane we partition the region {1
2
< β < 1, ρθ(β) < r < 1} into three

subregions (i), (ii), and (iii) defined by r < 1
4
(1−θ), 1

4
(1−θ) ≤ r < 1

4
, and 1

4
< r < 1,

respectively. The next theorem, derived in the longer version of this paper (Delaigle

et al., 2010), provides upper and lower bounds for the bootstrap t higher criticism

statistic under H0 and H
(n)
1 , respectively.

Theorem 3. Let p = n1/θ, where θ ∈ (0, 1) is fixed, and suppose that, for each

1 ≤ j ≤ p, the distribution of the respective X satisfies E(X) = 0, E(X2) = 1 and

E|X|D2 <∞, where D2 is chosen so large that (2.8) holds with D1 > 1/θ. Also, take

α0 = n p−1 log p. Then

(a) Under the null hypothesis H0 in (3.1), there is a constant C > 0 such that

P
{
hcn(α0) ≤ C log p} → 1 as n→ ∞ .

(b) Let β ∈ (1
2
, 1) and r ∈ (0, 1) be such that r > ρθ(β). Under H

(n)
1 in (3.1), where

c(j) is modeled as in (3.3)–(3.4), we have

P{hcn(α0) ≥ Lpp
δ(β,r,θ)} → 1 as n→ ∞ ,
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Figure 2: Left: r = ρ(β) (black) and r = ρθ(β) with θ = 0.25 (blue), 0.5 (green),

and 0.75 (red). For each θ, in the region sandwiched by two curves r = ρ(β) and

r = ρθ(β), higher criticism is successful in the Gaussian case, but maybe not so much

in the non-Gaussian case. Right: magnification of lower left portion of graph. The

horizontal and vertical axes depict β and r, respectively.

where

δ(β, r, θ) =


1
2
− β + (1− θ)/2− (

√
(1− θ)−

√
r)2, if (β, r) is in region (i),

r − β + 1
2
, if (β, r) is in region (ii),

1− β − (1−
√
r)2, if (β, r) is in region (iii).

It follows from the theorem that, if we set the test so as to reject the null hypothesis

if and only if hcn ≥ an, where an/ log p → ∞ as n → ∞, and an = O(pd) where

d < δ(β, r, θ), then as long as r > ρθ(β), the probabilities of type I and type II errors

tend to zero as n→ ∞ (note that δ(β, r, θ) > 0).

It is also of interest to see what happens when r < ρθ(β), and below we treat sep-

arately the cases r < ρ(β) and ρ(β) < r < ρθ(β), where ρ(β) ≡ ρ1(β) ≥ ρθ(β) is the

standard phase function discussed by Donoho and Jin (2004). We start with the case

r < ρ(β). There, Ingster (1999) and Donoho and Jin (2004) proved that for the sizes

of ϵn and τn that we consider in (3.3)–(3.4), even when the underlying distribution of

the noise is known to be the standard normal, the sum of the probabilities of type I

and type II errors of any test tends to 1 as n→ ∞. See also Ingster (2001). Since our

testing problem is more difficult than this (in our case the underlying distribution of

the noise is estimated from data), in this context too, asymptotically, any test fails if

r < ρ(β).

It remains to consider the case ρ(β) < r < ρθ(β). In the Gaussian model, i.e.

when the underlying distribution of the noise is known to be standard normal, it was

proved by Donoho and Jin (2004) that there is a higher criticism test for which the
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sum of the probabilities of type I and type II errors tends to 0 as n → ∞. However,

our study does not permit us to conclude that bootstrap t higher criticism will yield

a successful test.

There are at least two reasons for possible failure of higher criticism here: first,

the sample size, n, is relatively small, and secondly, we do not have full knowledge

of the underlying distribution of background noise. Recall that in Theorems 2–3,

PF (T0 > t̂α) = α (1+an) for a small error term an. Ideally, if an = o(p−1/2) uniformly

in α ∈ (0, 1), the interval between r = ρ(β) and r = ρθ(β) vanishes. However, in

the present case n = pθ where θ < 1. Without further knowledge of the underlying

distribution, Theorems 2–3 suggest that the smallest an is an = Ln n
−1/2 = Ln p

−θ/2,

where Ln lies between two powers of log n; this an is much larger than o(p−1/2).

A potential third reason for difficulties is that, in the idealised Gaussian case

(Donoho and Jin, 2004), the success of higher criticism lies in its adaptivity to different

signal strengths. When the signal is relatively strong the most informative part of

the data is in the tail, but when the signal is weak most of the information is in

the centre. Now, the natural scale standardisation for the higher criticism statistic

is, superficially, {α (1 − α)}1/2 (see (3.2)), yet results such as (2.8) and (2.9) imply

that the bootstrap gives a good approximation to probabilities at the scale α (in the

upper tail) and 1−α (in the lower tail). It follows that the bootstrap approximation

for values of α that are not close to 0 or 1, i.e. which are towards the centre of the

distribution, is relatively inaccurate, and this can lead to failure of higher criticism.

It is not difficult to see that, when the underlying distribution is unknown, work-

ing under the assumption that it is Gaussian, and directly applying methodology

for standard higher criticism, can give poor results. On the other hand, when the

underlying distribution is Gaussian but we use the bootstrap, performance can also

be relatively poor. In this case the bootstrap is encumbered by errors of order n−1/2

that result from estimating skewness, kurtosis and all other cumulants, which in the

Gaussian case we know are zero. This renders the bootstrap relatively uncompetitive,

although performance is often still reasonable.

The case where p is exponentially large (i.e. n = (log p)a for some constant a > 0)

can be interpreted as the case θ = 0, where ρθ(β) reduces to (1 −
√
1− β)2. In this

case, if r > (1 −
√
1− β)2 then the sum of probabilities of type I and type II errors

of hcn tends to 0 as n tends to ∞. The proof is similar to that of Theorem 3 so we
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Figure 3: Distribution function (F ), top, and inverse distribution function (F−1),

bottom, of T0 (F stud), Z0 (F stand) and of a N(0,1) when U = N |N |, when, from
left to right n = 50, U = N |N | with n = 100, U = N5|N | with n = 50, U = N5|N |
with n = 100 and where N ∼ N(0, 1).

omit it.

4 Numerical properties

First we give numerical illustrations of the results in section 2.1. In Figure 3 we

compare the right tail of the cumulative distribution functions of Z0 and T0 with

the right tail of Φ, denoting the standard normal distribution function, when U

has increasingly heavy tails. We take X = (U − EU)/(varU)1/2 where U = N |N |
(moderate tails) or N5|N | (heavier tails), with N ∼ N(0, 1). The figure shows that Φ

approximates the distribution of T0 better than it approximates that of Z0, and that

the approximation of the normal distribution of Z0 degrades as the distribution of

X becomes more heavy-tailed. The figure also compares the right tail of the inverse

cumulative distribution functions, which shows that the normal approximation is

more accurate in the tails for T0 than for Z0. Unsurprisingly, as the sample size

increases the normal approximation for both T0 and Z0 becomes more accurate.

Next we illustrate the results in section 2.2. There we showed that although T0

is more robust than Z0 against heavy-tailedness of the distribution FX of X, the

distribution of T0 is somewhat more affected by the skewness of FX . To illustrate the

19



0.9990 0.9992 0.9994 0.9996 0.9998 1.0000

2
3

4
5

6

π

F
−1

(π
)

0.9990 0.9992 0.9994 0.9996 0.9998 1.0000

2
3

4
5

6

π

F
−1

(π
)

0.9990 0.9992 0.9994 0.9996 0.9998 1.0000

2
3

4
5

6

π

F
−1

(π
)

Figure 4: Inverse (F−1) of the distribution function of T0 ( - - -), of the standard

normal variable (—), and 200 bootstrap estimators of the distribution function of

T0 (red curves), when X is a standardised F(5, 5), n = 50 (left), n = 100 (middle),

n = 250 (right).

success of bootstrap in correcting this problem we compare the bootstrap and nor-

mal approximations for several skewed and heavy-tailed distributions. In particular,

Figure 4 shows results obtained when X = (U − EU)/(varU)1/2, with U ∼ F(5, 5).

Since, later in this section, we shall be more interested in approximating quantiles of

the distribution of T0, rather than the distribution itself, then in Figure 4 we show

the right tail of the inverse cumulative distribution function of T0 and 200 bootstrap

estimators of this tail obtained from 200 samples of sizes n = 50, n = 100 or n = 250

simulated from FX . We also show the inverse cumulative distribution function of

the standard normal distribution. The figure demonstrates clearly that the boot-

strap approximation to the tail is more accurate than the normal approximation, and

that the approximation improves as the sample size increases. We experimented with

other skewed and heavy-tailed distributions, such as other F distributions and several

Pareto distributions, and reached similar conclusions.

Note that, when implementing the bootstrap, the number B of bootstrap samples

has to be taken sufficiently large to obtain reasonably accurate estimators of the

tails of the distribution. In general, the larger B, the more accurate the bootstrap

approximation, but in practice we are limited by the capacity of the computer. To

obtain a reasonable approximation of the tail up to the quantile tα, where α <
1
2
, we

found that one should take B no less than 100/α.

Let hc and hcnorm denote, respectively, the theoretical and the normal versions of

the higher criticism statistic, defined by the formula at the right hand side of (3.2),

replacing there the bootstrap quantiles t̂
(j)
α by t

(j)
α and zα, respectively, where t

(j)
α

20



denote the 1− α theoretical quantiles of T
(j)
0 and zα denote the 1− α quantile of the

standard normal distribution. To illustrate the success of bootstrap in applications of

the higher criticism statistic, in our simulations we compared the statistic hc which we

could use if we knew the distribution FX , the bootstrap statistic hcn defined at (3.2),

where the unknown quantiles t
(j)
α are estimated as the bootstrap quantities t̂

(j)
α as

discussed in the previous paragraph, and the normal version hcnorm. We constructed

histograms of these three versions of the higher criticism statistic, obtained from

1000 simulated values calculated under H0 or an alternative hypothesis. For any of

the three versions, to obtain the 1000 values we generated 1000 samples of size n,

of p-vectors (X1, . . . , Xp). We did this under H0, where the mean of each Xj was

zero, and under various alternatives H
(n)
1 , where we set a fraction ϵn of these means

equal to τn n
−1/2, with τn > 0. As in section 3 we took p = n1/θ, ϵn = n−β/θ and

τn =
√
2r log p, where we chose β and r to be on the frontier of the r > ρθ(β).

Figure 5 shows the histograms under H0 and under various alternatives H
(n)
1

located on the frontier (r = ρθ(β), for β = 1
2
, β = 1

2
+ 1

4
(1 − θ), β = 3

4
and β = 1),

when the Xj’s are standardised F(5, 5) variables, n = 100 and θ = 1
2
. We can see that

the histogram approximations to the density of the bootstrap hcn are relatively close

to the histogram approximations to the density of hc. By contrast, the histograms in

the case of hcnorm show that the distribution of hcnorm is a poor approximation to the

distribution of hc, reflecting the inaccuracy of normal quantiles as approximations to

the quantiles of heavy-tailed, skewed distributions. We also see that, except when

β = 1, the histograms for hc and hcn under H0 are rather well separated from those

under H
(n)
1 . This illustrates the potential success of higher criticism for distinguishing

between H0 and H
(n)
1 . By contrast, this property is much less true for hcnorm.

We also compared histograms for other heavy-tailed and skewed distribution, such

as the Pareto, and reached similar conclusions. Furthermore, we considered skewed

but less-heavy tailed distributions, such as the chi-squared(10) distribution. There

too we obtained similar results, but, while the bootstrap remained the best approxi-

mation, the normal approximation performed better than in heavy-tailed cases. We

also considered values of (β, r) further away from the frontier, and, unsurprisingly

since the detection problem became easier, the histograms under H
(n)
1 became even

more separated from those under H0.
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Figure 5: Histograms of hc statistics under H0 (rows 1,3,5) or under H
(n)
1 (rows

2,4,6), when the Xj’s are standardised F(5, 5) variables, n = 100, θ = 1
2
, p = n1/θ,

ϵn = n−β/θ and τn =
√
2r log p, where r = ρθ(β). In each row, from left to right,

β = 1
2
, β = 1

2
+ 1

4
(1− θ), β = 3

4
and β = 1. Rows 1 and 2 are for the theoretical hc;

rows 3 and 4 for hcn; and rows 5 and 6 for hcnorm.
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5 Technical arguments

5.1 Preliminaries

Let Tc be as in (2.11). Then the following result can be proved using arguments of

Wang and Hall (2009).

Theorem A. Let B > 1 denote a constant. Then,

P (Tc > x)

1− Φ(x− c)
= exp

{
− n−1/2 1

6

(
2x3 − 3 c x2 + c3

)
γ
}

×
[
1 + θ(c, n, x)

{
(1 + |x|)n−1/2 + (1 + |x|)4 n−1

}]
(5.1)

as n → ∞, where the function θ is bounded in absolute value by a finite, positive

constant C1(B) (depending only on B), uniformly in all distributions of X for which

E|X|4 ≤ B, E(X2) = 1 and E(X) = 0, and uniformly in c and x satisfying 0 ≤ x ≤
B n1/4 and 0 ≤ c ≤ ux, where 0 < u < 1.

We shall employ Theorem A to prove the theorem below. Details are given in a

longer version of this paper (Delaigle et al., 2010). Take F to be any subset of the

class of distributions F of the random variable X, such that E(|X|6+ϵ) ≤ B for some

ϵ > 0 and a constant 1 < B < ∞, E(X) = 0 and E(X2) = 1. Recall the definition

of T ∗
0 in (2.6), let t = tα and t = t̂α denote the respective solutions of P (T0 > t) = α

and P (T ∗
0 > t | X ) = α, and recall that zα = (1−Φ)−1(α). Take η ∈ (0, ϵ/{4(6+ ϵ)}),

and let Tc and t̂α denote independent random variables with the specified marginal

distributions.

Theorem B. Let B > 1 denote a constant. Then,

PF (Tc > t̂α) = PF (Tc > tα) exp
{
n−1/2 1

6
c
(
3 z2α − c2

)
γ
}

×
[
1 +O

{
(1 + zα)n

−1/2 + (1 + zα)
4 n−1

}]
+O

[
3∑

k=1

PF

{∣∣∣∣ 1n
n∑

i=1

(1− E)Xk
i

∣∣∣∣ > n−(1/4)−η

}

+ PF

{∣∣∣∣ 1n
n∑

i=1

(1− E)X4
i

∣∣∣∣ > B

}]
(5.2)

as n → ∞, uniformly in all F ∈ F and in all c and zα satisfying 0 ≤ zα ≤ B n1/4

and 0 ≤ c ≤ u zα, where 0 < u < 1.
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5.2 Proof of Theorem 2

The following theorem can be derived from results of Adamczak (2008).

Theorem C. If Y1, . . . , Yn are independent and identically distributed random vari-

ables with zero mean, unit variance and satisfying

P (|Y | > y) ≤ K1 exp
(
−K2 y

ξ
)

(5.3)

for all y > 0, where K1, K2, ξ > 0, then for each λ > 1 there exist constants K3, K4 >

0, depending only on K1, K2, ξ and λ, such that for all y > 0,

P

(∣∣∣∣ n∑
i=1

Yi

∣∣∣∣ > y

)
≤ 2 exp

(
− y2

2λn

)
+K3 exp

(
− yξ

K4

)
.

We use Theorem C to bound the remainder terms in Theorem B. If PF (|X| > x) ≤
C1 exp(−C2 x

ξ1) and we take Y = (1 − E)Xk for an integer k, then (5.3) holds for

constants K1 and K2 depending on C1, C2 and ξ1, and with ξ = ξ1/k. In particular,

for all x > 0,

PF

{∣∣∣∣ n∑
i=1

(1− E)Xk
i

∣∣∣∣ > x
(
varXk

)1/2} ≤ 2 exp

(
− x2

2λn

)
+K3 exp

(
− xξ1/k

K4

)
.

Taking k = 1, 2 or 3, and x = xkn = const. n(3/4)−η1 for some η1 > 0; or k = 4 and

x = xkn = const.; we deduce that in each of these settings,

PF

{∣∣∣∣ 1n
n∑

i=1

(1− E)Xk
i

∣∣∣∣ > xnk

}
=

O
{
exp

(
− n(3ξ1/4k)−η2

)}
if k = 1, 2, 3

O
{
exp

(
− nξ1/4

/
K5

)}
if k = 4 ,

where η2 > 0 decreases to zero as η1 ↓ 0. Therefore the O[. . .] remainder term in (5.2)

equals O{exp(−n(3ξ1/16)−η2)}, and so Theorem 2 is implied by Theorem B.

5.3 Proof of (2.12)

Note that, by Theorem B in section 5.1, Theorems 1 and 2 continue to hold if we

replace the left-hand sides of (2.8) and (2.10) by PF (Tc > t̂α), provided we also replace

the factor α on the right-hand sides by PF (Tc > tα). The uniformity with which (2.8)

and (2.10) hold now extends (in view of Theorem B) to c such that 0 ≤ c ≤ u zα with

0 < u < 1, as well as to α satisfying 0 ≤ zα ≤ B n1/4.
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A PAGES 29–39: NOT-FOR-PUBLICATION AP-

PENDIX

A.1 Proof of Theorem B

Step 1: Expansions of tα and t̂α. The main results here are (A.3) and (A.5). To

derive them, take W ∗ to have the distribution of (X∗
i − X̄)/S, where S is as in (2.1),

and, for k = 3 and 4, put

γ̂k = E
(
W ∗k ∣∣X )

=
1

nSk

n∑
i=1

(Xi − X̄)k ,

where W ∗k = (W ∗)k. Letting c = 0 in Theorem A, and taking X there to have the

distribution of W ∗ conditional on X , we deduce that if B > 1 is given,

PF (T
∗
0 > x | X )

1− Φ(x)
= exp

(
− n−1/2 1

3
x3 γ̂

)
×
[
1 + Θ1(n, x)

{
(1 + |x|)n−1/2 + (1 + |x|)4 n−1

}]
, (A.1)

where γ̂ = γ̂3 and:

the random function Θ1(n, x) satisfies |Θ1(n, x)| ≤ C1(B) (where C1(B)

is the same constant introduced in Theorem A) uniformly in datasets

X for which S > 1
2
and γ̂4 ≤ B, and uniformly also in x satisfying

0 ≤ x ≤ B n1/4.

(A.2)

Properties (A.1) and (A.2) imply thatt̂α satisfies:

t̂α = zα

[
1− 1

3
γ̂ n−1/2 zα +Θ2(n, α)

{
(1 + zα)

−1 n−1/2 + (1 + zα)
2 n−1

}]
, (A.3)

where z = zα is the solution of 1− Φ(zα) = α and, in the case j = 2:

the random function Θj(n, α) satisfies |Θj(n, α)| ≤ Cj(B) (where Cj(B)

is a finite, positive constant) uniformly in datasets X for which S > 1
2

and γ̂4 ≤ B, and uniformly also in α satisfying 1
2
≤ 1−α ≤ 1−Φ(B n1/4)

(A.4)

Analogously, Theorem A implies that tα satisfies:

tα = zα

[
1− 1

3
γ n−1/2 zα + θ(n, α)

{
(1 + zα)

−1 n−1/2 + (1 + zα)
2 n−1

}]
, (A.5)

where z = zα is the solution of 1− Φ(zα) = α and:
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the function θ(n, α) satisfies |θ(n, α)| ≤ C2(B) (with C2(B) denoting

a finite, positive constant) uniformly in distributions of X for which

E(X) = 0, E(X2) = 1 and E(X4) ≤ B, and uniformly also in α satisfy-

ing 0 ≤ zα ≤ B n1/4.

(A.6)

The derivations of the pairs of properties (A.3) and (A.4), and (A.5) and (A.6),

are similar. For example, suppose that if t̂α is given by (A.3) rather than by P (T ∗
0 >

t̂α | X ) = α, and that the function Θ2 in (A.3) is open to choice except that it should

satisfy (A.4). If we define ρ(z) = z {1− Φ(z)}/ϕ(z) = 1− z−2 + 3 z−4 − . . ., then by

(A.1), (A.3) and (A.4),

PF (T
∗
0 > t̂α | X ) = {1− Φ(t̂α)} exp

(
− n−1/2 1

3
t̂3α γ̂

)
×

[
1 + Θ1(n, t̂α)

{
(1 + |t̂α|)n−1/2 + (1 + |t̂α|)4 n−1

}]
= (2π)−1/2 exp

{
− 1

2
z2α

(
1− 2

3
γ̂ n−1/2 zα

)
− n−1/2 1

3
z3α γ̂

}
× z−1

α ρ(zα)
[
1 + Θ3(n, zα)

{
(1 + zα)n

−1/2 + (1 + zα)
4 n−1

}]
= {1− Φ(zα)}

[
1 + Θ3(n, zα)

{
(1 + zα)n

−1/2 + (1 + zα)
4 n−1

}]
,

(A.7)

where Θ3 satisfies (A.4). By judicious choice of Θ2, satisfying (A.4), we can ensure

that Θ3 in (A.7) vanishes, up to the level of discreteness of the conditional distribution

function of T ∗
0 . In this case the right-hand side of (A.7) equals simply 1−Φ(zα) = α,

so that t̂α indeed has the intended property, i.e. P (T ∗
0 > t̂α | X ) = α.

Step 2: Expansions of the difference between t̂α and tα. The main results here are

(A.10) and (A.11). To obtain them, first combine (A.3) and (A.5) to deduce that:

t̂α − tα = 1
3
z2α (γ − γ̂)n−1/2 +Θ4(n, α)

{
n−1/2 + (1 + zα)

3 n−1
}
, (A.8)

where, for j = 4:

the random function Θj(n, α) satisfies |Θj(n, α)| ≤ Cj(B) (with Cj(B)

denoting a finite, positive constant) uniformly in datasets X for which

S > 1
2
and γ̂4 ≤ B; uniformly in distributions of X for which E(X) = 0,

E(X2) = 1 and E(X4) ≤ B; and uniformly also in α satisfying 0 ≤ zα ≤
B n1/4.

(A.9)

Using (A.5), (A.6), (A.8) and (A.9) we deduce that:

t2α (t̂α − tα) =
1
3
z4α n

−1/2 (γ − γ̂) + Θ5(n, α)
{
(1 + zα)

2 n−1/2 + (1 + zα)
5 n−1

}
,

tα (t̂α − tα)
2 = 1

9
z5α n

−1 (γ − γ̂)2 +Θ6(n, α)
{
(1 + zα)

3 n−1 + (1 + zα)
6 n−3/2

}
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and (t̂α − tα)
3 = Θ7(n, α) (1 + zα)

6 n−3/2 ≤ Θ8(n, α) (1 + zα)
4 n−1, where Θ5, . . . ,Θ9

(the latter appearing below) satisfy (A.9). Therefore,

t̂3α − t3α = 3 t2α (t̂α − tα) + 3 tα (t̂α − tα)
2 + (t̂α − tα)

3

= z4α n
−1/2 (γ − γ̂) + Θ9(n, α)

{
(1 + zα)

2 n−1/2 + (1 + zα)
5 n−1

}
. (A.10)

Similarly, using (A.5) and (A.8),

(t̂α − c)2 − (tα − c)2 = 2 (tα − c) (t̂α − tα) + (t̂α − tα)
2

= 2
3
(zα − c) z2α (γ − γ̂)n−1/2

+Θ10(c, n, α)
{
(1 + zα)n

−1/2 + (1 + zα)
4 n−1

}
, (A.11)

where, for j ≥ 10:

the random function Θj(c, n, α) satisfies |Θj(c, n, α)| ≤ Cj(B) (with

Cj(B) denoting a finite, positive constant) uniformly in datasets X for

which S > 1
2
and γ̂4 ≤ B, uniformly in distributions of X for which

E(X) = 0, E(X2) = 1 and E(X4) ≤ B, and uniformly also in c such

that 0 ≤ c ≤ u zα where 0 < u < 1, and in α such that 0 ≤ zα ≤ B n1/4.

(A.12)

Step 3: Initial expansion of P (Tc > t̂α). To derive (A.16), the main result in this

step, note that by (A.3)–(A.5) and (A.11),

1− Φ(t̂α − c) = (zα − c)−1 ρ(zα − c) (2π)−1/2 exp
{
− 1

2
(t̂α − c)2

}
×

[
1 + Θ11(c, n, α)

{
(1 + zα)n

−1/2 + (1 + zα)
2 n−1

}]
= (zα − c)−1 ρ(zα − c) (2π)−1/2

× exp
{
− 1

2
(tα − c)2 − 1

3
(zα − c) z2α (γ − γ̂)n−1/2

}
×

[
1 + Θ12(c, n, α)

{
(1 + zα)n

−1/2 + (1 + zα)
4 n−1

}]
= {1− Φ(tα − c)} exp

{
− 1

3
(zα − c) z2α (γ − γ̂)n−1/2

}
×

[
1 + Θ13(c, n, α)

{
(1 + zα)n

−1/2 + (1 + zα)
4 n−1

}]
. (A.13)

If Tc is statistically independent of t̂α then, by (5.1), (A.10) and (A.11) (the latter

with c = 0),

PF (Tc > t̂α | t̂α)
1− Φ(t̂α − c)
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= exp
{
− n−1/2 1

6

(
2 t̂3α − 3 c t̂2α + c3

)
γ
}

×
[
1 + Θ14(c, n, α)

{
(1 + zα)n

−1/2 + (1 + zα)
4 n−1

}]
= exp

{
− n−1/2 1

6

(
2 t3α − 3 c t2α + c3

)
γ
}

× exp
[
− n−1 1

3
γ (γ − γ̂)

{
z4α − c z3α

}]
×
[
1 + Θ15(c, n, α)

{
(1 + zα)n

−1/2 + (1 + zα)
4 n−1

}]
=

PF (Tc > tα)

1− Φ(tα − c)

[
1 + Θ16(c, n, α)

{
(1 + zα)n

−1/2 + (1 + zα)
4 n−1

}]
. (A.14)

Combining (A.13) and (A.14) we deduce that:

PF (Tc > t̂α | t̂α) = PF (Tc > tα) · exp
{
− 1

3
(zα − c) z2α (γ − γ̂)n−1/2

}
×
[
1 + Θ17(c, n, α)

{
(1 + zα)n

−1/2 + (1 + zα)
4 n−1

}]
. (A.15)

Reflecting (A.12), let G1(B) denote the class of distribution functions F of X such

that E(X) = 0, E(X2) = 1 and E(X4) ≤ B; write PF for probability measure when

X is drawn from the population with distribution function F ∈ G1; let D denote any

given event, shortly to be defined concisely; let E(B) be the intersection of D and

the events S > 1
2
and γ̂4 ≤ B; and write Ẽ(B) for the complement of E(B). In view

of (A.15),

PF (Tc > t̂α) = PF (Tc > tα) · E
[
exp

{
n−1/2 1

3
(zα − c) z2α (γ̂ − γ)

}
I{E(B)}

]
×
[
1 +O

{
(1 + zα)n

−1/2 + (1 + zα)
4 n−1

}]
+O

[
PF

{
Ẽ(B)

}]
, (A.16)

uniformly in the following sense:

uniformly in F ∈ G1(B), in c such that 0 ≤ c ≤ u zα, where 0 < u < 1,

and in α such that 0 ≤ zα ≤ B n1/4. (A.17)

Step 4: Simplification of right-hand side of (A.16). Here we derive a simple formula,

(A.28), for the expectation on the right-hand side of (A.16). That result, when

combined with (A.16) and (A.17), leads quickly to Theorem B.

Put ∆k = n−1
∑

i (X
k
i − EXk), write Dk to denote the event that |∆k| ≤

C3 n
−(1/4)−η where C3 > 0 and η ∈ (0, 1

2
), and put D = D1 ∩ D2 ∩ D3. Observe

that

γ̂ =
(
γ +∆3 − 3∆1∆2 − 3∆1 + 2∆3

1

)/(
1 + ∆2 −∆2

1

)
, (A.18)
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From this property it can be proved that if |γ| ≤ B and C3 is sufficiently small,

depending only on B, then |γ̂ − γ| ≤ n−(1/4)−η whenever D holds. Therefore if D
holds, and 0 ≤ c ≤ u zα for 0 < u < 1, and 0 ≤ zα ≤ B n1/4, then

n−1/2 |zα − c| z2α |γ̂ − γ| ≤ B3 n−η .

In these circumstances, defining ∆ = n−1/2 1
3
(zα − c) z2α (γ̂ − γ), we have:∣∣∣∣e∆ −

r∑
j=0

∆j

j!

∣∣∣∣ I(D) ≤
(
B3 n−η

)r+1
exp

(
B3 n−η

)
. (A.19)

Note too that if E(X6) ≤ B then

E(∆r1
k1
∆r2

k2
) ≤ C4(B)n−1 whenever k1 and k2 take values in the set

{1, 2, 3}, r1 and r2 are nonnegative, and r1 + r2 = 1 or 2. (A.20)

Also, in the same context as (A.20), if r1 + r2 = 2 then

E
{
|∆r1

k1
∆r2

k2
| I
(
D̃
)}

≤ E
(
|∆r1

k1
∆r2

k2
|
)
≤

{
E
(
∆2r1

k1

)
E
(
∆2r1

k2

)}1/2 ≤ C4(B)n−1 ; (A.21)

and if r1 = 1 and r2 = 0, and η is sufficiently small,

E
{
|∆r1

k1
∆r2

k2
| I
(
D̃
)}

≤
{
E∆2r1

k1
P
(
D̃
)}1/2 ≤ C5(B, η)

(
n−1 n−(1/2)−ζ

)1/2
= C5(B, η)n

−(3/4)−(ζ/2) (A.22)

where ζ = ζ(η) > 0. In deriving (A.22) we used the fact that P (D̃) ≤ P (D̃1) +

P (D̃2) + P (D̃3), and that, by Markov’s inequality (employing the fact that E|X|6+ϵ

<∞ and choosing η < ϵ/{4(3 + ϵ)}),

P
(
D̃k

)
≤

(
C3 n

−(1/4)−η
)−{2+(ϵ/3)}

E
(
|∆k|2+(ϵ/3)

)
≤ C6(B, η)n

(1/2)+2η+(ϵ/12)+(ηϵ/3)−{2+(ϵ/3)}/2 ≤ C6(B, η)n
−(1/2)−ζ

for k = 1, 2, 3, where ζ > 0. Therefore,

P
(
D̃
)
≤ 3C6(B, η)n

−(1/2)−ζ . (A.23)

If r1 + r2 + r3 ≥ 3 then an argument similar to that leading to (A.23) shows that

E
{∣∣∆r1

1 ∆r2
2 ∆r3

3

∣∣ I(D)
}
≤ C7(B, η)

(
n−1/2

)2 (
n−(1/4)−η

)r1+r2+r3−2
. (A.24)

Combining (A.20), (A.21), (A.22) and (A.24); using Taylor expansion to derive ap-

proximations to γ̂ − γ, starting from (A.18); noting the definition of ∆ given in the
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previous paragraph; and observing that n−1/2 |zα − c| z2α ≤ B3 n1/4 if 0 ≤ c ≤ u zα

with 0 < u < 1, and 0 ≤ zα ≤ B n1/4; we deduce that:

∣∣E{∆j I(D)
}∣∣ ≤

C8(B, j)n
1/4 n−1 if j = 1

C8(B, j)
(
n1/4

)j
n−1

(
n−(1/4)−η

)j−2
if j ≥ 2

≤ C8(B, j)n
−1/2 . (A.25)

Using (A.19), (A.23) and (A.25), and choosing r to be the least integer such that

(r + 1) η ≥ 1
2
, we deduce that:

E
[
exp

{
n−1/2 1

3
(zα − c) z2α (γ̂ − γ)

}
I(D)

]
= 1 +O

(
n−1/2

)
, (A.26)

uniformly in the following sense:

uniformly in F ∈ G2(B), in c such that 0 ≤ c ≤ u zα with 0 < u < 1,

and in α such that 0 ≤ zα ≤ B n1/4, (A.27)

where G2(B) denotes the intersection of G1(B) (defined at (A.17)) with the class

of distributions of X such that E(|X|6+ϵ) ≤ B.

An argument almost identical to that leading to (A.26) and (A.27) shows that the

same pair of results holds if we replace D by the event D1 that S >
1
2
and γ̂4 ≤ B. The

only change needed is the observation that, since F ∈ G1(B) entails E(|X|6+ϵ) ≤ B,

P (D̃1) is uniformly bounded above by a constant multiple of n−1/2. This follows

from the fact that, if Y1, Y2, . . . are random variables satisfying E|Y |6+ϵ < ∞, then

P{|
∑

i≤n (1−E)Y 4
i | > n} ≤ const. n−(1/2)−(ϵ/4). Therefore, in the argument in (A.22)

we can replace the bound const. n−(1/2)−ζ to P (D̃) by the bound const. n−(1/2)−(ϵ/4)

to P (D̃1). This means that (A.26) holds if we replace D there by the event D ∩ D1,

i.e. the event E(B) introduced just above (A.16). That is,

E
[
exp

{
n−1/2 1

3
(zα − c) z2α (γ̂ − γ)

}
I{E(B)}

]
= 1 +O

(
n−1/2

)
, (A.28)

uniformly in the sense of (A.27).

Together, (A.16), (A.17) and (A.28) imply that (5.2) holds uniformly in F ∈ F ,

in c such that 0 ≤ c ≤ u zα, with 0 < u < 1 and in α such that 0 ≤ zα ≤ B n1/4,

completing the proof of Theorem B.
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A.2 Proof of Theorem 3

Throughout this proof we use the notation hc∗n = hcn(α
∗
0), where α

∗
0 = n p−1 log p

denotes the value of α0 stated in the theorem. Also, for two positive sequences an

and bn, we write an . bn when lim supn→∞(an/bn) ≤ 1. We use the equivalent

notation bn & an.

Fix α ∈ (0, 1). Let Gp(α) = p−1
∑p

j=1 I
(
T

(j)

c(j)
> t̂

(j)
α

)
, and hcn,α =

√
p{α(1 −

α)}−1/2{Gp(α) − α}. We have hc∗n = maxα=i/p,1≤i≤α∗
0p
hcn,α. We introduce a non-

stochastic counterpart

h̃c
∗
n = max

α=i/p,1≤i≤α∗
0p
h̃cn,α

of hc∗n, where h̃cn,α =
√
p{α(1−α)}−1/2{Ḡp(α)−α} and Ḡp(α) = p−1

∑p
j=1 P

(
T

(j)

c(j)
>

t̂
(j)
α

)
. Note that Ḡp(α) = E{Gp(α)}.
The keys for the proofs are:

(A) There is a constant C > 0 such that

lim
n→∞

P
{
|hc∗n − h̃c

∗
n| ≤ C log p

}
= 1, under H0,

lim
n→∞

P
{
|hc∗n − h̃c

∗
n| ≤ C log p

√
1 + h̃c

∗
n

}
= 1, under H

(n)
1 .

(B) Under H0, there is a constant C > 0 such that h̃c
∗
n ≤ C log p for sufficiently large

n.

(C) Under H
(n)
1 , h̃c

∗
n = Lpp

δ(β,r,θ).

Combining (A)–(B), there exit constants C1 > 0 and C2 > 0 such that h̃c
∗
n ≤ C1 log p

and P{|hc∗n − h̃c
∗
n| ≤ C2 log p} = 1 + o(1). Therefore,

P
{
hc∗n ≤ (C1 + C2) log p

}
≥ P

{
|hc∗n − h̃c

∗
n| ≤ C2 log p

}
= 1 + o(1),

and part (a) of Theorem 3 follows. Combining (A) and (C) gives that

P
{
hc∗n ≥ Lpp

δ(β,r,θ)
}
≥ P

{
hc∗n ≥ h̃c

∗
n − C log p

√
1 + h̃c

∗
n

}
→ 1 as n→ ∞,

and part (b) of the theorem follows. Note that C and Lp may stand for different

quantities in different occurrence.

We now show (A)–(C). Below, whenever we refer to α, we assume that p−1 ≤
α ≤ α∗

0. By definition, Ḡp(α) = p−1
∑p

j=1 P (T
(j)

c(j)
> t̂

(j)
α ), where the fraction of c(j) = 0
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is 1 under the null and (1− ϵn) under the alternative. Using Theorem 1 and noting

that O(n−D1) = o(1/p) and that zα ≤ O(
√
log p) in (2.8), we have

P (T
(j)

c(j)
> t̂(j)α ) = α{1 +O(

√
log p/

√
n)}+ o(1/p), when c(j) = 0. (A.29)

It follows that both under the null and under the alternative,

(1− ϵn)α . Ḡp(α) . (1− ϵn)α+ ϵn. (A.30)

As a result, uniformly in α ∈ [1/p, α∗
0],

α = o(1), Ḡp(α) = o(1), p Ḡp(α) & pα ≥ 1. (A.31)

Consider (A). Note that for any integer N ≥ 1 and any positive sequences ai and

bi, max1≤i≤N{aibi} ≤ max1≤i≤N{ai}·max1≤i≤N{bi}. By the definition of hc∗n and h̃c
∗
n,

|hc∗n − h̃c
∗
n| ≤ max

α=i/p:1≤i≤α∗
0p

√
p |Gp(α)− Ḡp(α)|√

α(1− α)
≤ I · II,

where I is stochastic and II is deterministic, and

I = max
α=i/p:1≤i≤α∗

0p

√
p |Gp(α)− Ḡp(α)|√
Ḡp(α)(1− Ḡp(α))

, II = max
α=i/p:1≤i≤α∗

0p

|Ḡp(α)(1− Ḡp(α))|√
α(1− α)

.

To show (A), it is sufficient to show that both under the null and the alternative,

P (I ≥ C log p) = o(1), (A.32)

and that

II . 1 under H0, II .
√
1 + |h̃c

∗
n| under H

(n)
1 . (A.33)

Consider (A.32). Note that

P (I > C log p) ≤
∑

α=i/p,1≤i≤α∗
0p

P

{√
p |Gp(α)− Ḡp(α)|√
Ḡp(α)(1− Ḡp(α))

> C log(p)

}
. (A.34)

For each α, applying Bennett’s inequality [Shorack and Wellner (1986) page 851] with

Xj = I(T
(j)

c(j)
> t̂

(j)
α )− P (T

(j)

c(j)
> t̂

(j)
α ) and λ = C log(p)

√
Ḡp(α)(1− Ḡp(α)),

P

{ √
p |Gp(α)− Ḡp(α)|√
Ḡp(α){1− Ḡp(α)}

C log p

}
≡ P

{√
p |Gp(α)− Ḡp(α)| ≥ λ

}
≤ 2 exp

{
− λ2

2σ2
ψ
( 2λ

σ2
√
p

)}
, (A.35)
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where ψ(λ) = (2/λ2){(1+λ) log(1+λ)−1} is monotonely decreasing in λ and satisfies

λ2ψ(λ) ∼ 2λ log λ for large λ, and σ2 is the average variance of Xj:

σ2 =
1

p

p∑
j=1

[
P (T

(j)

c(j)
> t̂(j)α )−

{
P
(
T

(j)

c(j)
> t̂(j)α

)}2
]
.

On one hand, recall that there is at least a fraction (1 − ϵn) of c(j)s that are 0,

and that when c(j) = 0, P (T
(j)

c(j)
> t̂

(j)
α ) ∼ α. We see that

√
p σ & √

p
√
α ≥ 1. (A.36)

On the other hand, by Schwartz inequality,

σ2 ≤ 1

p

p∑
j=1

P
(
T

(j)

c(j)
> t̂(j)α

)
−
{1

p

p∑
j=1

P
(
T

(j)

c(j)
> t̂(j)α

)}2

= Ḡp(α){1− Ḡp(α)}.

It follows from the definition of λ that

λ

σ
≥ C log p. (A.37)

Recalling that ψ is monotonely decreasing, and that λ2ψ(λ) ∼ 2λ log(λ) for large λ,

it follows from (A.36)–(A.37) that

2exp

{
− λ2

2σ2
ψ
( 2λ

σ2
√
p

)}
≤ 2exp

{
− λ2

2σ2
ψ
(Cλ
σ

)}
≤ 2exp

[
−C

{λ
σ
log

(λ
σ

)}]
,

(A.38)

where C > 0 is a generic constant. Note that the last term in (A.38) = o(1/p).

Combining (A.34)–(A.35) and (A.37)–(A.38) gives (A.32).

It remains to prove (A.33). Recall that Ḡp(α) = o(1). By the definition of II,

II = max
α=i/p,1≤i≤α∗

0p

√
Ḡp(α)(1− Ḡp(α))

α(1− α)
. max

α=i/p,1≤i≤α∗
0p

√
Ḡp(α)

α
. (A.39)

Under the null, by Theorem 1, Ḡp(α)/α = 1+O(
√
log p/

√
n) + o(1), which gives the

first assertion in (A.33). For the second assertion, write

Ḡp(α)

α
= 1 +

Ḡp(α)− α

α
= 1 + h̃cn,α

√
α(1− α)
√
pα

·

Noting that
√
α(1− α)/(

√
pα) ≤ 1, it follows that

Ḡp(α)

α
≤ 1 + |h̃cn,α|. (A.40)
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Combining (A.39) and (A.40) gives the second claim of (A.33).

Consider (B). In this case, the null hypothesis is true and all c(j)s equal 0. By

the definition and (A.29)–(A.31),

|h̃cn,α| ≤
√
p |Ḡp(α)− α|√
α(1− α)

. C
√
α · log p · (p/n) + o(1). (A.41)

Recalling that α ≤ α∗
0 with α∗

0 = (n/p) log p, h̃cn,α ≤ C log p and the claim follows.

Consider (C). In this case, the alternative hypothesis is true, and a fraction (1−ϵn)
of c(j)s is 0, with the remaining of them equal to τn. Using (2.13), where c = τn,

P (Tc(j) > t̂(j)α ) = (1 + o(1)) · P (Tc(j) > tα) + o(1/p) = Φ̄(zα − τn) + o(1/p), (A.42)

where Φ̄ = 1−Φ is the survival function of a N(0, 1). Combining (A.29) and (A.42),

Ḡp(α) = (1− ϵn)α(1 +O(
√

log p/
√
n) + ϵnLpΦ̄(zα − τn) + o(1/p),

and it follows from direct calculations that

h̃cn,α =

√
p [Ḡp(α)− α]√
α(1− α)

=

√
p[ϵnLpΦ̄(zα − τn) + (1− ϵn)α(1 +O(

√
log(p)/n))− α+ o(1/p)]√

α(1− α)

=
Lp

√
p ϵnΦ̄(zα − τn)√
α(1− α)

−√
pϵn

√
α

(1− α)
+O(

√
p log pα/n) + o(1). (A.43)

Recall that α ≤ α∗
n = n p−1 log p. First,

√
pϵn

√
α/(1− α) . ϵn

√
pα∗

0 ≤ ϵn
√
n log(p).

This equals Lpp
θ/2−β = o(1) because θ < 1 and β > 1

2
. Second,

√
p log p · α/n ≤√

p log(p)α∗
0 ≤ log p. Inserting these into (A.43) gives

h̃cn,α =
Lp

√
p ϵnΦ̄(zα − τn)√
α(1− α)

+ Lp,

and so

h̃c
∗
n = III + Lp, where III = max

α=i/p,1≤i≤α∗
0p

Lp
√
p ϵnΦ̄(zα − τn)√
α(1− α)

. (A.44)

We now re-parametrize with zα as

zα =
√
2q log p ≡ sn(q), where q > 0, so that α = Φ̄{sn(q)}.

By Mill’s ratio, we have Φ̄(sn(q)) = Lpp
−q. Recall that 1/p ≤ α ≤ α∗

0, where

α∗
0 = Lpp

θ−1. We deduce that the range of possible values for the parameter q runs
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from (1 − θ) to 1 (with lower order terms neglected). It follows from elementary

calculus that

III = max
(1−θ)≤q≤1

Lp
√
p ϵnΦ̄{sn(q)− τn}√

Φ̄{sn(q)}[1− Φ̄{sn(q)}]
= Lp · max

(1−θ)≤q≤1

√
p ϵnΦ̄{sn(q)− τn}

p−q/2
.

(A.45)

Moreover, by Mill’s ratio,

√
p ϵnΦ̄{sn(q)− τn} = Lp · pπ(q,β,r), (A.46)

where

π(q, β, r) =

 1
2
− β, 0 < q < r,

1
2
− β − (

√
q −

√
r)2, r < q < 1.

Inserting (A.46) into (A.45) gives

III = Lp · max
(1−θ)≤q≤1

pπ(q;β,r)+q/2. (A.47)

We now analyze π(q; β, r)+q/2 as a function of q ∈ (0, 1]. In region (i), 4r ≤ (1−θ),
and π(q; β, r)+q/2 is monotonely decreasing in [(1−θ), 1]. Therefore, the maximizing

value of q is (1−θ), at which π(q; β, r)+ q/2 = 1
2
−β+(1−θ)/2−{

√
(1− θ)−

√
r}2.

In region (ii), (1 − θ) < 4r ≤ 1. As q ranges between (1 − θ) and 1, π(q; β, r) + q/2

first monotonely increases and reaches the maximum at q = 4r, then monotonely

decreases. The maximum of π(q; β, r) + q/2 is then r− β + 1
2
. In region (iii), 4r > 1,

and π(q; β, r) + q/2 is monotonely increasing in [(1− θ), 1]. The maximizing value of

q is 1, at which π(q; β, r) + q/2 = 1 − β − (1 −
√
r)2. Combining these with (A.47)

and (A.44) gives the claim.
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