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Abstract: Assessing the variability of an estimator is a key component of the pro-

cess of statistical inference. In nonparametric regression, estimating observation-error

variance is the principal ingredient needed to estimate the variance of the regression

mean. Although there is an extensive literature on variance estimation in nonpara-

metric regression, the techniques developed in conventional settings generally cannot

be applied to the problem of regression with errors in variables, where the explana-

tory variables are not observable directly. In this paper we introduce methods for

estimating observation-error variance in errors-in-variables regression. We consider

cases where the variance is modelled either nonparametrically or parametrically. The

performance of our methods is assessed both numerically and theoretically. We also

suggest a fully data-driven bandwidth selection procedure, a problem which is noto-

riously difficult in errors-in-variables contexts.
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1 Introduction

In the standard measurement error-free setting, determining the variance of an esti-

mator of a nonparametric regression mean consists in estimating a function τ > 0 from

data (X, Y ) that are generated by the regression model Y = g(X)+τ(X)1/2 ε, where ε

and X are independent variables, ε has zero mean and unit variance, and, apart from

smoothness assumptions, g is completely unspecified. The quantity τ(X)1/2 ε is gener-

ally referred to as observation error, and τ is the observation-error variance. A variety

of methods have been developed for treating this problem, but simple techniques that

enjoy good theoretical properties are generally founded either on differencing values

of Y that correspond to nearby values of X, or on residual-based approaches.

In this paper we consider estimation of τ in the more complex, nonparametric

errors-in-variables setting. Here the data (W1, Y1), . . . , (Wn, Yn) are generated by the

model

W = X + U , Y = g(X) + τ(X)1/2 ε , (1.1)

where U , ε and X are independent random variables, g and τ are smooth, unknown

functions, τ > 0, E(ε) = 0, E(ε2) = 1 and the distribution of U is known.

In this context, since values of X are not observable then the popular variance-

estimation methods discussed above cannot simply be modified to provide consistent

estimators of τ . We shall develop alternative approaches based on deconvolution

techniques and describe their performance. Their properties will be discussed in cases

where τ is estimated nonparametrically, as a function, and also when τ is assumed

to have a parametric form. In both settings we shall give convergence rates, and in

parametric cases we shall show that our estimators are root-n consistent, provided the

variance function is a sufficiently smooth functional of the unknown parameters. Our

numerical work will attest to the good performance of the suggested new methodology.

Estimation of the observation-error variance is an important tool for statistical

inference. In the errors-in-variables context, as in the measurement error-free case,

knowledge of τ is essential if we are to assess the variability of nonparametric estima-

tors of g such as, for example, the deconvolution-kernel estimator of Fan and Truong

(1993). Indeed, the asymptotic variance of this estimator depends on the densities

fU and fX of U and X, respectively, and on g and τ . Since fU is known, and a vari-

ety of methods for estimating fX and g are readily available, then the only missing
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ingredient is τ . Thus, estimation of τ in (1.1) is central to characterising empirically

the accuracy of estimators of g.

Properties of nonparametric estimators of τ follow relatively easily from known

results in the problem of estimating g, whereas their counterparts in the case of

parametric models are more difficult to determine. These differences, apparent for

both methodology and theory, arise because of the nonstandard way in which, in the

parametric case, we must combine an infinite-parameter model for g with a finite-

parameter model for τ .

In the measurement error-free case, the variance estimation problem has been

addressed by many authors; see, for example, the work of Rice (1984), Gasser et

al. (1986), Müller and Stadtmüller (1987), Buckley et al. (1988), Hall and Marron

(1990), Hall et al. (1990), Müller and Stadtmüller (1992), Seifert et al. (1993), Neu-

mann (1994), Müller and Zhao (1995), Ruppert et al. (1997), Dette et al. (1998), Fan

and Yao (1998), Lavergne and Vuong (1998), Müller et al. (2003), Munk et al. (2005),

Sheehy et al. (2005) and Tong and Wang (2005). The nonparametric estimators of

g, τ and fX that we use can be expressed in such a way that, when U in (1.1) is

identically zero, they collapse to standard kernel estimators of those functions. In the

measurement error-free setting our nonparametric estimator of variance also reverts

to techniques that have been employed before.

There is a substantial literature on estimation of the regression mean, g, in errors-

in-variables problems. The book by Carroll et al. (2006) is an excellent entry point

to this work. Earlier contributions to nonparametric or semiparametric methodology

include those of Carroll et al. (1996, 1999), Kim and Gleser (2000), Lin and Car-

roll (2000), Stefanski (2000), Devanarayan and Stefanski (2002), Linton and Whang

(2002), Carroll and Hall (2004), Schennach (2004b), Delaigle et al. (2006), Huang et

al. (2006) and Delaigle and Meister (2007).

Parametric errors-in-variables regression has also received considerable attention

in the literature. References include Stefanski and Carroll (1987), Hsiao (1989),

Stefanski (1989), Gleser (1990), Nakamura (1990), Cook and Stefanski (1994), Carroll

et al. (1996), Cheng and Schneeweiss (1998), Taupin (2001), Li (2002) and Schennach

(2004a). See Fuller (1987) and Carroll et al. (2006) for a more extensive list of

references.

Sections 2 and 3 will introduce our nonparametric and parametric estimators,
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respectively. Their theoretical properties will be outlined in section 4. In preparation

for an account of numerical properties in section 6, section 5 will discuss bandwidth

choice. The methods proposed there will be used throughout our applications to

simulated data. Finally, the appendix will give theoretical arguments behind the

results stated in section 4.

2 Nonparametric estimators of τ

2.1 Main estimation procedure

Known results in the problem of estimating g imply simple sufficient conditions for

identifiability of τ . Indeed, if (a) the distribution of ϵ has finite fourth moment and

zero mean, (b) the characteristic function of the distribution of U does not vanish

except at isolated points, and (c) g and τ satisfy Hölder smoothness conditions, then

the function g defined by g(x) = E(Y |X = x) is identifiable, because it is consistently

estimated in the model at (1.1) using, for example, the methodology suggested by Fan

and Truong (1993). Likewise, if (a)–(c) hold thenm(x) = E(Y 2|X = x) is identifiable

in the model where W = X+U and Y 2 = g(X)+2 g(X) τ(X)1/2 ε, because it can be

consistently estimated using the same technique. Moreover, using the second identity

in (1.1) we see that we can write m = g2+ τ . Combining these properties we see that

τ is identifiable from data generated by (1.1), provided that conditions (a)–(c) above

hold.

Suppose we have a dataset D = {(W1, Y1), . . . , (Wn, Yn)} on (W,Y ), generated by

the model (1.1). As implied by the identifiability arguments in the previous para-

graph, to construct a nonparametric estimator of the variance function τ we can first

construct nonparametric estimators ĝ and m̂ of the regression curves g(x) = E(Y |X =

x) and m(x) = E(Y 2|X = x). Then we can take our nonparametric estimator of τ

to be

τ̃ = max
(
τ̂ , 0
)
, where τ̂ = m̂− ĝ2. (2.1)

Estimation of g and m are two nonparametric errors-in-variables (or deconvolu-

tion) regression problems: in both cases the goal is to estimate a function E(V |X)

from data on (W,V ), where W = X + U is a contaminated version of X. Several
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nonparametric estimators have been developed in the literature, but one of the most

recent methods is the local polynomial deconvolution estimator of Delaigle, Fan and

Carroll (2009). To define their estimator, let K be a symmetric kernel function inte-

grating to 1 and with compactly supported Fourier transform ϕK . Also, let ϕU denote

the characteristic function corresponding to the density fU of U , and h > 0 be a band-

width. The qth order local polynomial deconvolution estimator of E(V |X = x), with

q ≥ 0 an integer, is defined by

Ê(V |X = x) = (1, 0, . . . , 0)S−1
n Tn, (2.2)

where Sn = {Sn,j+k(x)}0≤j,k≤q and Tn = {Tn,0(x), . . . , Tn,q(x)}T , and with, for k =

0, 1, . . . , 2q,

Sn,k(x) =
1

nh

n∑
j=1

Lk

(
x−Wj

h

)
, Tn,k(x) =

1

nh

n∑
j=1

Vj Lk

(
x−Wj

h

)
, (2.3)

Lk(u) = i−k 1

2π

∫
e−itxϕ

(k)
K (t)

/
ϕU(−t/h) dt. (2.4)

Replacing Vj in (2.3) by Yj and Y
2
j , respectively, (2.2) provides the local polynomial

deconvolution estimators ĝ and m̂ of g and m, respectively.

Note that a version of τ̂ in cases where X is observed directly, without measure-

ment error, was given by Yao and Tong (1994).

2.2 Correcting for negativity

The estimator τ̃ is simple and straightforward, but in cases where m̂−ĝ2 takes negative
values, τ̃ projects them to zero, which could sometimes be viewed as an unattractive

property. In those cases, an alternative, “smoother” way to correct for negativity is

to use the estimator

τ̄ = E
{
max

(
m̂† − ĝ†2, 0

) ∣∣D}, (2.5)

where m̂† and ĝ† denote the versions of m̂ and ĝ, respectively, computed from a

resample of size n, drawn by sampling randomly, with replacement, from D. The

estimator τ̄ , which can be thought of as being motivated by Breiman’s (1996) bagging

method, is a little more complicated, but when the true τ is bounded away from zero it

less often takes the default value zero. Indeed, it vanishes if and only if, for all possible
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resamples drawn from D, m̂† ≤ ĝ†2. Note that we introduce the alternative estimator

τ̄ only as a way to correct for negativity more smoothly than simply truncating to

zero. See also Figure 4 in section 6 for an application. In particular, there is no

asymptotic gain to be expected from τ̄ compared to τ̃ . We shall show in section 4

that the two estimators are first-order equivalent.

3 Parametric estimator of τ

3.1 Background

Although we treat g from a nonparametric viewpoint, we may wish to use a paramet-

ric model, say τ = τ(· | θ), for the variance, as is sometimes done in the measurement

error-free case. For example, the homoscedastic context where τ(x) ≡ θ is a constant,

is commonly assumed in nonparametric regression. Log-linear variance and polyno-

mial models are also in use in the measurement error-free case. See, for example,

Müller and Zhao (1995), who survey literature on the topic, and Fan and Gijbels

(1996, p. 146). Other work using polynomial (including linear) and log-linear models

for the variance function includes that of Hasbrouck (1986), Finkenstädt et al. (2002)

and Meyer (2005). Linear models are often fitted in response to either empirical evi-

dence or physical considerations that indicate that measurement error variance is in-

creasing or decreasing as a function of the explanatory variable. Sometimes quadratic

models are used to reflect evidence that the rate of increase or decrease is varying.

The method we present below, valid in the case of models with measurement error,

is not restricted to these situations and can be used in general parametric contexts.

3.2 Estimator

Let τ̂ = m̂ − ĝ2 be the nonparametric estimator of τ defined at (2.1), using qth

order local polynomials of m and g, and let θ ∈ IRp be the parameter of interest.

Our estimator of θ relies on the following main idea: estimate θ so as to make the

parametric estimator of τ sufficiently close to its nonparametric version τ̂ . Below, we

give the definition of our estimator which results from this idea. The details leading

to our definition are deferred to section 3.3. Also, to simplify the presentation we

assume throughout that the distribution of U is symmetric, and so ϕU is real-valued.
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Let d̂ = det(Sn), with Sn defined below equation (2.2), and put r̂1 = ĝ d̂ and

r̂2 = m̂ d̂. We suggest choosing θ = θ̂ to solve the equation S(θ) = 0, where both

sides are p-vectors and

S(θ) =

∫ {
(r̃2d)(x)− r̃1

2(x)− τ(x | θ) d̃2(x)
}
τ̇(x | θ)ω(x) dx , (3.1)

τ̇(x | θ) = (∂/∂θ) τ(x | θ) is a p-vector, ω denotes a nonnegative, compactly supported

weight function, and d̃2, r̃2d and r̃1
2 denote the diagonal-free versions of d̂2, r̂2d̂ and

r̂21. Here we mean that d̂2, r̂2d̂ and r̂21 each comprise terms of the type
∑n

i1,...,ik=1 for

some k > 0, where the summands involve the products Lj1

{
(x−Wi1)/h

}
. . . Ljk

{
(x−

Wik)/h
}

for some j1, . . . , jk between 0 and q, and their diagonal-free versions are

those where these sums are replaced by
∑

i1 ̸=i2 ̸=... ̸=ik
.

Example 1 (Formula when τ̂ is based on local constant estimators of m and g).

When nonparametric estimators of g and m are taken to be local constant, that is

when q = 0, we have

d̂(x) =
1

nh

n∑
j=1

L0

(
x−Wj

h

)
, (3.2)

r̂1(x) =
1

nh

n∑
j=1

YjL0

(
x−Wj

h

)
, r̂2(x) =

1

nh

n∑
j=1

Y 2
j L0

(
x−Wj

h

)
(3.3)

and S(θ) = 0 can be written as:∑∑
j1 ̸=j2

∫ {
Y 2
j1
− Yj1 Yj2 − τ(x | θ)

}
L0

(x−Wj1

h

)
L0

(x−Wj2

h

)
τ̇(x | θ)ω(x) dx = 0 .

Example 2 (Estimator when τ(x | θ) is a polynomial). In this case, θ = (θ1, . . . , θp)
T

is a p-vector, τ(x | θ) = θ1+θ2 x+ . . .+θp x
p−1, and the estimator takes a particularly

simple form. Since τ̇(x | θ) = (1, x, . . . , xp−1)T , the equation S(θ) = 0 has the form

Mθ − V = 0, where M = (Mi,j)1≤i,j≤p is a p × p matrix with components equal to

Mij =
∫
d̃2(x)xi+j−2 ω(x) dx, and V = (V1, . . . , Vp)

T is a p-vector whose components

equal Vj =
∫ {

(r̃2d)(x) − r̃1
2(x)}xj−1 ω(x) dx. Thus, as long as M is invertible, we

can write our estimator in the familiar form θ̂ = M−1V . Note that, although the

formula does not depend explicitly on the order q of the local polynomial estimators

of m and g, the estimator θ̂ depends on q through r̃2, d̃ and r̃1.
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As in the nonparametric case, once we have obtained the estimator θ̂, we need to

correct for negativity of the variance estimator τ(x; θ̂). As in section 2, we can do that

in at least two ways. The first, simplest way is to take max{0, τ(x; θ̂)}. The drawback
of this approach is that it projects negative values to zero in a rather abrupt way.

An alternative and smoother way of correcting for negativity is to use the resampling

procedure of section 2.2, that is to take

τ̄(x; θ̂) = E
[
max

{
τ(x; θ̂†), 0

} ∣∣D], (3.4)

where θ̂† denotes the version of θ̂ computed from a resample of size n, drawn by

sampling randomly, with replacement, fromD. Although we will not study theoretical

properties of this estimator, it can be proved, as in the nonparametric case, that it

is first-order equivalent to the estimator τ(x; θ̂). For a numerical comparison of the

two ways to correct for negativity, see Figure 4 in section 6.

3.3 Motivation of the estimator

To understand the motivation for our estimator, first consider estimating θ by the

vector which minimises the following least-squares criterion:

A1(θ) =

∫
{τ̂(x)− τ(x | θ)}2 v1(x) dx , (3.5)

where v1 is a weight function. In its most general form at (3.5), the least-squares

distance A1(θ) is simple to understand, but it involves the ratio of random variables,

which is not particularly attractive. To overcome this problem, take v1 = d̂4 v2 for a

function v2. Then, recalling that τ̂ = m̂ − ĝ2, where ĝ = r̂1/d̂ and m̂ = r̂2/d̂, (3.5)

becomes

A2(θ) =

∫ {
r̂2(x) d̂(x)− r̂21(x)− τ(x | θ) d̂2(x)

}2

v2(x) dx , (3.6)

which no longer involves a ratio. Next we take the diagonal-free versions of r̂2 d̂, r̂
2
1

and d̂2 (it can be proved, employing arguments similar to those we use in our proofs,

that this improves the theoretical properties of the resulting parametric estimator),

so that (3.6) becomes

A2(θ) =

∫ {
(r̃2d)(x)− r̃1

2(x)− τ(x | θ) d̃2(x)
}2

v2(x) dx .
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To find the value of θ that minimizes A2(θ), it remains to differentiate A2(θ) with

respect to the vector θ. Proceeding that way, we get∫ {
(r̃2d)(x)− r̃1

2(x)− τ(x | θ) d̃2(x)
}
d̃2(x) τ̇(x | θ) v2(x) dx = 0 .

Defining ω = v2 d̃
2 we deduce that θ solves S(θ) = 0, where S(θ) is given by (3.1).

To appreciate why removing diagonal terms can improve performance it is instruc-

tive to consider a much simpler problem, where we wish to estimate ψ ≡ E{f(X)}
(with X denoting a random variable with density f), using data X1, . . . , Xn drawn

from the distribution with density f . One approach would be to construct a con-

ventional kernel density estimator, f̂ , evaluate it at Xi, and average this quantity

over i = 1, . . . , n. It is readily seen that the diagonal terms contribute an amount

ψ′ ≡ K(0)/nh to this estimator, where K denotes the kernel function and h is the

bandwidth. Of course, ψ′ bears no relationship to the value of ψ, and if this term is

removed then the performance of the estimator is improved. The same phenomenon

is observed in a number of other problems, including the one treated in our paper:

to first order, diagonal terms contribute only to bias, and their removal improves

performance. In the case of our problem we obtain root-n consistency if the diagonal

terms are dropped, but not otherwise.

4 Theoretical properties

4.1 Properties of τ̃ , defined in (2.1)

Properties of our nonparametric estimator τ̃ at (2.1), using qth order local polyno-

mial estimators of m and g, follow easily from the results of Delaigle, Fan and Carroll

(2009). As usual in deconvolution problems, the asymptotic behaviour of the estima-

tor depends on the type of error that contaminates the data. Generally a distinction

is made between ordinary smooth and supersmooth errors. The latter are such that

the characteristic function ϕU decreases exponentially fast in the tails, and for these

errors it is well known that estimators converge at slow logarithmic rates. For the

sake of brevity we give only properties of our estimator in the ordinary smooth case,

where ϕU decreases polynomially fast in the tails. That is, we assume that the error
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density fU is such that ϕU satisfies

d0 (1 + |t|)−α ≤ |ϕU(t)| ≤ d1 (1 + |t|)−α for all t ∈ IR, (4.1)

for constants d1 ≥ d0 > 0 and α > 1/2. Properties of our estimator in the super-

smooth case can be derived easily from Delaigle, Fan and Carroll (2009).

We assume the same regularity conditions as Delaigle, Fan and Carroll (2009).

More precisely, let τ2(x) = var(Y 2|X = x) and ϕX(t) = E(eitX). We assume that the

following conditions are satisfied:

Condition A:

(A1) ϕU(t) ̸= 0 for all t;

(A2) h→ 0 and nh→ ∞ as n→ ∞;

(A3)
∫
|ϕX | <∞ and fX is twice differentiable and ∥f (j)

X ∥∞ <∞ for j = 0, 1, 2;

(A4) τ and τ2 are bounded; m and g are q + 3 times differentiable such that, for

j = 0, . . . , q + 3, ||m(j)||∞ < ∞ and ||g(j)||∞ < ∞; and, for some η > 0,

E
{
|Yi − g(x)|2+η|X = u

}
and E

{
|Y 2

i −m(x)|2+η|X = u
}
are bounded for all u;

(A5) K is a real and symmetric kernel such that
∫
K(x) dx = 1 and has finite mo-

ments of order 2q + 3; for k = 0, . . . , 2q + 1, ||ϕ(k)
K ||∞ < ∞ and

∫ {
|t|α +

|t|α−1} |ϕ(k)
K (t)| dt <∞; and, for 0 ≤ k, k′ ≤ 2q,

∫
|t|2α|ϕ(k)

K (t)| · |ϕ(k′)
K (t)| dt <∞

and ϕ
(k)
K is not identically zero.

Asymptotic properties of our estimator are given in the next theorem. The proof

is omitted since it follows from Delaigle, Fan and Carroll (2009).

Theorem 4.1. Assume that the errors satisfy (4.1). Under Condition A, for each x

for which fX(x) > 0,

(i) if q is even and h = const. n−1/(2α+2q+5), then

τ̃(x) = τ(x) +Op

(
n−(q+2)/(2α+2q+5)

)
; (4.2)

(ii) if q is odd and h = const. n−1/(2α+2q+3), then

τ̃(x) = τ(x) +Op

(
n−(q+1)/(2α+2q+3)

)
. (4.3)
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Although the asymptotic rates given by the theorem improve as we increase q,

in practice increasing q implies an increase in the variance of the estimator, and the

versions of the local polynomial estimator that work the best are the local constant

and the local linear ones. In our numerical work we use the local linear version of the

estimator.

Note that Theorem 4.1 describes the behaviour of the estimator at (2.1) in the

case where the design density is continuous; in this context, the rates are the same

(i.e. n−2/(2α+5)) whether we use the local constant estimator (q = 0, corresponding

to the estimator of Fan and Truong, 1993) or the local linear estimator (q = 1) to

estimate m and g. In the case where fX is compactly supported and is not continuous

at the boundary of its support, these rates deteriorate to τ̃(x) = τ(x)+Op(n
−1/(2α+3))

in the local constant case and remain τ̃(x) = τ(x)+Op(n
−2/(2α+5)) in the local linear

case.

Remark 1. As already noted in Delaigle, Fan and Carroll (2009), as usual in non-

parametric smoothing, many variants of these theoretical results exist. For example,

in the local constant case we could use high order kernels, or even the infinite order

sinc kernel. When fX , m and g, and their relevant derivatives, are continuous on

the whole real line, the sinc kernel has the advantage that it adapts automatically to

the smoothness of the curves, in the sense that it produces an estimator with bias

determined by the level of smoothness of the curves rather than by the kernel. See e.g.

Diggle and Hall (1993) and Comte and Taupin (2007). However, when the curves

have boundary points, the sinc kernel loses its theoretical advantages. In practice, the

sinc kernel tends to suffer from problems such as the Gibbs phenomenon.

4.2 Properties of τ̄ , defined in (2.5)

Under sufficient assumptions, it can be proved that the estimators τ̃ and τ̄ are first-

order equivalent. We give the conditions and state the result for the case where m

and g are estimated by a local constant estimator (q = 0). The arguments can be

extended to the more general version of the estimator where τ̂ is based on qth order

local polynomial estimators with q ≥ 1. Assume that:
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τ̄ , in (2.5), is computed as τ̄ = B−1
∑

b max(m̂†
b − ĝ†b

2, 0), where m̂†
b and

ĝ†b are both computed from D†
b for 1 ≤ b ≤ B; D†

1, . . . ,D
†
B are resamples

of size n drawn by sampling randomly, with replacement, from D; the

B resamples are independent, conditional on D; and B = B(n) diverges

with n at such a rate that, for all sufficiently large n, B ≤ nC2 where

0 < C2 <∞.

(4.4)

Assume too that

|ϕ′
U(t)|

/
|ϕU(t)| ≤ C1 (1 + |t|)−1 , (4.5)

where C1 denotes an arbitrarily large positive constant; this condition generalizes

condition Am,l(i) of Fan (1991a). Under these assumptions, the following theorem

holds. A proof is given in appendix A.2.

Theorem 4.2. Under the conditions of Theorem 4.1, if (4.4) and (4.5) hold, then

at each point x for which fX(x) τ(x) > 0, we have

τ̃(x)− τ̄(x) = op
(
n−2/(2α+5)

)
. (4.6)

Theorem 4.2 shows that the estimators τ̃ and τ̄ are first-order equivalent, since

the rate at (4.6) is faster than that rate at (4.2). It can also be proved that in cases

where fX(x) > 0 but τ(x) = 0, τ̄(x) generally has higher asymptotic bias than τ̃(x),

although smaller asymptotic variance. In this setting the distributions of τ̃(x) and

τ̄(x) are not asymptotically normal.

Remark 2. Condition (4.4) implies that B is no more than polynomially large as a

function of n. This restriction is imposed to ensure that very unusual resamples, for

example resamples that consist only of a single data value, arise only with particularly

small probability. It protects against aberrations that would affect first-order properties

of τ̄ when, for example, the resample is such that the denominator of τ̄ gets too close

to zero. The condition on B could be avoided by introducing a ridge parameter in the

denominator of τ̄ .

4.3 Theoretical properties of the parametric estimator

Under sufficient regularity conditions, the parametric estimator introduced in section

3 has the standard parametric root-n convergence rates, despite the fact that some
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quantities involved can be estimated only nonparametrically. As in the previous

section, due to the complexity of the arguments in the general local polynomial case,

we state the conditions and results in the local constant case, where q = 0.

Let ∥ · ∥ denote the usual Euclidean metric on p-variate space, let θ0 be the true

value of θ, write fX for the density of the design variable X in (1.1), and define the

p× p matrix

M0 =

∫
f 2
X(x) τ̇(x | θ0) τ̇(x | θ0)T ω(x) dx . (4.7)

We assume the following conditions:

Condition B:

(B1) the weight function ω, in (3.1), is bounded, nonnegative and vanishes outside a

compact set;

(B2) K is bounded and symmetric, ϕK is compactly supported,
∫
(1+|x|κ) |K(x)| dx <

∞ where κ is a positive integer,
∫
K = 1 and

∫
xj K(x) dx = 0 for 1 ≤ j < κ;

(B3) the variance model τ(x | θ) has d1 + 2 ≥ 4 derivatives with respect to θ, where

each derivative is bounded uniformly in x in the support of ω, and in θ such

that ∥θ − θ0∥ ≤ C, for some C > 0;

(B4) for an integer d2 ≥ 1, each of the functions fX , g, τ(· | θ0)ω and τ̇(x | θ0)ω
has max(d2, κ) derivatives, uniformly bounded on compacts; and each of the

functions fX , fX g, fX m, τ(· | θ0)ω and τ̇(x | θ0)ω has max(d2, κ) absolutely

integrable derivatives, where integration is over the whole real line;

(B5) |ϕU(t)| ≥ const. (1+ |t|)−α for all real t, where 0 < α < d2− 1
2
, and sup fU <∞;

(B6) E{g4(X)}+ E{τ 2(X)} <∞ and E(ε4) <∞;

(B7) the p× p matrix M0, in (4.7), is nonsingular;

(B8) for κ as in (B2), and ϵn denoting a positive sequence such that n1/2ϵn → ∞ as

n→ ∞, the following properties hold: h = h(n) → 0 as n→ ∞, hκ = o(n−1/2),

n−1 h−2(1+2α) → 0 as n→ ∞, and ϵd1n h−(1+2α) → 0 as n→ ∞.

Note that, for each α > 0 and each sequence ϵn, we may choose κ (the order of the

kernel, K; see (B2)) and d1 and d2 (which determine the smoothness of the model and

of the weight function ω; see (B3) and (B4)) so large that (B8) holds for bandwidths

h that enjoy a variety of different orders of magnitude, and such that the condition

α < d2 − 1
2
in (B5) obtains. Under these assumptions, the next theorem shows that
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our parametric estimator has the usual
√
n rate of convergence. Its proof is given in

appendix A.3.

Theorem 4.3. Assume that Condition B holds. Then: (i) With probability converg-

ing to 1 as n → ∞, there exists at least one solution θ̂ of the equation S(θ) = 0

satisfying ∥θ̂ − θ0∥ ≤ ϵn, where S(θ) is as at (3.1). (ii) There exists a positive

semi-definite, symmetric matrix Σ such that, for any such solution, n1/2 (θ̂ − θ0) is

asymptotically normal N(0,Σ).

Under stronger conditions than those imposed in the theorem it can be proved

that, with probability converging to 1, a solution of S(θ) = 0 exists and is unique.

However, even with the assumptions in Theorem 4.3, any of the solutions identified

there has the same first-order properties as any other, and so none is preferable to

any other in a first-order sense.

The covariance matrix Σ is identified in Step 7 of the proof in section A.3. In

the particular case where the variance function τ is a polynomial, where (with prob-

ability 1) the equation S(θ) = 0 has a unique solution, part (i) of the theorem is not

relevant. Part (ii), where θ̂ is taken to be the uniquely defined estimator, holds under

conditions B if assumption (B3) is dropped and if the constraint ϵd1n h−(1+2α) → 0 is

removed from (B8).

5 Bandwidth selection

As for any smoothing method, the success of our estimators relies heavily on using

an appropriate smoothing parameter. Data-driven bandwidth selection in errors-in-

variables regression is particularly challenging, and the approach suggested here is

based on bootstrap methods and the simulation-extrapolation algorithm (Cook and

Stefanski,1994; Stefanski and Cook, 1995). It has points of contact with a method

developed by Delaigle and Hall (2008a) in a different setting. The main similarity

is that we borrow the SIMEX method, but there are more than a few dissimilarities

because, in the current problem, we are estimating a variance function rather than a

regression mean.
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We develop two new simulation-extrapolation type bandwidth selectors, based

on estimating the mean integrated squared error, denoted by MISE, and the mean

squared error, or MSE, of estimators at higher levels of errors. Given the difficulty

of developing bandwidth procedures in the errors-in-variables context, our new band-

width selectors are of independent interest. They can be applied to other errors-in-

variables problems.

5.1 Bandwidths for the estimators in section 2

Let hopt denote the bandwidth that minimizes weighted mean integrated squared

error, MISE = E
∫
(τ̂ − τ)2w, where w is a weight function. Estimating hopt by

directly attempting to estimate the MISE would be very difficult, so we develop an

alternative approach. The idea is to create samples which contain higher levels of

errors, develop estimators of bandwidths associated with two corresponding variance

estimation problems, and then, using the relation that exists among the various levels

of errors, deduce an estimator of hopt. Higher-level versions of the variance problem

are created as follows:

1. Generate a sample U⋆
1 , . . . , U

⋆
n from the error density fU , and construct the sample

W ⋆
1 , . . . ,W

⋆
n where W ⋆

j = Wj + U⋆
j for j = 1, . . . , n.

2. Generate a sample U⋆⋆
1 , . . . , U

⋆⋆
n from fU , and construct the sample W ⋆⋆

1 , . . . ,W ⋆⋆
n

where W ⋆⋆
j =W ⋆

j + U⋆⋆
j for j = 1, . . . , n.

3. Define the variance functions τ ⋆ = m⋆ − (g⋆)2 and τ ⋆⋆ = m⋆⋆ − (g⋆⋆)2 corre-

sponding to the new data, where g⋆(x) = E(Y |W = x), m⋆(x) = E(Y 2 |W = x),

g⋆⋆(x) = E(Y |W ⋆ = x) and m⋆⋆(x) = E(Y 2 |W ⋆ = x). Let τ̂ ⋆ and τ̂ ⋆⋆ denote

the deconvolution estimators of τ ⋆ and τ ⋆⋆ from the contaminated data (W ⋆
j , Yj)

and (W ⋆⋆
j , Yj), respectively, and let h⋆opt and h⋆⋆opt be the bandwidths that minimize

MISE⋆ = E
∫
(τ̂ ⋆ − τ ⋆)2w⋆ and MISE⋆⋆ = E

∫
(τ̂ ⋆⋆ − τ ⋆⋆)2w⋆⋆, respectively, where w⋆

and w⋆⋆ are weight functions.

Unlike the original problem, in these two problems with higher levels of errors the

“measurement error-free data,” (W,Y ) and (W ⋆, Y ) respectively, are available, and

thus we can construct standard measurement error-free, difference-based estimators
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τ̂ ⋆D and τ̂ ⋆⋆D of τ ⋆ and τ ⋆⋆; see section 6.1 for details, and see Rice (1984), Buckley et

al. (1988), Hall et al. (1990), Müller and Stadtmüller (1992) and Seifert et al. (1993)

for discussion of that method. Being based on a conventional regression problem with

no errors in variables, these estimators converge to the correct values at a much faster

rate than do τ̂ ⋆ and τ̂ ⋆⋆, and so can be used, to first order, to represent the “truth” in

a model for the more difficult, errors-in-variables regression problem for which τ̂ ⋆ and

τ̂ ⋆⋆ were computed. With this in mind we estimate MISE⋆ and MISE⋆⋆ by ÎSE
⋆
(h) =∫

{τ̂ ⋆D(x) − τ̂ ⋆(x;h)}2w⋆(x) dx and ÎSE
⋆⋆
(h) =

∫
{τ̂ ⋆⋆D (x) − τ̂ ⋆⋆(x;h)}2w⋆⋆(x) dx. To

avoid too strong dependence of the particular resamples generated, we repeat steps 1

and 2 B times, to generate B resamples; we calculate ÎSE
⋆
and ÎSE

⋆⋆
for each of the B

samples, to obtain ÎSE
⋆

b and ÎSE
⋆⋆

b , b = 1, . . . , B; and we take M̂ISE
⋆
= B−1

∑
b ISE

⋆
b

and M̂ISE
⋆⋆

= B−1
∑

b ISE
⋆⋆
b .

From there, to obtain an estimator of hopt, the idea, which we borrow from the

simulation-extrapolation algorithm, is that W ⋆⋆ measures W ⋆ in the same way that

W ⋆ measures W and W measures X, so that we can expect the relation between

h⋆⋆opt and h
⋆
opt to be similar to the relation between h⋆opt and hopt, that is h

⋆⋆
opt/h

⋆
opt ≈

h⋆opt/hopt. Motivated by these ideas, we propose estimating hopt by ĥopt = (ĥ⋆opt)
2/ĥ⋆⋆opt.

This last step relies on the fact that ĥ⋆opt and ĥ
⋆⋆
opt are asymptotic to constant multiples

of the order of the optimal bandwidth, and the ratio (ĥ⋆opt)
2/ĥ⋆⋆opt is also asymptotic

to that order. See also Remark 3. Rigorous theoretical justification can be obtained

using arguments similar to Delaigle and Hall (2008a,b). Practical implementation is

illustrated in section 6.

Remark 3. (Justification of bandwidth-choice rule). Note that both ĥ⋆opt and ĥ
⋆⋆
opt are

selected to minimise mean integrated squared errors in simulated errors-in-variables

problems. Since, by construction, the latter problems share the same values of α and

q as the original one, they enjoy the same rates of convergence, n−1/(2α+2q+3) if q

is odd and n−1/(2α+2q+5) if q is even, of the optimal bandwidth. Therefore, the ratio

(ĥ⋆opt)
2/ĥ⋆⋆opt also has this rate. This was established by Delaigle and Hall (2008a,b) to

be the case in a related setting, and indeed the property is at the heart of the widely

used SIMEX method for solving deconvolution problems. The constant multiplier will
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generally not be the optimal one, and in fact, obtaining the optimal constant seems to

be an especially challenging empirical problem, perhaps without a practicable solution.

However, the constant determined by the ratio (ĥ⋆opt)
2/ĥ⋆⋆opt seems to be satisfactory in

many settings.

5.2 Bandwidths for the estimator in section 3

Using ideas similar to those in the previous section, we suggest choosing the band-

width required to calculate θ̂ as follows. For b = 1, . . . , B, the steps are as follows:

1–2: same as in section 5.1.

3. Define the variance functions τ ⋆ and τ ⋆⋆ as in section 5.1. Let τ(· | θ̂⋆) and τ(· | θ̂⋆⋆)

denote the parametric deconvolution estimators of τ ⋆ and τ ⋆⋆ from the contaminated

data (W ⋆
j , Yj) and (W ⋆⋆

j , Yj), respectively.

4. Let τ(· | θ̂⋆D) and τ(· | θ̂⋆⋆D ) denote measurement error-free, difference-based paramet-

ric estimators of τ ⋆ and τ ⋆⋆, based on the data (Wj, Yj) and (W ⋆
j , Yj), respectively.

5. Find the bandwidths ĥ⋆opt and ĥ
⋆⋆
opt that minimise B−1

∑
b ISE

⋆
b and B

−1
∑

b ISE
⋆⋆
b ,

where ISE⋆ =
∫
{τ(· | θ̂⋆) − τ(· | θ̂⋆D)}2w⋆ and ISE⋆⋆ =

∫
{τ(· | θ̂⋆⋆) − τ(· | θ̂⋆⋆D )}2w⋆⋆,

respectively, where w⋆ and w⋆⋆ are weight functions. Take ĥopt = (ĥ⋆opt)
2/ĥ⋆⋆opt.

6 Numerical properties

6.1 Details of implementation

For all methods, every nonparametric estimator used anywhere in the estimation pro-

cedure (to calculate the bandwidth and to calculate the estimator itself, and for our

nonparametric estimator as well as for the nonparametric difference-based estimator)

was a local-linear estimator (that is, we took q = 1 everywhere). For the bandwidth

selectors of section 5, we took w⋆ = w⋆⋆ = 1[qW0.025,qW0.975], with qTα denoting the αth

empirical quantile of a variate T and 1[a,b] the indicator function of the interval [a, b].

For the method of section 5.1, we used the nonparametric difference-based estimator

with cross-validation bandwidth, constructed from the data (W[i], Di)1≤i≤n−1 where

Di = 0.5 (Y[i] − Y[i+1])
2, with [i] denoting the index of the ith order statistic of W .
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We used the same approach for the ⋆ data. For the bandwidth selector of section 5.2

we used the parametric version of this difference-based estimator. To speed up cal-

culations, all nonparametric estimators used to calculate bandwidths were computed

after binning the data.

For the kernel K in our nonparametric procedures we used the one suggested by

Delaigle, Fan and Carroll (2009), that is, we took the kernel with Fourier transform

ϕK(t) = (1 − t2)8 1[−1,1](t). See Delaigle and Hall (2006) for discussion of kernels in

deconvolution problems. For the parametric method of section 3.2 we took ω(x) =

σ−1L{(x− µ)/σ} /d̂(x), with L the biweight kernel L(x) = 15/16(1− x2)2 · 1[−1,1](x),

µ = (qW0.01 + qW0.99)/2, σ = (qW0.99 − qW0.01)/2 and d̂ as in section 3.2.

6.2 Simulation settings

We applied our nonparametric estimators to several regression models. In each case

we generated 200 samples from model (1.1), using one the following variance functions

(listed in increasing order of complexity):

• τ1(x) = 1;

• τ2(x) = max(0.9x+ 0.6, 0);

• τ3(x) = max(1.5x+ 0.1, 0);

• τ4(x) = (1.5x+ 0.1)2;

• τ5(x) = 2x2 − 2x+ 0.75,

which we combined with one of the following regression curves (also listed in increasing

level of complexity):

• g1(x) = 0.75 ;

• g2(x) = 1/
(
1 + exp{−5(x− 1/2)}

)
;

• g3(x) = 1/
(
1 + exp{−10(x− 1/2)}

)
;

• g4(x) = 1/
(
1 + exp{−5(x− 1/2)}2

)
;

• g5(x) = 0.45 sin(2πx) + 0.5.

In each case we took ε ∼ N(0, 1) and X ∼ N(0.5, 0.1) or X ∼ U [0, 1]. Finally, we

took U to be Laplace.

We calculated our estimators for each generated sample. To illustrate the im-

portance of taking the error into account we also calculated naive estimators, that
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is, estimators that pretend there is no error in the data. We also calculated ideal

estimators, that is, estimators which use the non contaminated observations Xi. Of

course, these estimators are not available in practice, but they illustrate the impact

that measurement errors can have on the quality of estimators. To summarize, in our

numerical work we calculated the following estimators:

(1) Our nonparametric local linear estimator, which we denote by NPE;

(2) Our parametric estimator, which we denote by PE;

(3) The local linear difference-based nonparametric estimator based on the data

(W[i], Di)1≤i≤n−1, which we denote by naive NPE;

(4) The naive parametric difference-based estimator, which is the parametric version

of the naive difference-based method and which we denote by naive DBPE. This

method is often used in practice because it has good theoretical properties and does

not need a bandwidth;

(5) The naive version of our parametric estimator, obtained by using the data (Wi, Yi)

but setting U ≡ 0 everywhere else in the formulae of our estimator. We refer to this

as the naive PE;

(6) The ideal parametric difference-based estimator, which is the same as the naive

DBPE, except that we use the measurement error-free data (X[i], Di)1≤i≤n−1. We

refer to this as the ideal DBPE;

(7) The ideal version of our parametric estimator, obtained by using the data (Xi, Yi)

and setting U ≡ 0 everywhere in the formulae of our estimator. We refer to this as

the ideal PE.

Note that, although the DBPE is widely used in the measurement error-free case,

partly because of its simplicity and also because it does not need a bandwidth, our

results showed that in a high proportion of regression models the measurement error-

free version of our estimator (i.e. ideal PE) worked better than its difference-based

counterpart (ideal DBPE). Similarly, we found that the naive DBPE often gave better

results than the naive PE. This complicates the comparison between our estimator

and the naive methods, as in practice we would not know which of the naive DBPE

and the naive PE is the best estimator. Thus, comparing our method in each case
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Figure 1: Estimation of τ2 when g = g4, X ∼ N(0.5, 0.1). Top: naive NPE, bot-

tom: our NPE. Left: (n,NSR) = (500, 0.2), middle: (n,NSR) = (250, 0.2), right:

(n,NSR) = (250, 0.1).

with the best of the two naive methods systematically biases the comparison in favour

of the naive estimators.

The performance of estimators, τ̂ say, was calculated via integrated squared er-

ror, ISE =
∫ 1

0
(τ̂ − τ)2, except in the constant case τ = 1 where we used squared

error. In the figures we show the estimated curves corresponding to the quantiles

q0.1, q0.15, q0.2, . . . , q0.9 of the 200 calculated integrated squared errors. The true func-

tion τ is always represented by the thick solid curve.

6.3 Simulation results

In each figure, the goal is to illustrate one (or more) of the properties of the various

estimators. Note that the findings discussed here were also supported by box plots.

To keep this section to a reasonable length, we discuss these only briefly in the text,

in cases where the graphs are not clear enough to compare the performance of the

methods. A summary of the important properties is given at the end of this section.

Figure 1 illustrates the improvement one can get by taking the error into account
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Figure 2: Quantile curves for the estimation of τ3 when g = g5, X ∼ N(0.5, 0.1),

n = 250 and NSR = 0.2, using the naive NPE (top left), our NPE (top centre), our

PE (top right), the naive DBPE (bottom left), the naive PE (bottom centre) or the

ideal PE (bottom right).

when calculating the nonparametric estimators. We compare our NPE and the naive

NPE, by showing the quantile curves for estimating the variance function τ2, when the

regression curve is g4, X ∼ N(0.5, 0.1), n = 250 or 500, and the noise to signal ratio

NSR ≡ var(U)/var(X) is equal to 10% or 20%. The graphs show a clear superiority of

our estimator compared to the naive one. They also demonstrate that the estimator

improves as the sample size increases and the NSR decreases.

Figure 2 shows the quantile curves when estimating τ3, when g = g5, X ∼

N(0.5, 0.1), n = 250 and NSR = 0.2. Here, the goal is to compare all the esti-

mators. We see that the results improve when using our NPE compared to the naive

NPE, but also that our parametric estimator (PE) improves the NPE. The graphs

also show that the naive parametric estimators (naive DBPE and naive PE) are either

much more biased or much more variable than our PE. The quantile curves for the

ideal PE shown here demonstrate that, in this case, the impact of measurement errors

on the quality of our PE is not very severe (although it may not be clear from the
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Figure 3: Quantile curves for estimation of τ5, when g = g1, X ∼ U [0, 1] and n = 500,

using our NPE when NSR = 20% (top left); our in the case when NSR = 0.1, using

our NPE (top center), our PE (top right), the naive PE (bottom left), the naive

DBPE (bottom center) and the ideal PE (bottom right).

graph, the ideal estimator did give smaller ISEs than our PE).

Figure 3 illustrates the same properties as Figure 2, but this time for the case

where the variance curve is the quadratic curve τ5, and g = g1. This case is quite

difficult because of the valley in the shape of the variance curve, and estimators have

a tendency to overestimate the valley. The estimators did not work very well for

n = 250, and we show the results for n = 500 and NSR = 10%. In this case, the

naive NPE worked so poorly that, instead of showing its quantile curves, we show

those for our NPE when NSR = 20%. As above, we see that a smaller NSR implies

a better estimator, our PE substantially improves our NPE, and ignoring the error

(that is, using the naive estimators) results in estimators that are much more biased.

In this difficult case, the impact of the measurement errors is very noticeable: the

ideal PE is significantly better than our PE.

Figure 4 shows results for estimating τ4 parametrically, when g = g4, X ∼

N(0.5, 0.1) and NSR = 0.2, for sample sizes n = 250 and n = 500. In this case
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Figure 4: Estimation of τ4 when g = g4, X ∼ N(0.5, 0.1) and NSR = 0.2. Quantiles

curves for the our PE when n = 250 (top left) or when n = 500 (bottom left), our

resampling corrected PE when n = 250 (top center) or n = 500 (bottom center), the

naive PE for n = 250 (top right) or n = 500 (middle right), the naive DBPE when

n = 250 (middle left) or n = 500 (bottom right), or the resampling corrected DBPE

when n = 250 (middle center).

the variance function takes values close to zero for x close to zero, and, as a result,

the estimators of τ(x) often took negative values when x was close to zero. To correct

for this problem we considered the two approaches discussed at the end of section

3.2. That is, we either truncated the estimator to zero or used (3.4), where the ex-

pectation was computed as the average of values computed from B resamples, as in

(4.4). In the figure we show the results of both approaches. When using the second

approach, we took B = 100 resamples. We can see that, overall, both approaches
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Figure 5: Estimation of τ4 when g = g4,, X ∼ N(0.5, 0.1) with NSR = 0.2, n = 250

(top) or n = 500 (bottom), and pretending that the variance is linear. Quantile

curves for the naive DBPE (left), the naive PE (middle) and our PE (right).

to correcting for negativity gave similar results, but the resampling method did this

correction in a smoother way. As usual, the figure also illustrates the improvement

of our estimator as the sample size increases, and its superiority to the two naive

parametric approaches (although the larger bias incurred by the naive estimators is

more easily seen for the larger sample size, n = 500).

In Figure 5, we continue to consider parametric estimation of τ4 when g = g4,

X ∼ N(0.5, 0.1) and NSR = 0.2, but this time we wrongly assume that τ is a linear

curve. Our goal is to see whether, even when the variance model is misspecified, using

an error-corrected estimator can improve on the naive estimators. In particular we

want to see whether the line fitted by our PE will be closer to that fitted by the naive

methods. Here, to correct for negativity, we simply truncated the fitted lines to zero.

The plots of the quantile curves and the box plots (not shown here) both show that

in this case, too, taking the error into account can bring significant improvement over

the naive estimators, whose fitted lines are more biased than for our estimator.

Finally, in Figure 6 we show boxplots for estimating the constant variance τ1,

24



0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
00

0.
01

0.
02

0.
03

0.
04

0.
00

0.
01

0.
02

0.
03

0.
04

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
00

0.
01

0.
02

0.
03

0.
04

0.
00

0.
01

0.
02

0.
03

0.
04

Figure 6: Boxplot for the estimation of τ1 when g = g2 (top) or g = g3 (bottom), and

when (n,NSR) = (250, 10%) (left), (n,NSR) = (500, 10%) (center) and (n,NSR) =

(500, 20%) (right). In each graph, the first boxplot is for the naive DBPE, the second

is for the naive PE, the third is for our PE, the fourth is for the ideal DBPE and the

fifth is for the ideal PE.

when g = g2 or g3, for various sample sizes and NSR. In most cases (except for

(n,NSR) = (250, 10%) when g = g2), our PE worked better than the naive estimators,

and we can see that it even worked better than the ideal DBPE. As already mentioned

several times, in other cases it is the ideal DBPE that worked better than the ideal

PE, and this makes the comparison of our method with the naive estimators difficult.

For example in this case, if we were to compare our PE with the naive DBPE, we

would find a dramatic improvement, but if we were to compare it with the naive PE,

we would find that our estimator improves the naive one by a much smaller amount.

Of course, we could not present the results of all our simulations, and above we

only discussed partial results. In our complete set of simulations, we also found that

our estimators systematically improved as sample size increased and/or the NSR

decreased. Further, we found that our parametric method almost always improved

substantially at least one of the two naive methods, and usually improved both.

Depending on the case, it was either the naive DBPE that we beat by a significant
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amount, or the naive PE. Thus, the comparison between our estimator and the naive

approach is not easy. Since in practice we would not know which of the two naive

methods we should use, to be fair, we should almost choose randomly one of the two

naive approaches.

7 Conclusion

We have considered an important, but particularly difficult and unexplored, problem

of variance estimation in the context on nonparametric errors-in-variables regression.

We have proposed nonparametric and parametric variance estimators and have de-

rived their asymptotic and finite-sample properties. We have also proposed a new

bandwidth selector that is of independent interest, since it can be used in more gen-

eral errors-in-variables contexts, where constructing a good data-driven bandwidth is

particularly challenging.

A Appendix

A.1 Summary

This appendix contains the proofs of Theorems 4.2 and 4.3. The proofs are given in

the case where m̂ and ĝ are local constant estimators (q = 0). In the proofs we shall

use the notation r1 = fX g and r2 = fX m.

A.2 Proof of Theorem 4.2

Let D be as in section 2.2, let D† be a resample drawn from D, let f̂X have the

definition of d̂ in the special case at (3.2), write f̂ †
X and r̂†j , j = 1, 2, for the versions

of f̂X and r̂j, respectively, when the latter are computed from D† rather than D, put

∆† = f̂ †
X − f̂X and ∆†

j = r̂†j − r̂j for j = 1, 2, and let ℓ = ℓ(n) denote a sequence

of positive constants. Here and below, all estimators are understood to be evaluated

at x. The first step is to prove that, for all integers p ≥ 1,

P (|∆†| > ℓ) = O
{(
nh2α+1 ℓ2

)−p
}
. (A.1)
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By Rosenthal’s inequality,

E
(
|∆†|2p

∣∣D) ≤ D1

(nh)2p

[{ n∑
j=1

∣∣∣∣L0

(
x−Wj

h

)∣∣∣∣2}p

+
n∑

j=1

∣∣∣∣L0

(
x−Wj

h

)∣∣∣∣2p
]
,

where D1, D2, . . . will denote generic positive constants not depending on n, and D1

depends only on p. Hence,

E
(
|∆†|2p

)
≤ D2

(nh)2p

p∑
r=0

{ n∑
j=1

E

∣∣∣∣L0

(
x−Wj

h

)∣∣∣∣2}r n∑
j=1

E

∣∣∣∣L0

(
x−Wj

h

)∣∣∣∣2(p−r)

≤ D3

p−1∑
r=0

(
nh2α+1

)−r
(nh)2(r−p) nh1−2(p−r)α +D3

(
nh2α+1

)−p

= D3

p−1∑
r=0

(nh)r+1
(
nhα+1

)−2p
+D3

(
nh2α+1

)−p

≤ pD3

(
nh2α+1

)−p
. (A.2)

To obtain the second inequality in the sequence leading to (A.2) we used the fact that

(nh)−2
∑

j E|L0{(x−Wj)/h}|2 = O{(nh2α+1)−1}, this being an upper bound to the

variance of f̂X , and the property that for s ≥ 2,
∑

j E|L0{(x−Wj)/h}|s = O(nh1−sα),

the latter identity being a consequence of the bound

|L0(u)| ≤ D4 h
−α (1 + |u|)−1 , (A.3)

which we shall shortly derive. Result (A.1) follows on combining (A.2) and Markov’s

inequality.

Let ∆†
[b] denote the version of ∆†, defined in the first paragraph of the present

section, when the dataset D is replaced by the bth resample, D†
b, drawn from D. (We

introduce square brackets around the subscript in ∆†
[b] so as not to confuse ∆†

[b] with

∆†
j, defined in the previous paragraph.) Since (A.1) holds for all p > 0, and (4.4)

implies that B = O(nD5) for some D5 > 0, then provided ℓ2 = nϵ (nh2α+1)−1 for some

ϵ > 0, we have, for a positive number p that can be taken arbitrarily large:

P
(

max
1≤b≤B

|∆†
[b]| > ℓ

)
= O

(
nD5−pϵ

)
= O

(
n−D6

)
for all D6 > 0 . (A.4)

Therefore, by Taylor expansion,

m̂† =
r̂†2

f̂ †
X

=
r̂2 +∆†

2

f̂X +∆†
=
r̂2 +∆†

2

f̂X

{
1− ∆†

f̂X
+Op

(
ℓ2
)}

,
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ĝ†2 =
r̂21 + 2 r̂1∆

†
1 +∆†

1
2

f̂2
X

{
1− 2∆†

f̂X
+Op

(
ℓ2
)}

,

where, here and below in this paragraph, the remainders Op(·) are of the stated order

uniformly in all B of the resampled datasets D† = D†
b. (To see that the order of the

remainder terms is as stated, note that, since B is of polynomial size in n, then (A.4)

implies that the probability that either |∆†
2| or |∆†| is larger than ℓ for one or more

of the resamples D†, equals O(n−D) for all D > 0. Therefore the remainders, which

represent quadratic terms in the two respective Taylor expansion and so equal Op(ℓ
2),

are of that size uniformly in all B simulated values of the resample D†.) Hence, since

r̂j(x) = rj(x) +Op(ℓ0) and f̂X(x) = fX(x) +Op(ℓ0) (A.5)

where ℓ20 = (nh2α+1)−1 < ℓ2, and since fX(x) > 0, then

τ̂ † = m̂† − ĝ†2 = τ̃ +∆†
3 , (A.6)

uniformly in D† = D†
b for 1 ≤ b ≤ B, where

∆†
3 = ∆†

4 +Op

{(
|∆†

1|+ |∆†
2|+ |∆†

1|2
)
ℓ+ ℓ2

}
,

∆†
4 =

1

fX

(
∆†

2 −
r2
fX

∆†
)
− 2 r1
f 2
X

(
∆†

1 −
r1
fX

∆†
)
.

(To derive (A.5) note that the second identity there is conventional, and follows for

example from arguments of Delaigle et al. (2009), who show that the identity gives the

exact rate of convergence of f̂X(x) to fX(x). The first identity is proved in the same

way (and again gives the exact convergence rate), since r̂j has the same construction

as f̂X except that a weight Yj is incorporated into the series. See Example 1 in

section 3.2, where (3.2) gives a formula for d̂(x), which is identical to f̂X(x) in that

setting, and (3.3) gives formulae for r̂1(x) and r̂2(x).)

Write ∆†
jb for the version of ∆†

j when D† = D†
b, and let E denote the event that

|τ̃ − τ | ≤ 1
2
τ , i.e. that 1

2
τ(x) < τ̃(x) < 3

2
τ(x) where, by assumption, τ(x) > 0. Since

τ̃ → τ in probability then P (E) → 1. If E holds then by (A.6),

|τ̄ − τ̃ | =
∣∣∣∣ 1B

B∑
b=1

{max(τ̂ †b , 0)− τ̃}
∣∣∣∣ = ∣∣∣∣ 1B

B∑
b=1

{max(τ̃ +∆†
3b, 0)− τ̃}

∣∣∣∣
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≤
∣∣∣∣ 1B

B∑
b=1

∆†
3b

∣∣∣∣+ 4

B

B∑
b=1

|∆†
3b| I

(
|∆†

3b| > 1
2
τ
)

≤
∣∣∣∣ 1B

B∑
b=1

∆†
4b

∣∣∣∣+Op

{
ℓ2 +

ℓ

B

B∑
b=1

(
|∆†

1b|+ |∆†
2b|+ |∆†

1b|
2
)}

+
4

B

B∑
b=1

|∆†
3b| I

(
|∆†

3b| > 1
2
τ
)
. (A.7)

Conditional on D,
∑

b ∆
†
4b is a sum of independent random variables with zero mean

(that is, E(∆†
4b | D) = 0 for each b), and from this property it can be proved that

B−1
∑

b ∆
†
4b = Op(B

−1/2 ℓ0) = op(ℓ0), since we assumed that B = B(n) → ∞.

Similarly, B−1
∑

b (|∆
†
1b|+|∆†

2b|+|∆†
1b|2) = Op(ℓ0) and B

−1
∑

b |∆
†
3b| I(|∆

†
3b| > 1

2
τ) =

op(ℓ0). In relation to the last of these results, note that if s > 0 is fixed then

1

B

B∑
b=1

|∆†
4b| I(|∆

†
4b| > s) = Op

[
E{|∆†

41| I(|∆
†
41| > s)}

]
= Op

{
E|∆†

41|2
}
= Op

(
ℓ20
)
.

Combining these results with (A.7), and noting that ℓ2 = op(ℓ0) provided that ϵ, in

the definition of ℓ, is chosen sufficiently small, we deduce that |τ̄ − τ̃ | = op(ℓ0). In

view of our choice of h (see Theorem 6.1) the latter result is equivalent to (6.9).

It remains to prove (A.3). From Conditions (A5) and (4.1) it follows that, uni-

formly in x,

2π |L0(x)| ≤ C

∫ 1

−1

∣∣ϕK(t)
∣∣ (1 + |t/h|)α dt ≤ D7 h

−α . (A.8)

Conditions (A5), (4.1) and (4.5), and an integration by parts, imply that

|2πxL0(x)| ≤
∫ ∣∣∣∣ϕ′

K(t)ϕU(t/h)− h−1 ϕK(t)ϕ
′
U(t/h)

ϕU(t/h)2

∣∣∣∣ dt
≤ D8

∫ 1

0

{∣∣ϕU(t/h)
∣∣−1

+
|ϕ′

U(t/h)|
h |ϕU(t/h)|2

}
dt

≤ D9 h

∫ 1/h

0

{
(1 + t)α +

(1 + t)α

h (1 + t)

}
dt ≤ D10 h

−α . (A.9)

Result (A.3) follows from (A.8) and (A.9).

A.3 Proof of Theorem 4.3

Step 1: Approximation to S(θ).

The goal of this step is to develop an approximation to S(θ) which is simpler than
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S(θ) to analyse. In the second part of this step, we illustrate our approximation in

the particular case where the variance is a polynomial. Throughout the proof we shall

use the notation

L(x |w1, w2) = L0

(x− w1

h

)
L0

(x− w2

h

)
.

Also, to avoid too complicated notations in this proof, we redefine S(θ) to be n(n−

1)h2S(θ). This has no impact on the derivation of the results, as S(θ) = 0 is equivalent

to n(n − 1)h2S(θ) = 0. Remember, too, that we are giving the proof for the case

q = 0 (see example 1 in section 3.2). With this in mind, and since conditions (B1)

and (B3) hold, we can write:

S(θ) =
∑∑
j1 ̸=j2

∫ {
Y 2
j1
− Yj1 Yj2 −

d1∑
k=0

τ (k|0)(x | θ, θ0)
}
L(x |Wj1 ,Wj2)

×
{ d1∑

k=1

τ (k|1)(x | θ, θ0)
}
ω(x) dx

+ Ω1 ∥θ − θ0∥d1+1
∑∑
j1 ̸=j2

(
1 + Y 2

j1

) ∫
|L(x |Wj1 ,Wj2)|ω(x) dx ,

where ∑
k≥0

τ (k|0)(x | θ, θ0) = τ(x | θ0) + (θ − θ0)
T τ̇(x | θ0)

+ 1
2
(θ − θ0)

T τ̈(x | θ0) (θ − θ0) + . . . ,∑
k≥1

τ (k|1)(x | θ, θ0) = τ̇(x | θ0) + τ̈(x | θ0) (θ − θ0) + . . .

denote Taylor expansions of τ(x | θ) and τ̇(x | θ), respectively, in terms that are of sizes

∥θ − θ0∥k; τ̈(x | θ0) is the p × p matrix of second derivatives of τ(x | θ) with respect

to θ; and, for ℓ = 1 and 2, Ωℓ is a random variable satisfying P (|Ωℓ| ≤ C) = 1, with C

denoting a constant depending only on the bounds to the d1+2 derivatives of τ(x | θ)

with respect to θ. (Recall from (B3) that those derivatives are bounded uniformly in

the compact set on which ω is supported.) Therefore,

S(θ) = S0(θ) +

d1∑
k=2

∥θ − θ0∥k
∑∑
j1 ̸=j2

∫ [{
Y 2
j1
− Yj1 Yj2 − τ(x | θ0)

}
a1k(x)

+ a2k(x)
]
L(x |Wj1 ,Wj2)ω(x) dx
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+ Ω2 ∥θ − θ0∥d1+1
∑∑
j1 ̸=j2

(
1 + Y 2

j1

) ∫
|L(x |Wj1 ,Wj2)|ω(x) dx ,

(A.10)

where

S0(θ) =
∑∑
j1 ̸=j2

∫ {
Y 2
j1
− Yj1 Yj2 − τ(x | θ0)

}
L(x |Wj1 ,Wj2) τ̇(x | θ0)ω(x) dx

+

[∑∑
j1 ̸=j2

∫ {
Y 2
j1
− Yj1 Yj2 − τ(x | θ0)

}
L(x |Wj1 ,Wj2) τ̈(x | θ0)ω(x) dx

−
∑∑
j1 ̸=j2

∫
L(x |Wj1 ,Wj2) τ̇(x | θ0) τ̇(x | θ0)T ω(x) dx

]
(θ − θ0) ,

(A.11)

and the vector-valued functions a1k and a2k are uniformly bounded and have, respec-

tively, d1 + 1− k and d1 + 2− k bounded derivatives on the real line.

To understand the above calculations in a simple context, take the particular case

where the variance is polynomial, that is τ(x | θ) = θ1 + θ2 x + . . . + θp x
p−1 and

τ̇(x | θ) = τ̇(x | θ0) = (1, x, . . . , xp−1)T . There, we find

τ(x | θ) = θ1 + θ2 x+ . . .+ θp x
p−1 = τ(x | θ0) + (θ − θ0)

Tτ̇(x | θ0).

Therefore, it follows from the definition of S(θ) at (3.1), where, as indicated above,

we redefine S(θ) to be n(n− 1)h2S(θ), that in that case,

S(θ) =
∑∑
j1 ̸=j2

∫ {
Y 2
j1
− Yj1 Yj2 − τ(x | θ0)− (θ − θ0)

Tτ̇(x | θ0)
}

× L(x |Wj1 ,Wj2) τ̇(x | θ0)ω(x) dx

=
∑∑
j1 ̸=j2

∫ {
Y 2
j1
− Yj1 Yj2 − τ(x | θ0)

}
L(x |Wj1 ,Wj2) τ̇(x | θ0)ω(x) dx

−
∑∑
j1 ̸=j2

∫
L(x |Wj1 ,Wj2) τ̇(x | θ0)τ̇(x | θ0)T ω(x) dx × (θ − θ0).

Thus, in this case, S(θ) is exactly equal to S0(θ).

Step 2: Approximation to S(θ)− S0(θ).

The calculations at the end of Step 1 show that in the polynomial case we have exactly
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S(θ) = S0(θ). However, in more general cases, S0(θ) is only an approximation to S(θ),

and the goal of this step is to assess the magnitude of S(θ)−S0(θ). The approximation

is given at (A.24) below.

As a prelude to deriving it, let a denote a uniformly bounded function with support

equal to that of ω, and define

S1 =
∑∑
j1 ̸=j2

∫
a(x)L(x |Wj1 ,Wj2) dx , (A.12)

S2 =
∑∑
j1 ̸=j2

Y 2
j1

∫
a(x)L(x |Wj1 ,Wj2) dx , (A.13)

S3 =
∑∑
j1 ̸=j2

Yj1 Yj1

∫
a(x)L(x |Wj1 ,Wj2) dx . (A.14)

We shall develop bounds for E(S2
ℓ ) for ℓ = 1, 2 and 3, giving details of the arguments

only in the relatively complex case ℓ = 3. Now, each Sℓ can be decomposed into

“quadratic,” and “linear (projection)” components. (In the case ℓ = 3 see (A.15) and

(A.16), below, for quadratic and linear components, respectively, and when ℓ = 2

see (A.20) for the quadratic component, and (A.21) and (A.22) for the two linear

components.) We bound the quadratic and linear components separately, noting that

the method in the case of quadratic components will be used again in Step 4.

Given a random variable R with finite mean, let (1−E)R denote R−E(R) and

put (1 − E)S3 = S31 + 2S32, where 2S32 equals the linear projection of (1 − E)S3

and S31 is defined by differencing:

S31 =
∑∑
j1 ̸=j2

∫
a(x)

[
Yj1 Yj2 L0

(
x−Wj1

h

)
L0

(
x−Wj2

h

)
−
{
Yj1 L0

(
x−Wj1

h

)
+ Yj2 L0

(
x−Wj2

h

)}
E

{
Y L0

(
x−W

h

)}
+

{
E Y L0

(
x−W

h

)}2]
dx , (A.15)

S32 = (n− 1)
n∑

j=1

∫
a(x)E

{
Y L0

(
x−W

h

)}
(1− E)

{
Yj L0

(
x−Wj

h

)}
dx .

(A.16)

Since Yj = g(Xj)+ τ
1/2(Xj) εj and Wj = Xj +Uj then, recalling that m = g2+ τ and

noting, from the definition of L0, that
∫
L2
0 ≤ const. h−2α for 0 < h ≤ 1, where α is
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as in (B5), we have:

n−2E
(
S2
31

)
≤ 4E

{
Y1 Y2

∫
a(x)L0

(
x−W1

h

)
L0

(
x−W2

h

)
dx

}2

= E

(
m(X1)m(X2)E

[{∫
a(x)L0

(
x−W1

h

)
L0

(
x−W2

h

)
dx

}2 ∣∣∣∣ X1, X2

])

≤ h2
(
sup a2

)
E
{
m2(X)

}(∫
L2

0

)2

≤ const. h2−4α . (A.17)

Also, since the function |fX g| is bounded (see (B4)) then |E[g(X1)K{(x−X1)/h}]| ≤

const. h, whence it follows that

n−3E
(
S2
32

)
≤ E

(
m(X2)

[ ∫
a(x)E

{
g(X1)K

(
x−X1

h

)}
L0

(
x−W2

h

)}
dx

]2)

≤ const. h2E

{
m(X2)

(∫
a2
) ∫

L2
0

(
x−W2

h

)
dx

}
≤ const. h3

(
1 + h−2α

)
. (A.18)

Therefore, in the case ℓ = 3,

(nh)−4 var(Sℓ) = O
(
n−2 h−2(1+2α) + n−1 h−(1+2α)

)
. (A.19)

Write S2 = S21 + S22 + S23 where

S21 =
∑∑
j1 ̸=j2

∫
a(x)

[
Y 2
j1
L0

(
x−Wj1

h

)
L0

(
x−Wj2

h

)
− Y 2

j1
L0

(
x−Wj1

h

)
E

{
L0

(
x−W1

h

)}
− L0

(
x−Wj2

h

)
E

{
Y 2
1 L0

(
x−W1

h

)}
+ E

{
Y 2
1 L0

(
x−W1

h

)}
E

{
L0

(
x−W1

h

)}]
dx , (A.20)

S22 = (n− 1)
n∑

j=1

∫
a(x)E

{
L0

(
x−W1

h

)}
(1− E)

{
Y 2
j L0

(
x−Wj

h

)}
dx ,

(A.21)

S23 = (n− 1)
n∑

j=1

∫
a(x)E

{
Y 2
1 L0

(
x−W1

h

)}
(1− E)

{
L0

(
x−Wj

h

)}
dx .

(A.22)
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Provided that E(ε4) < ∞ and E{m2(X)} < ∞ (see (B6)) the arguments leading to

(A.17) and (A.18) give: n−2E(S2
21) = O(h2−4α) and n−3 maxj=2,3 E(S

2
2j) = O(h3−2α).

This leads quickly to (A.19) in the case ℓ = 2, and a similar approach implies that

result when ℓ = 1. Note too that, for ℓ = 1, 2, 3, E(Sℓ) = O
{
(nh)2

}
, and therefore

(nh)−2E(Sℓ) = O(1). Combining this result with the versions of (A.19) for ℓ = 1, 2, 3

we deduce that:

the coefficient of Ω2 in (A.10), multiplied by (nh)−2, equals Op{∥θ−
θ0∥2 (n−1 h−(1+2α) +n−1/2 h−(1+2α)/2 +1)}, uniformly in θ satisfying ∥θ−
θ0∥ ≤ C, where C > 0 is as in (B3).

(A.23)

Observe too that

∑∑
j1 ̸=j2

(
1 + Y 2

j1

) ∫
|L(x |Wj1 ,Wj2)|ω(x) dx

≤ const.
∑∑
j1 ̸=j2

(
1 + Y 2

j1

){∫
L2

0

(
x−Wj1

h

)
dx

}1/2{∫
L2

0

(
x−Wj2

h

)
dx

}1/2

≤ const.
∑∑
j1 ̸=j2

(
1 + Y 2

j1

)
h
(
1 + h−2α

)
= Op

(
n2 h1−2α

)
.

Therefore the coefficient of Ω3 in (A.10), multiplied by (nh)−2, equals Op(∥θ −

θ0∥d1+1 h−(1+2α)), uniformly in θ satisfying ∥θ − θ0∥ ≤ C. Combining this result

with (A.10) and (A.23) we deduce that:

S(θ) = S0(θ)+(nh)2 ∆(θ) where, uniformly in θ satisfying ∥θ−θ0∥ ≤ C,

∆(θ) = Op(∥θ− θ0∥2 λn+∥θ− θ0∥d1+1 h−(1+2α)), C > 0 is as in (B3), and

λn = n−1 h−(1+2α) + n−1/2 h−(1+2α)/2 + 1.
(A.24)

As mentioned earlier, in the particular case where the variance is polynomial we have

S(θ) = S0(θ) and therefore ∆(θ) = 0.

Step 3: Solving the equation S(θ) = 0.

Here we show that the equation S(θ) = 0 can be written in a simpler form, specifically

(A.30) below, provided that the bandwidth satisfies (A.29).

Recalling the definition of S0(θ) at (A.11) we deduce that

(nh)−2 S0(θ) = V − (M −N) (θ − θ0) , (A.25)
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where M and N are p× p matrices, V is a p-vector,

M =
1

(nh)2

∑∑
j1 ̸=j2

∫
L(x |Wj1 ,Wj2) τ̇(x | θ0) τ̇(x | θ0)T ω(x) dx ,

N =
1

(nh)2

∑∑
j1 ̸=j2

∫ {
Y 2
j1
− Yj1 Yj2 − τ(x | θ0)

}
L(x |Wj1 ,Wj2) τ̈(x | θ0)ω(x) dx ,

V =
1

(nh)2

∑∑
j1 ̸=j2

∫ {
Y 2
j1
− Yj1 Yj2 − τ(x | θ0)

}
L(x |Wj1 ,Wj2) τ̇(x | θ0)ω(x) dx .

We shall show in three stages, respectively in Steps 4–6 below, that n1/2 (V − EV )

is asymptotically normally distributed with zero mean and finite variance. Similar

arguments can be used to prove that

M − E(M) = op(1) , N − E(N) = op(1) . (A.26)

Define

ϕ0(x) =

∫
K(u) fX(x− hu) du , ϕ1(x) =

∫
K(u) (gfX)(x− hu) du ,

ϕ2(x) =

∫
K(u) (mfX)(x− hu) du . (A.27)

Since the kernelK is of order κ (see (B2)) then, in view of the smoothness assumptions

(B4), ϕ0(x) = fX(x) +O(hκ), and so(
1− n−1

)−1
E(M) =

∫
ϕ2
0(x) τ̇(x | θ0) τ̇(x | θ0)T ω(x) dx

=

∫
f2
X(x) τ̇(x | θ0) τ̇(x | θ0)T ω(x) dx+O

(
hκ
)
.

Similarly, since ϕ1(x) = (fX g)(x) +O(hκ) and ϕ2(x) = (fX m)(x) +O(hκ), we have:(
1− n−1

)−1
E(N) =

∫ {
ϕ2(x)ϕ0(x)− ϕ2

1(x)− τ(x | θ0)ϕ2
0(x)

}
τ̈(x | θ0)ω(x) dx

= O
(
hκ
)
,

and (1 − n−1)−1E(V ) = O(hκ). Combining the results from (A.26) down, and as-

suming that h = h(n) converges to zero sufficiently fast to ensure that hκ = o(n−1/2)

(see (B8)), we deduce that M =M0 + op(1), where M0 is as at (4.7), N = op(1) and

E(V ) = o(n−1/2). Hence, by (A.25), the equation S0(θ) = 0 can be written as:

V − EV − {M0 + op(1)} (θ − θ0) = op
(
n−1/2

)
, (A.28)
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uniformly in θ satisfying ∥θ− θ0∥ ≤ C. From (A.24) and (A.28) we deduce that if ϵn

denotes a sequence decreasing to zero, then, provided that

h = h(n) converges to zero sufficiently fast to ensure that hκ = o(n−1/2),

but so slowly that ϵn (n
−1 h−(1+2α) + n−1/2 h−(1+2α)/2) + ϵd1n h−(1+2α)→ 0, (A.29)

the following is true:

the equation S(θ) = 0 can be written as V −EV −{M0+op(1)} (θ−θ0) =
op(n

−1/2), uniformly in θ satisfying ∥θ − θ0∥ ≤ ϵn. (A.30)

Step 4. Decomposing n1/2 (V − EV ) into its projection plus a negligible

remainder.

Put V − E(V ) = V1 + V2 where, defining

V (j1, j2) =

∫ {
Y 2
j1
− Yj1 Yj2 − τ(x | θ0)

}
L(x |Wj1 ,Wj2) τ̇(x | θ0)ω(x) dx,

and writing Fj for the sigma-field generated by (Uj, Xj, Yj), we have:

V1 =
1

(nh)2

∑∑
j1 ̸=j2

[
V (j1, j2)

− E{V (j1, j2) | Fj1} − E{V (j1, j2) | Fj2}+ E{V (j1, j2)}
]
,

V2 =
n− 1

(nh)2

n∑
j=1

[
E{V (j, j′) | Fj}+ E{V (j′, j) | Fj} − 2E{V (1, 2)}

]
, (A.31)

and j′ is taken to be any integer not equal to j. We show in the present step that

E
(
V 2
1

)
= o
(
n−1
)
. (A.32)

It follows that V1 = op(n
−1/2), and thence that

V − E(V ) = V2 + op
(
n−1/2

)
. (A.33)

To derive (A.32), note that

(
1− n−1

)−1
E
(
V 2
1

)
=
(
n2h4

)−1
E
[
V (1, 2)

− E{V (1, 2) | F1} − E{V (1, 2) | F2}+ E{V (1, 2)}
]2

≤ 4
(
n2h4

)−1
E
{
V (1, 2)2

}
.
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At this point we recall the arguments used to bound the quadratic components in

expansions of S1, S2 and S2 during Step 2. The quantities Sℓ are defined at (A.12)–

(A.14), the quadratic components of S2 and S3 are given at (A.20) and (A.15) re-

spectively, and the arguments used to bound the mean squares of those components

can be employed here to prove that (n2h4)−1E{V (1, 2)2} = O(n−2 h−2(1+2α)). (Com-

pare (A.17), which implies that (nh)−4E(S2
31) = O(n−2 h−2(1+2α)), and note that an

almost identical argument gives (nh)−4E(S2
21) = O(n−2 h−2(1+2α)); see the paragraph

below (A.19).) Therefore, provided that

h = h(n) converges to zero so slowly that n−1 h−2(1+2α) → 0 , (A.34)

(A.32) and hence (A.33) hold.

Assumption (B8) is included in the intersection of (A.29) and (A.34). Therefore,

combining (A.30) (which is implied by (A.29)) and (A.33) (which follows from (A.34))

we deduce that if (B8) holds then:

the equation S(θ) = 0 can be written as V2 − {M0 + op(1)} (θ − θ0) =

op(n
−1/2), uniformly in θ satisfying ∥θ − θ0∥ ≤ ϵn. (A.35)

Step 5. Asymptotic variance of n1/2 V2.

Recall the definitions of ϕ0, ϕ1 and ϕ2 at (A.27), and that V2 is given by (A.31). In

this notation,

E{L(x |Wj,Wj′) | Fj} = L0

(
x−Wj

h

)
E

{
K

(
x−X

h

)}
= hϕ0(x)L0

(
x−Wj

h

)
,

E
{
Y 2
j L(x |Wj,Wj′) | Fj

}
= Y 2

j E{L(x |Wj,Wj′) | Fj}

= hY 2
j ϕ0(x)L0

(
x−Wj

h

)
,

E
{
Y 2
j′ L(x |Wj,Wj′) | Fj

}
= L0

(
x−Wj

h

)
E

{
m(X)K

(
x−X

h

)}
= hϕ2(x)L0

(
x−Wj

h

)
,

E
{
Yj Yj′ L(x |Wj,Wj′) | Fj

}
= Yj L0

(
x−Wj

h

)
E

{
g(X)K

(
x−X

h

)}
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= hϕ1(x)Yj L0

(
x−Wj

h

)
,

whence

Qj ≡ E{V (j, j′) | Fj}+ E{V (j′, j) | Fj}

= h

∫ {
ϕ2(x) + Y 2

j ϕ0(x)− 2Yj ϕ1(x)− 2 τ(x | θ0)ϕ0(x)
}

× L0

(
x−Wj

h

)
τ̇(x | θ0)ω(x) dx . (A.36)

Note too that, by (B4):

the functions ϕ0, ϕ1 and ϕ2 are absolutely integrable, where the integrals

are bounded uniformly in h, and ϕ0 = fX + o(1), ϕ1 = fX g + o(1) and

ϕ2 = fX m + o(1) as h → 0; and moreover, these properties continue to

hold if ϕ0, ϕ1 and ϕ2, and the functions on the right-hand sides of each

of the equations, are replaced by their jth derivatives, for 1 ≤ j ≤ d2,

where d2 is as in (B4).

(A.37)

(Here we have used the fact that
∫
|K| <∞; see (B2).) Therefore,

E(Qj) = hE

[ ∫ {
ϕ2(x) +m(X)ϕ0(x)− 2 g(X)ϕ1(x)− 2 τ(x | θ0)ϕ0(x)

}
×K

(
x−X

h

)
τ̇(x | θ0)ω(x) dx

]
= 2h2

∫ {
ϕ0(x)ϕ2(x)− ϕ2

1(x)− τ(x | θ0)ϕ2
0(x)

}
τ̇(x | θ0)ω(x) dx

= 2h2
∫ {

m(x)− g2(x)− τ(x | θ0)
}
f2
X(x) τ̇(x | θ0)ω(x) dx+ o

(
h2
)

= o
(
h2
)
, (A.38)

since τ = m+ g2.

The definition of V2 at (A.31) implies that

(
1− n−1

)−1
V2 =

1

nh2

n∑
j=1

(Qj − EQj) . (A.39)

Below, we use this formula to develop an approximation to E(V2V
T
2 ). By (A.38),

nE
(
V2V

T
2

)
+ o(1) = h−4E

(
Q1Q

T
1

)
= h−2E

([∫ {
ϕ2(x) + Y 2 ϕ0(x)− 2Y ϕ1(x)− 2 τ(x | θ0)ϕ0(x)

}
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× L0

(
x−W

h

)
τ̇(x | θ0)ω(x) dx

]
×
[ ∫ {

ϕ2(x) + Y 2 ϕ0(x)− 2Y ϕ1(x)− 2 τ(x | θ0)ϕ0(x)
}

× L0

(
x−W

h

)
τ̇(x | θ0)ω(x) dx

]T)

= h−2

∫ ∫
E

{
ψ(x1, x2, X)L0

(
x1 −W

h

)
L0

(
x2 −W

h

)}
dx1 dx2

= h−2

∫ ∫ ∫ ∫
ψ(x1, x2, x)L0

(
x1 − x− u

h

)
L0

(
x2 − x− u

h

)
× fX(x) fU(u) dx1 dx2 dx du

=

∫ ∫ ∫ ∫
ψ(w + hv1, w + hv2, x)L0(v1)L0(v2)

× fX(x) fU(w − x) dv1 dv2 dx dw , (A.40)

where the p× p matrix of functions ψ is given by

ψ(x1, x2, x) = E

{([
ϕ2(x1) + {g(x) + τ 1/2(x) ε}2 ϕ0(x1)

− 2 {g(x) + τ 1/2(x) ε}ϕ1(x1)− 2 τ(x)ϕ0(x1)
]
τ̇(x | θ0)ω(x)

)
×
([
ϕ2(x2) + {g(x) + τ 1/2(x) ε}2 ϕ0(x2)

− 2 {g(x) + τ 1/2(x) ε}ϕ1(x2)− 2 τ(x)ϕ0(x2)
]
τ̇(x | θ0)ω(x)

)T}
=

(( ℓ0∑
ℓ=1

ψℓ1(x1)ψℓ2(x2)ψℓ3(x)

))
, (A.41)

the notation ((ρ)) refers to a p×p matrix for which a general component has the same

form as ρ, and the quantities ψℓk are functions. (To obtain the last line in (A.40) we

changed variable as follows: xj = x+ u+ hvj for j = 1, 2, and u = w − x.)

To establish that each component of the p× p matrix represented by the four-fold

integral on the right-hand side of (A.40) is uniformly bounded, we replace ψ(x1, x2, x)

there by any one of the components ψℓ1(x1)ψℓ2(x2)ψℓ3(x) at (A.41). For notational

simplicity we write the latter product as ψ1(x1)ψ2(x2)ψ3(x), and note that the re-

spective component of the matrix of integrals at (A.40) then becomes:

I(ψ1, ψ2, ψ3) =

∫ ∫
ψ3(x) fX(x) fU(w − x)

{∫
ψ1(w + hv1)L0(v1) dv1

}
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×
{∫

ψ2(w + hv2)L0(v2) dv2

}
dx dw , (A.42)

the absolute value of which is bounded by:∫ ∫
|ψ3(x)| fX(x) fU(w − x)

∣∣∣∣ ∫ ψ1(w + hv1)L0(v1) dv1

∣∣∣∣
×
∣∣∣∣ ∫ ψ2(w + hv2)L0(v2) dv2

∣∣∣∣ dx dw
=

∫
χ(w)

∣∣∣∣ ∫ ψ1(w + hv)L0(v) dv

∣∣∣∣ ∣∣∣∣ ∫ ψ2(w + hv)L0(v) dv

∣∣∣∣ dw
≤ (supχ)

2∏
k=1

[∫ {∫
ψk(w + hv)L0(v) dv

}2

dw

]1/2
,

where χ(w) =
∫
|ψ3(x)| fX(x) fU(w − x) dx. It follows from (B3)–(B4) that supχ

is bounded, uniformly in n (note that χ depends on h = h(n)) and in all forms of

ψ3 = ψℓ3 in the representation (A.41).

By Plancherel’s identity,

2π

∫ {∫
ψk(w + hv)L0(v) dv

}2

dw =

∫ ∣∣ξFtk (t)
∣∣2 dt ,

where ξFtk denotes the Fourier transform of ξk and ξk(w) =
∫
ψk(w + hv)L0(v) dv.

Also,

ξFtk (t) =

∫ ∫
exp(itw)ψk(w + hv)L0(v) dv dw

=

∫ ∫
exp{it (w + hv)− ihtv}ψk(w + hv)L0(v) dv dw

=

∫
exp(itx)ψk(x) dx ·

∫
exp(−ihtv)L0(v) dv

= ψFt
k (t)LFt

0 (−ht) = ψFt
k (t)ϕ−1

U (t)ϕK(ht) ,

where ψFt
k denotes the Fourier transform of ψk. Combining the bounds from (A.42)

down we deduce that

|I(ψ1, ψ2, ψ3)| ≤ (supχ)
(
sup

∣∣ϕK

∣∣) (2π)−1

2∏
k=1

{∫ ∣∣ψFt
k (t)ϕ−1

U (t)
∣∣2 dt}1/2

. (A.43)

If each component of each of fX , g, τ(· | θ0)ω and τ̇(· | θ0)ω has d2 absolutely integrable

derivatives (see (B4)) then the same is true of each function ψℓk appearing in (A.41);

and it remains true in the limit, as n → ∞ (meaning here that h → 0), in the sense
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that the integrals of the absolute values of each of the first d2 derivatives of each

component of each of fX , g, τ(· | θ0)ω and τ̇(· | θ0)ω are bounded as h decreases.

(The functions ψ0, ψ1 and ψ2 at (A.27) depend on h, but they and their derivatives

also satisfy (A.37) as n→ ∞.) In consequence, the respective characteristic functions

ψFt
ℓk of ψℓk all satisfy

∣∣ψFt
ℓk

∣∣ ≤ const. (1 + |t|)−d2 . (A.44)

If d2 > α+ 1
2
, which is ensured by (B5), then it follows from (A.44) and the inequality

|ϕU(t)| ≥ const. (1 + |t|)−α (this too is guaranteed by (B5)) that
∫
|ψFt

ℓk (t)ϕ
−1
U (t)|2 dt

is bounded uniformly in k, ℓ and h. Hence, by (A.43), |I(ψℓ1, ψℓ2, ψℓ3)| is bounded

uniformly in 1 ≤ ℓ ≤ ℓ0, where ℓ0 is as in (A.41), and so, by (A.40) and (A.42),

each component of h−4E(Q1Q
T
1 ), or equivalently of nE(V2V

T
2 ), is

bounded as n→ ∞.
(A.45)

Calculating the limit of nE(V2V
T
2 ), as n → ∞, requires only minor modification

of the argument above, as follows. For k = 1, 2, replace
∫
ψℓk(w + hvk)L0(vk) dvk by

the limit of that quantity as n→ ∞, which, for almost all w, is given by

lim
h→0

1

2π

∫
e−itwψFt

ℓk (t){L0(vk/h)/h}Ft dt = lim
h→0

1

2π

∫
e−itwψFt

ℓk (t)ϕK(ht)/ϕU(t) dt

=
1

2π

∫
e−itwψ̄Ft

ℓk (t)/ϕU(t) dt,

where ψ̄ℓk(t) = limh→0 ψℓk(t). Write ψ̄ for the version of ψ, at (A.41), when each∫
ψℓk(w + hvk)L0(vk) dvk in (A.42) is replaced by its limit. Then, arguing as above,

we deduce that the limit (as n→ ∞) of I(ψ1, ψ2, ψ3) is finite and therefore,

nE(V2V
T
2 ) = h−4E

(
Q1Q

T
1

)
+ o(1)

→ Σ1 ≡
∫ ∫

ψ̄(w,w, x) fX(x) fU(w − x) dx dw , (A.46)

where ψ̄(w,w, x) = E(SST ), with

S =
[ 1

2π

∫
e−itw(fX m)Ft(t)/ϕU(t) dt+ {g(x) + τ 1/2(x | θ0) ε}2

1

2π

∫
e−itwϕX(t)/ϕU(t) dt

− 2 {g(x) + τ 1/2(x | θ0) ε}
1

2π

∫
e−itw(fX g)

Ft(t)/ϕU(t) dt
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− 2 τ(x | θ0)
1

2π

∫
e−itwϕX(t)/ϕU(t) dt

]
τ̇(x | θ0)ω(x). (A.47)

Step 6. Central limit theorem for n1/2 V2.

In view of the representation (A.39) of V2, and of the property that n−1E{h−2
∑

j (Qj−

EQj)}2 converges to a finite limit as n → ∞ (see Step 5), it suffices to establish the

version of Lindeberg’s condition here, i.e. to show that, for each ϵ > 0,

E
{∥∥h−2Q1

∥∥2 I(∥∥h−2Q1

∥∥ > n1/2 ϵ
)}

→ 0 (A.48)

as n→ ∞. We shall prove that (A.48) holds if h satisfies (B8).

Using the representation (A.36) of Qj we deduce that ∥Q1∥ ≤ C1 (1 + Y 2
1 )h

1−α,

where C1 > 0 is a constant. Therefore the left-hand side of (A.48) is bounded above by

E
{∥∥h−2Q1

∥∥2 I(1 + Y 2
1 > C2 n

1/2 h1+α
)}
,

where C2 = ϵ/C1. If h satisfies (B8) then n1/2 h1+2α → ∞, implying that n1/2 h1+α →

∞. Therefore it suffices to prove that

E[∥h−2Q1∥2 I{m(X1) > c or ϵ2 > c}] can be made arbitrarily small,

uniformly in n, by choosing the constant c > 0 sufficiently large. (A.49)

Since Y and U , in the model at (1.1), are independent random variables then this

can be done using the method in Step 5. Specifically, in all stages in the derivation

of bounds to the components of the p × p matrix E(Q1Q
T
1 ), multiply the argument

of the expectation throughout by the random variable

J = I{m(X1) > c}+ I(ϵ2 > c) ,

so that we bound instead the components of E(Q1Q
T
1 J). In the string of identities

leading to (A.40), multiply the arguments of the expectations by J , leading to a ver-

sion of (A.41) in which each component of the p × p matrix of functions ψ has the

same general form, representable as a sum of products of three functions of the indi-

vidual variables x1, x2 and x as at (A.41). The argument leading to (A.43) produces

the same bound as before, except that now the factor (supχ) (sup |ϕK |) (2π)−1 on the

right-hand side of (A.43) can be replaced by a positive number a(c) that decreases to
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zero as c increases. Therefore (A.45) continues to hold, except that h−4E(Q1Q
T
1 ) is

replaced by h−4E(Q1Q
T
1 J), and the bound is multiplied by a(c). In particular, our

bound for each component of h−4E(Q1Q
T
1 J) is multiplied by the factor a(c). This

leads quickly to (A.49).

Step 7: Conclusion.

Condition (B8) prescribes the range of values θ in which we search for a solution

of the equation S(θ) = 0. Provided we confine attention to that region, (A.35) and

(A.45) imply that with probability converging to 1 a solution exists in the range. This

establishes part (i) of the theorem. Result (A.35) connects the vector V2 directly to

a solution θ̂ of the equation S(θ) = 0, and through this linkage, and the asymptotic

normality derived in Step 6, part (ii) of the theorem follows directly. The limiting

covariance matrix Σ is identified by (A.35), (A.46) and (A.47), and is given by Σ =

M−1
0 Σ1M

−1
0 , where M0 is as at (4.7) (see also (B7)) and Σ1 is as in (A.46).
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