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Abstract

Many statistical procedures involve calculation of integrals or optimization (min-

imization or maximization) of some objective function. In practical implementation

of these, the user often has to face specific problems such as seemingly numerical

instability of the integral calculation, choices of grid points, appearance of several

local minima or maxima, etc. In this paper we provide insights into these problems

(why and when are they happening?), and give some guidelines of how to deal with

them. Such problems are not new, neither are the ways to deal with them, but it

is worthwhile to devote serious considerations to them. For a transparant and clear

discussion of these issues, we focus on a particular statistical problem: nonparame-

tric estimation of a density from a sample that contains measurement errors. The

discussions and guidelines remain valid though in other contexts. In the density

deconvolution setting, a kernel density estimator has been studied in detail in the

literature. The estimator is consistent and fully data-driven procedures have been

proposed. When implemented in practice however, the estimator can turn out to

be very inaccurate if no adequate numerical procedures are used. We review the

steps leading to the calculation of the estimator and in selecting parameters of the

method, and discuss the various problems encountered in doing so.

Key words and phrases: Bandwidth selection, dramatic cancellation, fast Fourier trans-

form, numerical approximations, optimization.

1 Introduction

We consider kernel estimation of a density from a sample Y1, . . . , Yn of independent and

identically distributed (i.i.d.) random variables corrupted by measurement errors. More
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precisely, for i = 1, . . . , n, we assume that Yi = Xi + Zi, where Xi ∼ fX is the variable

of interest, and Zi ∼ fZ (fZ known) represents a measurement error independent of Xi.

In this context, Carroll and Hall (1988) and Stefanski and Carroll (1990) proposed a

so-called deconvolution kernel estimator of the density fX . Let K be a kernel function

that integrates to 1 and 0 < h = hn → 0, n → ∞ be a smoothing parameter called

the bandwidth. Under sufficient regularity conditions, the deconvolution kernel density

estimator of fX is defined by

f̂X(x; h) =
1

nh

n∑

j=1

KZ

(x − Yi

h
; h

)
, (1.1)

where

KZ(x; h) =
1

2π

∫
e−itxϕK(t)/ϕZ(t/h) dt , (1.2)

and ϕg represents the Fourier transform or characteristic function of a function or den-

sity g. When f̂X(x; h) is not real, the estimator is defined as the real part of (1.1).

Asymptotically this does not make any difference.

Theoretical properties of the estimator have been studied in many papers including

Carroll and Hall (1988), Stefanski and Carroll (1990), Fan (1991a,b,c), Fan (1992) and

Masry (1993a,b). Recent papers include Zhang and Karunamuni (2000), Meister (2004,

2006) and van Es and Uh (2004, 2005). It is well known that both the asymptotic

and finite sample performance of the estimator depend crucially on the value of the

bandwidth. Fully data-driven bandwidth selectors have been proposed by Stefanski and

Carroll (1990), Hesse (1999) and Delaigle and Gijbels (2002, 2004a,b). An extensive

simulation study conducted by Delaigle and Gijbels (2004b) shows that, when combined

with these bandwidth selectors, the deconvolution kernel density estimator has good finite

sample performance.

Although, in theory, the estimator and its bandwidth selectors work well, the suc-

cess of their practical implementations very much relies on adequate use of appropriate

techniques for calculating integrals and for optimizing objective functions. In particular,

direct implementation of some formulas available for the estimator and its bandwidth can

produce inaccurate results and we show how to deal with this. We will see that calculating

the estimator generally requires numerical approximations because, even when analytic

expressions are available, they may lead to erroneous results in practice. Next, we tackle

the minimization problem associated to bandwidth selection. In this deconvolution con-

text, one often has to minimize a function approximated by numerical means, and this

can be done by performing a grid search. We discuss an automatic choice of the grid based

on a normal reference procedure and illustrate the impact of the grid for different band-

width selectors. In particular, we show that the cross-validation procedure is extremely

2



sensitive to the grid choice and that caution is needed here. Obviously, the problems

investigated here might also appear in other contexts, and the chosen context serves as a

working platform. The aim of this paper is to report on these practical implementation

problems and discuss some approaches to deal with them. In addition, this will be a very

useful guideline for people who want to use the deconvolution kernel density estimator in

practice.

This paper is organized as follows. In Section 2, we discuss practical implementation

of the estimator. We show why analytic expressions cannot always be used and discuss

the choice of appropriate methods to evaluate the estimator numerically. In Section 3,

we deal with issues on the calculation of data-driven bandwidths in practice, referring to

optimization of objective functions in general.

2 Calculation of the estimator in practice

Calculation of the estimator in practice requires evaluation of the integral in (1.2), which

is usually not easy to calculate. In order to avoid problems of integrability, it is rather

common to work with a kernel K that has a compactly supported Fourier transform

ϕK . Two popular kernels in this context are the sinus cardinal (sinc) kernel K1(x) =

sin(x)/x and the kernel K2(x) = 48 cos x (1− 15 x−2)/(πx4)− 144 sin x (2− 5 x−2)/(πx5),

with characteristic functions ϕK1
(t) = 1[−1,1](t) and ϕK2

(t) = (1 − t2)
3
1[−1,1](t), where 1A

denotes the indicator function on a set A, i.e. 1A(x) = 1 for x ∈ A and 0 otherwise.

Delaigle and Hall (2006) show that, despite its unconventional shape, the kernel K2 is

very appropriate for deconvolution problems, and we therefore focus our attention on this

type of kernels.

2.1 Numerical approximations

A first, frequent scenario is that no closed form expression can be found for the integral

in (1.2). In cases where ϕZ behaves like a negative exponential in the tails (the so-called

supersmooth case), the integral involves at least a sine/cosine function, an exponential

function and the kernel K. A simple example is for a N(0;σ2) error density combined with

the kernel K2, where KZ(x; h) is proportional to
∫ 1

−1
cos(tx)(1 − t2)3 exp

(
t2σ2/(2h2)

)
dt.

Obviously, the function to integrate is oscillating and cannot be approximated accu-

rately by usual fast iterative numerical methods, such as Romberg’s method for example,

especially if successive iterations evaluate the integrand at grids of equidistant points xi

where successive grids are simply augmented by the middle points (xi + xi+1)/2 . For x a

multiple of 2π, if the initial grid is not large enough, the points of the first few successive

grids are located at maxima of cos(tx) · ϕK(t)/ϕZ(t/h) and the integrand is mistakenly
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Figure 2.1: Plot of cos(tx)(1 − t2)3 exp
(
t2σ2/(2h2)

)
for x = 40π with σ2/h2 = 6.4; the

dashed curve represents the function used by the numerical method of integration.

confused with a slowly varying function passing through these points, giving a completely

wrong approximation of the integral.

In Figure 2.1 for example, we present the function cos(tx)(1 − t2)3 exp
(
t2σ2/(2h2)

)

for x = 40π (the solid curve), with σ2/h2 = 6.4. Figure 2.1 also depicts, as circles, the

corresponding equidistant grid points of successive iterations for an initial 11 points grid,

and the wrong approximated function used by the numerical method (dashed curve). In

order to avoid such dramatic numerical problems, KZ must be calculated using numerical

methods devoted to approximations of Fourier transforms, such as, for example the Fast

Fourier Transform (FFT). See for example Press et al. (1992), Chapter 13.

2.2 Analytic expressions

Although the simplest case seems to be when analytic expressions of KZ are available,

we show here that these cannot always be used in practice. We illustrate the potential

numerical problems on a simple example, namely in the Laplace (σ) error case with

fZ(z) = (2σ)−1e−|z|/σ, for all z. For the sinc kernel (K1), straightforward calculations

lead to

KZ(x; h) =

{
1

π

sin x

x
+

σ2

πh2

(
sin x

x
+ 2

cos x

x2
− 2

sin x

x3

)}
.1{x 6=0} +

{
1

π
+

σ2

3πh2

}
.1{x=0}

(2.3)

whereas for the kernel K2, we have

KZ(x; h) =
48

π

{σ2

h2

[cos x

x8
(x4 − 95x2 + 840) +

sin x

x9
(−14x4 + 375x2 − 840)

]
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+
[cos x

x4
− 15

cos x

x6
− 6

sin x

x5
+ 15

sin x

x7

]}
.1{x 6=0} +

{
16σ2

315πh2
+

16

35π

}
.1{x=0}.

(2.4)

These expressions seem very simple but, in practice, they cannot be used for small

x, as explained below. Let Tn(g(x)) denote the nth order Taylor expansion of a function

g(x) around zero. The above expressions for KZ are coming from linear combinations

of integrals of the form
∫ 1

0
t2j cos(tx) dt, with j a positive integer. Let’s look first at the

simple example of the integral
1∫
0

t2 cos(tx) dt. By integration by parts, it is easy to see

that

1∫

0

t2 cos(tx) dt =
2

x3

[(
x2

2
− 1

)
sin x + x cos x

]
=

2

x3
[− sin xT2(cos x) + cos xT1(sin x)] .

More generally, for any positive integer j, we have, by integration by parts,

1∫

0

t2j cos(tx) dt =
(−1)j+1(2j)!

x2j+1
[− sin x · T2j(cos x) + cos x · T2j−1(sin x)], (2.5)

where, for x close to zero, (2.5) subtracts two close values, and multiplies the difference

by a very large value (x−2j−1). Evaluation of the difference by a computer can only be

approximated by a number with a finite number of digits which, when multiplied by

x−2j−1, can lead to huge errors of approximations called dramatic cancellation. As a toy

example, a computer that would work with only 6 digits would approximate (1.0000011−

1.000001) × 1020 = 1013 by (1.000001 − 1.000001) × 1020 = 0.

This problem has a huge impact on the calculation of KZ for the kernels K1 and K2,

and, more generally for kernels whose characteristic function is a combination of powers

of t2 on a finite support. See our discussion about Figure 2.2 below. Hence, in the neigh-

borhood of x = 0, we need to use an appropriate numerical approximation such as e.g.

the FFT.

Alternatively, the functions sin x and cos x in (2.5) could be approximated by their

Taylor expansion of order, respectively, 2j + 3 and 2j + 2. The resulting approximations

for KZ for the kernels K1 and K2 are respectively KZ(x; h) = π−1[1− x/2 + σ2/h2(1/3−

x2/10)] + O(x3/h2), and KZ(x; h) = π−1[16/35− 8/315x2 − σ2/h2(16/315 + 8/1155x2)] +

O(x3/h2). Of course, better approximations of KZ can be obtained by using higher order

Taylor expansions for sin x and cos x, but, in any case, these will always only be valid

in a neighborhood of x = 0. Figure 2.2 (left panel) compares the curves obtained by

calculating KZ for the kernel K2 using the three methods. The analytic curve and the
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Figure 2.2: Comparison of KZ in the Laplace error case for the kernel K2, using the

analytic expression (2.4), the FFT approximation or a Taylor expansion. The right panel

shows a zoom-in of the middle top part of the figure on the left-hand side.

FFT curve are confounded almost everywhere, but in the neighborhood of x = 0, the

analytic expression provides completely erroneous values. This is clearly seen from the

right panel in Figure 2.2 which shows a zoom-in of the middle top part of the picture in

the left panel. Further, without any surprise, the Taylor approximation is only good in a

neighborhood of x = 0.

Our discussion illustrates the care with which analytic expressions sometimes need to

be handled. The calculation of KZ in this particular study is just an example. In the

same context, for other more general errors/kernels, similar problems might occur. Careful

analysis has to be performed before using any analytic expression. In case of potential

problems and/or doubts, the FFT method seems to be an appropriate alternative, which

is quite efficient and can be calculated reasonably fast, and this for any value of x. It

would also be possible to combine the analytic expression for certain values of x with a

Taylor approximation for other values of x. Here one has to determine the values x where

each method can be applied.

3 Bandwidth selection

3.1 Calculation of objective functions to be optimized

Delaigle and Gijbels (2004b) propose several ways to select the bandwidth in practice,

based on minimization of a consistent estimator of the Mean Integrated Squared Error

(MISE) of the estimator, where MISE(h) = E
∫

[f̂X(x; h) − fX(x)]2 dx. They propose

a normal reference method, a bootstrap method and a plug-in method, and compare
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the procedures with the cross-validation method of Stefanski and Carroll (1990). Their

extensive simulation results show that the plug-in bandwidth seems to perform uniformly

better. In this section, we show how the quantities involved in the plug-in bandwidth

selection procedure can be handled more easily when written in their Fourier domain.

The plug-in (PI) bandwidth is obtained by minimization of the following estimator of

the asymptotic MISE

ÂMISE(h) = (nh)−1

∫
{KZ(x; h)}2 dx +

h4

4
µ2

K,2θ̂2, (3.6)

where µK,2 =
∫

x2K(x)dx, θ̂r =
∫
{f̂

(r)
X (x; hr)}

2 dx, with f̂
(r)
X representing the rth deriva-

tive of the density estimator (1.1) and where hr is the bandwidth optimal for estimation

of θr =
∫
{f

(r)
X (x)}2 dx by θ̂r. Calculation of a well-performing PI bandwidth in practice

requires evaluation of θ̂r for different values of r. For a second order kernel K for example,

we need to calculate θ̂r for r = 2 and 3, where in each case, the bandwidth hr is selected

by minimization of the quantity

D(hr) = −h2
rµK,2θ̂r+1 + (nh2r+1

r )−1

∫
{K

(r)
Z (x; h)}2 dx. (3.7)

The complete PI bandwidth selection procedure requires the calculation of
∫
{K

(r)
Z (·; h)}2,

for r = 0, 2 and 3 and θ̂r for r = 2 and 3. Direct calculation necessitates numerical

integration of {f̂
(r)
X (·; hr)}

2 and {K
(r)
Z (·; h)}2 over the whole real line, which, in general,

proves to be a difficult and inaccurate task, partly because the integration bounds are

infinite and f̂
(r)
X and K

(r)
Z are themselves defined by an integral which can often only be

approximated numerically.

The PI bandwidth can be calculated accurately and rather easily when all integrals

in (3.6), (3.7) and θ̂r are transformed in their Fourier domain. Application of Parseval’s

identity leads to

θ̂r = (2πh2r+1
r )−1

∫
t2r|ϕ̂Y (t/hr)|

2.|ϕK(t)|2|ϕZ(t/hr)|
−2 dt,

where ϕ̂Y = n−1
∑n

j=1 eitYj denotes the empirical characteristic function of Y , and

∫
{K

(r)
Z (x; h)}2 dx = (2πnh2r+1

r )−1

∫
t2r|ϕK(t)|2|ϕZ(t/hr)|

−2 dt .

These integrals are considerably easier to calculate since now the integration bounds are

finite when ϕK is compactly supported (as is the case for e.g. the popular kernels K1 and

K2).
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3.2 Minimization procedures

The PI bandwidth, as well as the other practical bandwidth selectors, require minimization

of an approximation of the MISE, say M̂ISE for convenience. In the PI case, an analytic

expression can sometimes be found for the M̂ISE. For example, for the kernel K2 and

a Laplace(σ) error, simple calculations show that h is the solution of −256/153153σ4 −

512/45045σ2h2 − 256/9009h4 + 3θ̂2πnh9 = 0. In this case, the bandwidth h is thus the

solution of a 9th order polynomial and can be very easily approximated numerically by

most mathematical softwares. In many cases however, like for example a normal error and

a kernel such as K2, the integral
∫
|ϕK(t)|2|ϕZ(t/h)|−2 dt cannot be calculated analytically

and has to be approximated by numerical integration. If the integrand is very smooth

and does not oscillate much, a fast method such as Romberg’s method can be used. In

other cases, the slow but more robust trapezoid rule is more appropriate.

More generally, for many bandwidth selection methods, the objective function M̂ISE

can only be approximated numerically and, as a result, its dependence in h is unclear. In

order to find the minimum, one has to perform a grid search, i.e. on a grid of values of h,

search for the bandwidth that minimizes M̂ISE. A first task is thus to fix an interval where

to search for the solution. For the PI, bootstrap and normal reference approximations

of the MISE, this step is not crucial because M̂ISE is generally a convex function (if no

solution is found in the selected interval, the solution will be found after enlarging the

interval). Whereas the calculations involved with the normal reference bandwidth ĥNR of

Delaigle and Gijbels (2004b) are simple and very fast, a good choice of an initial grid can

reduce considerably the computational time involved in the PI and bootstrap procedures.

For these reasons, we propose to

1). Search for ĥNR on an overlarge grid – for example [m,M ], where m (resp. M)

denotes the minimum (resp. maximum) distance between two observations;

2). Since ĥNR is known to usually oversmooth the data, search for the PI/bootstrap

bandwidth on the grid [0.1ĥNR,2ĥNR];

3). If the solution is not found, widen the grid until a solution is found.

Obviously, these guidelines apply for many bandwidth selection procedures of similar type.

For some methods of bandwidth selection, once the grid has been fixed, one can

still face another type of problem: non uniqueness of the solution. In the case of the

sinus cardinal kernel K1, for example, it is easy to check that the optimal bandwidth

(the one that minimizes the MISE) is a solution of the equation MISE′(h) = 0 ⇐⇒

−1 + (n + 1)|ϕY (1/h)|2 = 0. A data-driven bandwidth can be found by replacing ϕY

by its empirical estimator, which leads to an equation that has multiple roots. A similar
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phenomenon occurs even with more general kernels with the cross-validation (CV) method

of Stefanski and Carroll (1990). Interestingly, among the multiple solutions, the global

minimiser of the M̂ISE is not necessarily the most appropriate bandwidth, neither are we

guaranteed to even find an acceptable bandwidth.

h
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Figure 3.3: Typical shape of M̂ISE −
∫

f 2
X for a sinc kernel (left). Estimators of the

mixture density (the solid curve) from one sample using three local bandwidth solutions

(right).

In Figure 3.3 for example, we show, on the interval [0.15,1.0], the typical shape of

M̂ISE −
∫

f 2
X for the sinc kernel (in this case when the sample comes from a mixture of

two Gaussian densities contaminated by Laplace error). On this restricted interval, we

already have 3 local minimisers (0.235, 0.271, 0.451). Figure 3.3 also shows the target

mixture density (solid curve) along with the estimators using these three solutions. It is

clear that h = 0.451 is the best of all the solutions, but yet this bandwidth is not the

global minimiser of M̂ISE. In practice one cannot guess which of the multiple roots is

the best one. Moreover, the performance of this and the CV method depends heavily

on the interval chosen. It is possible to define rules such as, restrict to a small interval

[a·ĥNR, b·ĥNR] with a < b (for example b = 1.2 and a = 0.2), but, in this case, these choices

have a strong impact on the bandwidth selected. An illustration of this is provided in

Figure 3.4 in which we report on results from 500 simulated samples of size n = 100 from

the same mixed normal density contaminated with Laplace error. For the left figure, the

bandwidth chosen was the largest solution in the interval [0.15, 1]. For the right figure, the

bandwidth was searched for in the interval [0.15, 0.6]. In the cases no solution was found

on [0.15, 0.6], a solution was searched outside that interval. Based on all simulated samples

we ordered the obtained estimators according to their performance in terms of Integrated

Squared Error (ISE) and in Figure 3.4 we present the estimated curves for which this

performance corresponds to the first quantile, the median and the third quartile of the
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sequence of ordered ISE-values.
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Figure 3.4: Estimators of the mixed normal density, from samples of size n = 100 con-

taminated with a Laplace error, using the sinc kernel, and taking grids [0.15, 1] (left) and

[0.15, 0.6] (right).

In summary, methods such as cross-validation turn out to be quite unreliable and

should be used with the necessary cautions towards difficulties mentioned above. We

advise to use, when possible, other methods such as plug-in or bootstrap methods, which

are more stable. See also Delaigle and Gijbels (2004b).

The above reported items related to calculation of objective functions and to optimiza-

tion of such functions are just illustrations of practical problems one needs to be aware

of, and needs to take care of when using statistical procedures.
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