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Abstract

Mathematical models of swarms of moving agents with non-local interactions have many applications and have been the subject
of considerable recent interest. For modest numbers of agents, cellular automata or related algorithms can be used to study such
systems, but in the present work, instead of considering discrete agents, we discuss a class of one-dimensional continuum models,
in which the agents possess a density ⇢(x, t) at location x at time t. The agents are subject to a stochastic motility mechanism and to
a global cohesive inter-agent force. The motility mechanisms covered include classical di↵usion, nonlinear di↵usion (which may
be used to model, in a phenomenological way, volume exclusion or other short-range local interactions), and a family of linear
redistribution operators related to fractional di↵usion equations. A variety of exact analytic results are discussed, including equi-
librium solutions and criteria for unimodality of equilibrium distributions, full time-dependent solutions, and transitions between
asymptotic collapse and asymptotic escape. We address the behaviour of the system for di↵usive motility in the low-di↵usivity
limit for both smooth and singular interaction potentials and show how this elucidates puzzling behaviour in fully deterministic
non-local particle interaction models. We conclude with speculative remarks about extensions and applications of the models.
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1. Introduction

Mathematical models of swarms of moving agents with non-
local interactions have many applications and have been the
subject of considerable recent interest [1, 2, 3, 4]. For mod-
est numbers of agents, cellular automata or related algorithms
can be used to study such systems, but in the present work,
instead of considering discrete agents, we shall examine a one-
dimensional continuum model, in which the agents possess a
density ⇢(x, t) at location x at time t.

In the evolution equation

@⇢

@t
+
@

@x

h

⇢(x, t)
Z 1

�1
f (x � ⇠)⇢(⇠, t)d⇠

i

= 0 (1)

if f = �W 0 is an odd function (associated with a symmetric
potential W), one may interpret f as an inter-agent force (scaled
against a local resistance to motion) that induces a drift velocity
for each agent relative to the instantaneous location of the rest
of the swarm. The case of a double-well potential [5, 6, 7] has
received comparatively little attention in the literature to date,
and will be specially emphasised in the present paper. We shall
only consider the case in which the inter-agent force is cohesive
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at large distances, that is, f (x) < 0 and so W 0(x) > 0, for all
su�ciently large positive x), and we shall normally insist that
the system has finite agent mass, that is

C =
Z 1

�1
⇢(x, t)dx (2)

is finite, although for certain asymptotic arguments we shall
relax this constraint briefly. Since Eq. (1) has the form of a
continuity equation, it conserves mass, so C is independent of
time. For related references concerning the non-local interac-
tion equation (1) with purely aggregating or repulsive poten-
tials (and possible di↵usion) we refer to the following papers:
[8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18].

If the interactions are cohesive at all inter-agent distances,
one would expect a finite-mass swarm to collapse and ultimately
occupy a small high-concentration region, with ⇢ converging in
an appropriate sense to a delta function. In agent-based simu-
lations, complete collapse can be prevented by imposing vol-
ume exclusion, while for continuum modelling, collapse can be
opposed by making the inter-agent force repulsive at short dis-
tances (see Carrillo et al. [9] and references therein, and Holm
and Putkarazade [19, 20]). The consequences of the competi-
tion between attractive and repulsive regimes may lead to inter-
esting structures when the system has been allowed to evolve
for a long time.

In this paper, we retain the inter-agent force, but also equip
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agents with an additional stochastic motility mechanism. In cer-
tain cases, the stochastic motility mechanism can prevent com-
plete collapse, even when the inter-agent force is always cohe-
sive. For substantial parts of the discussion we keep W(x) quite
general, but to reveal some subtle aspects of the problem it is
helpful to consider consider potentials of the form

W(x) = ↵|x| + �x2 + �|x|3 + �x4, (3)

with the sign of the coe�cient of the highest power present
taken to be positive to ensure a cohesive interaction at large dis-
tances. When two coe�cients on such a potential are nonzero
and have opposite signs, a double-well potential will result and
such cases are especially interesting. As the potential for a
given force is indeterminate up to an additive constant, we may
safely assume that W(0) = 0 in all cases where the potential has
a finite limit as the agent separation tends to zero.

The models to be considered are introduced in Section 2. In
these models the cohesive force mechanism is always the same,
but the stochastic motility mechanism can be classical linear
di↵usion, or more general linear processes, such as stable pro-
cesses or fractional di↵usion; and we also consider nonlinear
di↵usion. Some general results for the linear di↵usion motility
mechanism are given in Section 3. The motion of the mean (the
centre of mass) is determined, and it is demonstrated that for
a quadratic potential the variance has a finite asymptotic limit,
motivating a study of equilibrium (that is, time-independent)
solutions. It is shown that finite-mass equilibrium solutions
are precluded if the potential is bounded, while decaying upper
bounds on the tail of the equilibrium solution are exhibited for
convex potentials. Specific examples of equilibrium solutions
for linear di↵usion involving algebraic potentials are addressed
in Section 4. We note that broad questions concerning the long-
time behaviour of systems such as those we study have been ad-
dressed elegantly using entropy methods and related techniques
by Carrillo et al. [21], under assumptions of convexity of the
potential. For more recent developments, see Bolley et al. [22].
However the approach that we follow here is based solely on
analytical techniques with which most physicists and applied
mathematicians would be familiar, and which prove to be espe-
cially useful for the potentials used on our specific illustrations.

To elucidate some subtle aspects of the di↵usion-free evo-
lution equation (1), we consider in Section 5 the solutions in the
limit of small di↵usivity of our model that incorporates linear
di↵usion. We show how, for the model potentials considered in
Section 4, known results for Eq. (1) can be recovered. We also
explore in Section 6 the e↵ect of smoothing of a potential with
singular behaviour at the origin on the structure of the equilib-
rium solutions and our analysis of the low-di↵usivity limit leads
to new insights concerning Eq. (1) for singular potentials.

In Section 7 we discuss equilibrium solutions when we take
nonlinear di↵usion as the stochastic motility mechanism and we
establish conditions under which the equilibrium solution can
have compact support. We return to the study of time evolv-
ing solutions in Section 8, where we consider a variety of linear
motility mechanisms with the specific case of a quadratic cohe-
sive potential. An interesting result is that for a broad class of

processes related to fractional di↵usion, the fate of the system
is collapse of the probability density function to a single Dirac
aggregate, that is, a single delta function.

For much of the paper, although a formal theorem-proof
structure is not used, arguments presented are either completely
rigorous, or involve completely written out calculations using
standard analytical techniques and asymptotic methods. A lit-
tle of the analysis in Section 5.1 and somewhat more of the
analysis in Section 6 is more heuristic and speculative in nature
and the reader’s attention will be drawn to this at appropriate
points.

The class of models that we consider can be generalized
to arbitrary space dimension, and some of the arguments that
we use can be adapted to return some exact results in dimen-
sions greater than one. However, even where such extensions
are possible, we have confined our attention to one space di-
mension for clarity in the discussion. It is perhaps appropriate
to note that in the most mathematically subtle problems that we
address in Sections 5 and 6, the di�culties in a one-dimensional
analysis are already significant, and the scenario for which we
present evidence in one dimension may be somewhat simpler
than what happens in higher dimensional systems.

2. Classes of models

Many authors have investigated the behaviour of the non-
local transport equation (1) with various interaction potentials
W, where f = �W 0. For a purely attractive interaction the dy-
namics leads typically to the formation of a single Dirac ag-
gregate either in infinite or in finite time depending on whether
the interaction force �W 0(x) tends to zero as x ! 0 or remains
bounded away from zero as x ! 0 (like W 0(x) ⇠ sgn(x), corre-
sponding to W(x) ⇠ |x|); see [6] and the references therein.

The formation of pattern of multiple aggregates is known
for double-well type repulsive-attractive interaction potentials,
like for instance Morse potentials in swarming or models of cell
aggregation, see e.g. [23, 24, 25, 26, 27, 28, 29].

In Fellner and Raoul [5, 6] the stability analysis of multi-
ple aggregation pattern showed that the stable stationary states
of Eq. (1) for smooth (i.e., C2) double-well potential consist of
finitely many Dirac masses. In contrast, a singular repulsive
double-well potentials (like W(x) ⇠ �|x| at x = 0) will prevent
the formation of Dirac mass and feature a continuous distribu-
tion of mass. In particular, an explicit example with a smoothed
repulsive modulus potential at x = (i.e. W(x) = x2 � |x|✏ where
| · |✏ is quadratically smoothed on �✏ < x < ✏) shows that Eq. (1)
can have arbitrarily many [O(✏�1)] Dirac masses as stable sta-
tionary states.

One result of the present paper shows that when a di↵usion
process (which we choose to be linear to enable explicit cal-
culation) with a di↵usivity that is su�ciently small relative to
✏2 is added to Eq. (1) these multiple-aggregate stationary states
will still exist as multiple smoothed aggregates, for which we
construct the leading-order asymptotics.

The stochastic motility mechanisms that we consider fall
into two broad classes. The first class (Section 2.1) covers
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classical linear di↵usion [30, 31] and Lévy’s stable processes
[31], and also processes corresponding to fractional di↵usion
equations [32]. Classical linear di↵usion and Levy’s stable pro-
cesses both arise as continuum limits of discrete-time random
walk processes, with finite and infinite mean-square displace-
ment per step, respectively. They are also relevant to continuous-
time random walk processes, provided that the mean waiting
time between steps is finite. Fractional di↵usion equations are
closely related to continuous-time random walk processes that
cannot be decomposed into steps with finite mean-square dis-
placement taking place at random intervals. Although in this
paper we do not address simulations, it would be relatively
straightforward to simulate the models with multiple random
walkers moving on a lattice.

Our second class of motility models is nonlinear di↵usion.
A general rigorous stochastic processes basis for nonlinear dif-
fusion appears to be lacking, but nonlinear di↵usion processes
naturally arise in mean-field treatments of systems with many
random walkers who have local interactions such as volume
exclusion, a preference for, or abhorrence of, near-neighbours,
and so on [33]. Although in general the mean-field arguments
do not produce rigorous continuum limits, the partial di↵eren-
tial equations that they produce frequently agree with simula-
tions [34, 35, 36, 37], and for the simplest exclusion processes
some mean-field predictions turn out to agree with rigorous re-
sults [38, 39].

2.1. Linear motility models
To establish notation for later use, we define the Laplace

transform and Fourier transform, respectively, by

bf (u) = L{ f (t); t 7! u} =
Z 1

0
e�ut f (t)dt, (4)

f̃ (q) = F {g(x); x 7! q} =
Z 1

�1
eiqxg(x)dx. (5)

For a function h(x, t) of both position and time we shall use
the spatial Fourier transform at fixed time h̃(q, t), the temporal
Laplace transform at fixed positionbh(x, u) and the joint Fourier-
Laplace transform

h⇤(q, u) = J{h(x, t); x 7! q, t 7! u} (6)

=

Z 1

�1
eiqx

Z 1

0
e�uth(x, t)dt dx (7)

= L{h̃(q, t); t 7! u} = F {bh(x, u); x 7! q}. (8)

Consider the evolution equation

@⇢

@t
= D⇢(x, t) � @

@x

n

⇢(x, t)�
Z 1

�1
f (x � ⇠)⇢(⇠, t)d⇠

o

, (9)

where D is a linear operator discussed in detail below, f (x) =
�W 0(x) is an odd, locally integrable function and the integral
over (�1,1) is to be interpreted in a Cauchy principal value
sense if it is not absolutely convergent, as

�
Z 1

�1
f (x � ⇠)�(⇠)d⇠ = lim

L!1

Z L+x

�L+x
f (x � ⇠)�(⇠)d⇠. (10)

A consequence of this is that if we do not insist that solutions
correspond to finite total mass, for most motility mechanisms
combined with a symmetric potential, ⇢(x, t) = constant is a
formal equilibrium solution for x 2 (�1,1).

We shall require solutions ⇢(x, t) of the equation to be non-
negative and, except for the discussion of rather subtle issues
in Section 6.2, that the ‘total mass’ defined by Eq. (2) is finite
and conserved. Subject only to modest decay requirements on
⇢(x, t) as |x| ! 1 we see by integrating Eq. (9) that mass con-
servation requires

Z 1

�1
D⇢(x, t)dx = F {D⇢(x, t); q 7! 0} = 0. (11)

We shall work with a normalised mass distribution and interpret

p(x, t) =
⇢(x, t)

C
(12)

as a probability, so that

@p
@t
= Dp(x, t) �C

@

@x

n

p(x, t)�
Z 1

�1
f (x � ⇠)p(⇠, t)d⇠

o

. (13)

Subject to the mass conservation condition, the linear operator
D is one of the following (listed in order of increasing general-
ity).

(a) A second-order di↵erential operator in the space vari-
able, for example, that corresponding to classical di↵usion, with
a constant di↵usivity D and a constant drift velocity v, so that

D = D
@2

@x2 � v
@

@x
. (14)

(b) The infinitesimal generator of a Markov process on the
real line or some other linear pseudodi↵erential operator oper-
ator acting on the space variable x, so that

F {Dp(x, t); x! q} = �a(q)p̃(q, t), (15)

for example a symmetric stable process of order  2 (0, 2] for
which a(q) = K|q| (K > 0). In general, the mass conservation
condition requires a(0) = 0.

(c) A linear pseudodi↵erential operator acting on the space
variable x and the time variable t, so that

J{Dp(x, t); x! q, t ! u} = �b(q, u)p⇤(q, u), (16)

which will include processes equivalent to certain fractional dif-
fusion equations. For mass conservation we need b(0, u) = 0 for
all u > 0.

2.2. Noninear motility models
We may replace the motility mechanism of Section 2.1 with

nonlinear di↵usion:
@⇢

@t
=

@

@x

h

D(⇢)
@⇢

@x

i

� @

@x

n

⇢(x, t)�
Z 1

�1
f (x � ⇠)⇢(⇠, t)d⇠

o

, (17)

Examples of the nonlinear di↵usivity D(⇢) that arise from mean-
field treatments of agent-based systems include a model allow-
ing multiple agents per site for which [40, 41]

D(⇢) = D0
�

g(⇢) + ⇢g0(⇢)
 

, (18)
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with g(⇢) 2 [0, 1]; a model with excluded volume and a pre-
ferred local coordination number [35], for which

D(⇢) = D0
�

1 � 2⇢(1 � ⇢)g0(⇢)/g(⇢)
 

. (19)

with g(⇢) > 0 and ⇢ 2 [0, 1]; and a variety of models related to
chemotaxis [42].

We give some exact results for the power-law di↵usivity
D(⇢) = D⌘⇢⌘ subject to the potentials W(x) = �x2 and W(x) =
↵|x| (↵, � > 0) in Section 7 and Appendix C.

3. Some general results for the linear di↵usion case

The explicit introduction of the Cauchy principal value in
Eq. (13) guards against the possibility that the probability den-
sity function is so widely spread that

Z 1

�1
|W(x)|p(x, t)dx = 1.

Since the inter-agent force being cohesive at large distances op-
poses spreading, the integral can be interpreted in the ordinary
sense in those cases where the stochastic motion by itself is
known to produce densities that decay su�ciently rapidly at in-
finity. In the case where the stochastic component of the agent
motion is classical di↵usion, for an initial density of finite sup-
port, the density is exponentially small at remote distances for
subsequent times, so that for potentials with at most polynomial
growth, reference to the Cauchy principal value is unnecessary.
Thus, if we take Eq. (14) to characterise the stochastic compo-
nent of motion, we have

@p
@t
=

@

@x

h

D
@p
@x
�vp(x, t)�Cp(x, t)

Z 1

�1
f (x�⇠)p(⇠, t)d⇠

i

. (20)

3.1. Time evolution of the mean and variance
An evolution equation for the mean position

µ1 =

Z 1

�1
xp(x, t)dx (21)

(which corresponds to the centre of mass) can be obtained by
multiplying Eq. (20) by x and integrating. After an integration
by parts, and assuming su�cient decay of p(x, t) as x ! ±1,
we find that

dµ1

dt
= v +CI(t), (22)

where

I(t) =
Z 1

�1

Z 1

�1
f (x � ⇠)p(x, t)p(⇠, t)d⇠ dx. (23)

If we interchange the roles of x and ⇠ in the definition of I(t),
interchange the orders of integration, and use the oddness of f ,

we see that

I(t) =
Z 1

�1

Z 1

�1
f (x � ⇠)p(x, t)p(⇠, t)d⇠ dx

=

Z 1

�1

Z 1

�1
f (⇠ � x)p(⇠, t)p(⇠, t)dx d⇠

=

Z 1

�1

Z 1

�1
f (⇠ � x)p(x, t)p(⇠, t)d⇠ dx

= �
Z 1

�1

Z 1

�1
f (x � ⇠)p(x, t)p(⇠, t)d⇠ dx = �I(t), (24)

so that I(t) ⌘ 0, showing that the mean position µ1 moves with
the mean drift velocity v for the di↵usive process, as one might
reasonably have anticipated.

We now examine the time evolution of the variance

V =
Z 1

�1
(x � µ1)2 p(x, t)dx. (25)

After two integrations by parts, and again assuming su�cient
decay of p(x, t) as x! ±1, we find that

dV
dt
= 2D + 2C

Z 1

�1

Z 1

�1
(x � µ1) f (x � ⇠)p(x, t)p(⇠, t)d⇠ dx.

(26)
In the absence of the inter-agent interaction, we recover the
classical result that V(t) = V(0) + 2Dt. Cohesive interactions
would be expected to reduce the e↵ective di↵usion constant,
but the e↵ects can be somewhat more dramatic.

Consider the specific case of a quadratic cohesive potential

W(x) = �x2, (27)

so that f (x) = �2�x. We observe that for this potential,

(x � µ1) f (x � ⇠) = �2�(x � µ1)(x � ⇠)
= �2�

⇥

(x � µ1)2 + (x � µ1)(µ1 � ⇠)
⇤

. (28)

The integral in Eq. (26) can now be simplified and we find after
a little algebra an ordinary di↵erential equation for the variance:

V 0(t) + 4C�V(t) = 2D. (29)

Solving this equation in the usual way via an integrating factor,
we find that

V(t) = V(0) exp(�4C�t) +
D

2C�
[1 � exp(�4C�t)]. (30)

Hence, independent of the details of the initial probability den-
sity function P(x, 0) we find that for the quadratic potential (27),

lim
t!1
V(t) =

D
2C�
, (31)

where the convergence is exponentially rapid. This example
shows that it is possible for a cohesive potential to prevent ulti-
mate escape to infinity via di↵usion, but for the e↵ect of di↵u-
sion to be strong enough to stop the mass distribution collapsing
to a single delta function.
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3.2. Equilibrium probability densities for general potentials
In view of the result we have established for the time evolu-

tion of the mean, we may confine future attention in this section
to the zero drift case (v = 0). Our proof that for a quadratic co-
hesive potential the variance converges to a positive constant
as t ! 1 suggests that one might seek steady-state solutions
of Eq. (20), which should represent the long-time limiting state
of the system. When p(x, t) is independent of t, we shall write
p(x, t) = P(x).

A steady-state solution with zero flux requires the square-
bracketed term in the right-hand side of Eq. (20) to be zero for
all x. Thus

P0(x) =
CP(x)

D

Z 1

�1
f (x � ⇠)P(⇠)d⇠. (32)

Relevant solutions of Eq. (32) are subject to the constraints that

P(x) � 0 and
Z 1

�1
P(x)dx = 1. (33)

Let P(x) be a solution of Eq. (32) that satisfies the require-
ments (33) and let $(x) = P(x � c), for some constant c. Then
on making the changes of variable x! x � c and ⇠ ! ⇠ � c we
find that

�D$0(x) +$(x)C
Z 1

�1
f (x � ⇠)$(⇠)d⇠ = 0.

Hence if P(x) is a solution of our problem, so is p(x � c). We
have seen that for the time-dependent problem, the mean µ1
is constant, so the existence of a free parameter in the general
solution for a steady state, which we hope captures the long-
time limit, is to be expected. We are at liberty to set µ1 = 0 if
we wish, though we shall not always do this.

Does the oddness of the function f ensure that P is symmet-
ric about its mean, that is, P(x � µ1) ⌘ P(µ1 � x)? If again we
take P to be a solution and we now let '(x) = P(c� x), then we
have

�D'0(x) +C'(x)
Z 1

�1
f (x � ⇠)'(⇠)d⇠

= DP0(c � x) +CP(c � x)
Z 1

�1
f (x � ⇠)P(c � ⇠)d⇠

= DP0(c � x) +CP(c � x)
Z 1

�1
f (x � c + ⇣)P(⇣)d⇣

= DP0(c � x) �CP(c � x)
Z 1

�1
f (c � x � ⇣)P(⇣)d⇣ = 0.

Hence if P(x) is a solution, so is P(c � x). In particular, if
P0(x) is a solution with mean zero, then P+(x) = P0(x�µ1) and
P�(x) = P0(µ1 � x) are both solutions of the problem with the
same mean µ1, and a common value at x = µ1. This supports,
but does not prove conclusively, the claim that P0(x � µ1) ⌘
P0(µ1 � x). Of course, if p(x, 0) is symmetric about x = µ1 and
P(x) = limt!1 p(x, t) exists, then because of the symmetries of
the problem, P(x) is necessarily also symmetric about the mean.

If we eliminate f in favour of the derivative of the potential
[ f (x � ⇠) = �W 0(x � ⇠)] then we have

P0(x) = �CP(x)
D

Z 1

�1
W 0(x � ⇠)P(⇠)d⇠

and so
d
dx

log[P(x)] = �C
D

Z 1

�1
W 0(x � ⇠)P(⇠)d⇠, (34)

corresponding to

P(x) = constant ⇥ exp
n

�C
D

Z 1

�1
W(x � ⇠)P(⇠)d⇠

o

From the requirements (33), the constant must be strictly posi-
tive and so we see that unless W(x) ! 1 at finite x, we cannot
have P(x) = 0 anywhere—for a continuous potential, equilib-
rium solutions with bounded support are precluded. Hence in
particular P(µ1) , 0 and

P(x) = P(µ1) exp
n

�C
D

Z 1

�1
[W(x�⇠)�W(µ1�⇠)]P(⇠)d⇠

o

. (35)

If W(z) is bounded, that is, |W(z)| < w < 1 for all z, then
from the triangle inequality �2w  |W(x� ⇠)�W(µ1 � ⇠)|  2w
and so, recalling also the normalization integral (33), we deduce
the bounds

P(µ1) exp
⇣

�2wC
D

⌘

< P(x) < P(µ1) exp
⇣2wC

D

⌘

.

The lower bound for P(x) is inconsistent with the requirement
that p(x) be integrable on (�1,1). There are therefore no “fi-
nite mass” equilibrium solutions of the problem on (�1,1) for
a bounded potential.

Suppose now that W(z) is a convex function (i.e., is “con-
cave up”) and that

�1 <
Z 1

�1
W(x � ⇠)P(⇠)d⇠ < 1,

an innocent assumption for potentials of at most polynomial
growth at infinity. Interpreting the integral as an expectation
and using Jensen’s inequality E{�(X)} � �(E{X}) for convex �,
we have

Z 1

�1
W(x � ⇠)P(⇠)d⇠ � W(x � µ1) (36)

and so
P(x)
P(µ1)

 constant ⇥ exp
⇣

�C
D

W(x � µ1)
⌘

. (37)

Thus if we want a non-trivial equilibrium solution that decays
algebraically at infinity rather than exponentially, we need rather
slow growth of the potential W(x) as x ! 1, for example,
W(x) ⇠ constant ⇥ log(x).

4. Equilibrium linear di↵usion with algebraic potentials

We address here equilibrium solutions for special cases of
the class of potentials

W(x) = ↵|x| + �x2 + �|x|3 + �x4, (38)
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4.1. An autonomous system analysis
We shall assume that the even potential function W(x) is

given by
W(x) = ↵|x| + �x2, (39)

where either (i) ↵ > 0 and � = 0 or (ii) � > 0, to ensure global
attraction. Then we have

W 0(x) = ↵ sgn(x) + 2�z, W 00(x) = 2↵�(x) + 2�

where we denote Dirac’s delta function by �(·) to distinguish it
from the parameter � used elsewhere in this paper, and so

d2

dx2 log[P(x)] = �C
D

Z 1

�1
W 00(x � ⇠)P(⇠)d⇠ (40)

= �C
D

Z 1

�1
[2↵�(x � ⇠) + 2�]P(⇠)d⇠. (41)

Hence from Eq. (34),

P00(x)
P(x)

� P0(x)2

P(x)2 = �
2↵C

D
P(x) � 2�C

D
. (42)

This is an autonomous di↵erential equation and can be analysed
in the standard manner. We note that there is related earlier
work for Morse-type potentials [18].

We observe that if $(x) is a solution of Eq. (42), then so are
$(x � x0) and $(x0 � x) for any constant x0. Choose x0 to be a
point where $0(x0) = 0. Then $(x� x0) and $(x0 � x) are both
solutions of the initial value problem defined by Eq. (42) with
p(x0) = $(x0) and p0(x0) = 0. Hence from the uniqueness of
solutions to the initial value problem, $(x� x0) = $(x0� x) for
all x. Thus we see that every solution of Eq. (42) has a reflection
symmetry around any stationary point. This forces the solution
to be unimodal, as otherwise there would be infinitely many
maxima and minima, with all maxima having the same height,
and decay of p at ±1, required for normalisation, would be
precluded. From the symmetry we conclude that the unique
stationary point corresponds to the mean µ1.

If we let Q = P0(x) we obtain

1
2P

d
dP

(Q2) � Q2

P2 = �
2↵C

D
P � 2�C

D

and multiplying both sides by 2/P we see that

d
dP

⇣Q2

P2

⌘

= �4↵C
D
� 4�C

DP
.

We seek a solution with P0(µ1) = 0, corresponding to Q = 0 at
P = P(µ1) and P(x) monotonic decaying for x > µ1, so that

�Q2

P2 = �
4↵C

D
[P(µ1) � P] � 4�C

D
log

hP(µ1)
P

i

.

Hence

P0(x)2 =
4↵C

D
P(x)2[P(µ1) � P(x)] +

4�CP(x)2

D
log

hP(µ1)
P(x)

i

.

(43)

In general Eq. (43) has to be solved numerically, with an iter-
ative procedure to determine P(µ1) based on the normalisation
condition

Z 1

�1
P(x)dx = 1. (44)

Case ↵ = 0. If ↵ = 0 and we write P(x) = P(µ1) exp[� (x)]
with  (µ1) = 0 and  (x) increasing for x > µ1, we have

 0(x)2 =
4�C (x)

D
, giving

dx
d 
=

D1/2

2�1/2C1/2 1/2

and the unique solution with  (µ1) = 0 is given by

x � µ1 = D1/2(�C)�1/2 (x)1/2,

that is,

 (x) =
�C(x � µ1)2

D
.

Fixing P(µ1) using the normalisation condition (44), we obtain
the solution

P(x) =
⇣�C

D

⌘1/2
exp

n

��C(x � µ1)2

D

o

. (45)

We note that the upper bound (37) is sharp.
Case � = 0. If � = 0, then to have a cohesive potential at

large separations we require ↵ > 0, and we have

P0(x)2 =
4↵C

D
P2[P(µ1) � P].

If we write P(x) = P(µ1)[1��(x�µ1)]2 with �(0) = 0, �0(z) > 0
for z > 0 and �(z) ! 1 as z ! 1 then a simple di↵erential
equation for � results, and we find that the unique equilibrium
solution is

P(x) =
↵C
4D

n

1 � tanh2
h↵C(x � µ1)

2D

io

=
↵C
4D

sech2
h↵C(x � µ1)

2D

i

.

(46)
Since sech2(z) ⇠ 4 exp(�2|z|) as z! ±1, we have

P(x) ⇠ ↵C
D

exp
⇣

�↵C|x � µ1|
D

⌘

as |x � µ1|! 1. (47)

Once again we find that the bound (37) is quite sharp.
Case ↵ , 0, � > 0. To facilitate numerical solutions and

perturbation analysis, we scale the problem by writing

X =
⇣C�

D

⌘1/2
(x � µ1), ✏ =

↵P(µ1)
�

, 0, (48)

where ✏ need not be small in magnitude, and may be positive or
negative. We seek a solution of the form

P(x) = P(µ1) exp[� (X)],  (0) = 0. (49)

The normalisation condition becomes
⇣ D
C�

⌘1/2
P(µ1)

Z 1

�1
exp[� (X)]dX = 1, (50)

while the di↵erential equation to be solved reduces to

 0(X)2 = 4 (X) + 4✏{1 � exp[� (X)]}. (51)
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We remark that C, D, ↵ and � are the physical parameters: the
parameter ✏ contains P(µ1). Since  (X)! 0 as X ! 0, we see
that in the vicinity of the origin,

 0(X)2 ⇠ 4(1 + ✏) (X), (52)

so that we shall always have ✏ > �1. Hence, if ↵ < 0 we have

P(µ1) <
�

|↵| if � > 0 and ↵ < 0. (53)

Since  (X) is an even function of X, we naturally seek a
small-X expansion in integer powers of X2. Using the func-
tions SeriesCoefficient and Solve in Mathematica (Wol-
fram Research, Version 8.0.0.0) we easily generate the expan-
sion

 (X) = (1 + ✏)X2 � ✏(1 + ✏)
6

X4 +
✏(1 + ✏)(3 + 4✏)

90
X6

� ✏(1 + ✏)(15 + 48✏ + 34✏2)
2520

X8

+
✏(1 + ✏)(105 + 624✏ + 1014✏2 + 496✏3)

113400
X10

+ O(X12). (54)

We also note that as X ! 1 we have  0(X) ⇠ 2 (X)1/2, from
which it follows that  (X) ⇠ X2 as X ! 1 for all ✏ > �1.
In the degenerate case ✏ = 0 we have  (X) ⌘ X2 for all X.
From the leading-order large X asymptotic behaviour of  (X),
we see that the exponential term in Eq. (51) can be neglected
to all orders in a large-X asymptotic expansion in powers of X,
and it is straightforward to verify that

 (X) = [X + b(✏)]2 � ✏ + O(X�2) as X ! 1, (55)

where b(✏) is not determined by the asymptotic analysis, re-
flects the initial condition  (0) = 0, and if required needs to be
determined by a matching procedure. In practice, to obtain so-
lutions to adequate precision for plotting one may use the series
expansion (54) for 0  X  X0 and the direct numerical solu-
tion of the ODE for X � X0, using the series estimate of  (X0)
as the initial value. The choice of X0 and the optimal number of
terms retained in the expansion (54) depends on ✏.

Equilibrium solutions P(x) for a range of values of the di-
mensionless parameter ↵

p

C/(�D) are shown in Fig. 1. We plot
(C�/D)1/2P as a function X = (C�/D)1/2(x � µ1). To obtain
these solutions we have solved the ODE for  for a number of
positive and negative values of ✏. For a given value of ✏ we can
infer (C�/D)1/2P(µ1) and ↵

p

C/(�D) by noting that Eq. (50)
can be written as

✏

↵
p

C/(�D)
=

⇣ D
C�

⌘1/2
P(µ1) =

8

>

>

<

>

>

:

Z 1

0

e� d 
p

 + ✏(1 � e� )

9

>

>

=

>

>

;

�1

.

(56)
The analysis of this problem for very small D is quite subtle
and is discussed in Section 5.1.

0 0.5 1.0 1.5 2.0 2.5
0

0.5

1.0

 = (   − µ )X x (β       )C/D
1/2

1

P(µ )
1

(β       )C/D
1/2

ε = 2

ε = 2

ε = − 0.75

ε = − 0.75

Figure 1: (Color online) For the potential W(x) = ↵|x|+�x2, we show the scaled
equilibrium solution (C�/D)�1/2P(x) = (C�/D)�1/2P(µ1) exp[� (X)], where
X = (C�/D)1/2(x � µ1). The values of ✏ chosen, listed in order of increasing
height at the origin, are �0.75, �0.5, �0.25, shown in red; 0, shown in black;
0.5, 1, 2, shown in blue. Corresponding values of ↵(C/(�D))1/2 are �2.248,
1.167, �0.498, 0, 0.746, 1.316, 2.193

4.2. Analysis based on integrals
We now consider the case

W(x) = �x2 + �x4, (57)

with � > 0. If we introduce the kth central moment of the
density,

µ(c)
k =

Z 1

�1
(x � µ1)kP(x)dx, k 2 N, (58)

and note that µ(c)
1 = 0, then we easily show that

Z 1

�1
[W(x � ⇠) �W(µ1 � ⇠)]P(⇠)d⇠

=

Z 1

�1
[W(x � µ1 � µ1 � ⇠) �W(µ1 � ⇠)]P(⇠)d⇠

= �(x � µ1)4 + (6µ(c)
2 � + �)(x � µ1)2 � 4�µ(c)

3 (x � µ1), (59)

giving

P(x) = P(µ1) exp
n

�C
D

h

�(x � µ1)4 + (6µ(c)
2 � + �)(x � µ1)2

� 4�µ(c)
3 (x � µ1)

io

. (60)

Thus the form of P(x) has been largely determined, although it
remains to check consistency of the central moments that have
appeared in Eq. (60). If we observe that

P(µ1 + s)
P(µ1 � s)

= exp(�8�µ(c)
3 s)

is strictly greater than 1 for all s > 0 if µ(c)
3 < 0 and strictly less

than 1 for all s > 0 if µ(c)
3 > 0 we see that the requirement that
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µ(c)
1 = 0, which corresponds to

Z 1

0
sP(µ1 + s)ds =

Z 1

0
sP(µ1 � s)ds,

forces us to conclude that µ(c)
3 = 0. Thus we have shown that

P(x) = P(µ1) exp
n

�C
D

h

�(x�µ1)4+ (6µ(c)
2 �+�)(x�µ1)2

io

, (61)

where we require

1 = P(µ1)
Z 1

�1
exp

n

�C
D

h

�s4 + (6µ(c)
2 � + �)s2

io

ds, (62)

µ(c)
2 = P(µ1)

Z 1

�1
s2 exp

n

�C
D

h

�s4 + (6µ(c)
2 � + �)s2

io

ds. (63)

Dividing these equations yields a single transcendental equation
for µ(c)

2 .
The density P(x) prescribed by Eq. (61) has stationary points

where

4�(x � µ1)3 + 2(� + 6µ(c)
2 �)(x � µ1)

= 4�(x � µ1)[(x � µ1)2 +
� + 6µ(c)

2 �

2�
] = 0.

If � � �6µ(c)
2 � the density P(x) is unimodal, with its peak at the

mean, while if � < �6µ(c)
2 � it is bimodal, with peaks at

x = µ1 ±$, where $ =
q

�

�

� � + 6µ(c)
2 �

�

�

�/(2�). (64)

Note that the condition for P(x) to be bimodal is more restrictive
than the condition � < 0 needed for the potential W(x) to have
two minima arranged symmetrically around the mean, and the
distance between the peaks of P(x), when there are peaks, is
not equal to the distance between the potential minima. At the
“critical point” where � = �6µ(c)

2 �, the integrals in Eqs (62)
and (63) can be evaluated exactly in terms of the usual gamma
function and we find that the criticality condition is

� + 6
�(3/4)
�(1/4)

⇣D�
C

⌘1/2
= 0, where 6

�(3/4)
�(1/4)

⇡ 2.0279, (65)

so the equilibrium density is bimodal if � < �2.0279(D�/C)1/2.
For numerical analysis it is convenient to write

M = µ(c)
2

r

C�
D

✓ = �

r

C
D�
, (66)

⇧(X) =
⇣ D
C�

⌘1/4
P
⇣

µ1 +
⇣ D
C�

⌘1/4
X
⌘

. (67)

From Eqs (61), (62) and (63) we have

⇧(X) = ⇧(0) exp[�X4 � (6M + ✓)X2], (68)
1
⇧(0)

= 2
Z 1

0
exp[�X4 � (6M + ✓)X2]dX, (69)

M
⇧(0)

= 2
Z 1

0
X2 exp[�X4 � (6M + ✓)X2]dX. (70)

The integrals are not elementary, but can be evaluated in terms
of the parabolic cylinder function D⌫(z) available in Mathemat-
ica using the equations [47]

D⌫(z) = U(� 1
2 � ⌫, z), (71)

U(a, z) =
exp(�z2/4)
�( 1

2 + a)

Z 1

0
ta�1/2 exp(� 1

2 t2 � zt)dt. (72)

We find that

⇧(0) =
21/4

⇡1/2
exp[(6M + ✓)2/8]

D�1/2(2�1/2(6M + ✓))
, (73)

where M satisfies the equation

M =
D�3/2(2�1/2(6M + ✓))

2
p

2 D�1/2(2�1/2(6M + ✓))
. (74)

One would expect that as ✓ ! �1, the scaled variance M
should diverge to infinity. Using the known asymptotic form
of the parabolic cylinder function D⌫(z) for z ! 1 and for
z ! �1 to explore the possible scenarios 6M + ✓ ! 1 and
6M + ✓ ! �1 we find that it is the latter that occurs, and it is
easy to show that

M ⇡ �✓/8 + 1/(2✓) when ✓ ⌧ �1. (75)

The behaviour of M for ✓ � 1 can also be deduced from the
asymptotic form of D⌫(z) as z! 1and we find that

M ⇡ 2�1✓�2 when ✓ � 1. (76)

We show the scaled variance M as a function of ✓ in Fig. 2: the
numerical solution of Eq. (74), shown as a solid black curve, is
well represented by the ✓ ⌧ �1 approximation (75), shown as
a broken blue curve, when ✓ < �7, and also well represented
by the ✓ � 1 approximation (75), shown as a broken red curve,
when ✓ > 7.

We show the scaled equilibrium probability density func-
tion ⇧(X) for several values of ✓ in Fig. 3.

5. Equilibrium linear di↵usion in the low-di↵usivity limit

It is of interest to consider the limiting behaviour of our
equilibrium solutions under linear di↵usion when D! 0, espe-
cially as it may elucidate the behaviour of equilibrium solutions
of the di↵usion-free evolution equation (1).

5.1. The potential W(x) = ↵|x| + �x2

From the exact solutions (45) and (46) for the cases ↵ = 0
(and so � > 0) and � = 0 (and so ↵ > 0), respectively, we see
that as D ! 0, the distribution becomes a sharp peak centred
on the mean µ1. The limiting distribution is P(x) = �(x � µ1).
Clearly, then, if ↵ > 0 and � > 0, collapse to a delta function
must also occur.

The case ↵ < 0 and � > 0, to which we now confine our
attention, is more interesting. This case is the simplest double-
well potential with competition between attraction and repul-
sion that can be used with the deterministic equation (1) and
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1

0.5

−6 −4 −2 0 2 4 6 θ

M

Figure 2: (Color online) The scaled variance M = µ(c)
2
p

C�/D of the equi-
librium probability density function for the potential W(x) = �x2 + �x4 as a
function of the parameter ✓ = �

p
C/(D�): the solid black curve comes from

numerical solution of the transcendental equation (74); broken curves show the
asymptotic solutions for ✓ ⌧ �1 (blue) and ✓ � 1 (red). The equilibrium
density is is bimodal when ✓ < �2.0279 (see Fig. 3).

1

0.5

0 1 2

Π

X

θ = −6

θ = −4

θ = −2

θ = 0

θ = 2

θ = 4

θ = 6

Figure 3: (Color online) The scaled equilibrium probability density function
⇧(X) for the potential W(x) = �x2 + �x4 as a function of the parameter ✓ =
�
p

C/(D�), determined by numerical solution of the transcendental equation
(74) and use of Eqs (68) and (73).

our ability to obtain a number of exact analytic results when a
linear di↵usion mechanism is present opens the possibility of
using the small-di↵usivity limit to shed light on the behaviour
of Eq. (1). Consider the purely non-local interaction equation
(1), that is, di↵usion has been completely removed. For a sys-
tem of finite mass C the normalized equilibrium distribution P
with mean µ1 can be determined very simply as follows. Since

Z 1

1
2�(x � ⇠) P(⇠) d⇠ = 2�(x � µ1), (77)

the harmonic confining interaction potential �x2 acts like an ex-
ternal confining potential �x2 and our equilibrium equation be-
comes

P(x)
Z 1

�1

h

2�(x � µ1) � |↵|
Z 1

�1
sgn(x � ⇠)P(⇠)d⇠

i

= 0. (78)

From this is follows that either P(x) = 0 or

2|↵|
Z x

�1
P(⇠)d⇠ � 1 = 2�(x � µ1). (79)

In the latter case P(x) = �/|↵| and so the only finite-mass equi-
librium solution with mean µ1 is

P(x) =

8

>

>

<

>

>

:

�/|↵|, |x � µ1| < |↵|/(2�),
0 |x � µ1| > |↵|/(2�).

(80)

We now turn on di↵usion. We know from Section 4.1 that
the distribution is unimodal, but that when ↵ < 0 and � > 0 we
have the bound P(µ1) < �/|↵| [Eq. 53)]. Hence in this case the
limiting distribution of P(x) as D ! 0 is not a delta function:
the limiting distribution is of non-zero width. Because of the
symmetry of the solution about x = µ1 and the monotonic decay
of P(x) for x > µ1, we can write the normalization condition as

1
2
=

Z 1

0
P(x)dx =

Z P(µ1)

0
P
�

�

�

�

dx
dP

�

�

�

�

dP

=

Z P(µ1)

0

PdP
n4�CP2

D
log

hP(µ1)
P

i

� 4|↵|C
D

P2[P(µ1) � P]
o1/2
.

(81)

We have eliminated P0(x) ising Eq. (43). If we write P =
P(µ1)p we obtain

1 =
P(µ1)D1/2

(|↵|C)1/2

Z 1

0

dp
n �

|↵| log
h 1

p

i

� P(µ1)(1 � p)
o1/2
. (82)

In order to retain normalization, it is necessary that the integral
diverges in an appropriate manner as D ! 0 and this requires
P(µ1) ! �/|↵| in a special way. The details of the analysis will
be found in Appendix A. We find that, where K is positive and
independent of D,

�

|↵| � P(µ1) ⇠ K exp
h

�
⇣C↵2

2�D

⌘1/2i
, (83)
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giving rapid convergence of P(µ1) to �/|↵|. From Eq. (42) we
have

P00(µ1)
P(µ1)

= �2|↵|C
D

⇣ �

|↵| � P(µ1)
⌘

⇠ �2|↵|CK
D

exp
h

�
⇣C↵2

2�D

⌘1/2i
.

(84)
Thus we see P00(µ1) ! 0 very rapidly as D ! 0 and so for
very small D, there is an extended region in the neighbourhood
of x = µ1 in which P(x) ⇡ �/|↵|. This result strongly suggests
that P(x) ! �/|↵| as D ! 0 in a finite interval surrounding the
origin.

If we look again at Eq. (43) we see that it is satisfied on fi-
nite intervals by P(x) = 0 or by P(x) = P(µ1) and we conclude
that for small D we have P(x) ⇡ �/|↵| for |x � µ1| < L � ✏ and
P(x) ⇡ 0 for |x � µ1| < L � ✏, with a transition zone of width
⇡ 2✏ separating these regions. Experience with singular per-
turbation problems suggests that the transition zone should be
a narrow zone of rapid change. The transition could be exam-
ined in more detail using boundary-later techniques if desired,
but we confine our discussion in support of the conjectured nar-
row transition zone to examining the slope of P(x) at its point
of inflection x⇤ (x⇤ > µ1), where P00(x) changes sign. Setting
P00(x⇤) = 0 in Eq. (42) we have

P0(x⇤)2

P(x⇤)2 = 2|↵|C
h �

|↵| � P(x⇤)
i

. (85)

However if we eliminate P0(x⇤) using Eq. (43) we find a tran-
scendental equation for P(x⇤) with no explicit dependence on
D, although there is weak dependence on D through P(µ1):

�

|↵| + 2P(µ1) = 3P(x⇤) +
2�
|↵| log

hP(µ1)
P(x⇤)

i

. (86)

If we write z⇤ = limD!0 P(x⇤)/P(µ1) = (|↵|/�) limD!0 P(x⇤)
then we seek the solution z⇤ 2 (0, 1) of 3z � 2 log z = 3, and we
find that z⇤ ⇡ 0.417. We deduce that as D! 0,

P0(x⇤) ⇠ �
h2(1 � z⇤)�2C

|↵|D
i1/2 ⇡ �1.08�

|↵|
⇣�C

D

⌘1/2
, (87)

consistent with the hypothesis that in a small interval surround-
ing x⇤, there is a very rapid transition between the solutions
P(x) ⇡ �/|↵| and P(x) ⇡ 0. For correct normalization of P(x),
the solutions P(x) ⇡ �/|↵| must prevail for all but a small part
of an interval of length |↵|/�.

We conclude (although we have not fully proved) that for
↵ < 0,

lim
D!0

P(x) =

8

>

>

<

>

>

:

�/|↵|, |x � µ1| < |↵|/(2�),
0 |x � µ1| > |↵|/(2�),

(88)

consistent with the only possible equilibrium solution of the
di↵usion-free equation (1) for this double-well potential. Our
analysis has revealed how this limiting solution emerges asymp-
totically as the di↵usivity is decreased and reveals how a small
amount of added noise (numerical di↵usion) could assist the de-
terministic system (1) to reach a mathematically discontinuous
weak solution of the noiseless equilibrium problem, as found
for the case � = 1, ↵ = 1 and µ1 = 0 by Fellner and Raoul [6].

5.2. The potential W(x) = �x2 + �x4

Smooth double-well potentials (with � > 0 and � < 0) of
this most basic polynomial type appear, for instance, in the
modelling of cell aggregation [25, 26, 27, 28]. In the di↵u-
sion free aggregation model (1) the quartic-quadratic double-
well potential leads to the formation of precisely two aggre-
gates, which converge in the large time behaviour to two Dirac
masses. It is natural to ask how this behaviour is modified by
adding di↵usion. The scaling lengths contain the di↵usion con-
stant D, and it is of interest to return to the original variables
and consider the small-di↵usivity limit.

If we fix � and �, with � < 0, then the limit D ! 0 corre-
sponds to ✓ ! �1, and the asymptotic behaviour of M given in
Eq. (75) enables us to deduce that $, defined in Eq. (64) as half
of the distance between the two maxima in P(x), converges to
[|�|/(8�)]1/2. Moreover, if we hold x, � and � fixed (with � < 0)
and let D! 0, we find that

P(x)
P(µ1)

⇠ exp
n

�C
D

h

�(x � µ1)4 � |�|
4

(x � µ1)2
io

, (89)

which can be written

P(x)
P(µ1 ±$)

⇠ exp
n

�C�
D

h

(x � µ1)2 �$2
i2o
, (90)

showing that for su�ciently small D the distribution condenses
into two sharp spikes, whose separation 2$ = [|�|/(2�)]1/2 co-
incides with the distance at which the interaction force between
two particles vanishes, consistent with the di↵usion-free results
and demonstrating how the presence of a small amount of noise
enables the otherwise deterministic version of the problem to
disaggregate the system mass into two equal tight clumps.

6. Smoothed singular potentials and oscillatory solutions

The ability of our model of cohesive stochastic swarms to
recover in the D ! 0 limit results from hyperbolic aggrega-
tion models suggests that one might use our model to elucidate
some puzzling aspects of the hyperbolic problem. It has been
observed by Fellner and Raoul [6] that if the singular potential
W(x) = ↵|x| + �x2 (with ↵ < 0) is smoothed at the origin, then
in the hyperbolic model the limiting distribution at long time
is a finite string of approximately evenly spaced spikes, with
the number of spikes related to the way in which the potential
is smoothed. This phenomenon has so far proved di�cult to
explain.

Throughout this section, we shall always be considering the
case ↵ < 0 and where we wish to emphasise the signs of terms,
we write ↵ = �|↵|, so that the singular potential of interest is
written as W(x) = �|↵| |x| + �x2. We consider the smoothed
potential

W(x) =

8

>

>

>

<

>

>

>

:

�x2 � |↵| |x|, |x| > ✏,
⇣

� � |↵|
2✏

⌘

x2 � |↵|✏
2
, |x|  ✏,

(91)
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corresponding to

W 0(x) =

8

>

>

>

<

>

>

>

:

2�x � |↵| sgn(x), |x| > ✏,
2�x � |↵| x

✏
, |x|  ✏,

(92)

and
W 00(x) = 2� � |↵|

✏

h

1 � H(x � ✏)
i

H(x + ✏), (93)

where H is the usual Heaviside step function. It follows from
Eq. (40) that

d2

dx2 log[P(x)] =
P00(x)
P(x)

� P0(x)2

P(x)2 = �
2�C

D
+
|↵|C
✏D

Z x+✏

x�✏
P(⇠)d⇠.

(94)

6.1. Observations for the finite mass case
Let x0 be a stationary point of P(x), so that P0(x0) = 0,

and assume that P(x0) > 0. Then from Eq. (94) we have the
inequality

�2�C
D
<

P00(x0)
P(x0)

< �2�C
D
+
|↵|C
✏D
, (95)

where on the right-hand side we have replaced the integral over
(x0 � ✏, x0 + ✏) by the integral over (�1,1). Since for P(x) to
have a local minimum at x0 its second derivative must be non-
negative there, we can conclude rigorously that any equilibrium
solution P(x) with D > 0 must be unimodal for |↵| < 2✏�. (Al-
though we have restricted our attention to ↵ < 0, if we allow
↵ to be of either sign, we conclude that the equilibrium distri-
bution is unimodal at least for ↵ > �2✏�. It may be noted here
that so long as ↵ > �2✏�, the potential W(x) is cohesive at all
distances, so the unimodality is not surprising in this case.)

We explore the possibility that for fixed ↵ < 0 and fixed
� > 0, the equilibrium solution P(x) might not be unimodal for
some parameter values. Consider points xmax and xmin, where
P(x) has, respectively, a local maximum (so P0(xmax) = 0 and
P00(xmax)  0) and a local minimum (so P0(xmin) = 0 and
P00(xmin) � 0). It follows immediately from Eq. (94) that

1
2✏

Z xmax+✏

xmax�✏
P(⇠)d⇠  �

|↵| ,
1
2✏

Z xmin+✏

xmin�✏
P(⇠)d⇠ � �

|↵| . (96)

Hence

min
[xmax�✏,xmax+✏]

P  �

|↵| , max
[xmin�✏,xmin+✏]

P � �

|↵| . (97)

These inequalities hold without any assumptions concerning
the relative locations of the points xmax and xmin. If we apply
these inequalities to the case when xmax and xmin are adjacent
extrema, they suggest that for adjacent maxima and minima,

|xmax � xmin|  2✏. (98)

This would be a rigorously derived conclusion if P(x) were
symmetric about both xmax and xmin, which would imply pe-
riodic solutions P(x) = P(x+2|xmax� xmin|) with infintely many
peaks of equal height and thus infinite mass. However, in view

of the compactly supported string of finitely many spikes pro-
duced by the di↵usion free hyperbolic model for fixed small
✏, one expects (and observes numerically) that solutions of Eq.
(94) for su�ciently small di↵usivity D feature a compactly sup-
ported string of finitely many smoothed spikes around the cen-
tre of mass with only slowly varying peak height. This oscilla-
tory part of solutions of Eq. (94) for fixed ✏ and subsequently
chosen small enough D will in the following be approximated
by periodic solutions of Eq. (94) with infinite mass. We believe
that these periodic solutions are the simplest approach to under-
standing how the non-local term in Eq. (94) for any fixed ✏ > 0
and small enough di↵usivity D leads to oscillating solutions,
while the limiting solutions for ✏ ! 0 will always be unimodal.

We remark that we did not aim to demonstrate rigorously
that such periodic, infinite mass solutions exist. Solutions of
that type fall outside the framework of gradient flow solutions
on probability spaces and the techniques that we have used on
the infinite mass system in Sections 6.2–6.5 are based on other
ideas. We note that is possible to make some progress on ag-
gregation models producing periodic solutions by alternative
means, if one is prepared to define the problem on a circle with
restrictions on the potential related to the length circumference
of the circle [48].

6.2. A related infinite mass system
We observe that Eq. (94) has the formal solution P(x) ⌘

�/|↵| for all x 2 R. This is an infinite mass solution, so that
P(x) is no longer able to be interpreted as a probability density
function. We have argued in Section 5.1 that for the finite-mass
problem without smoothing, the solution is well approximated
by P(x) ⇡ �/|↵| for |x| < |↵|/�. Can an analysis of the infinite
mass system shed any light on the low-di↵usivity limit of the
finite mass system?

Although P(x) ⌘ �/|↵| is a formal solution of an ‘infinite
mass’ problem on R deduced from the x-derivative of the orig-
inal governing equation under the assumption of equilibrium,
we have noted in Section 2.1 that with the principal value in-
terpretation (10) of all integrals involving f (x� ⇠), the problem
has constant solutions.

For the remainder of Section 6 we address the question of
the structure of non-constant periodic solutions. We have not
been able to demonstrate rigorously that such solutions exist,
but the analysis proceeds on the assumption that they do. The
symmetry of the problem suggests that periodic solutions will
exhibit reflection symmetry about any maxima or minima, so
we restrict our discussion to even periodic solutions, of period
2L, say. Moreover, we shall assume that the periodic solution is
unimodal in the sense that the only extrema within an interval
of length 2L centred on a maximum are minima at the endpoints
of the interval. We are able to identify conditions that preclude
such periodic solutions, conditions under which the existence
of such periodic solutions becomes very plausible, and identify
scaling features and qualitative properties of such periodic so-
lutions in the small-✏ limit. Reasons for restricting our attention
to the cases L < ✏ and ↵  �2✏� will be explained shortly.

As the problem is translationally invariant, there is no loss
of generality in considering even periodic solutions of period
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2L, locating local maxima at x = 2kL and local minima at x =
(2k + 1)L, where k 2 Z. This implies, in particular that

P00(0)  0  P00(L). (99)

Exploiting the required reflection symmetry about each of x = 0
and x = L and noting that P0(0) = P0(L) = 0, we deduce from
Eq. (94) that

P00(0)
P(0)

� P00(L)
P(L)

=
2|↵|C
✏D

n

Z ✏

0
P(⇠)d⇠ �

Z L

L�✏
P(⇠)d⇠

o

. (100)

If L > ✏ we can exploit the monotonicity of P on (0, L) to de-
duce that the right-hand side of Eq. (100) is strictly positive,
which contradicts the inequality (99). Hence equilibrium solu-
tions with the expected symmetry properties must have period
2L  2✏. If we seek to conserve mass relative to the uniform
solution by insisting that

1
2L

Z x+L

x�L
P(⇠)d⇠ =

�

|↵| , (101)

then if L = ✏, we have d2/dx2 log[P(x)] ⌘ 0, and non-constant
periodic solutions are impossible. Our study of possible even
periodic equilibrium solutions can therefore be restricted to so-
lutions of period strictly less than 2✏, that is, to the case L < ✏.

In Section 6.3 we conduct a time-dependent linear perturba-
tion analysis to assess the stability of the equilibrium solution
P(x) ⌘ �/|↵|. Then in Section 6.4 we return to the harder, fully
nonlinear problem of non-constant periodic solutions.

We note that in the ensuing analysis of the infinite mass
system, no inequality constraint relating ✏, |↵| and � arises nat-
urally. However we know that for the finite-mass system, the
solution is unimodal if ↵ > �2✏�, and thus any interesting be-
haviour involving solutions for the infinite system with multiple
local maxima can bring no insight to the finite mass system un-
less we have

↵  �2✏�, (102)

a condition that we shall take from now on to have been pre-
scribed.

6.3. Linear stability analysis of equilibrium solutions
We shall study the time-dependent response of the system

to small perturbations away from an equilibrium solution P(x)
for �1 < x < 1 by writing

p(x, t) = P(x) + ⇣'(x, t), '(0, 0) = 1, |⇣ | ⌧ 1. (103)

Later in the analysis we shall restrict our attention to the case
P(x) = �/|↵| and the potential (91), but for the moment we keep
the analysis more general. Retaining only O(1) and O(⇣) terms
in the drift-free (v = 0) case of the evolution equation (20) we
find that

@'

@t
=

@

@x

h

D
@'

@x
�C'(x, t)

Z 1

�1
f (x � ⇠)P(⇠)d⇠

�CP(x)
Z 1

�1
f (x � ⇠)'(⇠, y)d⇠

i

. (104)

Using the equilibrium equation (32) satisfied by P(x) we can
simplify this to

@'

@t
=

@

@x

h

D
@'

@x
� DP0(x)'(x, t)

P(x)

�CP(x)
Z 1

�1
f (x � ⇠)'(⇠, y)d⇠

i

. (105)

Selecting now P(x) = �/|↵| and the potential (91) with associ-
ated force f = �W 0 [with W 0 given by Eq. (92)], and di↵eren-
tiating under the integral, we find that

@'

@t
= D

@2'

@x2 �
C�
✏

Z x+✏

x�✏
'(⇠, t)d⇠. (106)

Although the integral term is preceded by the factor � associ-
ated with the quadratic component of the potential, it actually
arises from the �|↵||x| component of the potential (factors in-
volving |↵| cancel). To obtain Eq. (106), we have imposed two
integral constraints, both of which are needed to remove the
term

d
dx

Z 1

�1
2�(x � ⇠)'(⇠, t)d⇠

containing the e↵ects of the quadratic component of the poten-
tial. The integral constraints are

Z 1

�1
'(⇠, t)d⇠ = 0,

Z 1

�1
⇠'(⇠, t)d⇠ exists. (107)

The first constraint ensures that the perturbation conserves mass.
The second constraint holds provided that the perturbation func-
tion '(x, t) decays appropriately as x! ±1, but if we interpret
the integral as a principal value and '(x, t) is symmetric about
x = 0, we do not need to be so restrictive about the large-|x|
behaviour. We now take as our fluctuation Ansatz a periodic
perturbation of period 2L = 2⇡/� with a time-dependent ampli-
tude:

'(x, t) = A(t) cos(�x), A(0) = 1. (108)

This perturbation function transgresses the integral constraints
(107) if they are interpreted in the classical sense, but they are
satisfied if the integrals are interpreted in a principal value sense
as the limit as N ! 1 (with N 2 N) of integrals taken over the
intervals (�2⇡N/�, 2⇡N/�). Since we know that equilibrium
periodic solutions must have period no greater than 2✏, we hope
to find at least some wavelengths 2L  2✏ for which A0(t) > 0,
leading to an instability of the uniform equilibrium solution,
with evolution of the perturbed solution towards a non-constant
periodic solution.

Using the integral
Z x+✏

x�✏
cos(�⇠)d⇠ =

2 sin(�✏)
�

cos(�x), (109)

it is easy to show the function defined by Eq. (108) is a solution
of Eq. (106) if and only if A(t) = et, with

 = �2C�
h

�(�✏)2 +
sin(�✏)
�✏

i

, (110)
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Figure 4: (Color online) In the plot on the right, the interval of wavelengths
corresponding to unstable perturbations is shown in blue, while the red curve
shows the wavelength with the largest growth rate : this wavelength ap-
proaches a limit ⇡ 0.69902 as � ! 0 and a limit ⇡ 0.77036 as � ! �c
from below. In the plot on the left, the dimensionless maximal growth rate
⇤ = /(2C�) corresponding to a perturbation with the most unstable wave-
length is shown (for the unstable � interval only).

where we have introduced the dimensionless di↵usion constant

� =
D

2C�✏2 . (111)

It is important to notice that “ small di↵usion” requires the nat-
ural length scale

p

D/(2C�) associated with di↵usion in the
attractive potential to be small in comparison with the length
scale associated with the smoothing of the repulsive part of the
potential.

Can the perturbation grow with time? This requires the
square-bracketed term in Eq. (110) to be negative. For the
present, write ✓ = �✏. We observe that sin ✓/✓ attains its global
minimum on [0,1) at ✓c ⇡ 4.49341, where it attains the value
�K (K ⇡ 0.217234), and sin ✓/✓ � 0 for 0  ✓  ⇡, while �✓2

is monotonic increasing. We see at once that  < 0 for all ✓ > 0
(and so for all � > 0) if �⇡2 > K. However, if �✓2

c < K, then
there is at least one interval of � values for which  > 0.

It is now clear that there exists a critical dimensionless dif-
fusivity �c such that the perturbations we have introduced de-
cay to zero (stability) if � > �c, but perturbations of certain
wavenumbers � (and corresponding wavelengths 2L = 2⇡/�)
have initial exponential growth with time when � < �c, sug-
gesting that for � < �c the system may evolve towards a non-
uniform equilibrium state, and perhaps a periodic state.

Since sin ✓/✓ � 0 for 0  ✓  ⇡ it is clear that no perturba-
tion with wavenumber �  ⇡/✏ (wavelength � 2✏) is unstable,
no matter how small � may be. A simple asymptotic analysis
of the transcendental equation �✓2 + sin ✓/✓ = 0 shows that as
� ! 0, no perturbation of wavelength � 2✏(1 � ⇡2� + · · · ) is
unstable.

Using standard Mathematica functions, we have determined
numerically the critical dimensionless di↵usivity

�c ⇡ 0.011876495,

and, for � < �c, the ✓-intervals and corresponding wavelength
intervals that correspond to unstable perturbations and the wave-
length corresponding to the largest positive value of the growth
rate : see Fig. 4.

Although we have studied only the initial growth of pertur-
bations in the unstable case, and this analysis alone cannot give
us strong information about possible periodic equilibrium solu-
tions that arise in the long-time limit, it does encourage us to
consider non-constant periodic solutions.

6.4. Consistency of the delta function limit scenario
From the preceding discussion we can restrict our study of

periodic equilibrium solutions to the study of even periodic so-
lutions of wavelength 2L, with 0 < L < ✏. We continue with
notation introduced in Section 6.3, writing � = ⇡/L and ✓ = �✏,
so that ✓ > ⇡. We shall write

0  P(x) =
1
X

n=0

Pn cos(n�x) = exp
h

1
X

n=0

Qn cos(n�x)
i

, (112)

and perform a number of formal manipulations without provid-
ing any rigorous proof of appropriate convergence. However,
we note that any twice-di↵erentiable solution of Eq. (94) is nec-
essarily infinitely di↵erentiable for all fixed D > 0, so that the
Fourier coe�cients are rapidly decaying. We observe that from
the orthogonality properties of the Fourier cosine functions,

Z L

�L
P(x)dx = 2LP0. (113)

and so from Eq. (101), we have

P0 =
�

|↵| . (114)

We now observe that Eqs (94) and (112) give

d2

dx2

1
X

n=0

Qn cos(n�x) = �2�C
D
+
|↵|C
✏D

Z x+✏

x�✏

1
X

n=0

Pn cos(n�⇠)d⇠

=
|↵|C
✏D

1
X

n=1

Pn

Z x+✏

x�✏
cos(n�⇠)d⇠. (115)

If we exploit the integral (109) with � replaced by n� we find
without di�culty that

Qn = �
2|↵|C sin(n�✏)
✏D(n�)3 Pn, n � 1. (116)

If we now rescale the Fourier coe�cients by writing

Pn =
�

|↵|Rn (n � 1), exp(Q0) =
�

|↵|R0, (117)

and we write � = D/(2�C✏2) as before, we find that

1 +
1
X

n=1

Rn cos(n�x) = R0 exp
h

�
1
X

n=1

Rn sin(n�✏) cos(n�x)
�(n�✏)3

i

.

(118)

13



As we now show, for any � > 0 there cannot be a non-constant
periodic solution with period precisely 2✏. To see this note that
if L = ✏, then � = ⇡/✏ and so sin(n�✏) = 0 for all n � 1, leading
to

1 +
1
X

n=1

Rn cos(n�x) = R0.

Then from the orthogonality of the cosines, R0 = 1 and Rn = 0
for all n � 1.

Considering the nonlinear and nonlocal problem (94), a rig-
orous resolution of the question of the existence, at least for suf-
ficiently small but nonzero �, of periodic solutions with period
2L not precisely equal to 2✏ appears di�cult. We can, however,
explore the consistency of the hypothesis (inspired by work on
the di↵usion-free problem [5, 6]) that as �! 0, we obtain a set
of periodically spaced delta functions for P(x). If we recall the
generalized function identity [49]

1
X

n=�1
�(x � 2nL) =

1
2L
+

1
X

n=1

cos(n⇡x/L)
L

, (119)

then for the D ! 0 limit to produce a string of delta functions
with L = ⇡/�, consistent with the constraint (114), we need to
obtain as our limiting form of P(x),

2⇡�
�|↵|

1
X

n=�1
�(x � 2n⇡/�) =

�

|↵| +
2�
|↵|

1
X

n=1

cos(n�x), (120)

corresponding to Rn ! 2 as �! 0.
From Eq. (118), writing �x = # for brevity, we have from

the usual formula for the Fourier coe�cients that

Rm =
2R0

⇡

Z ⇡

0
cos(m#) exp

h

�
1
X

n=1

Rn sin(n�✏) cos(n#)
�(n�✏)3

i

d#.

(121)
We shall write ✓� = �✏. As in the linear stability analysis
the longest-wavelength unstable perturbations occur with ✓ in
a proper subinterval of (⇡, 2⇡) which expands to fill the interval
as �! 0 (see Fig. 4), we shall assume that ✓� 2 (⇡, 2⇡), but we
have to leave open the possibility that either ✓� ! ⇡ or ✓� ! 2⇡
as �! 0.

If Rn ! 2 for all n � 1 as �! 0, we must have

Rm ⇠
2R0

⇡

Z ⇡

0
cos(m#) exp

h

�
1
X

n=1

2 sin(n✓�) cos(n#)
�(n✓�)3

i

d#.

(122)
Our task now is to verify that the dominant asymptotic form of
the right-hand side is 2, to lend support for the hypothesis that
Rn ! 2. The argument of the exponential is a continuously dif-
ferentiable function of #, and so its dominant asymptotic form
can be extracted using Laplace’s method [50].

We observe that
1
X

n=1

2 sin(n✓�) cos(n#)
�(n✓�)3 =

1
�✓3

�

n

1
X

n=1

sin[n(✓� + #)]
n3

+

1
X

n=1

sin[n(✓� � #)]
n3

o

. (123)

From known identities for Bernoulli polynomials [47] we have
the identity

1
X

n=1

sin(nz)
n3 =

1
12

⇥

z3 � 3⇡z2sgn(z) + 2⇡2z
⇤

, �2⇡  z  2⇡.

(124)
Given that ⇡ < ✓� < 2⇡, and that in the integration we have
0 < # < ⇡, we see that 0 < ✓� � # < 2⇡. Hence we can use
the identity (124) with z = ✓� � # and in this case sgn(z) = 1.
However, we cannot use the identity (124) directly with z =
✓� ± # everywhere in the integral. Although we always have
✓� +# > 0, we only have ✓� +# < 2⇡ for part of the integration
interval. If ✓� + # > 2⇡ we note that

sin[n(✓� + #)] = sin[n(✓� + # � 2⇡)].

and we shall use the identity (124) with z = ✓� + # � 2⇡. It is
easy to verify that in this case we have 0 < z < 2⇡. We now
have

Rm ⇠
2R0

⇡

Z 2⇡�✓�

0
cos(m#) exp

h

� Q1(#)
12�✓3

�

i

d#

+
2R0

⇡

Z ⇡

2⇡�✓�
cos(m#) exp

h

� Q2(#)
12�✓3

�

i

d#, (125)

whereQ1(#) andQ2(#) are quadratic polynomial functions, which
can be written tidily as

Q1(#) = �2✓�(✓� � ⇡)(2⇡ � ✓�) + 6(✓� � ⇡)#2, (126)

Q2(#) = �6(2⇡ � ✓�)(⇡ � #)2 + 2(✓� � ⇡)(2⇡ � ✓�)(3⇡ � ✓�).
(127)

Once we locate their minima within the corresponding integra-
tion intervals, we can estimate the asymptotic behaviour of the
integral using Laplace’s method [50].

The function Q1(#) takes its minimum on [0, 2⇡ � ✓�] at
# = 0 and so from Laplace’s method we deduce at once that as
�! 0,

Z 2⇡�✓�

0
cos(m#) exp

h

� Q1(#)
12�✓3

�

i

d#

⇠ exp
h

� Q1(0)
12�✓3

�

i

Z 1

0
exp

h

� (✓� � ⇡)#2

2�✓3
�

i

d#

=
1
2

 2⇡�✓3
�

✓� � ⇡

!1/2

exp
h (✓� � ⇡)(2⇡ � ✓�))

6�✓2
�

i

. (128)

We note that the leading order behaviour as � ! 0 is indepen-
dent of m.

The functionQ2(#) attains its minimum value on [2⇡�✓�, ⇡]
at # = 2⇡ � ✓� and so

min
#2[2⇡�✓�,⇡]

Q2(#) > min
#2[0,2⇡�✓�]

Q1(#).

It follows that the second integral in Eq. (125) is exponentially
small compared to the first integral, and thus if we assume the
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hypotheses that as � ! 0 we have Rn ! 2 for n � 1 while
✓� 2 (⇡, 2⇡), we predict that for m � 1,

Rm ⇠
R0

⇡

 2⇡�✓3
�

✓� � ⇡

!1/2

exp
h (✓� � ⇡)(2⇡ � ✓�))

6�✓2
�

i

. (129)

We now see that for this to be consistent with Rm ! 2 for all
m � 1 we only need R0 to behave appropriately:

R0 ⇠ 2⇡
 

✓� � ⇡
2⇡�✓3

�

!1/2

exp
h

� (✓� � ⇡)(2⇡ � ✓�))
6�✓2

�

i

. (130)

This important condition will be revisited in Section 6.5.

6.5. An asymptotic analysis
The rigorous and heuristic conclusions in Sections 6.2–6.4

motivate us to attempt to construct periodic solutions of the
equilibrium version of Eq. (94) that consist of narrow peaks
that contain most of the mass and valleys containing very little
mass. We shall write

x = ✏X and P(x) =
�

|↵|R(x/✏) =
�

|↵|R(X) (131)

(scaling space against the smoothing distance ✏) and introduce
� = D/(2�C✏2) as before, so that we need to solve

d2

dX2 log[R(X)] = � 1
�
+

1
2�

Z X+1

X�1
R(⇣)d⇣. (132)

We note that R(X) ⌘ 1 is a solution, but now we seek (in the
limit �! 0) non-constant solutions R�(X) of (minimal) period
⌧� < 2 (corresponding to L < ✏). We note that from periodicity

Z X+⌧�

X
R�(X)dX = A� = constant for all X, (133)

so that for all n 2 N,
Z n⌧�

0
R�(X)dX = nA�. (134)

To conserve mass compared to the uniform solution R(X) ⌘ 1,
we shall require that

Z `

0
R�(X)dX ⇠ ` as ` ! 1. (135)

and on setting ` = n⌧� and letting n ! 1, we conclude from
Eqs (134) and (135) that A� = ⌧�. It follows that for non-
constant periodic solutions the maximum value attained over
a period is strictly greater than 1, and the minimum value is
strictly less than 1.

In the linear stability analysis, we predicted instability (sug-
gesting evolution towards an equilibrium non-constant periodic
solution) once � is su�ciently small, with the largest wave-
length unstable perturbations corresponding to a subinterval of
the interval ⇡ < �✏ < 2⇡. Under the scalings that we are now
using, ✏⌧� = 2⇡/� and so we anticipate that 1 < ⌧� < 2. The
right-hand side of Eq. (132) vanishes identically if 2 = k⌧� for
any k 2 N, so non-constant solutions with periods ⌧� = 2/k are
excluded.

In the careful and rather detailed analysis that follows we
make the following assumptions as working hypotheses.

1. In an interval 0 < � < �1 the integrodi↵erential equation
(132) has a non-constant periodic solution R�(X) (with
period ⌧�) that is symmetric under reflection about any
local maximum and or minimum and has precisely one
local maximum and one local minimum associated with
each interval of length ⌧�.

Given this first hypothesis (largely a restatement of assumptions
that we explained in Section 6.2 would be made throughout
Section 6) and the translational invariance of the problem, there
is no loss of generality in locating the maxima at X = m⌧� and
the minima at (m + 1/2)⌧�, where m 2 Z.

2. The function R�(X) is non-negative and
Z ⌧�

0
R�(X)dX = 2

Z ⌧�/2

0
R�(X)dX = ⌧�. (136)

3. For 0 < � < �1, we have ⌧� 2 (1, 2) and

⌧0 = lim
�!0+

⌧� 2 [1, 2] exists.

4. We do not have lim
�!0

R�(X) ⌘ 1.

Concerning the last of these hypotheses we note that as � de-
creases, the growth rate for fastest-growing perturbation in the
linear stability analysis increases. If there are non-constant pe-
riodic equilibrium solutions for some nonzero value of �, we
would expect these to be retained and to maintain or increase
the amplitude of their spatial oscillations as � is decreased.

6.5.1. Properties of non-constant periodic solutions R�(X)
Because of the necessity of a concavity change in the peri-

odic function log(R�) we see from Eq. (132) that

µ� = min
X

Z X+1

X�1
R�(⇣)d⇣  2, ⌫� = max

X

Z X+1

X�1
R�(⇣)d⇣ � 2

(137)

and so

� (2 � µ�)
2�

 d2

dX2 log[R�(X)]  (⌫� � 2)
2�

. (138)

Noting that the first derivative of log[R�(X)] vanishes at the ex-
tremal point X = 0, we find from integrating the inequality that

� (2 � µ�)
4�

X2  log
hR�(X)

R�(0)

i

 (⌫� � 2)
4�

X2. (139)

For � < min(1/4,�1) we have 0 < �1/2 < ⌧�/2 and we see
from Eq. (139) that

R�(0)e�(2�µ�)/4  R�(�1/2)  R�(0)e(⌫��2)/4. (140)

Since R�(X) decreases on [0, ⌧�/2] we see that

�1/2R�(0) �
Z �1/2

0
R�(X)dX

� �1/2R�(�1/2) � �1/2R�(0)e�(2�µ�)/4. (141)
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Also, recalling Eq. (136),
Z �1/2

0
R�(X)dX <

Z ⌧�/2

0
R�(X)dX =

⌧�
2
, (142)

so (noting that ⌧� < 2 and µ� > 0) we have the upper bound

R�(0) <
⌧�

2�1/2 e(2�µ�)/4 <
e1/2

�1/2 . (143)

Thus, although R�(0) may grow unboundedly as � ! 0, its
growth rate is constrained.

Next, we observe that
Z X+1

X�1
R�(⇣)d⇣ =

Z 1

�1
R�(X + Y)dY

=

Z �⌧�/2

�1
R�(X + Y)dY +

Z ⌧�/2

�⌧�/2
R�(X + Y)dY

+

Z 1

⌧�/2
R�(X + Y)dY (144)

Exploiting periodicity we can add ⌧� to both terminals in the
first integral on the right, while we know that the second integral
is ⌧�. Hence

Z X+1

X�1
R�(⇣)d⇣ = ⌧� +

Z 1

⌧��1
R�(X + Y)dY. (145)

We now define a new integration variable Z = Y � ⌧�/2 and we
reformulate the integrodi↵erential equation (132) as

d2

dX2 log[R�(X)] = ���
�
+

1
2�

Z ��

���
R�

⇣⌧�
2
+ X + Z

⌘

dZ, (146)

where
0 < ��

def
= 1 � ⌧�

2
<

1
2
. (147)

The last inequality arises from ⌧� 2 (1, 2). We remark that
the reduction of the length of the integration interval from 2 to
2�� = 2 � ⌧� turns out to be of significant practical importance
in the ensuing analysis.

We introduce the rescaled function Q�(X) = � log[R�(X)],
so that

R�(X) = exp[��1Q�(X)], (148)

and

Q00�(X) = ��� +
1
2

Z ��

���
R�

⇣⌧�
2
+ X + Z

⌘

dZ. (149)

Setting X = 0 and X = ⌧�/2 (exploiting periodicity in the latter
case) we have from Eq. (149) that

Q00�(0) = ��� +
1
2

Z ��

���
R
⇣⌧�

2
+ Z

⌘

dZ  0, (150)

Q00�(⌧�/2) = ��� +
1
2

Z ��

���
R�(Z)dZ � 0. (151)

The inequalities reflect concavity constraints that follow from
the status of 0 and ⌧�/2 as maxima and minima, respectively.

Since the integral in Eq. (149) is no greater than ⌧� we are
able to conclude that

��� < Q00�(X) < 1 � 2�� (152)

and so we have uniform second-derivative bounds for our rescaled
function Q�(X) as �! 0, namely �1/2 < Q00

�
(X) < 1.

We can now extract some useful information on the be-
haviour of �� as � ! 0. From the second-order Mean Value
Theorem, and the status of 0 and ⌧�/2 as maxima and min-
ima, respectively, of R� (and of Q�) we have on the interval
0  X  ⌧�

Q�(X)  Q�(⌧�/2) +
��
2

[R�(0) � 1]
⇣

X � ⌧�
2

⌘2
. (153)

Since from the discussion following Eq. (135) the integral over
one period is ⌧�, we have R(⌧�/2)  1, while we know from the
inequality (143) that R�(0)  (e/�)1/2. We arrive at the upper
bound

R�(X)  exp
n ��
2�

h⇣ e
�

⌘1/2 � 1
i⌧2
�

4

o

for 0  X  ⌧�. (154)

If �� = o(�3/2) we have lim sup�!0 R�(X)  1 (uniformly in
X). Given the monotonicity of R on (0, ⌧�/2) and (⌧�/2, ⌧�) and
the requirement that the integral over a period is ⌧�, this leads
to lim�!0 R�(X) ⌘ 1, violating our fourth working hypothesis.
Thus in what follows, although we may have �� ! 0 as �! 0
(corresponding to ⌧� ! 2), we must assume that

��
�3/2 6! 0. (155)

From the second-order mean value theorem, using the in-
equality (152) we have the bounds

Q(X) � Q(0) � ��X2

2
, Q(X)  Q

⇣⌧�
2

⌘

+
(1 � 2��)

2

⇣

X � ⌧�
2

⌘2
.

Using Eq. (148) and integrating the resulting inequalities for
R(X) over the intervals of length ⌧� centred on 0 and ⌧�/2 re-
spectively, we find that

⌧� � R�(0)
Z ⌧�/2

�⌧�/2
exp

⇣

���X2

2�

⌘

dX, (156)

⌧�  R�
⇣⌧�

2

⌘

Z ⌧�/2

�⌧�/2
exp

⇣ (1 � 2��)X2

2�

⌘

dX. (157)

Since R�(⌧/2)  R�(X)  R�(0) and the integral of R�(X) over
a period is ⌧�, if either of the cases

lim
�!0

R�(0) = 1 or lim
�!0

R�
⇣⌧�

2

⌘

= 1

arises, then R�(X) ! 1 (in the L1 sense, at least) as � ! 0 and
we lose the non-constant periodic solution, violating our work-
ing hypotheses. Therefore we need to prevent the integrands in
each of the inequalities (156) and (157) from converging to 1 as
�! 0. Thus we conclude that as �! 0,

��
�
6! 0 and

(1 � 2��)
�

6! 0. (158)
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In terms if the limiting behaviour of the period ⌧�, we see that
neither ⌧� = 1 + o(�) nor ⌧� = 2 � o(�) is compatible with the
working hypotheses.

There are additional important conclusions that can be drawn
from the inequality (156), given that we have rejected the case
��/�! 0.

(i) If ��/� is bounded above as � ! 0, then R�(0) is also
bounded above. This prevents the periodic solution R�(X)
converging to a string of delta functions.

(ii) If ��/�! 1 as �! 0, then we have

R�(0)
h⇣2⇡�
��

⌘1/2
+ o(1)

i

 ⌧�. (159)

If �� ! 0 as � ! 0, this is a sharper result than the
bound (143).

6.5.2. Asymptotics of non-constant periodic solutions R�(X)
Up to the present stage of our analysis, we have made a min-

imal number of conjectures about exact properties of the non-
constant periodic solution, but we have not made any mathe-
matical approximations or any assumptions concerning asymp-
totic behaviour. We shall now commence our analysis, with
progressively increasing refinement, of the conjectured non-
constant periodic solution.

We begin with a first approximation of the solution by re-
placing the solution in the vicinity of its maximum at X = 0 by
a Gaussian:

R�(X) ⇡ R�(0) exp
h

�
|Q00
�

(0)|X2

2�

i

. (160)

From the second-order Mean Value Theorem, this approxima-
tion asserts that Q00

�
(X) is almost constant near X = 0. If � ⌧

1, there is an exponentially small contribution to the integral
outside of an interval of width O([�/Q00

�
(0)|]1/2�a) centred on

the origin (a > 0 fixed but arbitrary) and so integrating over
�⌧�/2 < X < ⌧�/2 and then extending the terminals on the
integral of the Gaussian to infinity, we deduce that the mass
associated with the Gaussian peak is

m ⇡ R�(0)
h 2�⇡
|Q00
�

(0)|
i1/2
. (161)

If we now replace X by X + ⌧�/2 in Eq. (149), use periodicity
of R and insert the Gaussian approximation (160) we see that

Q00�(⌧�/2 + X) ⇡ ��� +
R�(0)

2

Z ��

���
exp

h

�
|Q00
�

(0)|(X + Z)2

2�

i

dZ

= ��� +
R�(0)

2

Z X+��

X���
exp

h

�
|Q00
�

(0)|Z2

2�

i

dZ.

(162)

For small � the integral with be exponentially small if X + �� <
0 or if X � �� > 0, since in these cases the peak of the Gaussian
lies outside the integration interval. On the other hand,when

��� < X < �� we can extend the integration interval to (�1,1)
incurring an exponentially small error and we find that

Q00�(⌧�/2 + X) ⇡ ��� +
R�(0)

2

h 2�⇡
|Q00
�

(0)|
i1/2
. (163)

Eliminating R�(0) from Eqs (161) and (163) we now find that

Q00�(⌧�/2 + X) ⇡ ��� +
m
2
=

m + ⌧�
2
� 1 if � �� < X < ��.

(164)
Thus at our present level of approximate analysis, where

n 2 Z,

Q00�(X) =

8

>

>

>

>

<

>

>

>

>

:

m + ⌧�
2
� 1, (n + 1

2 )⌧� � �� < X < (n + 1
2 )⌧� + ��,

���, otherwise.
(165)

Of course at small but nonzero �, rather than having a discon-
tinuous switch between the two allowed values, there will be
a very narrow transition region, in which the leading-order be-
haviour can be represented in terms of the error function erf(·),
using Eq. (162). The result that Q00

�
(X) ⇡ ��� except close to

the minima of R is consistent with Eq. (150) if the neighbour-
hood of a minimum in R subtends negligible area.

If we integrate Eq. (165) from ⌧�/2 to X 2 [⌧�/2, ⌧�] and
recall that Q0

�
(⌧�/2) = 0, we find that

Q0�
�

X +
⌧�
2

� ⇡

8

>

>

>

>

>

<

>

>

>

>

>

:

⇣m + ⌧�
2
� 1

⌘

X, 0  X < ��,

⇣m + ⌧�
2
� 1

⌘

�� � ��(X � ��), �� < X  ⌧�
2
.

(166)
If we set X = ⌧�/2 in this equation, we find after a little algebra
and the use of Eq. (147) that we have, to within an exponentially
small error,

Q0�(⌧�) ⇡ 1
2
��(m � ⌧�). (167)

However, the left-hand side must be precisely zero, since ⌧� is
a local maximum of Q�. Since we have already shown that we
must reject having �� = o(�3/2), we must have

m ⇡ ⌧� + exponentially small terms (168)

and in all subsequent analysis we replace m by ⌧�. We can now
conclude that from Eq. (164) that

Q00�(⌧�/2) = ⌧� � 1 + exponentially small terms. (169)

Since we need Q to have a minimum at ⌧�/2 we see the ne-
cessity of the restriction ⌧� � 1, and we know from our earlier
discussion that for any fixed � > 0 a non-constant solution with
period ⌧� = 1 cannot exist.

From Eqs (161), (165) and (168) we conclude that

⌧2
��� ⇡ 2⇡�R�(0)2. (170)

This approximate equality essentially asserts that the asymp-
totic inequality (159), for which we have given a strong inde-
pendent argument, holds with equality as � ! 0. With m ⇡ ⌧�
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Eq. (166) becomes

Q0�
�

X +
⌧�
2

� ⇡

8

>

>

>

>

>

<

>

>

>

>

>

:

(⌧� � 1)X, 0  X < ��,

(⌧� � 1)�� � ��(X � ��), �� < X  ⌧�
2
,

(171)
and integrating again we have

Q�
�

X+
⌧�
2

��Q�
�⌧�

2
� ⇡

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

(⌧� � 1)X2

2
, 0  X < ��,

(⌧� � 1)�2
�

2
+ (⌧� � 1)��(X � ��)

� ��
2

(X � ��)2, �� < X  ⌧�
2
.

(172)
In particular, setting X = ⌧�/2 and using Q�(0) = Q�(⌧�), we
find that

Q�(0) � Q�(⌧�/2) ⇡ ��⌧�(⌧� � 1)
4

(173)

and correspondingly

R�(0)
R�(⌧�/2)

⇡ exp
⇣��⌧�(⌧� � 1)

4�

⌘

. (174)

We see once again, as we have already noted, that to stop the pe-
riodic solution degenerating to a constant as �! 0, we require
�� , o(�) [that is, ⌧� , 2 � o(�)] and also ⌧� , 1 + o(�).

We translate into the notation of the present section an im-
portant exact result from Section 6.4. Using the transforma-
tions P(x) = (�/|↵|)R(X), x = ✏X and � = 2⇡/(✏⌧�), we connect
Fourier coe�cients from the exact analysis of possible periodic
solutions to our present approximate analysis based on a local
Gaussian shape near the maxima. From Eq. (112),

log
h �

|↵|R(X)
i

=

1
X

n=0

Qn cos
⇣2⇡nX
⌧�

⌘

. (175)

Hence from the orthogonality of the cosines,

Q0 =
1
⌧�

Z ⌧�

0
log

h �

|↵|R(X)
i

dX =
2
⌧�

Z ⌧�

⌧�/2
log

h �

|↵|R(X)
i

dX.

(176)
The important �-dependent quantity R0 = (�/|↵|) exp(Q0) from
Section 6.4, defined in Eq. (117), can now be calculated from
the exact formula

R0 = exp
h 2
⌧��

Z ⌧�/2

0
Q
⇣

X +
⌧�
2

⌘

dX
i

. (177)

We insert the approximation (172) into Eq. (177) and find after
some algebra, including the use of Eq. (173) and the relation
R�(0) = exp[��1Q�(0)], the approximation

R0 ⇡ R�(0) exp
h

� (⌧� � 1)(2 � ⌧�)
12�

i

. (178)

However, in the notation of the present section, the necessary
and su�cient condition (130) for a ‘string of delta functions
limit’ can be expressed as

R0 ⇠
⌧�

2⇡1/2

⇣2 � ⌧�
�

⌘1/2
exp

h

� (⌧� � 1)(2 � ⌧�)
12�

i

. (179)

It is easy to see from Eq. (170) that the first factors on the right
in Eqs (178) and (179) coincide. This correct alignment with
the precise Fourier analytic requirements lends strong support
to the assertion of the validity of the Gaussian approximations
that we are using, the validity of the scaling law (170) and the
existence of the ‘string of delta functions’ limit.

The scaling law (170) and our rigorously proved result (143)
that R�(0)  (e/�)1/2 together lead to important conclusions
about ⌧0 = lim�!0 ⌧�:

(i) if R�(0) ⇠ c��1/2 for some c > 0 then ⌧0 < 2: or

(ii) if R�(0) = o(��1/2) then ⌧0 = 2.

Numerical experiments performed by Hackett-Jones et al. [7]
seem to suggest the second case. Although we have been unable
to identify the value of ⌧0 analytically, there is a further way
to check the overall consistency of the approach that we have
followed. Details will be found in Appendix B.

7. Equilibrium with nonlinear di↵usion

If we seek an equilibrium solution ⇢(x, t) = CP(x) in Eq. (17),
where the constant C is selected to ensure that P(x) is correctly
normalised as a probability density function, we have

D(CP)P0(x) �CP(x)
Z 1

�1
f (x � ⇠)P(⇠)d⇠ = 0. (180)

Here we have dropped the Cauchy principal value notation, an-
ticipating (as we shall find) that we are not troubled by slow
decay of P(x) as |x|! 1. This equation may be rewritten as

d
dx

n

Z

D(CP)dP
P

+C
Z 1

�1
W(x � ⇠)P(⇠)d⇠

o

= 0. (181)

and we find on integrating that
Z CP(µ1)

CP(x)

D(⇣)d⇣
⇣

= C
Z 1

�1
[W(x�⇠)�W(µ1�⇠)]P(⇠)d⇠. (182)

7.1. General observations
If we assume that the potential W is convex (this enforces

W(x) ! 1 as |x| ! 1), then using the consequence (36) of
Jensen’s inequality we have

Z CP(µ1)

CP(x)

D(⇣)d⇣
⇣

� CW(x � µ1) � C
Z 1

�1
W(µ1 � ⇠)P(⇠)d⇠.

(183)
We observe that if in addition we assume that D(⇢) ! D0 as
⇢ ! 0+, we conclude that P(x) ! 0 as |x � µ1| ! 1 to en-
force divergence of the integral on the left-hand side, and this
divergence is as D0 log P(x), giving

P(x)  constant ⇥ exp[�(C/D0)W(x � µ1)] for |x � µ1|! 1.
(184)

Comparing this bound with the inequality (37) for linear dif-
fusion, we see that for nonlinear di↵usion with D(⇢) bounded
away from zero, the equilibrium solutions to not di↵er markedly
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in character from the case of classical linear di↵usion, that is,
constant D(⇢). However, if there are values of ⇢ for which
D(⇢) = 0, then the possibility of continuous, piecewise smooth
solutions of Eq. (180) with compact support arises.

In general if D(⇢) ! 0 as ⇢ ! 0, then a compact support
solution symmetric about its mean µ1 consistent with Eq. (182)
has P(x) = 0 for |x � µ1| � L, while for |x � µ1| < L,

Z CP(µ1)

CP(x)

D(⇣)d⇣
⇣

= C
Z µ1+L

µ1�L
[W(x � ⇠) �W(µ1 � ⇠)]P(⇠)d⇠.

(185)
Here
Z CP(µ1)

0

D(⇣)d⇣
⇣

= C
Z µ1+L

µ1�L
[W(±L � ⇠) �W(µ1 � ⇠)]P(⇠)d⇠

(186)
and

Z µ1+L

µ1�L
P(x)dx = 1. (187)

A specific illustration of this is given in Section 7.2.

7.2. Quadratic cohesive potential
For nonlinear di↵usion with the cohesive quadratic poten-

tial W(x) = �x2 (with � > 0), we find (using the special case of
Eq. (59) corresponding to � = 0) that

Z CP(µ1)

CP(x)

D(⇢)d⇢
⇢

= �C(x � µ1)2. (188)

Some quite strong conclusions can now be drawn: P(x) is sym-
metric, is monotonic with respect to |x � µ1|, and if D(⇢) � D0
with D(⇢)! D0 as ⇢! 0+, then we have

P(x) ⇠ P(µ1) exp[�(�C/D0)(x � µ1)2] as |x � µ1|! 1. (189)

However, if D(0) = 0, with D(⇢) vanishing fast enough as ⇢ !
0+ to ensure that D(⇢)/⇢ has a finite improper Riemann integral
integral on (0, ✏) for ✏ > 0, we can satisfy Eq. (180) by taking
P(x) ⌘ 0 for |x � µ1| � L, and

Z CP(µ1)

CP(x)

D(⇢)d⇢
⇢

= �C(x � µ1)2 for |x � µ1| < L, (190)

with L and P(µ1) chosen so that
Z CP(µ1)

0

D(⇢)d⇢
⇢

= �CL2,

Z µ1+L

µ1�L
P(x)dx = 1. (191)

This demonstrates that compact support equilibrium solutions
arise for some nonlinear di↵usivities.

7.3. Power-law di↵usivity
The so-called porous medium equation @u/@t = r2(um)

with m > 1 is equivalent to a power-law di↵usivity, and we
use this an an illustration. If we take

D(⇢) = D⌘⇢
⌘ (192)
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Figure 5: The equilibrium probability density function P(x) for the power-law
di↵usivity D(⇢) = D⌘⇢⌘ and the quadratic cohesive potential W(x) = �x2. The
half-width L of the support of the density is given by Eq. (196).

with ⌘ a positive constant, then we find that for the quadratic
cohesive potential W(x) = �x2,

P(x) =
n⌘�C1�⌘

D⌘

⇥

L2 � (x � µ1)2⇤
o1/⌘
, 0  |x � µ1|  L. (193)

where for normalisation we require
Z L

0

n⌘�C1�⌘

D⌘

⇥

L2 � x2⇤
o1/⌘

dx =
1
2
. (194)

The integral is easily evaluated in terms of the beta function
B(u, v) = �(u)�(v)/�(u + v) and we find that

P(x) =
1

LB(1/2, 1/⌘ + 1)

h

1 � (x � µ1)2

L2

i1/⌘
, |x � µ1|  L,

(195)
where L is given by

L1+2/⌘
h⌘�C1�⌘

D⌘

i1/⌘
B(1/2, 1/⌘ + 1) = 1. (196)

We show LP(x) as a function of |x � µ1|/L in Fig. 5.
An analysis of the equilibrium problem for a power-law dif-

fusivity (192) and the more general potential W(x) = ↵|x|+ �x2

will be found in Appendix C.

8. Time evolution with a quadratic cohesive potential

From now on we consider only the case

f (x) = �2�x, (197)
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corresponding to the quadratic cohesive interparticle potential
W(x) = �x2. In this case

@p
@t
= Dp(x, t) + 2�C

@

@x

n

p(x, t)
Z 1

�1
(x � ⇠)p(⇠, t)d⇠

o

(198)

= Dp(x, t) + 2�C
@

@x

n

p(x, t)[x � µ(t)]
o

, (199)

where
µ(t) = �

Z 1

�1
xp(x, t)dx (200)

is the mean position if the integral is absolutely convergent. If
the integral is not absolutely convergent (so that it must not be
interpreted as a mean), the function µ(t) will still exist in the
principal value sense, and indeed be zero, if p(x, t) is an even
function of x. In this section we discuss the time evolution of
P(x, t) in a context somewhat more general than classical di↵u-
sion.

8.1. Classical time variation
We defer for the moment the general case in which the op-

erator D may act on the temporal variable as well as the space
variable, so that we are looking at the cases designated (a) and
(b) in Section 2. Taking a Fourier transform and assuming ap-
propriate decay of the solution as |x| ! 1, from Eq. (199) we
have

@p̃
@t
= �a(q)p̃(q, t) � 2�Ciq

Z 1

�1
eiqx p(x, t)[x � µ(t)]dx (201)

= �a(q)p̃(q, t) � 2�Ciq
h

�i
@p̃
@q
� µ(t)p̃

i

, (202)

leading to the linear first-order partial di↵erential equation

@p̃
@t
+ 2�Cq

@ p̃
@q
= �[a(q) � 2�Ciqµ(t)]p̃(q, t). (203)

To solve Eq. (203) we first write

p̃(q, t) = exp
n

�(q, t) � 1
2�C

Z q

0

a(s)ds
s

o

, (204)

and we deduce that

@�

@t
+ 2�Cq

@�

@q
= 2�Ciqµ(t). (205)

The characteristics for this first-order partial di↵erential equa-
tion are given by

dq
dt
= 2�Cq, (206)

corresponding to ⇠ = q exp(�2�Ct) being constant on a charac-
teristic. If we write

�(q, t) = F(q exp(�2�Ct), t), (207)

we find that
@F
@t
= 2�Ci⇠e2�Ctµ(t). (208)

Integrating (and remembering to add on an arbitrary function of
⇠ in so doing), we find after a little algebra that the solution for
p̃(q, t) has the form

p̃(q, t) = Q(qe�2�Ct)

⇥ exp
n

2�Ciq
Z t

0
e�2�C(t�⌧)µ(⌧)d⌧ � 1

2�C

Z q

0

a(s)ds
s

o

,

(209)

where the function Q is determined by the initial conditions.
Setting t = 0 we see that

p̃(q, 0) = Q(q) exp
n

� 1
2�C

Z q

0

a(s)ds
s

o

(210)

and so our solution for the Fourier transform of the probability
density function becomes

p̃(q, t) = p̃(qe�2�Ct, 0)

⇥ exp
n

2�Ciq
Z t

0
e�2�C(t�⌧)µ(⌧)d⌧ � 1

2�C

Z q

qe�2�Ct

a(s)ds
s

o

.

(211)

Let us assume for the moment that the mean µ(t) exists in
the classical sense as an absolutely convergent integral. Since
p̃(0, t) = 1 and

Z 1

1
xp(x, t)dx = �i

@

@q
p̃(q, t)

�

�

�

�

q=0
(212)

we see that
µ(t) = �i

@

@q
log[ p̃(q, t)]

�

�

�

�

q=0
(213)

and we find that

µ(t) = µ(0) exp(�2�Ct) + 2�C
Z t

0
exp[�2�C(t � ⌧)]µ(⌧)d⌧

+
i

2�C
lim
q!0

a(q) � a(q exp(�2�Ct))
q

. (214)

For classical di↵usion with a constant drift velocity v we have
a(q) = Dq2 � ivq, and more generally if we have a(q) = �ivq +
o(q) as q! 0 we are able to deduce that

µ(t) = µ(0) exp(�2�Ct) + 2�C
Z t

0
exp[�2�C(t � ⌧)]µ(⌧)d⌧

+
v

2�C
⇥

1 � exp(�2�Ct))
⇤

. (215)

This integral equation can be solved using Laplace transforms.
We have, on using the convolution theorem,

bµ(u) =
µ(0)

u + 2�C
+

2�Cbµ(u)
u + 2�C

+
v

2�C
⇥1
u
� 1

u + 2�C
⇤

. (216)

From this we find thatbµ(u) = u�1µ(0)+u�2v, whence we extract
the not surprising result that

µ(t) = µ(0) + vt. (217)
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Thus in general if we have a(q) = o(q) as q! 0, corresponding
to v = 0, we find that µ(t) = µ(0) for all t � 0.

Can we obtain a sensible evolution equation for µ(t) when
the integral that defines µ(t) exists only as a principal value in-
tegral? We have

µ(t) = �
Z 1

�1
xp(x, t)dx = lim

L!1

Z L

�L
xp(x, t)dx

= lim
L!1

Z L

�L

x
2⇡

Z 1

�1
e�iqx p̃(q, t)dq dx

= lim
L!1

Z 1

�1

p̃(q, t)
2⇡

Z L

�L
xe�iqxdx dq

=
i
⇡

lim
L!1

Z 1

�1
p̃(q, t)

@

@q
sin(qL)

q
dq

= � i
⇡

lim
L!1

Z 1

�1

sin(qL)
q

@

@q
p̃(q, t) dq (218)

Using the standard limit

lim
L!1

Z 1

0

sin(qL)
q

f (q)dq =
⇡

2
lim

q!0+
f (q), (219)

which holds under modest continuity and integrability condi-
tions on f , we find that

µ(t) =
i
2

h

lim
q!0�

@

@q
p̃(q, t) + lim

q!0+

@

@q
p̃(q, t)

i

(220)

and unless we have a(q) = O(q) (or smaller) as q! 0, the right-
hand side fails to exist. We shall assume henceforth that a(q) =
O(q) as q ! 0. Moreover, in the case in which a(q) ⇠ �ivq as
q! 0, we get a simple drift in the mean position, so there is no
serious loss of generality in taking v = 0 and considering only
cases in which the initial mean is µ(0) = 0, the mean remains
zero for all time, and a(q) = o(q).

Setting µ(t) = 0 for all t � 0 in Eq. (211), we have

p̃(q, t) = p̃(qe�2�Ct, 0) exp
n

� 1
2�C

Z q

qe�2�Ct

a(s)ds
s

o

. (221)

Since p̃(q, 0) is the Fourier transform of a probability density
function, it is necessarily a continuous function of q. It follows
that as t ! 1,

p̃(qe�2�Ct, 0)! p̃(0, 0) =
Z 1

�1
p(x, 0)dx = 1. (222)

Hence
lim
t!1

p̃(q, t) = exp
n

� 1
2�C

Z q

0

a(s)ds
s

o

(223)

and we find that we have a well-defined long-term limiting prob-
ability density function. In particular, if we take a(q) = K|q|
(0 <   2), so that the system would evolve as a symmetric
stable process of order  if the cohesive potential were turned
o↵ (� = 0), we find that

lim
t!1

p̃(q, t) = exp
n

� K|q|
2�C

o

, (224)

corresponding to the equilibrium distribution also being a stable
law of order .

To investigate the time-dependence of the solution, we in-
vert the Fourier transform in Eq. (221) using the convolution
theorem, finding that

p(x, t) =
Z 1

�1
A(⇠, t)B(x � ⇠, t)d⇠ (225)

where

Ã(q, t) = p̃(qe�2�Ct, 0), B̃(q, t) = exp
n

� 1
2�C

Z q

qe�2�Ct

a(s)ds
s

o

,

(226)
so that

A(x, t) =
1

2⇡

Z 1

�1
e�iqx p̃(qe�2�Ct, 0)dq

= e2�Ct 1
2⇡

Z 1

�1
exp(�iqxe2�Ct)p̃(q, 0)dq

= e2�Ct p(xe2�Ct, 0). (227)

The function B(x, t) can be interpreted as the response of the
system given the initial condition p(x, 0) = �(x). It is easy to see
that if a(s) is an even function, then B̃(q, t) is an even function
of q. In particular if a(q) = K|q| with  2 (1, 2], we have

B̃(q, t) = exp
n

� K
2�C

[1 � e�2�Ct] |q|
o

, (228)

so that at each time t, B(x, t) is a stable density of order . If we
recall that

F
n 1p

4⇡Dt
exp

⇣

� x2

4Dt

⌘

; x 7! q
o

= exp(�Dq2), (229)

we see that when the underlying transport process is ordinary
symmetric di↵usion, that is,

D = D
@2

@x2 and a(q) = Dq2, (230)

we have

B(x, t) =

s

�C
⇡D(1 � e�4�Ct)

exp
h

� �Cx2

D(1 � e�4�Ct)

i

(231)

and we observe the limiting behaviours

B(x, t) ⇠ 1p
4⇡Dt

exp
⇣

� x2

4Dt

⌘

as t ! 0+, (232)

B(x, t)!
r

�C
⇡D

exp
⇣

��Cx2

D

⌘

as t ! 1. (233)

We note that most of our preceding discussion in this sec-
tion covers quite general choices of a(q), though we have used
as illustrations the cases when the motility mechanism is linear
di↵usion or a stable process. Biler and Karch [44] have given
some related results for the specific case of stable processes,
when the cohesive potential W is a single-component power-
law potential W.
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8.2. Fractional di↵usion models
Other transport processes can of course be considered, in-

cluding fractional di↵usion processes that have become some-
what popular in the last decade or so [32, 43]. For example, one
may consider [45] the fractional di↵usion equation

tD�
+p(x, t) = KxD

0 p(x, t), 0 <   2, 0 < �  1, K > 0,
(234)

which reduces to the standard di↵usion equation with di↵usiv-
ity K if  = 2 and � = 1, but corresponds to an integrodi↵er-
ential equation in the remaining cases. Here for 0 < � < 1 the
Caputo time derivative of fractional order � is defined by

tD�
+ f (t) =

1
�(1 � �)

Z t

0

f 0(⌧)d⌧
(t � ⌧)�

, (235)

while for 0 <  < 2 the Riesz fractional derivative is defined by

xD
0g(x) =

�(1 + ) sin(⇡/2)
⇡

Z 1

0

g(x + ⇠) � 2g(x) + g(x � ⇠)
⇠1+ .

(236)
It is easy to show that

L{tD�
+ f (t); t ! u} = u�L{ f (t); t ! u} � u��1 lim

t!0+
f (t),

(237)

F {xD
0g(x); x! q} = �|q|F {g(x); x! q}, (238)

consistent with the familiar � = 1 and  = 2 cases

L{ f 0(t); t ! u} = uL{ f (t); t ! u} � lim
t!0+

f (t), (239)

F {g00(x); x! q} = �|q|2F {g(x); x! q} (240)

Note however that for  = 1 we do not recover the standard
classical result that

F {g0(x); x! q} = �iqF {g(x); x! q} (241)

If we take the joint Fourier–Laplace transform of the fractional
di↵usion equation (234) we find that

u�p⇤(q, u) � u��1 p̃(q, 0) = �K|q|p⇤(q, u). (242)

To make this look as much as possible like a di↵usion process,
we rewrite the equation as [46]

up⇤(q, u) � p̃(q, 0) = �Ku1��|q|p⇤(q, u). (243)

and we recognize this as the Laplace transform of the equation

@

@t
p̃(q, t) = � K

�(�)
@

@t

Z t

0

|q| p̃(q, t0)dt0

(t � t0)1�� . (244)

If we take this equation as our underlying transport process and
add in the cohesive force e↵ect, we have an example of the third
class of models discussed in the introduction [case (c)] in which

J{Dp(x, t); x! q, t ! u} =
Z 1

�1
eiqx

Z 1

0
e�utDp(x, t)dt dx

= �b(q, u)p⇤(q, u), (245)

with
b(q, u) = Ku1��|q|. (246)

We note in passing that the modification of fractional di↵usion
processes to include additional e↵ects requires some care. For
example, when reaction terms that remove mass are added, al-
though solutions remain non-negative in the limiting case of
normal di↵usion, in the genuinely factional case, solutions can
be come unphysically negative unless the way in which the re-
action terms are incorporated is done very carefully [51]. How-
ever, as we combine two flux mechanisms, each of which con-
serves mass, we anticipate no such problems here, although we
do not prove non-negativity of solutions.

For the general model of case (c), to ensure that µ(t) is
well-defined and zero for all times t, we shall require p̃(q, 0)
and b(q, s) to be even functions of q. We have from the joint
Fourier–Laplace transform of the evolution equation

up⇤(q, u)� p̃(q, 0) = �b(q, u)p⇤(q, u)�2�Cq
@

@q
p⇤(q, u). (247)

This can be written in standard form as a first-order linear dif-
ferential equation for p⇤(q, u):

@

@q
p⇤(q, u) +

h u
2�Cq

+
b(q, u)
2�Cq

i

p⇤(q, u) =
p̃(q, 0)
2�Cq

. (248)

Multiplying both sides of this equation by an appropriate inte-
grating factor, and fitting the arbitrary function of u that arises
in performing the integration, we find that

p⇤(q, u) =
Z |q|

0

p̃(r, 0)
2�Cr

⇣ r
|q|

⌘u/(2�C)
exp

n

�
Z |q|

r

b(s, u)ds
2�Cs

o

dr

(249)

=

Z 1

0

p̃(|q|⇠, 0)
2�C

⇠u/(2�C)�1 exp
n

�
Z |q|

|q|⇠

b(s, u)ds
2�Cs

o

d⇠.

(250)

What can we deduce from this equation by asymptotic analysis?
As q! 0 the left-hand side converges to

p⇤(0, u) = L
n

Z 1

�1
p(x, t)dx; t 7! u

o

= L{1; t 7! u} = 1
u
.

In the right-hand side

p̃(|q|⇠, 0)!
Z 1

�1
p(x, t)dx = 1,

so the right-hand side converges to
Z 1

0

1
2�C

⇠u/(2�C)�1d⇠ =
1
u

also, and so we have verified correct normalization for all times.
Now we hold q constant and let u ! 0 to try to extract

the long-time behaviour. We shall assume that b(q, u) ! 0 as
u ! 0+. This is the case for the fractional di↵usion operator,
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from Eq. (246). We see from Eq. (250) that as u ! 0+, the
argument of the exponential function vanishes and

p⇤(q, u) ⇠
Z 1

0

p̃(|q|⇠, 0)
2�C

⇠u/(2�C)�1d⇠

=
1
u

Z 1

0
p̃(|q|⇠, 0)

d
d⇠
⇠u/(2�C)d⇠

=
1
u

nh

p̃(|q|⇠, 0)⇠u/(2�C)
i1

0
�

Z 1

0
⇠u/(2�C) d

d⇠
p̃(|q|⇠, 0)d⇠

o

⇠ 1
u

n

p̃(|q|, 0) �
Z 1

0

d
d⇠

p̃(|q|⇠, 0)d⇠
o

=
p̃(0, 0)

u

=
1
u

Z 1

�1
p(x, 0)dx =

1
u
. (251)

Since the asymptotic behaviour of a function f (t) as t ! 1
is captured in the behaviour of its Laplace transform bf (u) as
u! 0+, we see that as t ! 1, p̃(q, t)! 1. Recall that we have
denoted Dirac’s delta function by �(·) to distinguish it from the
parameter � used earlier. Since p̃(q, t) ! 1 as t ! 1, we con-
clude that p(x, t)! �(x). That is, the process become localized
at the origin. This conclusion holds in all cases where p(x, 0)
is an even function and the mean location exists, provided that
b(q, u) ! 0 as b ! 0+ (and so in particular for the case (246)
with 0 < � < 1 and 1 <   2).

9. Conclusions

We have show in this paper how a continuous swarm of
agents subject to the combination of a local motility mechanism
reflecting random motion and a local drift velocity computed
from long-range, ultimately cohesive forces between agents,
evolves over time and we have paid particular attention to possi-
ble equilibrium states relevant to long-time limiting behaviour.
Our results embrace a wide variety of motility mechanisms,
and include some results for general long-range interactions,
but also many exact analytic results for special nontrivial forms
of the long-range interaction. In the particular case where the
motility mechanism is standard linear di↵usion, we have been
able to probe the limiting behaviour of equilibrium solutions as
the di↵usivity tends to zero, shedding light on some puzzling
aspects of purely deterministic long-range interaction models,
especially the genesis of closely-spaces spikes of concentration,
apparently converging to Dirac delta functions.

All of our results have been for processes with the real line
R as the space domain. Many of the same ideas may be devel-
oped in R2 and R3, although the possible behaviours of smoothed
singular potentials in the low-di↵usivity limit may be somewhat
more exotic than the scenarios for which we have given evi-
dence in one space dimension in Section 6.

All our results have been for a continuous swarm of inter-
acting agents. It is reasonable to expect that if N � 1 an ap-
propriately defined swarm of N discrete individuals will behave
the same way. For such a swarm, the jth individual has location
Xj(t) at time t and contributes a mass �(x � Xj(t)) to the overall
mass density from which the ultimately cohesive drift velocity
is computed. The motility of the individual is described by the

sum of displacement under the drift velocity and random dis-
placement appropriate to sample paths of the random process
underlying the motility operator D. Note that a rigorous con-
struction of the discrete system may not be possible for non-
linear di↵usion processes, as there appears to be lacking any
general exact correspondence between nonlinear di↵usion and
an underlying stochastic process, although connections can be
made within a mean field approximation. With that caveat, the
interplay between motility rules that promote or suppress local
clustering, and the long-range forces, that may have repulsive
regimes as well as dominant cohesion in the far field, could turn
out to be subtle and interesting.
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Appendix A. Asymptotic analysis for linear di↵usion with

D ! 0 and potential W(x) = �|↵|x + �x

2

We rewrite Eq. (82) as

1 =
P(µ1)D1/2

(|↵|C)1/2

Z 1

0

dp
nh �

|↵| � P(µ1)
i

(1 � p) +
�

|↵|Q(p)
o1/2
,

(A.1)
where

Q(p) = log(1/p) � (1 � p) ⇠ (1 � p)2

2
as p! 1�. (A.2)

For correct normalization, we need the integral to diverge ap-
propriately as D! 0 and this can only happen if P(µ1)! �/|↵|
in an appropriate way which we shall determine. For brevity we
set S = �/|↵| � P(µ1) and write

I(S ) =
Z 1

0

dp
nh

S (1 � p) +
�

|↵|Q(p)
o1/2
, (A.3)

J(S ) =
Z 1

0

dp
nh

S (1 � p) +
�

|↵|
(1 � p)2

2

o1/2
. (A.4)

We require the dominant small-S asymptotic behaviour of I(S ).
However, it is straightforward to show that I(S ) � J(S ) con-
verges to a constant as S ! 0+, so it su�ces to consider the
dominant asymptotic behaviour of the simpler integral J(S ).
This integral is elementary:

J(S ) =
⇣2
�

⌘1/2
log

h �

S
+

r

⇣ �

S

⌘2
+ 1

i

⇠
⇣2
�

⌘1/2
log

⇣2�
S

⌘

. (A.5)

If we set

S = �/|↵| � P(µ1) = K exp[�D�1/2], (A.6)
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then the value of the positive constant K is not determined, but
we find that the divergence of the integral preserves the normal-
ization if and only if

 =
⇣C↵2

2�

⌘1/2
. (A.7)

Thus we have established Eq. (83).

Appendix B. Consistency of the asymptotic arguments in

Section 6.5

We shall compute the period ⌧� on the basis of the approxi-
mate formulae that we have already obtained. We have

⌧�
2
=

Z ⌧�/2

0
R�

⇣⌧�
2
+ X

⌘

dX

= R�
⇣⌧�

2

⌘

Z ⌧�/2

0
exp

n 1
�

h

Q
⇣⌧�

2
+ X

⌘

� Q
⇣⌧�

2

⌘io

dX. (B.1)

We insert the approximation (172) into the integrand and find
(noting that ⌧�/2 � �� = ⌧� � 1) that

⌧�
2
⇡ R�

⇣⌧�
2

⌘

Z ��

0
exp

h (⌧� � 1)X2

2�

i

dX + R�
⇣⌧�

2

⌘

⇥
Z ⌧��1

0
exp

h (⌧� � 1)�2
�

2�
+

(⌧� � 1)��X
�

� ��X2

2�

i

dX.

Next, we complete the square in the second integral and change
the integration variable from X to ⌧� � 1 � X, and we eliminate
R�(⌧�/2) in favour of R�(0) using Eq. (174), giving after a little
algebra

⌧�
2
⇡ R�(0) exp

h

���⌧�(⌧� � 1)
4�

i

Z ��

0
exp

h (⌧� � 1)X2

2�

i

dX

+ R�(0)
Z ⌧��1

0
exp

⇣

���X2

2�

⌘

dX. (B.2)

The second integral in Eq. (B.2) can be expressed in terms of
the usual error function [47]

erf(z) =
2p
⇡

Z z

0
e�x2

dx =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

2p
⇡

[z + O(z3)] as z! 0+,

1 � e�z2

z
p
⇡

[1 + O(z�2)] as z! 1,

while it is useful to extract the maximum value of the integrand
as a factor from the first integral. Then Eq. (B.2) becomes

⌧�
2
⇡ R�(0) exp

h

���(⌧� � 1)2

2�

i

Z ��

0
exp

h

�
(⌧� � 1)(�2

�
� X2)

2�

i

dX

+
R�(0)

2

⇣2⇡�
��

⌘1/2
erf

h

(⌧� � 1)
⇣ ��
2�

⌘1/2i
. (B.3)

We see now that we recover the scaling law ⌧2
�
�� ⇡ 2⇡�R�(0)2

[Eq. (170)] provided that ��(⌧� � 1)2/(2�)! 1 as �! 0. We
have already had to impose ��/� ! 1 and (⌧� � 1)/� ! 1,
so it is likely that this requirement will be met.

We close our discussion by noting that if it were the case
that ��(⌧� � 1)2/(2�) ! 0 as � ! 0, then we would re-
quire ⌧� ! 1 su�ciently rapidly to overcome the divergence
of ��(⌧��1)2/(2�) and correspondingly �� ! 1/2. In this case
it would follow from Eq. (B.3) that R�(0) ! 1 and we would
lose our non-constant periodic solution in the limit �! 0.

Appendix C. Equilibrium with a power-law di↵usivity and

the potential W(x) = ↵|x| + �x

2

We sketch an analysis of the the determination of the equi-
librium solution for a power-law di↵usivity with the more gen-
eral potential

W(x) = ↵|x| + �x2. (C.1)

To reduce the prevalence of factors of C in the analysis, where
C is the total mass present, defined by Eq. (2), in the remainder
of this section only we shall work directly with an equilibrium
mass density ⇢(x), rather than working with the probability den-
sity function P(x) = ⇢(x)/C. From Eq. (182), we have

D⌘

⌘

⇥

⇢(µ1)⌘�⇢(x)⌘
⇤

=

Z 1

�1
[W(x�⇠)�W(µ1�⇠)]⇢(⇠)d⇠. (C.2)

Following the approach of Section 4.1, if we di↵erentiate twice
to obtain a delta function in the integrand, we obtain

D⌘

⌘

d2

dx2 ⇢
⌘ + 2↵⇢(x) + 2�C = 0.

We now define

R(x) = ⇢(x)⌘, Q(x) = R0(x), (C.3)

note that R00(x) = (1/2)(d/dR)(Q2), and find that

D⌘

2⌘
d

dR
(Q2) + 2↵R1/⌘ + 2�C = 0.

Integrating and taking Q = 0 at x = µ1 we arrive at a first-order
di↵erential equation for R(x):

⇣dR
dx

⌘2
=

4⌘
D⌘

(

�C[R(µ1) � R(x)] +
↵⌘[R(µ1)1+1/⌘ � R(x)1+1/⌘]

1 + ⌘

)

.

Hence

|x � µ1| =
⇣D⌘

4⌘

⌘1/2

⇥
Z R(µ1)

R(x)

(

�C[R(µ1) � z] +
↵⌘[R(µ1)1+1/⌘ � z1+1/⌘]

1 + ⌘

)�1/2

dz.

(C.4)

The analysis just performed is only valid if the term in braces
in the preceding equation is non-negative for 0  z  R(µ1),
which requires this term to be positive at z = 0 and have a
negative z-derivative for 0  z < R(µ1), that is,

R(µ1) > 0, �C +
↵⌘R(µ1)1/⌘

1 + ⌘
> 0 (C.5)
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and
�C + ↵z1/⌘ > 0 for 0 < z < R(µ1). (C.6)

Subject to these conditions, we obtain a finite integral on the
right-hand side of Eq. (C.4) as R(x) ! 0, leading to a density
with finite support (µ1 � L, µ1 + L), where

L =
hD⌘R(µ1)

4⌘

i1/2

⇥
Z 1

0

(

�C(1 � Z) +
↵⌘R(µ1)1/⌘(1 � Z1+1/⌘)

1 + ⌘

)�1/2

dZ. (C.7)

From Eqs (C.4) and (C.7), we have

|x � µ1|
L

=

Z 1

R(x)/R(µ1)

dZ
p

(1 + ⌘)�C(1 � Z) + ↵⌘R(µ1)1/⌘(1 � Z1+1/⌘)
Z 1

0

dZ
p

(1 + ⌘)�C(1 � Z) + ↵⌘R(µ1)1/⌘(1 � Z1+1/⌘)

.

(C.8)

Equations (C.7) and (C.8), together with

⇢(x) = R(x)1/⌘,

Z µ1+L

µ1�L
⇢(x)dx = C, (C.9)

constitute a solution of the equilibrium problem, subject to the
conditions (C.5) and (C.6), though for general values of ⌘ the
integrals have to be evaluated numerically.

If ↵ � 0, � � 0 and and at least one of ↵ or � is positive,
the conditions (C.5) and (C.6) are met. The special case ↵ = 0,
� > 0 has already been analysed in Section 7.3 and the results
given there can be recovered easily from Eqs (C.7), (C.8) and
(C.9). For the special case ↵ > 0, � = 0, we find that

|x � µ1|
L

=

(

Z 1

R(x)/R(µ1)

dZp
1 � Z1+1/⌘

) ,(

Z 1

0

dZp
1 � Z1+1/⌘

)

,

which can be rewritten as

|x � µ1|
L

=

8

>

>

<

>

>

:

Z 1

[⇢(x)/⇢(µ1)]1+⌘

⇣⌘/(1+⌘)�1d⇣
p

1 � ⇣

9

>

>

=

>

>

;

,

8

>

>

<

>

>

:

Z 1

0

⇣⌘/(1+⌘)�1d⇣
p

1 � ⇣

9

>

>

=

>

>

;

.

The integrals are related to the classical beta function.
We turn now to the case in which ↵ and � are of opposite

sign. When � > 0 and ↵ < 0, the condition (C.6) reduces to
|↵|R(µ1)1/⌘ < �C and the second condition in (C.5) is then met.
On the other hand, when � < 0 and ↵ > 0, the condition (C.6)
necessarily fails in the vicinity of z = 0.

We conclude our discussion with the special case in which
⌘ = 1, that is, D(⇢) = D1⇢, in which case R(x) = ⇢(x). After
some elementary but protracted algebra, we find that Eq. (C.8)
can be reduced to

|x � µ1|
L

=

Z �(x)

0

dT
p

1 � sgn(↵)T 2

Z �(µ1+L)

0

dT
p

1 � sgn(↵)T 2

(C.10)

where

�(x) =
( |↵|⇢(µ1)[1 � ⇢(x)/⇢(µ1)]

2[↵⇢(µ1) + �C]

)1/2

. (C.11)

Hence for ↵ > 0 and � > 0,

⇢(x)
⇢(µ1)

= 1 � 2[↵⇢(µ1) + �C]
↵⇢(µ1)

⇥ sin2
( |x � µ1|

L
arcsin

h⇣ ↵⇢(µ1)
2[↵⇢(µ1)) + �C]

⌘1/2i
)

,

while if ↵ < 0 with |↵|⇢(µ1) < �C, we find that

⇢(x)
⇢(µ1)

= 1 � 2[↵⇢(µ1) + �C]
|↵|⇢(µ1)

⇥ sinh2
( |x � µ1|

L
arcsinh

h⇣ |↵|⇢(µ1)
2[↵⇢(µ1)) + �C]

⌘1/2i
)

.

The solution is uniquely prescribed on selecting any one of the
three constants ⇢(µ1), L or C, since we have the integral con-
straint (C.9) and we can show also that

L =
 

2D1

|↵|

!1/2

⇥

8

>

>

>

>

>

<

>

>

>

>

>

:

arcsin
h⇣ ↵⇢(µ1)

2[↵⇢(µ1)) + �C]

⌘1/2i
, ↵ > 0,

arcsinh
h⇣ |↵|⇢(µ1)

2[↵⇢(µ1)) + �C]

⌘1/2i
, ↵ < 0.
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