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ABSTRACT
Gross–Pitaevskii simulations of vortex avalanches in a neutron star superfluid are limited compu-
tationally to . 102 vortices and . 102 avalanches, making it hard to study the long-term statistics
of radio pulsar glitches in realistically-sized systems. Here, an idealised, mean-field model of the
observed Gross-Pitaevskii dynamics is presented, in which vortex unpinning is approximated as a
state-dependent, compound Poisson process in a single random variable, the spatially-averaged crust-
superfluid lag. Both the lag-dependent Poisson rate and the conditional distribution of avalanche-
driven lag decrements are inputs into the model, which is solved numerically (via Monte-Carlo
simulations) and analytically (via a master equation). The output statistics are controlled by two
dimensionless free parameters: α, the glitch rate at a reference lag, divided by the spin-down time-
scale, divided by the critical lag for unpinning; and β, the minimum fraction of the lag that can be
restored by a glitch. The system evolves naturally to a self-regulated stationary state, whose proper-
ties are determined by α/αc(β), where αc(β) ≈ β−1/2 is a transition value. In the regime α & αc(β),
one recovers qualitatively the power-law size and exponential waiting-time distributions observed
in many radio pulsars and Gross-Pitaevskii simulations. For α � αc(β), the size and waiting-time
distributions are both power-law-like, and a correlation emerges between size and waiting time until
the next glitch, contrary to what is observed in most pulsars. Comparisons with astrophysical data
are restricted by the small sample sizes available at present, with ≤ 35 events observed per pulsar.
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1 INTRODUCTION

More than 400 rotational glitches have been detected dur-
ing nearly five decades of long-term monitoring and tim-
ing of rotation-powered radio pulsars (Hobbs et al. 2004;
Melatos et al. 2008; Espinoza et al. 2011; Yu et al. 2013).1

With this volume of data, it is now feasible to analyse
meaningfully the statistics of individual pulsars, seven of
which have glitched more than 10 times. Most pulsars ex-
hibit a broad distribution of glitch sizes consistent with a
power law, whose index differs among individual pulsars,
and an exponential distribution of inter-glitch waiting times
(Melatos et al. 2008). Some pulsars, however, including Vela
and PSR J0537−6910, glitch quasi-periodically with uni-
modal size and waiting-time distributions (Melatos et al.
2008; Shannon et al. 2016). A recent nonparametric anal-
ysis hints at an intermediate class of behaviour, e.g. in PSR
J1341−6220 (Ashton et al. 2017; Howitt et al. 2017). In all
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but one pulsar (PSR J0537−6910), no correlation is ob-
served between the size of a glitch and the waiting time
until the next one. Recent analyses of the Crab pulsar sug-
gest the existence of a minimum glitch size of ≈ 0.05 µHz
(Espinoza et al. 2014) and changes in the mean glitch rate
on a decadal time-scale (Lyne et al. 2015).

Numerous physical mechanisms have been pro-
posed to explain pulsar glitches, including crust-quakes
(Ruderman 1969; Smoluchowski 1970; Ruderman 1991;
Larson & Link 2002; Jones 2003; Middleditch et al.
2006), core quakes (Takatsuka & Tamagaki 1988), su-
perfluid vortex avalanches (Anderson & Itoh 1975;
Cheng et al. 1988; Warszawski & Melatos 2011,
2013), magnetospheric state changes (Keith et al.
2013; Kerr et al. 2016) and hydrodynamical instabil-
ities (Mastrano & Melatos 2005; Peralta et al. 2006;
Melatos & Peralta 2007; Glampedakis & Andersson 2009;
Sidery et al. 2010; Sourie et al. 2017). The reader is re-
ferred to Haskell & Melatos (2015) for a contemporary
review. Historically, theoretical attention has focussed
on the microphysics of the vortex unpinning model, e.g.
ab initio calculations of the nuclear pinning potentials
(Donati & Pizzochero 2004; Seveso et al. 2016), nuclear
lattice geometry (Jones 1991), vortex motion near a
pinning site (Sedrakian 2005), long-range vortex hopping
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(Haskell & Melatos 2016), and the role of mutual friction
(Haskell 2016) and super-conductivity (Haskell et al. 2013).

Quantitative predictive theories that describe the
long-term glitch statistics generated by the vortex
avalanche model are rare (Warszawski & Melatos 2008;
Melatos & Warszawski 2009; Warszawski & Melatos 2013;
Haskell 2016). In the simplest physical scenario, where
unpinning events are threshold-driven but spatially un-
correlated, the central limit theorem predicts size and
waiting-time distributions much narrower than those ob-
served (Warszawski & Melatos 2013). Correlated unpinning
is therefore an essential ingredient. Numerical simulations
based on the Gross–Pitaevskii equation (GPE) have iden-
tified two specific knock-on mechanisms that cause spa-
tially correlated vortex unpinning (Warszawski & Melatos
2011; Warszawski et al. 2012).2 GPE simulations generate
size and waiting-time distributions, which are broadly con-
sistent with observational data. For example, the largest
GPE simulations published so far produce a power-law-like
size distribution over ∼ 1.5 decades (Warszawski & Melatos
2011; Melatos et al. 2015). We emphasise, however, that
the simulations are restricted computationally to unrealis-
tically small systems featuring . 102 vortices (c.f. ∼ 1018

in a pulsar), . 102 avalanches, and . 10 pinning sites be-
tween vortices (c.f. ∼ 109 in a pulsar). There is an urgent
need to supplement GPE studies with other theoretical ap-
proaches, which incorporate the lessons from the GPE out-
put into a faster computational framework capable of ad-
dressing larger, more realistic systems.

In this paper, we present a mean-field vortex avalanche
model, in which the angular velocity lag between the
pulsar’s superfluid interior and rigid crust fluctuates
according to a state-dependent Poisson process. The
model does not track vortex motion and knock-on; it
parametrises the avalanche physics using published GPE re-
sults (Warszawski & Melatos 2011). The computational sav-
ings are re-invested into longer runs (to generate a larger
sample of events), an extended dynamic range (to capture
the scale invariance of the size distribution), and a sys-
tematic survey of the range of glitch behaviour as a func-
tion of key astrophysical control parameters (e.g. spin-down
torque), all of which are out of reach with contemporary
GPE simulations. The paper is structured as follows. In Sec-
tion 2, we summarise measurements of glitch statistics and
recent theoretical work on vortex avalanches. In Section 3,
we present and motivate physically the equation of motion
governing the mean-field model. In Sections 4 and 5, we com-
pute the glitch statistics arising from the model in the short
and long term, shorter than and comparable to the spin-
down time-scale respectively. In Section 6, we interpret the
numerical results in Sections 4 and 5 analytically in terms
of a master equation for the system.

2 VORTEX AVALANCHES

We begin by reviewing briefly the indirect evidence that neu-
tron star glitches are caused by superfluid vortex avalanches.

2 Temporal correlations (“memory”) play a similar role, e.g., in

the coherent noise model (Melatos & Warszawski 2009).

The evidence is drawn from observations (statistical data;
Section 2.1) and theory (GPE simulations; Section 2.2).

2.1 Observed glitch statistics

Pulsar glitch statistics are limited by sample size. Seven pul-
sars have been observed to glitch ≥ 10 times; four have
been observed to glitch ≥ 20 times. The most prolific, PSR
J1740−3015, has glitched 33 times. Notwithstanding these
relatively small numbers, the probability density function
(PDF) of glitch sizes in individual pulsars is consistent with
a power law in three objects that have glitched more than
ten times: PSR J0534−2200, PSR J1331−6220 and PSR
J1740−3015. Glitch sizes span up to four decades in individ-
ual objects, e.g., 10−10 . ∆ν/ν . 10−6 in PSR J0534+2200,
where ∆ν is the step increment in the spin frequency ν.
Across the whole population, the smallest observed glitch
has ∆ν/ν = 8 × 10−11 (PSR J1824−2452), and the largest
has ∆ν/ν = 6.5× 10−5 (PSR J1647−4552). Scale invariant
event sizes are a feature of avalanche processes in far-from-
equilibrium systems. In self-organised critical systems, for
example, a global driver adds stress slowly to the system,
and the stress is released spasmodically in local stick-slip
interactions (Bak et al. 1987; Jensen 1998). Magnetic flux
tube cascades in type-II superconductors epitomize this be-
haviour (Field et al. 1995; Altshuler et al. 2004).

In pulsars whose glitch size PDFs resemble power laws,
the waiting-time PDF is approximately exponential, with
p(∆t) ∝ exp(−λ̄∆t), where λ̄ is the average glitch rate.
The relationship between λ̄ and a pulsar’s spin-down age τc
remains unclear. Melatos et al. (2008) analysed data from
seven pulsars with 0.35 yr−1 ≤ λ̄ ≤ 2.6 yr−1 and found
no correlation between λ̄ and τc (see Figure 10 of the lat-
ter paper). Espinoza et al. (2011) found that λ̄ for the most
frequent glitchers decreases monotonically with age (see Fig-
ure 9 of the latter paper). McKenna & Lyne (1990) first
proposed the glitch activity parameter, which is the frac-
tional increase in ν due to glitches per annum and there-
fore includes information about both λ̄ and sizes. They
found that the most active pulsars are middle-aged, with
104 . τc/(1 yr) . 105.

Three objects do not exhibit the scale-invariant be-
haviour described above. In Vela (PSR J0835−4510) and
PSR J0537−6910, the size and waiting-time PDFs
are unimodal, i.e., peaked at characteristic scales
(Middleditch et al. 2006; Melatos et al. 2008). PSR
J1341−6220 displays signs of intermediate behaviour
between the unimodal and scale-invariant cases; its clas-
sification will be clarified, as more data become available
(Howitt et al. 2017). A unimodal waiting-time PDF cor-
responds to quasi-periodic behaviour, which is sometimes
interpreted in terms of a global threshold mechanism: each
event empties fully the global stress “reservoir,” which then
replenishes fully over a characteristic time-scale, before
the next event occurs. Self-organised critical systems can
generate quasi-periodic events of roughly equal sizes in
the regime where they are rapidly driven (Jensen 1998;
Melatos et al. 2008). However, a global threshold implies
a correlation between the size of a glitch and the waiting
time until the next glitch. Such a correlation is observed in
PSR J0537−6910 (Middleditch et al. 2006) but not in PSR
J0834−4511 or PSR J1341−6220. Moreover, no correlation
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between the size of a glitch and the time since the previous
glitch is observed in any object (Peralta 2006). The reason
for the widespread lack of correlation remains unknown.

The minimum observed size approaches the resolu-
tion ∆ν/ν ∼ 10−11 inferred from detection simulations
(Janssen & Stappers 2006). Therefore, it is unclear whether
the observed minimum is fundamental or an observational
artifact. Espinoza et al. (2014) reviewed 29 years of data
for the Crab and found that the number of events with
∆ν . 0.05 µHz is significantly less than expected from ex-
trapolating downwards a power-law PDF. Whether or not
this implies a fundamental minimum size in the Crab, how-
ever, depends on the form of the PDF, which remains un-
certain because of the relatively small number of events. It
will be interesting to search for a shortfall in events with
∆ν . 0.05 µHz in other objects, as more data become avail-
able.

2.2 Gross–Pitaevskii simulations

When interpreted in terms of vortex unpinning, the data de-
scribed in Section 2.1 imply that vortex motion must be cor-
related during avalanches. Consider the standard, idealised
model in which a glitch occurs when Nu (out of a total of
Nv) vortices unpin and move radially outward a distance
∆r ≈ ξλF, which is comparable to the Feynmann distance,
λF = 1.3× 10−2 (ν/1 Hz)−1/2 cm, i.e., we have ξ ≈ 1.3 As-
suming angular momentum conservation between the rigid
crust (moment of inertia Ic) and the superfluid (nominal
moment of inertia Is), one obtains

∆ν

ν
=
Is
Ic

Nu

Nv

λFξ

R∗
, (1)

where R∗ is the stellar radius. Hence even the smallest
glitches involve Nu = 1.6× 1013 (∆ν/10−11ν) (Is/Ic)−1 ξ−1

(ν/1 Hz)3/2 vortices. Uncorrelated motion of so many vor-
tices leads, from the central limit theorem, to narrow size
and waiting-time PDFs with dispersions N

−1/2
u times the

mean, which are nothing like what is observed.
The knock-on mechanism triggering correlated motion

remained uncertain until the advent of GPE simulations
recently (Warszawski et al. 2012). The GPE is a time-
dependent, nonlinear Schrodinger equation for ψ, the or-
der parameter of the neutron condensate. For systems in
contact with a thermal bath, it takes the phenomenological
form (Gardiner et al. 2002)

(i− γ)ψt = −1

2
∇2ψ +

(
V + |ψ|2

)
ψ − ΩcL̂zψ + iγµψ. (2)

Equation (2) is written in dimensionless form; the units are
defined below equation (1) in Melatos et al. (2015) and are
not relevant here. The term involving the coupling coeffi-
cient γ on the left-hand side represents coupling to thermal
excitations. On the right-hand side, V denotes the sum of

3 The expression for λF follows from the quantisation of circu-
lation (

∮
v · dl, where v is the superfluid velocity, and dl is a

line element), and the minimisation of free energy, which induces
vortices to arrange themselves quasi-equidistantly in a uniform

Abrikosov lattice.

the trap and pinning potentials, µ is the chemical poten-
tial, L̂z is the angular momentum operator projected along
the rotation (z-)axis, and |ψ|2ψ describes the bosonic self-
attraction. Detailed accounts of the physics underlying the
above model, its limitations and how it is solved, are pro-
vided in Warszawski & Melatos (2011).

In the neutron-star context, GPE simulations are
idealised: they treat the neutron superfluid as a dilute,
zero-temperature, Bose-Einstein condensate in a decelerat-
ing trap containing a regular lattice of localized pinning
sites, even though realistic neutron superfluids are not di-
lute and generally contain multiple neutral and charged
components coupled by mutual friction and entrainment
(Andersson & Comer 2006). Nonetheless, the simulations
display clearly the operation of two knock-on mechanisms:
proximity knock-on, in which an unpinned vortex moves past
its pinned neighbours and unpins them by mutual repulsion
(Magnus force); and acoustic knock-on, where sound waves
emitted by an unpinned vortex, as it moves, trigger further
unpinning at a distance. For the largest simulations involv-
ing ≈ 2 × 102 vortices, the size PDF approaches a power
law over four decades, 10−2 . ∆ν/ν . 10−6 [see Figure 12
in Warszawski & Melatos (2011)], with index between −1.0
and −1.25, depending on the pinning strength, pinning site
density and spin-down rate (Warszawski & Melatos 2011).
The waiting-time PDF is fitted well by an exponential curve.
The mean waiting time decreases monotonically, as the spin-
down torque increases, while the mean jump size varies in
a complicated non-monotonic way as the torque is adjusted
[see Tables 7 and 9 in Warszawski & Melatos (2011)]. The
simulations do not exhibit a global ‘reservoir effect,’ i.e., no
correlation between size and waiting time is observed, con-
sistent with other data.

Despite the above successes, the GPE simulations are
limited in their applicability, because their dynamic range
is much smaller than in a realistic pulsar. The simulations
typically contain . 102 vortices, compared to ∼ 1018 in a
pulsar. The simulation typically runs for about one spin-
down time-scale, during which it generates . 50 glitches; in
contrast, a pulsar generates & 103 glitches per spin-down
time-scale. In a pulsar, up to ∼ 1010 pinning sites separate
neighbouring vortices, compared to ∼ 10 in the simulations.
The latter property especially raises a fundamental ques-
tion in a neutron star: does an unpinned vortex travel far
enough to unpin another vortex via proximity knock-on, or
does it repin before it gets the chance? If re-pinning forestalls
knock-on, superfluid vorticity is expelled gradually by vortex
creep (Alpar et al. 1989; Link & Epstein 1991; Link et al.
1993; Link 2014), instead of impulsively via avalanches. Re-
cently, single-vortex calculations have confirmed that a vor-
tex typically travels one inter-vortex spacing (≈ λF) be-
fore re-pinning for a range of plausible neutron star condi-
tions, determined typically by the mutual friction coefficient,
and how close the system approaches the critical unpinning
threshold (Haskell & Melatos 2016). This is consistent with
the GPE output, where the maximum glitch size is indepen-
dent of npin/nv for npin & nv, where nv ≈ λ−2

F is the vortex
density, and npin is the pinning site density. The mean wait-
ing time decreases inversely with nv/npin, while the mean
size does not change monotonically, suggesting that the typ-
ical distance travelled by a vortex in a glitch is a complex
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function of Nu and npin, even though it is always comparable
to λF (Warszawski & Melatos 2011).

3 STATE-DEPENDENT POISSON PROCESS

In this section we formulate an idealised model of glitch ac-
tivity as a stochastic process caused by vortex avalanches,
which embodies the key elements of the astronomical obser-
vations and GPE simulations summarised in Section 2. We
write down a stochastic equation of motion for the fluctu-
ating crust-superfluid lag in Section 3.1, and propose physi-
cally motivated PDFs for the unobservable sizes (power law;
Section 3.2) and waiting times (Poisson; Section 3.3) of the
vortex avalanches driving the lag. A Monte-Carlo algorithm
for evolving the model numerically in dimensionless vari-
ables is presented in Sections 3.4 and 3.5. It is important
to recognise that the vortex avalanche statistics prescribed
in Sections 3.2 and 3.3 are not the same as the observ-
able statistics of the glitch sizes and waiting times predicted
by the model. Specifically, the vortex avalanches are mod-
elled as having power-law sizes and Poissonian waiting times,
broadly consistent with the GPE results. But, because the
Poisson rate is state-dependent, and the crust-superfluid lag
self-regulates by reverting to the mean (and to a station-
ary PDF), the observable glitch activity may look nothing
like the underlying vortex avalanches. Examples of the di-
verse variety of possible observable behaviours, derived from
numerical simulations, are presented in Section 4.

3.1 Equation of motion

Let X be a stochastic variable equal to the globally-averaged
lag between the angular speeds of the crust, Ωc, and the
superfluid interior, Ωs ≥ Ωc, viz,

X(t) = Ωs(t)− Ωc(t) . (3)

In reality Ωs varies throughout the star, according to
the local density and configuration of superfluid vortices.
By averaging Ωs spatially over the stellar volume, we
make a mean-field approximation, which does not explic-
itly track cooperative mechanisms like vortex knock-on
(Warszawski & Melatos 2011; Warszawski et al. 2012). The
approximation is justified by GPE simulations, which show
that the vortices self-adjust to maintain a roughly uniform
Abrisokov lattice at all times, even when the pinning poten-
tials are of random strengths (Warszawski & Melatos 2013).
The scale-invariance of the vortex avalanches, which depends
critically on spatial correlations and knock-on, is captured
implicitly but incompletely by the choice of jump distribu-
tion (e.g. power-law) in Section 3.2.

The rigid crust, which is strongly coupled to the star’s
magnetic field, spins down deterministically due to magnetic
braking, interrupted by instantaneous spin-up events ∆Ω

(i)
c .

The approximation that glitches occur instantaneously is ac-
curate in an astrophysical context. While the typical pulsar
spin-down time-scale is τc & 103 yr, individual glitches oc-
cur over ≤ 30 seconds; their rise times are normally un-

resolved by current measurements (McCulloch et al. 1990;
Epstein & Baym 1992; Dodson et al. 2007). We write

Ωc(t) = Ωc(0)− Nemt

Ic
+

N(t)∑
i=1

∆Ω(i)
c , (4)

where Nem is the magnetic torque, Ic is the crust’s moment
of inertia, and N(t) is the number of glitches that occur up
to time t. We discuss N(t) further in Section 3.3. For now, we
simply note that N(t) is an integer-valued random variable
arising from a counting process.

The angular speed of the superfluid, which is weakly
coupled to the crust, remains constant until a glitch oc-
curs, whereupon it spins down instantaneously by an amount
∆Ω

(i)
s :

Ωs(t) = Ωs(0) +

N(t)∑
i=1

∆Ω(i)
s . (5)

Equation (5) neglects vortex creep, i.e. the gradual decrease
of Ωs between glitches due to unpinning by thermal acti-
vation and quantum tunnelling. As a first approximation,
creep modifies Ω̇s (6= 0) and hence Ẋ between glitches.
Hence it can be incorporated by reducing the effective torque
Nem. The reduction factor depends on the mean rate of an-
gular momentum exchange; its evaluation lies outside the
scope of the present work. One can also add an additional
white-noise Langevin force to equation (5) to model the
fluctuation in the vortex creep rate about its mean value
(Daly & Porporato 2006). A Langevin analysis of this kind
is difficult and likewise lies outside the scope of this paper.

The dynamic feedback between the crust and superfluid
is governed by angular momentum conservation, viz.

Is∆Ω(i)
s = −Ic∆Ω(i)

c . (6)

Upon combining (3)–(6), we obtain

X(t) = X(0) +
Nemt

Ic
−
N(t)∑
i=1

∆X(i) , (7)

where we absorb the moment-of-inertia factors into ∆X(i)

according to the equation

∆X(i) =
(Ic + Is)∆Ω

(i)
s

Ic
. (8)

The classic vortex unpinning model of radio pulsar glitches
in the literature is epitomised by (7).

The first term in (7) is an astrophysically irrelevant ini-
tial condition, the second is deterministic, and the third is
stochastic. In reality the braking torque decreases as Nem ∝
Ω3

c , but glitch waiting times typically satisfy . 10−3τc, and
individual glitches change Ωc by a factor of 10−4 at most
(see Section 2), so the approximation Nem = constant is ac-
curate. In Section 5, we investigate the implications of the
quasistatic decrease in Nem during a pulsar’s lifetime. 4

4 Equation (7), with Nem = constant, is a special case of a

broader class of stochastic processes, whose instantaneous deter-
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Equations (4)–(7) assume that angular momentum is
exchanged exclusively between the crust and superfluid. This
assumption has been challenged recently by some theoreti-
cal calculations of the effective moment of inertia of the neu-
tron superfluid, which predict that the angular momentum
reservoir is too small to account for the observed glitches
(Andersson et al. 2012), although other calculations have
concluded that the shortfall only arises for certain equations
of state (Piekarewicz et al. 2014).

3.2 Avalanche size

Let η(x|y) dx be the conditional probability of jumping to
x ≤ X ≤ x + dx, given that the system is at X = y, when
a glitch occurs. The form of η is determined by the inter-
nal avalanche physics, i.e., the collective process whereby
vortices knock on and unpin. In GPE simulations of vortex
avalanches and studies of other self-organised critical sys-
tems, including sand-piles and earthquakes, the duration of
an avalanche is much shorter than the time-scale over which
stress builds up, so it is natural that η(x|y) should be in-
dependent of other control parameters like the spin-down
rate.

We impose two physical restrictions on η(x|y) as fol-
lows. Every glitch reduces X, so we require η(x|y) = 0 for
x > y. We also assume that no glitch can ever cause X to
be negative,5 implying η(x|y) = 0 for x < 0. These two re-
strictions yield the fundamental normalisation condition for
η,

1 =

∫ y

0

dx η(x|y). (9)

GPE results indicate that the PDF of the jumps ∆X(i) is
consistent with a power law, independent of y, except near
zero lag, with

η(x|y) ∝ (y − x)−δ , (10)

and δ ≈ 1.5. Near zero lag, however, a lower cut-off on ∆X(i)

is required in order to ensure X ≥ 0 and keep the power law
from diverging in (9). The cut-off scales with y in the fashion
explained in Section 4.

The PDF of ∆X(i) is, in general, conditionally depen-
dent on the value of X immediately before the i-th glitch
occurs. Hence ∆X(i), ∆X(i+1), ∆X(i+2)... are not identi-
cally distributed, even after the system reaches stationarity.
Moreover, it is necessary to distinguish clearly between η, an
input into the model determined by the avalanche physics,
and the PDF of ∆Ωc, an output of the model determined
jointly by η and X, which develops as the system evolves.
Throughout the rest of this paper, we refer to η as the con-
ditional jump distribution, and to p(∆Ωc) as the PDF of the
observed glitch sizes.

ministic evolution depends on the current system state. In Ap-

pendix E we include this generalisation for completeness.
5 Conceivably, one can imagine a non-mean-field scenario, where

a large amount of lag builds up in a small region of the pulsar,
and a large avalanche occurs which temporarily leaves X negative.

However, such a scenario is highly unlikely for Nv > Nu � 1.

3.3 Avalanche rate

The probability of an avalanche occurring in an infinitesimal
time interval depends on the crust-superfluid lag at that in-
stant. We model avalanche triggering as a variable-rate Pois-
son process with instantaneous rate λ(X). As it is a function
of the random variable X, λ itself is a random variable. The
assumption that X alone determines λ involves a signifi-
cant mean-field simplification. In reality, the distribution of
vortices in local patches, not the spatially averaged lag, con-
trols the likelihood of an avalanche being triggered locally.
Avalanches are triggered at a single pinning site (and then
propagate by knock-on), because the avalanche duration is
much less than the waiting time between avalanches, as GPE
simulations demonstrate (Warszawski & Melatos 2013).

The rate λ(X) is a monotonically increasing function of
X up to a critical lag Xc, at which an avalanche is certain to
occur, because the Magnus force on all the vortices exceeds
the pinning force. In this paper we model this behaviour
phenomenologically with the rate function

λ(X) = λ0

(
1−X/Xc

)−1
, (11)

where λ0 is related to the avalanche rate at some reference
lag, e.g., λ0 = λ(0). The value of Xc is a complex function
of the pinning site density and potential, which remain ap-
proximately constant from one glitch to the next, as well as
the superfluid density and vortex alignment. Link & Epstein
(1991) expressed the critical, or breakaway, lag at a single
pinning site as

Xc =
Fmax

ρsκlR∗

= 8× 10−2

×

(
Fmax

keV fm−1

)(
ρs

1013 gcm−3

)−1(
l

102 fm

)−1

rad s−1,

(12)

where Fmax is the maximum pinning force per site, ρs

is the superfluid mass density, κ is the quantum of cir-
culation, and l is the pinning-site separation; see Ta-
bles 1 and 2 in Link & Epstein (1991). We stress that
a lot of complicated and uncertain physics goes into
Fmax in (12), including the form of the nuclear pin-
ning potential (Alpar et al. 1989; Donati & Pizzochero 2006;
Avogadro et al. 2008; Seveso et al. 2016), the role of vor-
tex tension and tangled vorticity in regulating single- ver-
sus multi-site breakaway (Link & Epstein 1991), and col-
lective vortex-vortex interactions, which are pivotal to the
propagation of avalanches, as GPE simulations demonstrate
(Warszawski et al. 2012).

The rate function λ(X) influences the inter-glitch
waiting-time PDF in the following way. For a Poisson pro-
cess whose rate function λ(t) evolves deterministically as a
function of time, the waiting time ∆t until the next event,
given that we begin observing the system at time t, has PDF
p(∆t; t) given by (Ross 2006)

p(∆t; t) = λ(t+ ∆t) exp

[
−
∫ t+∆t

t

dt′λ(t′)

]
. (13)

In equation (7), X(t) and therefore also λ[X(t)] evolve de-
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terministically between glitches. If a glitch occurs at time t
and sets the lag to X(t), then until the next glitch we have
X(t′) = X(t) + Nem(t′ − t)/Ic for t ≤ t′ ≤ t + ∆t. Hence,
given the value ofX(t) immediately after the previous glitch,
the PDF of the waiting time until the next glitch is

p[∆t|X(t)] = λ

[
X(t) +

Nem∆t

Ic

]
exp

{
−
∫ t+∆t

t

dt′ λ[X(t′)]

}
.

(14)

We find a posteriori that the results depend weakly on
the functional form of λ. Its key features are: (i) it increases
monotonically with X; and (ii) it guarantees unpinning at
the critical lag with λ(X) → ∞ as X → Xc. Equation
(11) allows for a non-zero avalanche rate at zero lag due to
quantum-mechanical tunnelling and/or thermal activation
(Link et al. 1993), but this is not a necessary feature of the
model. In Section 4 we find that this feature has observable
consequences under a limited set of circumstances. Equation
(11) qualitatively resembles the phenomenological Arrhe-
nius law used widely in previous glitch studies (Hänggi et al.
1990; Chevalier 1993; Warszawski & Melatos 2013), except
that the Arrhenius rate remains bounded even as it becomes
very large for X → Xc.6

Cox (1955) first introduced the doubly-stochastic Pois-
son process, in which the rate function λ is a random vari-
able. Cox processes appear in many contexts, for example
in the pricing of financial derivatives and insurance risk
(Basu 1999; Dassios & Jang 2003), where random, catas-
trophic events drastically alter the underlying instantaneous
rate of an observable counting process, as well as in models of
rainfall (Ramesh et al. 2012). However, the state-dependent
Poisson process (7) differs from a Cox process in one funda-
mental respect. In a Cox process, the rate variable λ evolves
randomly according to an external “environment” and is in-
dependent of N(t). In our model, the rate is a function of
the occurrence times and sizes of the previous events, in-
troducing a complex feedback mechanism. An equivalent
state-dependent Poisson formalism has been explored as
a model for solar flare statistics (Wheatland & Glukhov
1998; Wheatland 2008, 2009; Kanazir & Wheatland 2010).
Daly & Porporato (2006) modelled forest fires as a state-
dependent Poisson process, where every jump fully resets
the “stress” (unburnt fuel) to zero. They developed a formal-
ism for calculating the waiting-time PDF for general η(x|y)
(Daly & Porporato 2007), an issue that we pick up in Sec-
tion 6.

6 To check the sensitivity of the results for the functional form of
λ(X), we repeat a subset of the simulations in Section 4 for the
rate function λ(X) = 2λ0 tan(πX/2Xc), which increases mono-
tonically and diverges at X = Xc, just like λ(X) = λ0/(1 −
X/Xc). We find that the key PDFs for the waiting times and

glitch sizes are broadly unaffected: their shapes and the variation
of their moments and modes as functions of IcXcλ0/Nem are sim-
ilar to what follows from (11). Some differences in detail are ob-

served, which arise mainly because limX→0 λ(X) is different for
the two rate functions, not because the tangent and hyperbola

have different shapes.

3.4 Dimensionless variables

The maximum lag Xc defines a natural scale. We replace
X by its dimensionless counterpart X̃ = X/Xc, with 0 ≤
X̃ ≤ 1. We also introduce a dimensionless time variable,
t̃ = Nemt/(XcIc). Physically, ∆t̃ = 1 corresponds to the
time required for the electromagnetic spin down to bring
the system from zero lag to the critical lag. With the above
replacements, the dimensionless equation of motion reads

X̃(t̃) = X̃(0) + t̃−
N(t̃)∑
i=0

∆X̃(i) . (15)

Throughout the rest of the paper, we drop the tildes for
clarity of presentation.

The phenomenological rate function (11) takes the di-
mensionless form

λ(x) =
α

1− x (16)

when normalised as above. This introduces a key control
parameter of the model:

α =
IcXcλ0

Nem
. (17)

The value of α in any given pulsar is a complex function
of the pinning physics, as discussed in Sections 2.2 and 3.3,
and the spin-down rate.

3.5 Monte-Carlo automaton

Equation (15) can be simulated numerically by executing
the following simple, Monte-Carlo automaton to update the
state variable X(t) at time t.

1. Draw a random ∆t, the waiting time to the next
glitch, using (14).

2. Update and record the lag, X(t)+∆t, after the crust
spins down deterministically for time ∆t.

3. Draw a random avalanche size ∆X from the condi-
tional jump distribution η.

4. Update and record the new system state, X(t+∆t) =
X(t) + ∆t−∆X.

5. Return to step 1 and repeat.
Random variables are drawn using the standard inverse cu-
mulative distribution method (Press et al. 2007). We collect
and record the values of ∆t, ∆X (and hence ∆Ωc) for post-
processing and statistical analysis.

4 SHORT-TERM DYNAMICS

In this section, we compute the glitch statistics generated
by the model in Section 3 on time-scales that are short com-
pared to the spin-down time-scale τc, so that the system’s
control parameters remain constant to a good approxima-
tion. For the calculations in this section, we work with a
conditional jump distribution of the form

η(x|y) =

[∫ y

0

dξ g(ξ, y)

]−1

g(y − x, y) , (18)
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which automatically satisfies (9). Motivated by (10), we
choose g to be

g(ξ, y) = ξ−1.5 H(ξ − βy) . (19)

Equation (19) is not derived from the avalanche micro-
physics or from obsrevational data. It is a trial function
which captures the main results of the GPE simulations (see
Section 2.2). The Heaviside function H(y−x−βy) kills the
divergence of the inverse power-law conditional jump distri-
bution in the limit x → y. The dimensionless scaling con-
stant β, with 0 < β < 1, determines the minimum avalanche
size. If we have β = 0.1, for example, the minimum size is
0.1 times the crust-superfluid lag immediately before the
glitch occurs. A smaller value of β produces a wider range
of possible avalanche sizes. In the limit β → 1, the min-
imum avalanche size approaches the maximum avalanche
size, which always equals the pre-glitch lag, so η(x|y) ap-
proaches the delta function δ(x−y), and every jump restores
the lag to zero.

4.1 Representative time series

Figure 1 displays how the crust-superfluid lag X(t) evolves
according to (15) for a single, typical realisation of random
avalanches for the illustrative case α = 5, β = 10−2.

The top panel of Figure 1 exemplifies how X(t) ap-
proaches stationarity. Few glitches occur for t . 1, as λ(X) is
small far from the asymptote at X = 1. This initial transient
is irrelevant astrophysically. At t & 1 the system reaches a
stationary state, where the avalanche rate and sizes self-
adjust to balance the secular spin down on average. The
lag fluctuates around a mean value of 〈X〉 ≈ 0.72. Each
glitch causes a vertical drop in X(t). The deterministic spin
down between glitches has a gradient of X ′(t) = 1 as in
(15). The lower two panels show how Ωs and Ωc evolve in
the same simulation; the bottom panel zooms in to magnify
the interval 2.2 ≤ t ≤ 3. For the superfluid, Ωs(t) traces a
piece-wise constant curve (i.e. pinned vortices), interrupted
by vertical decrements whenever a glitch occurs. For the
crust, Ωc(t) decreases steadily, interrupted by instantaneous
spin-up events which conserve angular momentum according
to (6). We always have Ωs(t) > Ωc(t) as discussed in Section
3.2. The crust and superfluid jumps are related through (6)
by ∆Ωc = −Is∆X/(Is + Ic), with Ic = 10Is in our illustra-
tive example. We note that, of the three quantities plotted
in Figure 1, only Ωc is observable astronomically.

4.2 Size and waiting-time distributions

The steady-state PDFs of the observed glitch sizes, p(∆Ωc),
and waiting times, p(∆t), are both astronomically observ-
able quantities measured during a typical pulsar monitoring
and timing campaign (Melatos et al. 2008; Espinoza et al.
2011). To construct p(∆Ωc) and p(∆t) from the stochastic
equation (15), we run a simulation like Figure 1 to produce
N = 107 glitches and begin sampling at t � 1, once the
system reaches stationarity.

The top panel of Figure 2 displays p(∆t) on log-linear
axes for the simulation in Figure 1 for 6.6 × 102 ≤ t ≤
6.6 × 105. The PDF is close to exponential for ∆t . 0.6,
with p(∆t) ∝ exp(−λ̄∆t) and λ̄ = 13.8. The bottom panel
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X
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Ωc

3.0 3.1 3.2 3.3 3.4
t

1.5
2.0
2.5
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3.5
4.0
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Ωc

Figure 1. Representative evolution of the dimensionless crust-
superfluid lag X(t) = Ωs − Ωc (top panel) and its dimensionless

components (lower panels) Ωs(t)/Xc (blue curve) and Ωc(t)/Xc

(green curve) for a single random realization of vortex avalanches.

The bottom panel magnifies a particular large glitch at t ≈ 3.27.

Time (horizontal axis) is measured in units of XcIcNem. Param-
eters: α = 5, β = 10−2. Initial conditions: Ωc(0) = Ωs(0) = 5.

shows the PDF of glitch sizes p(∆Ωc) on a log-log scale.
It is a power-law over a sizeable portion of the domain
10−2 < ∆Ωc < 1, with index 1.5, equal to the index of
the conditional jump distribution η. The Heaviside cut-off
in η is blurred out in p(∆Ωc), because η is convolved with
the spread in X immediately before a glitch occurs. Both
p(∆t) and p(∆Ωc) roll over for large ∆t and ∆Ωc, because
the hard wall at X = 1 in λ(X) places upper bounds
∆X < 1 and ∆t < 1. The mean inter-glitch waiting time
is 〈∆t〉 ≈ 0.0667 ≈ λ̄−1. The statistics in Figure 3 are quali-
tatively consistent with pulsars like PSR J0534−2200, PSR
J1331−6220 and PSR J1740−3015, which exhibit exponen-
tial waiting times and power-law sizes (see Section 2.1). Note
that Ωc decreases by . 1 % over a typical timing campaign
lasting ∼ 40 yr, so the PDFs of ∆Ωc and ∆Ωc/Ωc have the
same shape to a good approximation.

We intentionally sample a single simulation for many
glitches to produce Figure 2 instead of running an ensemble
of simulations and sampling at a fixed time t. There is an
observable difference between these two approaches, so it is
important to clearly state what sampling procedure is used.
We discuss this subtle point more fully in Section 6. If we
sample an ensemble at fixed t0, taking ∆t to be the length of
the time interval we “land in” and ∆Ωc to be the size of the
next glitch, then our distribution is implicitly biased. The
interval T (i) < t0 < T (i+1), where T (i) is the epoch of the
glitch immediately preceding t0, is longer on average than if
we sample every interval ∆t in a single simulation, because
we are more likely to “land in” a longer inter-glitch interval
than a shorter one. This is a manifestation of the inspection
(“bus-stop”) paradox in renewal theory (Cox 1970). For sim-
ilar but less obvious reasons, p(∆Ωc) is biased as well. Of the
two methods, a single simulation rather than an ensemble
is better suited to pulsar data, where we are interested in
the PDFs of waiting times and sizes for individual pulsars
over long time-scales (but still short compared to τc). An
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Figure 2. Representative PDFs of inter-glitch waiting times

p(∆t) (top panel) and glitch sizes p(∆Ωc) (bottom panel) for
the single simulation in Figure 1 extended to N = 108 glitches.

Waiting times and sizes are measured in units of IcXc/Nem and

Xc(Ic + Is)/Is, respectively. Parameters: α = 5, β = 10−2.

ensemble is better suited to compute the PDF of X, which
evolves continuously. We do this in Section 4.3.

4.3 Moments

In order to compute the moments of X and N as func-
tions of time, we carry out an ensemble of S = 106 sim-
ulations like the one displayed in Figure 1. At some in-
stant t we sample X and N from every simulation. Fig-
ure 3 shows the time-evolution of the ensemble mean µ and
standard deviation σ of X(t) and N(t) (the subscript in-
dicates the random variable). The top panel clearly shows
that µX and σX increase steadily before plateauing at sta-
tionarity. At stationarity, the PDF p(t,X) does not change
with time. In general, the system reaches stationarity for
t ≥ 1 − X(0), whereupon we find µN ∝ t and σN ∝ t1/2,
as for a constant-rate Poisson process. The proportionality
constant for µN (t), by definition, equals 〈∆t〉−1. In Figure
3, we find 〈∆t〉−1 = 15.0 = 〈λ〉, where 〈λ〉 is computed by
observing all values of λ(X) in the ensemble at time t and
taking their average. In Appendix A, we prove analytically
that the intuitive relationship 〈∆t〉−1 = 〈λ〉 holds, so that
the term “average glitch rate” can be used unambiguously
to refer either to the ensemble mean of λ or to the inverse
of the mean waiting time of a single simulation. We note
that λ(〈X〉) = 12.0 6= 〈λ(X)〉 = 15.0, i.e. the instantaneous
avalanche rate at the average lag does not equal the average
avalanche rate.

4.4 Spin-down torque

The control parameter α is not observable, as it involves
λ0 and Xc. We expect it to vary from one pulsar to the
next in inverse proportion to the observable spin-down rate,
Ω̇c ≈ Nem/Ic, and to a lesser extent as a function of the
star’s density and temperature, which control the pinning
and unpinning physics in Xc and λ0 respectively.

0.0 0.5 1.0 1.5 2.0
t
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20

25
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Figure 3. Mean and standard deviation of the crust-superfluid

lag X(t) (top panel) and the number of glitches N(t) (bottom

panel) during the approach towards equilibrium and beyond. The
moments are computed from an ensemble of S = 106 simulations.

In the top panel, X is measured in units of Xc. In both panels, t

is measured in units of IcXc/Nem. N is an integer. Parameters:
α = 5, β = 10−2. Initial conditions: X(0) = 0.

4.4.1 Transition from small to large α

The parameter α quantifies the ratio of the “natural”
avalanche rate at a reference lag (i.e. λ0) to the electro-
magnetic spin-down rate (scaled by Xc). We expect it to
influence the size and waiting-time PDFs. If α is small the
system tends to be driven to X ≈ 1 before each glitch. If α is
large, avalanches occur at smaller X. This reduces the mean
waiting time, because the system reaches smaller X more
quickly. It reduces the glitch sizes because ∆X is always
less than X just before an avalanche.

Figure 4 shows how the means and standard deviations
of the observed glitch sizes and waiting times depend on α for
β = 10−2. The plot is drawn on log-linear axes. We see that
µ∆Ωc (green curve) and µ∆t (dark blue curve) overlap for all
α, i.e. they are equal up to a multiplicative constant, with
µ∆Ωc = NemIsµ∆t/[Ic(Ic + Is)], when the dimensions are
temporarily restored. The equality of the means reflects the
fact that 〈X〉 is constant under stationary conditions, so the
mean glitch rate times the mean glitch size must, on average,
exactly balance Nem/Ic in (7). The standard deviations are
not equal, however, except in the regime α� 1 (see Section
4.4.4); we see from Figure 2 that p(∆t) and p(∆Ωc) are not
identical.

A qualitative change takes place at the intermediate
value α ≈ αc(β) ∼ 1, where αc depends on β as discussed
below. For α . αc, the mean and standard deviation asymp-
tote to constant values. This corresponds to the system ap-
proaching X ≈ 1 immediately before every glitch. If one al-
ways has X ≈ 1 before a glitch, then the PDF of avalanche
sizes is given by η(1 − ∆X|1) from (10). Hence the mean
glitch size is given by

〈∆Ωc〉 ≈
XcIs
Is + Ic

∫ y

0

d(∆X)η(1−∆X|1) (20)

≈ XcIsβ
1/2

Is + Ic
, (21)
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Figure 4. Mean and standard deviation of ∆t (dark blue and

red curves respectively) and ∆Ωc (green and cyan curves respec-
tively) as functions of α (10−4 ≤ α ≤ 104) on log-linear axes.

The means of both variables overlap over the whole domain. In

order to maintain a common scale on the vertical axis, ∆Ωc is
measured in units of Xc(Ic + Is)/Is, and ∆t is measured in units

of IcXc/Nem. For each value of α, ∆Ωc and ∆t are sampled from

a single simulation featuring N = 108 glitches after the system
reaches stationarity. Parameter: β = 10−2.

from (18) and (19) and with dimensions temporarily re-
stored.7 This gives 〈∆Ωc〉 ≈ 0.1XcIs/(Ic + Is) for β = 10−2,
in agreement with Figure 4.

The limiting behaviour for large α � αc(β) is best vi-
sualised on a log-log plot (not shown here). As α increases,
the mean and standard deviation of ∆t and ∆Ωc decrease
as α−1. Physically, the instantaneous avalanche rate is large
even at small X values. As α increases, the system becomes
more likely to glitch at smaller X values. As λ(X) ≈ α is ap-
proximately constant for X � 1, the average avalanche rate
is approximately proportional to α. The standard deviation
of ∆t approaches the mean in the limiting regime α � αc,
consistent with p(∆t) approaching an exponential curve.

4.4.2 Transition versus minimum avalanche size

The value of α at which the transition in Section 4.4.1 occurs
depends on the minimum avalanche size, parametrised by β.
In the limit β → 1, every glitch resets X(t) to 0. Therefore
smaller avalanches are allowed, as β decreases, given any
particular pre-glitch value of X. Viewed another way, as β
increases, smaller values of α are required to drive the system
to X ≈ 1 before every glitch. This is confirmed in the top
panel of Figure 5, which graphs µ∆Ωc as a function of α
for seven values of β. Not only does the maximum value of
µ∆Ωc (as α → 0) increase as β1/2, as required by (19), but
so does the value of α where the transition occurs. Let us
arbitrarily define αc as the value of α where µ∆Ωc reaches

7 More generally, if we always have X = y immediately before a

glitch, we obtain 〈∆Ωc〉 = (βy)1/2 in units of XcIs/(Is + Ic).
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Figure 5. (Top panel.) Mean glitch size µ∆Ωc as a function of α
for β = 10−1 (blue curve), 10−2 (green curve), 10−3 (red curve),

10−4 (cyan curve), 10−5 (magenta curve), 10−6 (yellow curve)

and 10−7 (black curve). The vertical axis is scaled by Xc(Is +
Ic)/Is. We define αc as the value of α where µ∆Ωc (α, β) (top

panel) reaches half its maximum value, i.e. µ∆Ωc (α, β) =
√
β/2.

(Bottom panel.) αc versus β. In both panels, µ∆Ωc is obtained for
each pair (α, β) by sampling N = 106 glitches after the system

reaches stationarity.

half its maximum. In the bottom panel of Figure 5, we show
the β dependence of αc explicitly. An empirical fit yields

αc(β) ≈ β−1/2. (22)

4.4.3 PDFs for slow spin-down: α & αc(β)

Let us look in more detail at the regime α & αc. The lag
where glitches typically occur decreases, as α increases, re-
ducing ∆Ωc and ∆t. Figure 6 shows p(∆Ωc) for three α
values covering the range 102 ≤ α ≤ 104, with β = 10−2,
plotted on log-log axes. The data are sampled from a single
simulation as in Figure 2, once the system reaches station-
arity. We see that p(∆Ωc) broadly maintains the same func-
tional form for all α. All three curves are power laws over
approximately two decades, with index ≈ 1.5, just as η is a
power law over two decades for β = 10−2. Interestingly, be-
low the lower cut-off, we find p(∆Ωc) ∝ ∆Ωc, independent
of α. The upper cut-off of ∆Ωc scales as α−1. It is also set
by the value of β, which determines the number of decades
over which η is a power law.

The β-dependence of p(∆Ωc) is shown in Figure 7 for
β = 10−2, 10−3, 10−4, and α = 103. In each case, the number
of decades over which p(∆Ωc) is a power law is the same
as for η and equals − log(β). Interestingly, although β sets
only the minimum avalanche size, it controls the maximum
observed ∆Ωc as much as the minimum observed ∆Ωc. This
is because a lower value of β reduces the mean avalanche
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Figure 6. PDF of glitch sizes p(∆Ωc) for slow spin down α &
αc(β) with α = 102 (blue curve), 103 (green curve) and 104 (red

curve), where ∆Ωc is measured in units of Xc(Is+Ic)/Is. For each
value of α, ∆Ωc is sampled over the course of a single simulation

featuring N = 108 glitches after the system reaches stationarity.

Parameter: β = 10−2.
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Figure 7. PDF of glitch sizes p(∆Ωc) for slow spin down α &
αc(β) with β = 10−2 (blue curve) 10−3 (green curve), and 10−4

(red curve). For each value of β, ∆Ωc is sampled over the course

of a single simulation featuring N = 108 glitches, after the system

reaches stationarity. Parameter: α = 103.

size, increases the value of X where glitches are likely to
occur, and hence increases the maximum lag that can be
erased in a single glitch. Interestingly, the shape of the PDF
below the lower cut-off is independent of both β and α for
α & αc.

The effect of changing α on p(∆t) is shown in Figure
8. In order to keep multiple curves on the same graph, we
plot α∆t on the horizontal axis. We see that for α ≥ 102,
the distribution has an exponential shape. The upper cut-
off ∆t scales as α−1. In this regime, the system glitches at
such small X that λ(X) in (11) is approximately constant,
and the average avalanche rate is proportional to α. As α
decreases, the dependence of p(∆t) on α becomes more com-
plicated, as dynamic feedback emerges between glitch sizes
and waiting times.
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Figure 8. PDF of waiting times p(∆t) for slow spin down α &
αc(β) with α = 100 (blue curve), 101 (green curve), 102 (red

curve), 103 (cyan curve) and 104 (violet curve). ∆t is measured
in units of IcXc/Nem. In order to keep the plots on the same

scale, we scale the horizontal axis by α for each plot. The vertical

spacing between the curves arises from normalisation. For each
value of α, ∆t is sampled over the course of a single simulation

featuring N = 108 glitches, after the system reaches stationarity.
Parameter: β = 10−2.

The effect of the minimum avalanche size parameter β
on p(∆t) is encapsulated by Figure 9. For β . 10−4, p(∆t)
diverges from an exponential and approaches a power law.
This behaviour is evident most clearly at β = 10−7. Note
that, on the β = 10−4 curve in Figure 5, the system tran-
sitions to the α . αc regime at αc ≈ 103. Likewise, in the
top panel of Figure 5, µ∆Ωc and hence µ∆t do not change
with β for α � αc. In Figure 9, p(∆t) maintains the same
exponential functional form for all β & 10−4. In other words,
the entire PDF is independent of β in this regime, not just
〈∆t〉.

4.4.4 PDFs for rapid spin-down: α . αc(β)

We now ask how the observable PDFs change as we move to
the small-α regime. Figure 10 shows the size PDF p(∆Ωc)
for five values of α in the range 10−4 ≤ α ≤ 10 and β =
10−2. The range covers the full suite of behaviour seen in
the moments of ∆Ωc and ∆t in Figure 5; it brackets αc(β) ≈
β1/2 = 10−1. The vertical axis is scaled by Xc(Ic + Is)/Is so
that the PDF equals the avalanche size distribution p(∆X).
For α ≥ 10−4, the lag is close to X ≈ 1 before every glitch.
The spread in X before every glitch is small, so that p(∆X)
is approximately η(1−∆X|1). As α increases, η is convolved
with the increasing spread in X before a glitch occurs, so
that the Heaviside cut-off in p(∆X) becomes blurred. At
α = 101, p(∆Ωc) is a power law over two decades, but the
value of the maximum and minimum change with α. We also
find p(∆Ωc) ∝ ∆Ω

3/2
c below the lower cut-off.

Unlike p(∆Ωc), which is always a power law, p(∆t)
changes its functional form when we move to the small-α
regime. Figure 11 displays p(∆t) for the same values of α
and β as in Figure 10. For α = 10−4, p(∆t) is approxi-
mately a power law of the same form as p(∆Ωc). Physically,
the lag reaches X ≈ 1 before every glitch, so the dimen-
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Figure 9. PDF of waiting times p(∆t) for slow spin down α &
αc(β) with β = 10−2 (blue curve), 10−3 (green curve), 10−4

(red curve), 10−5 (cyan curve), and 10−7 (magenta curve). ∆t
is measured in units of Nem/(IcXc). For each value of β, ∆t is

sampled over the course of a single simulation featuring N = 108

glitches, after the system reaches stationarity. Parameter: α =
103.

sionless forward waiting time until the next glitch approxi-
mately equals the dimensionless size of the previous glitch.
(This suggests the existence of a correlation between size
and forward waiting-time, which we test in Section 4.5.) As
α increases, the spread in X when a glitch occurs widens,
and p(∆t) turns into an exponential. For 100 ≤ α ≤ 10−2,
there is an interesting mixture of power-law and exponential
components. For α� 10−4, the value of α has no influence
on p(∆t), unlike in the regime α & αc.

The minimum avalanche size (through β) determines
the range over which p(∆Ωc) and p(∆t) are power laws.
For α � αc, p(∆Ωc) and p(∆t) are practically identical.
Figure 12 displays both PDFs for β = 10−2 and β = 10−4

and α = 10−3. We rescale both random variables in order
to reveal the connection between the distributions: ∆t is
scaled by Nem/Ic and ∆Ωc is scaled by Xc(Ic + Is)/Is. Both
distributions are power laws over three (two) decades for
β = 10−3 (β = 10−2).

4.5 Size-waiting-time correlation

The classic vortex unpinning model predicts a correlation
between glitch sizes and waiting times, because the weakly
coupled superfluid plays the role of an angular momentum
reservoir. According to this argument, the larger the glitch,
the more completely the reservoir is emptied, and the more
time must pass until the next glitch, before X(t) builds up
sufficiently. That is, one expects a correlation between the
sizes and forward waiting times. By the same token, the
longer the waiting time that elapses, the more completely
the reservoir is replenished, and the larger is the maxi-
mum possible ∆X(i) for the next glitch. That is, one also
expects a correlation between sizes and backward waiting
times, especially if glitches empty the reservoir fully. In re-
ality, however, no such correlations are observed, except in
PSR J0537−6910 (see Section 2.1), whose sizes are corre-
lated with forward waiting times (Middleditch et al. 2006).
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Figure 10. PDF of glitch sizes p(∆Ωc) for rapid spin down α .
αc(β) with α = 10 (blue curve), 100 (green curve), 10−1 (red

curve), 10−2 (cyan curve) and 10−4 (magenta curve). ∆Ωc is
measured in units of Is/[Xc(Ic + Is)]. For each value of β, ∆Ωc is

sampled over the course of a single simulation featuring N = 108

glitches, after the system reaches stationarity. Parameter: β =
10−2.
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Figure 11. PDF of waiting times p(∆t) for rapid spin down
α . αc(β) with α = 10 (blue curve), 100 (green curve), 10−1

(red curve), 10−2 (cyan curve) and 10−4 (magenta curve). ∆t
is measured in units of Nem/(IcXc). For each value of β, ∆t is

sampled over the course of a single simulation featuring N = 108

glitches, after the system reaches stationarity. Parameter: β =
10−2.

The general lack of correlation is normal in self-organised
critical systems, where most jumps empty a small fraction
of the stress reservoir (Jensen 1998; Melatos et al. 2008). No
pulsars exhibit a correlation with backward waiting times in
data collected to date.

What does our model say about these correlations? The
answer depends on α. In Figure 13, we compute the Pear-
son correlation coefficient, r, for both the forward [∆Ωc ver-
sus T (i+1) − T (i); blue curve] and backward [∆Ωc versus
T (i) − T (i−1); green curve] waiting times as a function of
α, where T (i) is the epoch of the i-th glitch. To produce
the plots, we run a simulation generating N = 106 glitches
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Figure 12. Functional forms of the PDFs of glitch sizes p(∆Ωc)

and waiting times p(∆t) for rapid spin down α . αc(β) with β =

10−4 (red and cyan curves respectively) and β = 10−2 (dark blue
and green curves respectively). In order to maintain a common

scale on the vertical axis, ∆Ωc is measured in units of Is/[Xc(Ic +

Is)], and ∆t is measured in units of Nem/(IcXc). For each value of
β, ∆t and ∆Ωc are sampled over the course of a single simulation

featuring N = 108 glitches, after the system reaches stationarity.

Parameter: α = 10−3.

for each value of α. The Pearson coefficient is a measure
of correlation (Press et al. 2007): r = 1 (r = −1) indicates
that the two sets are perfectly correlated along a line with
positive (negative) gradient, whereas r = 0 indicates no cor-
relation. We see that the forward correlation asymptotes to
1 for α � αc but quickly drops toward zero for α & αc.
Physically, for small α, the spin-down rate is high compared
to λ0. Hence, after a glitch of dimensionless size ∆X, the
system waits for ∆t ≈ ∆X (until X ≈ 1) before glitching
again. Interestingly, the same does not hold for the back-
ward correlation, which is approximately zero for all α . αc

and only increases slightly at α & αc. For small α, the sys-
tem glitches at X ≈ 1 so the avalanche size distribution is
always p(∆x) ≈ η(1−∆X|1), independent of the size of the
previous glitch, and there is zero backward correlation. As
α increases, the maximum value of X where glitches occur
decreases. A glitch occurs at a higher value of X, on aver-
age, after a longer waiting-time interval than a shorter one,
so a correlation begins to emerge for large α. The correla-
tion remains weak even for α� αc, however, because there
is always a statistical spread in glitch sizes over − log(β)
decades. In the limit β → 1, the jump distribution η(x|y)
approaches a delta function δ(y − x), so that every glitch
restores the system stress to zero. In this case, there is per-
fect correlation between glitch sizes and backward waiting
times, because the time since the last glitch exactly equals
the instantaneous crust-superfluid lag released in the next
glitch. Figure 14 shows the emergence of a correlation with
backward waiting times as β → 1.

In summary, a broad conditional jump distribution with
β � 1, of the form observed in GPE simulations, destroys
the correlation between sizes and backward waiting-times for
all α. Sure enough, correlations with backward waiting times
are not observed in any pulsar. A broad η(x|y) does allow
a significant correlation between sizes and forward waiting
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Figure 13. Correlation between sizes and forward/backward

waiting times: Pearson coefficient, r, as a function of the control

parameter α. For each value of α, we sample ∆t and ∆X over
the course of a single simulation featuring N = 106 glitches, after

the system reaches stationarity. For the forward waiting times,

we compute the correlations between ∆X(i) and T (i+1) − T (i),
where ∆X(i) and T (i) are the dimensionless size and epoch of

the i-th avalanche, respectively. For the backward waiting times,
we compute the correlation between ∆X(i) and T (i) − T (i−1).

Parameter: β = 10−2
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Figure 14. Correlation between sizes and forward/backward

waiting times: Pearson coefficient, r, as a function of the con-
trol parameter β. For each value of β, the forward and backward

correlations are obtained as in Figure 13. Parameter: α = 5

times provided that one has α . αc. A correlation with
forward waiting times is observed in one pulsar only, namely
PSR J0537−6910.

4.6 Summary

The results in Sections 4.1–4.5 can be interpreted in a uni-
fied way as follows. Given a conditional jump distribution η,
whose lower cut-off is set by β, there are three regions of α
which exhibit different behaviour.

For α� αc(β), the system is driven slowly compared to
the reference avalanche rate λ0. The system self-adjusts so
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that avalanches occur near X ≈ 0, where λ(X) ≈ α is essen-
tially constant. Hence the waiting-time PDF p(∆t) reduces
to that of a constant-rate Poisson process with exponential
waiting times, as in Figure 8. As λ(X) is approximately con-
stant, the conditional jump distribution and hence β exert
little influence on p(∆t), as shown in Figure 9. The value of
α controls the observed upper cut-off of ∆Ωc and ∆t.

For α � αc(β), X comes up against a hard wall with
λ(X) → ∞ as X → 1. The lag returns to X ≈ 1 be-
fore every glitch. After a glitch, a time interval propor-
tional to the previous ∆Ωc elapses before the next glitch,
introducing a correlation, and causing p(∆t) to approach
p(∆X) ≈ η(1−∆X|1). The strong correlation that emerges
between glitch sizes and forward waiting times in this regime
is not observed in most pulsars. The correlation between
sizes and backward waiting times remains weak, because of
the broad conditional avalanche distribution assumed in the
model and observed in pulsars.

In the intermediate regime α ≈ αc(β), with α spanning
about two decades, glitches occur over a wide range of X
values, where η and λ vary substantially. This introduces a
complex dynamic feedback between glitch sizes and waiting
times. From an astrophysical perspective, this regime is es-
pecially interesting. Without an analytic solution, however,
it is hard to make general, quantitative statements about the
behaviour in this regime. We know of no such solution for
η given by (18) and (19). We return to the issue in Section
6, where we present analytic solutions for the special case of
separable conditional jump distributions.

5 LONG-TERM DYNAMICS

How does a pulsar’s glitch activity evolve, as the pulsar ages?
The results in Section 4 can be applied directly to answer
this question. The time-scale on which the stochastic pro-
cess in (7) reaches stationarity, identified as IcXc/Nem ∼
2Xcτc/Ωc in Section 4, is much shorter than the spin-down
time-scale, τc, because one has Xc � Ωc typically (see Sec-
tion 3.3). For example, the typical inter-glitch time-scale is
∼ 1 yr for glitch sizes resolvable by current timing experi-
ments, while the spin-down time-scale satisfies τc ∼ 103 yr.
Hence the control parameters α and β vary quasistatically
over the life-time of a pulsar; the system self-adjusts to re-
main in the stationary state considered in Section 4 at all
times.

5.1 Glitch history of an individual pulsar

The control parameter α varies chiefly because Nem de-
creases, as the pulsar ages. It also varies with temperature,
as the pulsar cools, through Xc and λ0, but this is a weaker
scaling, and the cooling history of neutron stars is uncertain,
so for now we treat Xc and λ0 as constants. For the simple
magnetic-dipole spin-down law Ω̇c ∝ Ω3

c , we have

Ωc(t) = Ωc(0)

[
1 +

t

τc(0)

]−1/2

, (23)

where t = τc is the pulsar’s age, Ωc(0) and Ω̇c(0) are the pul-
sar angular speed and spin-down rate at birth respectively,
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Figure 15. Long-term evolution of a glitching pulsar: mean wait-

ing time 〈∆t〉 and glitch size 〈∆Ωc〉 as a function of the instan-

taneous crust spin-down rate, ν̇c. For each value of ν̇c, we sample
∆t and ∆Ωc from a single simulation featuring N = 106 glitches

after the system reaches stationarity. Parameter: β = 10−2.

and we define τc(0) = Ωc(0)/[2Ω̇c(0)]. With the approxima-
tion Ωc � Ωc(0), we find τc ≈ 2Ωc/|Ω̇c|, and hence

α =
2λ0Xcτc

Ωc
. (24)

Observations indicate a modified braking law with Ω̇c ∝ Ωnc
and 2 ≤ n ≤ 3, (Melatos 1997; Archibald et al. 2016), but
the results do not change qualitatively when this is taken
into account.

The second control parameter, β, is independent of τc.
The ratio of the minimum to maximum avalanche size is an
intrinsic property of the avalanche knock-on physics. The
natural time- and frequency-scales used to make (7) dimen-
sionless also scale with τc as α/λ0 ∝ τc and Xc = constant,

respectively. For Ωc(0) � Ωc(t), we find Ω̇c ∝ τ
−3/2
c and

hence α ∝ τ3/2
c , when holding Xc and λ0 constant.

In Figure 15 we plot the evolution of the mean waiting
time and glitch size versus ν̇c = (2π)−1Ω̇c. We note that the
small-Ω̇c behaviour in Figure 15, in which the average glitch
rate asymptotes to a maximum value, is not a fundamental
feature of the model, but rather a consequence of the specific
choice of λ(X) in (11), which gives λ(X) → λ0 for X → 0
when dimensions are restored.

5.2 Activity parameter

An immediate implication of the model is that, in the sta-
tionary state, we have 〈∆X〉 = 〈∆t〉, where ∆X and ∆t refer
to the dimensionless scaled variables defined in (15), and the
angle brackets denote a long-time average over a single sim-
ulation, with α and β held constant, as throughout Section
4. This result is clear from Figure 4, and is proved ana-
lytically for arbitrary λ and η in Appendix B; the system
always self-adjusts to generate glitches of the correct size
and frequency to accommodate the driver Ω̇c(t). Restoring
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dimensions temporarily, the scaling relations in (15) convert
〈∆X〉 = 〈∆t〉 to

〈∆νc〉
〈∆t〉 =

Icν̇c

Ic + Is
. (25)

Equation (25) is closely related to the glitch activity param-
eter, which was defined by McKenna & Lyne (1990) as

A =

N(T )∑
i=1

∆ν
(i)
c

T
, (26)

where T is the total observation time and N(T ) is the num-
ber of glitches during that time. As N(T ) grows, the activity
parameter A approaches the left-hand side of (25). The same
quantity is referred to in Espinoza et al. (2011) as ν̇glitch.

We note that equation (25) is an immediate conse-
quence of any model that assumes that glitches release stress
from a finite reservoir of angular momentum, and that the
crust-superfluid lag fluctuates around an equilibrium value.
It does not require a mean-field approximation or the as-
sumption that glitch activity occurs as a state-dependent
Poisson proces; i.e. it is not particular to the model in this
paper. Ruderman et al. (1998) also derived expression (25);
see equation (27) of the latter paper. Link et al. (1999) noted
that, if the superfluid is allowed to transfer angular momen-
tum to the crust between glitches also, then (25) becomes
an inequality, ν̇glitch/ν̇c ≤ Is/(Is + Ic). From the activity pa-
rameter for Vela, they concluded Is/(Is + Ic) ≥ 1.4%, while
Lyne et al. (2000) found≈ 10−2 for the same ratio. Accurate
quantitative testing of (25) is constrained by our inability to
directly measure Is/(Is+Ic) for individual pulsars. Some the-
oretical predictions put the ratio at 10−2 (Piekarewicz et al.
2014), while recent theoretical work has supported the pos-
sibility of larger Is (Chamel 2012). If Is/(Ic + Is) is approx-
imately the same throughout the population, however, the
plot of log(ν̇glitch) versus log(ν̇c) should have unit slope.

Observational data agree with the above prediction
(Lyne et al. 2000; Espinoza et al. 2011). This is reflected in
an approximately monotonic decrease in glitch activity with
characteristic age τc ≈ 2νc/ν̇c. Within a group of young pul-
sars, however, including the Crab, PSR J1833−1034, PSR
PSR J1119−6127, and PSR J1846−0258, all of which have
τc < 10 kyr, A is lower than for middle-aged pulsars with 103

yr ≤ τc ≤ 104 yr (McKenna & Lyne 1990; Roy et al. 2012).
McKenna & Lyne (1990) suggested that younger stars are
hotter, so most of the superfluid angular momentum trans-
fers smoothly to the crust via vortex creep, which is pow-
ered by thermal activation of pinned vortices, instead of im-
pulsive glitches. This issue is not considered by our model,
which ignores vortex creep. We note that the measured value
of 〈∆νc〉 over ∼ 40 yr of timing observations may underesti-
mate the true long-term average, if the left-hand side of (25)
is dominated by large, rare glitches (e.g. from an underlying
power-law distribution with a fat tail), which have not yet
been observed.

5.3 Waiting-time moments

As a pulsar transitions from rapid to slow spin down, the
waiting-time PDF p(∆t) changes its functional form, as
described in Section 4.4. The standard deviation of p(∆t)
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Figure 16. Ratio of standard deviation to mean of glitch sizes

(green curve) and waiting times (blue curve) as a function of

Ω̇c. We assume that λ0 and Xc remain constant throughout spin
down, so Ω̇c ∝ α−1. For each value of α we sample ∆t and ∆Ωc

from a single simulation featuring N = 106 glitches after the

system reaches stationarity. Parameter: β = 10−2.

equals its mean in the rapid spin-down regime (correspond-
ing to an exponential PDF) but equals the standard de-
viation of the avalanche size PDF in the slow spin-down
regime (see Figure 4). In Figure 16 we plot this behaviour
explicitly. We assume λ0 and Xc remain constant, implying
α ∝ Ω̇−1

c . As the pulsar spins down and moves from right to
left across the plot, the ratio of mean to standard deviation
of waiting times drops over approximately two decades from
α ≈ αc ≈ 102 to α ≈ 100.

How does the behaviour in Figure 16 compare with ac-
tual pulsars? In Figure 17, we plot the standard deviation
divided by the mean of ∆t for 18 pulsars with five or more
observed glitches. The size of each point is proportional to
σ∆t/µ∆t. The pulsars are shown in their position on the
standard νc-ν̇c diagram. Data are taken from the ATNF
and Jodrell Bank pulsar catalogues (Espinoza et al. 2011;
Manchester et al. 2005) (see footnote 1). No clear trend is
visible; further analysis is required, as more data become
available. We note that α is a function of Ω̇c, Xc and λ0,
but not of Ωc, as the lag is determined by Ωs − Ωc.

6 MASTER EQUATION

The results in Sections 4 and 5 demonstrate the complex
behaviour generated by (15). Given a rate function λ(X)
and conditional jump distribution η, the system self-adjusts
by changing the PDF of the superfluid-crust lag X, until a
stationary state is reached. In this section, we develop an
analytic model of this stochastic evolutionary process based
on a master equation for the lag PDF.

6.1 Equation of motion

Let p(t, x) dx be the probability that the crust-superfluid
lag falls in the range x ≤ X(t) ≤ x + dx at time t. From
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Figure 17. Scatter plot of the ratio of the standard deviation

to mean of waiting times, over spin frequency νc versus spin fre-

quency derivative ν̇c for 18 pulsars with five or more observed
inter-glitch intervals (six or more observed glitches). The area of

each scatter point is linearly proportional to σ∆t/µ∆t. Data are

taken from the Jodrell Bank catalogue and ATNF pulsar cata-
logue (see footnote 1). The plot is drawn on log-log axes.

(15), p(t, x) evolves according to the dimensionless master
equation

p(t, x)t = −p(t, x)x− λ(x)p(t, x) +

∫ 1

x

dy p(t, y)λ(y)η(x|y).

(27)

The first term on the RHS of (27) equals the rate at which
probability exits the interval (x, x + dx) due to the deter-
ministic spin down of the crust. The second term equals
the rate at which probability exits the interval (x, x + dx),
when a glitch moves the system away from x at time t. The
third term is the rate that probability enters the interval
(x, x + dx), when a glitch moves the system from y to (x,
x+ dx) at time t. Daly & Porporato (2007) and Wheatland
(2009) considered (27) for a more general form of determin-
istic forcing, which we treat in the appendices, and allowed
X(t) to assume positive and negative values.

From numerical simulations (see Section 4.1), we know
that the system evolves to a stationary state with p(t, x) =
p(x) for t & 1. Solving (27) analytically for t . 1 to describe
the approach to stationarity lies outside scope of this paper.
In the stationary state, we have

0 = −dp(x)

dx
− λ(x)p(x) +

∫ 1

x

dy p(y)λ(y)η(x|y). (28)

The only physically relevant solutions of (28) are non-
negative functions p(x) with unit integral over the interval
0 < x < 1 and which are differentiable in the interior of the
interval. Although we select λ(x) = α/(1−x) as an exemplar,
the general analysis only assumes the following conditions:
(i) λ(x) ≥ 0 (i.e. the instantaneous avalanche rate cannot be
negative); (ii) Λ(x)→∞ as x→ 1 from below, with

Λ(x) =

∫ x

0

dξ λ(ξ) (29)

(i.e. the integrated avalanche rate diverges as the critical lag
is approached); and (iii) η(x|1) 6= 0 in some finite x interval.

6.2 Boundary conditions

Relevant, self-consistent solutions of (28) satisfy the bound-
ary conditions

p(0) = 0 = p(1). (30)

It may be noted that integration of (27) produces the same
boundary conditions for the time-dependent problem also.
Equation (30) holds for the following reason. From condition
(iii) in Section 6.1 , we see that

〈λ〉 =

∫ 1

0

dxλ(x)p(x). (31)

must be finite. If we integrate (28) over 0 < x < 1 and
interchange the orders of integration in the double integral,
we find p(1) − p(0) + 〈λ〉 = 〈λ〉, and hence p(0) = p(1).
However condition (ii) and the finite 〈λ〉 enforce p(1) = 0;
the divergence λ(X) → ∞ as X → 1 keeps the system at
X < 1 always.

In Section 6.3 we examine the PDFs of observable quan-
tities, which we are able to relate to p(x). Specific solutions
for a special class of conditional jump PDFs η(x|y) are dis-
cussed in Section 6.4.

6.3 Observable PDFs

Neither X(t) nor p(x) can be observed directly. The observ-
ables are the inter-glitch waiting times, with PDF p(∆t),
and the glitch sizes, with PDF p(∆Ωc). For notational sim-
plicity, we work in this section with the avalanche size PDF
p(∆x), where p(∆x)d∆x is the probability that ∆X is in
the interval (∆x,∆x + d∆x). We note that the glitch size
distribution p(∆Ωc) can be obtained from this by scaling by
a moment-of-inertia factor, viz. ∆X = −Is∆Ωc/(Is + Ic).
Clearly p(x) influences p(∆t) and p(∆x) because it deter-
mines the distribution of lags at which the system is likely
to glitch. If the system lag equals y immediately after the
last avalanche, then, from (14), the conditional PDF of the
waiting time to the next avalanche is

p(∆t|y) = λ(y + ∆t)e−Λ(y+∆t)eΛ(y), (32)

where Λ(y) is defined in (29) above. Equation (32) follows
from the standard formula (14) for the waiting time of a
Poisson process with deterministic rate λ(t). In order to
obtain p(∆t), we marginalise (32) over the distribution of
y values immediately after an avalanche. Crucially the lat-
ter distribution is not the stationary PDF of X. Likewise,
if instead the system lag equals y immediately before an
avalanche, the conditional PDF of the avalanche size is

p(∆x|y) = η(y −∆x|y). (33)

To obtain the avalanche size distribution, we marginalise
(33) over the distribution of y immediately before a glitch.
Again, the latter distribution is not the stationary PDF of
X.
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To make further progress, we follow Daly & Porporato
(2007) and define two new PDFs: pe(x)dx, the probability
that the lag lies in (x, x + dx) at the end of a complete in-
terval of deterministic evolution, immediately before a glitch
occurs; and ps(x)dx, the probability that the lag lies in (x,
x+ dx) at the beginning of a complete interval of determin-
istic evolution, immediately after a glitch occurs. With these
definitions, the waiting-time PDF is

p(∆t) =

∫ 1−∆t

0

dy ps(y)λ(y + ∆t)e−Λ(y+∆t)eΛ(y), (34)

and the avalanche size PDF is

p(∆x) =

∫ 1

∆x

dy pe(y)η(y −∆x|y). (35)

How do ps(x), pe(x) and p(x) relate? The latter is
the time-dependent PDF p(t, x) calculated in the stationary
regime, where p(t, x) = p(x) is independent of t. In contrast,
it makes no sense to ask the value of ps or pe at time t; ps and
pe have meaning only at the specific values of t where N(t)
jumps by one due to a glitch. We discuss this issue more in
Section 7. The three PDFs ps(x), pe(x) and p(x) can be re-
lated mathematically in the following way. Under stationary
conditions, ps(x)dx is the probability that a glitch takes the
system from the interval (y, y+dy) to (x, x+dx), integrated
over all y:

ps(x) =

∫ 1

x

dy pe(y)η(x|y). (36)

By the same token, pe(x)dx is the probability that the sys-
tem evolves deterministically for a time interval ∆t = y − x
from (y, y + dy) to (x, x+ dx), integrated over all y:

pe(x) = λ(x)e−Λ(x)

∫ x

0

dy ps(y)eΛ(y). (37)

Equation (37) follows directly from (32). As a consistency
check, it is easy to show that (36) and (37) conserve nor-
malisation, by integrating both sides over 0 ≤ x ≤ 1 and
changing the order of integration.

Figure 18 verifies equations (36) and (37). First, we ob-
tain ps(x) (dark blue curve) and pe(x) (green curve) numer-
ically by running a single simulation involving 108 glitches.
From pe(x), we predict ps(x) (cyan curve) according to (36).
Similarly, from ps(x) we predict pe(x) (red curve) according
to (37). The four curves overlap in pairs, proving that (36)
and (37) correctly describe the relation between ps and pe.
For this example, we choose η(x|y) = (δ + 1)xδy−δ−1, with
δ = 7, and λ as in Section 4 with α = 3. The choice of
δ = 7 is arbitrary and has been made for illustrative pur-
poses only. The agreement between ps(x) generated straight
from the simulations (dark blue curve) and from using (36)
(cyan curve) is preserved irrespective of the choice of λ and
η. The same is true for pe(x).

Equations (36) and (37) together define both ps(x) and
pe(x) uniquely up to normalisation constants. We substitute
one equation into the other to obtain an integral equation
for each PDF involving only itself:

ps(x) =

∫ y=1

y=x

dy η(x|y)λ(y)e−Λ(y)

∫ z=y

z=0

dz eΛ(z)ps(z), (38)
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Figure 18. Numerical verification of equations (36) and (37).
We generate the PDFs ps(x) (dark blue curve) and pe(x) (green

curve) by sampling a single simulation of N = 108 glitches after

stationarity. From ps(x) we make a prediction (red curve) of pe(x)
from (36). From pe(x) we make a prediction (cyan curve) of ps(x)

from (37). The curves overlap in pairs. We use η(x|y) = (δ +

1)xδy−δ−1 and λ as in Section 4. Parameters: δ = 7, α = 3.

pe(x) = λ(x)e−Λ(x)

∫ y=x

y=0

dy eΛ(y)

∫ z=1

z=y

dz η(y|z)pe(z). (39)

In Appendix B we detail the general properties of and
relations between ps(x), pe(x) and p(x). We show that if the
stationary master equation (28) has a unique non-negative
normalizable solution, then it follows that we have

pe(x) =
λ(x)p(x)

〈λ〉 , (40)

in accord with Daly & Porporato (2007). Observationally,
the normalisation constant 〈λ〉 defined in (31) is the average
λ obtained by sampling an ensemble of simulations at some
fixed time t & 1.

6.4 Separable η

In order to generate practical results from the master equa-
tion and gain a fuller understanding of its physical impli-
cations, it is useful to develop a tool kit of analytical so-
lutions, which can be manipulated easily and cross-checked
against Monte-Carlo simulations. To this end, we temporar-
ily restrict attention to separable conditional jump distri-
butions. From the fundamental normalisation condition (9),
they have the form

η(x|y) =
ϕ(x)

Φ(y)
, (41)

with

Φ(y) =

∫ y

0

dξ ϕ(ξ). (42)
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6.4.1 Analytic solution

When η(x|y) is separable, the master equation can be solved
analytically to obtain the stationary PDF of any quantity of
interest. For example, one can show that X is distributed as

p(x) = CΦ(x)e−Λ(x), (43)

where

C−1 =

∫ 1

0

dxΦ(x)e−Λ(x) (44)

is a normalisation constant. It is simple to show by direct
substitution that (43) satisfies (28). The proof that this solu-
tion is unique up to normalisation, under specific conditions
to be satisfied by λ and η, is set out in Appendix C. We note
that the solution (43) for general ϕ(x) contains the solution
of the forest-fire model of Daly & Porporato (2006), where
every jump resets the system stress to zero, with the specific
choice ϕ(x) = δ(x).

6.4.2 Observable PDFs

What do the distributions discussed in Sections 3–5 look like,
when η is separable? Xs and Xe, which are not observable,
have distributions

ps(x) =
C

〈λ〉ϕ(x)e−Λ(x) (45)

and

pe(x) =
C

〈λ〉Φ(x)λ(x)e−Λ(x) (46)

respectively. Substituting (45) and (46) into the expressions
(34) and (35) for the observed waiting times and avalanche
sizes yields

p(∆x) =
C

〈λ〉

∫ 1

∆x

dy λ(y)e−Λ(y)ϕ(y −∆x) (47)

and

p(∆t) =
C

〈λ〉

∫ 1−∆t

0

dy λ(y + ∆t)e−Λ(y+∆t)ϕ(y). (48)

Changing the integration variable in (47) to u = y+∆x leads
to (48). This is an interesting result: when η is separable, the
observed waiting-time PDF has the same functional form as
the size PDF. This generally fails to hold for a non-separable
conditional jump distribution except in the regime α & αc,
e.g. we find power-law sizes and exponential waiting times
in Section 4.

6.4.3 Illustrative special case: ϕ(x) = xδ

The conditional jump distribution defined by (18) and (19)
and used in Sections 3–5 is not separable, so it does not relate
directly to the solution (43). We know of no analytic solu-
tion for the general non-separable case. Nevertheless we can
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Figure 19. Avalanche waiting-time and size distributions p(∆t)

(blue curve) and p(∆x) (green curve) for the separable condi-

tional jump distribution η(x|y) = (δ + 1)xδy−δ−1. The variables
are sampled from a single simulation of N = 108 glitches. The

PDFs agree with each other and the analytic expression (D1)

(red dotted line). Parameters: α = 3, δ = 7.

study qualitatively the behaviour in Sections 3–5 by anal-
ogy with a similar yet separable jump distribution. We take
ϕ(x) = xδ as an example, with δ > 0. For large δ, ϕ(x) = xδ

sharply favours small jumps but still allows glitches that re-
set the stress to zero, as in Section 4. There is, however, an
important difference. The requirement of separability means
we are unable to set a non-zero minimum avalanche size con-
ditional on the value of X when a glitch occurs, tuned with
the parameter β in Section 4.

Figure 19 displays the waiting time and avalanche size
PDFs p(∆x) and p(∆t) obtained by simulating N = 108

glitches, alongside the analytic expression for p(∆t) and
p(∆x), for ϕ(x) = xδ, viz.

p(∆t) = (1 + α+ δ)(1−∆t)α+δ. (49)

Equation (49) is derived in Appendix D. The three curves
agree with one another. Physically, the α and δ depen-
dence of (49) can be explained as follows. A larger δ favours
smaller jumps (qualitatively similar to reducing β in Sec-
tion 4), which forces the system to self-adjust, so that p(x)
is squeezed closer to the upper bound at X = 1. Increasing
α has an opposite effect: it makes avalanches more likely to
occur at smaller X values, pushing p(x) toward zero.

The waiting-time (or equivalently avalanche-size) PDF
(49) yields the following result for the means:

〈∆t〉 =
1

α+ δ + 2
= 〈∆X〉. (50)

This is qualitatively the same behaviour as that observed for
the non-separable η used in Sections 4 and 5. Now the tran-
sition between the rapid and slow spin-down regimes occurs
at αc ≈ δ. (Here too αc is a function of the avalanche size
parameter.) Slow spin down corresponds to α � δ, where
(50) yields 〈∆X〉 = 〈∆t〉 ≈ (α+ 2)−1. Hence both 〈∆t〉 and
〈∆X〉 decrease like α−1, just as in Section 4 (illustrated in



18 W. Fulgenzi, A. Melatos and B.D. Hughes

10−3 10−2 10−1 100 101 102 103

α

0.0

0.2

0.4

0.6

0.8

1.0

r

∆X (i) vs (T (i+1) − T (i))

∆X (i) vs (T (i) − T (i−1))

Figure 20. Correlation between sizes and forward/ backward

waiting times: Pearson coefficient, r, as a function of the control

parameter α, for separable η with ϕ(x) = xδ. For each value of α,
we sample ∆t and ∆X over the course of a single simulation of

N = 106 glitches, after the system reaches stationarity. We then

calculate the pair-wise correlation between the two sets for each
α. Parameter: δ = 7.

Figure 4). Rapid spin down corresponds to α� δ and hence
〈∆X〉 ≈ (δ + 2)−1. This equals the mean glitch size,

∫ 1

0

d(∆x) η(1−∆x|1)∆x =
1

δ + 2
, (51)

assuming Xe ≈ 1, as in (20).

6.4.4 Size-waiting time correlation for ϕ(x) = xδ

Figure 20 displays the correlation between glitch sizes and
forward and backward waiting-times for ϕ(x) = xδ. The fig-
ure is constructed from Monte-Carlo output, but it is also
possible to compute the correlations from the covariance an-
alytically (outside the scope of this work). We note that the
presence of a correlation depends strongly on α, even though
the PDFs p(∆t) and p(∆x) are identical, when η is separa-
ble as in Figure 19. In other words, the PDFs are equal,
because the system self-adjusts, not because glitch sizes are
correlated with forward waiting times, as in the α� αc(β)
regime in Section 4. The explanation for the qualitative be-
haviour seen in Figure 20 is the same as for Figure 13.

6.5 Lag-dependent spin down

For the sake of completeness, we extend the results of Section
6 to the case of a general lag-dependent spin-down torque
in Appendix E.

7 SAMPLING SIZE BIAS

We now consider more carefully how we sample the differ-
ent random variables used throughout this paper: X, N ,
∆t, ∆Ωc (∝ ∆X), Xe and Xs. Both X and N differ funda-
mentally from the other variables, because they are defined
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Figure 21. Stationary PDFs ps(x), pe(x) and p(x) for the λ and

power-law η used throughout Section 4. Both pe(x) and ps(x)

are sampled from a single simulation of N = 108 glitches after
stationarity. We obtain p(x) by sampling an ensemble of S = 106

simulations at t = 8. Parameters: β = 10−2, α = 5.

continuously for all t. The other variables are defined at dis-
crete instants, when N(t) jumps by one due to a glitch. We
therefore sample X(t) and N(t) by running an ensemble of
simulations and observe each simulation at some time t0.
The other variables are sampled at every glitch in a single
simulation once it reaches stationarity.

As an example of the subtle consequences of sampling
bias, consider the ordering of the first moments 〈X〉, 〈Xs〉,
and 〈Xe〉. Figure 21 shows p(x), pe(x) and ps(x) for the
non-separable power-law η (18) and (19) from Section 4.
Note that ps(x) is skewed toward larger values than p(x).
By integrating the curves, we find 〈Xs〉 = 0.600, 〈X〉 =
0.579, 〈Xe〉 = 0.667, and hence 〈X〉 < 〈Xs〉 < 〈Xe〉. This
seems wrong: Xs, the value of X immediately after a glitch,
ought to be smaller, on average, than X measured at some
arbitrary time t. However, X is sampled from an ensemble at
fixed time t0, whereas Xs and Xe are drawn from a different
ensemble (every glitch event in a single simulation). If we
observe the system at time t, we are more likely to land in a
longer inter-glitch time interval than a smaller one, in which
the (biased) Xs and Xe are spaced farther apart.

Sampling bias has an important observable conse-
quence, even though ps and pe cannot be observed. We can
obtain an ensemble distribution of waiting times by choos-
ing a time t0 � 1 and measuring the length of the interval
T (i+1) − T (i) for every simulation in the ensemble, where
T (i) is the time of the glitch immediately before t0. We de-
note the interval of these lengths pb(∆t). For each simulation
in the ensemble, the waiting-time intervals are distributed
as p(∆t), and we are proportionally more likely to randomly
land in an interval in proportion to its length ∆t (Cox 1970).
The biased distribution pb(∆t) is therefore

pb(∆t) =
p(∆t)∆t

〈∆t〉 , (52)

where p(∆t) is the unbiased, “true” waiting time distribu-
tion obtained by sampling ∆t over the course of a single
simulation, and 〈∆t〉, the mean (unbiased) waiting time, is
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Figure 22. The biased and unbiased waiting-time PDFs, pb(∆t)

and p(∆t). p(∆t) is obtained by sampling ∆t after the system

reaches stationarity from a single simulation of N = 108 glitches.
pb(∆t) is obtained by observing an ensemble of S = 106 simula-

tions at time t0 = 8 and sampling the ∆t in each simulation that

t0 falls in. Parameters: δ = 7, α = 3.
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Figure 23. The effect of sampling bias for waiting times. The

unbiased waiting time PDF p(∆t) (blue curve) is obtained by

sampling ∆t after the system reaches stationarity from a single
simulation of N = 108 glitches. The PDFs pN+k

b (∆t) are obtained

by observing an ensemble of simulations at t0 = 8, and sampling
the width of the inter-glitch interval k glitches later. For k = 0
(green curve), we sample the width of the interval we land in. For

k = 1 (red curve), k = 2 (cyan curve) and k = 20 (violet curve),

we sample the length of the interval one, two and 20 glitches later
respectively. Parameters: δ = 7, α = 3.

required for normalisation. In Figure 22, we plot p(∆t) and
pb(∆t) from simulations for separable η with ϕ(x) = xδ,
along with the analytic results. The agreement is excellent.

How does biasing affect pulsar timing measurements?
Figure 23 provides an indication of the answer. First, we
obtain p(∆t) by sampling ∆t from a single simulation of
N = 108 glitches (blue curve). The other curves are ob-
tained by running an ensemble of S = 106 simulations, and
sampling at a fixed time t0 = 8. Let pNb (∆t) (green curve)
be the PDF of T (N+1) − T (N), where T (N) is the time of

the last glitch before t0. This is just the biased distribution
pb(∆t) plotted in Figure 22. Similarly, pN+1

b is the PDF of
T (N+2) − T (N+1), pN+2

b (cyan curve) is the PDF of lengths
of the interval immediately after that, and pN+20

b (violet
curve) is the PDF of the length of the interval 20 glitches
after t0. Only pNb (∆t) differs substantially p(∆t). The PDFs
pN+1
b and pN+2

b are slightly more skewed toward smaller ∆t,
with a larger intercept and sharper drop-off. This is a re-
sult of having a state-dependent Poisson rate, so that after
a large interval, the next interval is slightly more likely to
be smaller. By comparison, there is no visible difference be-
tween pN+20

b (∆t) and p(∆t).
The implications for pulsar measurements are as fol-

lows. If a glitch has not yet been observed, we are essentially
making a biased measurement by looking at the pulsar at
a random time and are more likely to be in a longer inter-
glitch interval. Any attempt to place an upper bound on the
average glitch rate by considering how long the pulsar has
been observed without glitching must therefore take bias-
ing into account. We do not know when the previous glitch
occurred, so we do not measure the width of the biased in-
terval [with PDF pNb (∆t) in Figure 23]. After the first glitch,
the PDF of the time to the next glitch is described, quali-
tatively, by pN+1

b in Figure 23, which closely approximates
the unbiased waiting time PDF p(∆t).8 It is worth exam-
ining pulsars with a large number of glitches to determine
whether the first observed inter-glitch waiting time interval
is different, on average, from the following ones.

8 CONCLUSIONS

In this paper, we present a mean-field vortex avalanche
model for pulsar glitches, in which the crust-superfluid lag
fluctuates according to a state-dependent Poisson process.
Using a conditional jump distribution inspired by results
of published GPE simulations, we predict the observed
waiting-time and size statistics, as a function of two key
physical parameters: β, which sets maximum fraction of
stress that can be released in a glitch, and α, which is pro-
portional to the avalanche rate at a reference lag divided
by the electromagnetic spin-down rate. We find empirically
that the system evolves to equilibrium. In the fast spin-down
regime α . αc(β), the waiting-time PDF is approximately
exponential, with an upper cut-off that scales as α−1, while
the size PDF is power-law-like over − log[β] decades. In the
slow spin-down regime α & αc(β), the waiting-time PDF
approximately equals the glitch size PDF due to correla-
tion between sizes and forward waiting times that is not
observed in most pulsars. If the avalanche size distribution
is sufficiently broad, spanning at least one decade, the model
does not predict a significant correlation between sizes and
backward waiting times, consistent with observations.

In order to study the intermediate regime α ≈ αc(β)
where feedback between the avalanche rate and sizes is
strongest, we develop an analytic solution in the special case

8 Biasing occurs also in renewal processes (including the

constant-rate Poisson process), which have inter-glitch intervals
that are independent and identically distributed. However, in this

case, one has pN+k
b (∆t) = p(∆t) for all k > 0, where k is an in-

teger.
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where the conditional jump distribution η(x|y) is separable,
and discuss its properties. We derive analytic expressions
for the observed waiting-time and size PDFs. We find that,
when η(x|y) is separable, the sizes and waiting times have
the same distribution, a result that does not hold in the non-
separable case in general. We also find qualitative similari-
ties between the non-separable and separable cases, includ-
ing how average sizes, waiting times and size-waiting-time
correlations depend on key physical parameters.

An important consequence of the model is that the
avalanche rate fluctuates over a wide range, even when the
stochastic process is stationary. Figure 24 displays a repre-
sentative evolution of λ[X(t)] with α = 3 and β = 10−2.
In the stationary regime t & 1, λ[X(t)] varies between 3λ0

and 80λ0, when dimensions are restored. This is counter-
intuitive: X fluctuates by a maximum of ≈ 30% from the
mean, but λ varies by much more due to the asymptote in
the avalanche rate as X → 1. However, λ[X(t)] is not astro-
physically observable. The question therefore arises: do fluc-
tuations in λ[X(t)] have observable consequences? In Section
4, we find p(∆t) = 〈λ〉 exp(−〈λ〉∆t) for α . αc(β). This is
the same PDF as for a constant-rate Poisson process with
rate 〈λ〉. Hence p(∆t) alone cannot distinguish between a
constant-rate Poisson process and the state-dependent rate
considered in this model for α . αc(β).

A recent analysis of 45 years of glitch data from the
Crab (Lyne et al. 2015) found an unusual degree of cluster-
ing of 20 glitch events between June 1996 and August 2006.
The clustering does not affect p(∆t), which by construction
records the time between consecutive glitch events and is not
sensitive to the location of groups of glitches. Considering
only glitches from 1996 until 2006, Lyne et al. (2015) sam-
pled the time interval between each glitch and every other
glitch occurring after it. They compared the distribution ob-
tained to simulations of a constant-rate Poisson process and
found significant disagreement (see Figure 6 of the latter
paper). It is worth investigating whether the inclusion of a
state-dependent rate, as done in this paper, permits greater
clustering than a constant-rate Poisson process. In Figure
24, we see that, qualitatively, the events tend to be clustered
near a series of small jumps, when X is large. This question
deserves to be examined quantitatively in future work, using
mathematical tools from the study of spatial point processes.
We also investigate the subtle effect of sampling bias (“bus-
stop paradox”) on observed waiting-time PDFs in Section
7.

Another important recent discovery is that the Crab ap-
pears to have a minimum glitch size above detection limits;
the number of glitches with ∆ν ≤ 0.05 µHz is substantially
below what is expected for a power law (c.f. a maximum ob-
served glitch size of ∆ν = 1.48 µHz) (Espinoza et al. 2014).
More data are needed to confirm the existence of a mini-
mum ∆ν and search for it in other pulsars. Nevertheless, it
is easily accommodated by the model in this paper, if we set
β ≈ 0.05/1.48. We emphasise strongly that the model does
not provide any physical insight concerning the existence of
a minimum ∆ν and the reason behind the implied value of β;
it simply accommodates the phenomenon in a natural way.
Again, more data and enhanced analysis tools are needed to
search for a minimum ∆ν in other pulsars. If these future
experiments find that β takes on a common value across a
number of objects, they will motivate future first-principles
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Figure 24. Rate variability: representative time series of the

crust-superfluid lag X(t) (top panel) and the resulting evolution

of the instantaneous avalanche rate λ[X(t)] (bottom panel), dur-
ing the approach to stationarity and beyond. Parameters: α = 5,

β = 10−2.

theoretical studies of vortex avalanches, e.g. with GPE sim-
ulations (Warszawski & Melatos 2011), to understand why
the scale-invariant character of the avalanche process breaks
down at ∆ν ≈ 0.05 µHz.

We emphasise in closing that comparisons with astro-
physical data are restricted by the small sample sizes avail-
able at present. To date, there are 482 events in 168 objects
recorded in the Jodrell Bank catalogue (see footnote 1). Of
these objects, seven have glitched between 10 and 35 times.
More data continue to flow from ongoing radio telescope
timing campaigns.
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APPENDIX A: PROOF OF 〈λ〉−1 = 〈∆t〉

In this appendix, we prove the intuitive result that under
stationary conditions the ensemble average of λ(X) equals
the reciprocal of the mean waiting-time interval.

As defined in (31), 〈λ〉 is the ensemble expectation value
of λ, obtained by sampling an ensemble of glitch sequences
at some large time t, once each sequence is stationary. The
mean waiting-time interval is given by

〈∆t〉 =

∫ 1

0

d(∆t) p(∆t)∆t, (A1)

where p(∆t), the PDF of inter-glitch waiting times, is ob-
tained by sampling the intervals between a large number of
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glitches drawn from a single sequence. Inserting (34) into
(A1), we obtain

〈∆t〉 =

∫ 1

0

d(∆t) ∆t

∫ 1−∆t

0

dy ps(y)λ(y+∆t)e−Λ(y+∆t)eΛ(y).

(A2)

Noting λ(x) = Λ′(x), we can write

λ(y + ∆t)e−Λ(y+∆t) = − ∂

∂(∆t)
e−Λ(y+∆t) (A3)

and hence

〈∆t〉 = −
∫ 1

0

d(∆t)∆t

∫ 1−∆t

0

dy (∆t)e−Λ(y+∆t)ps(y)eΛ(y)

(A4)

= −
∫ 1

0

dy ps(y)eΛ(y)

∫ 1−y

0

d(∆t)∆t(∆t)e−Λ(y+∆t).

(A5)

Integrating the inner integral by parts and noting that we
have e−Λ(y+∆t) ≤ 1 and e−Λ(y+∆t) → 0 as ∆t→ 1−y (from
the divergence of Λ(x) as x→ 1 from below), we find

〈∆t〉 =

∫ 1

0

dy ps(y)eΛ(y)

∫ 1−y

0

d(∆t)e−Λ(y+∆t) (A6)

=

∫ 1

0

dy ps(y)eΛ(y)

∫ 1

y

dξ e−Λ(ξ) (A7)

=

∫ 1

0

dξ e−Λ(ξ)

∫ ξ

0

dy ps(y)eΛ(y). (A8)

However, from equation (37) we have∫ ξ

0

dy ps(y)eΛ(y) =
eΛ(ξ)pe(ξ)

λ(ξ)
(A9)

and hence

〈∆t〉 =

∫ 1

0

dξ
pe(ξ)

λ(ξ)
. (A10)

Finally, inserting 〈λ〉pe(x) = λ(x)p(x) from (40) into (A10),
we obtain

〈∆t〉 =

∫ 1

0

dξ
p(ξ)

〈λ〉 (A11)

=
1

〈λ〉 . (A12)

APPENDIX B: GENERAL PROPERTIES OF
ps(x), pe(x), p(x)

In this appendix, we prove several general properties of ps,
pe and p, as well as the relations between these three PDFs.
We also prove the equality (in dimensionless units) of the
mean avalanche waiting time and size.

We define the integrated avalanche rate Λ(x) in such a
way as to satisfy Λ′(x) = λ(x) ≥ 0, Λ(0) = 0, and Λ(x) →
∞ as x → 1 from below. If we write pe(x) = λ(x)g(x),
then the divergence of Λ(x) as x→ 1 enforces the condition

g(1) = 0 in order to maintain the integrability of pe(x). In
addition, we have pe(0) = 0 from equation (37). Eliminating
pe in favour of g in equation (39), multiplying by eΛ(x) and
differentiating, we obtain

g′(x) + λ(x)g(x) =

∫ 1

x

dzg(z)λ(z)η(x|z). (B1)

Hence g satisfies the same integrodifferential equation (28)
that p does, and the same homogeneous boundary conditions
(30). If the solution of the integrodifferential equation with
these boundary conditions is unique up to a normalization
constant, then we are forced to conclude that g is a constant
multiple of p, and it follows that one has

pe(x) =
λ(x)p(x)

〈λ〉 . (B2)

Daly & Porporato (2007) found (B2) by arguing that pe(x)
“can be obtained by considering the probability of being in
x+ dx and (independently) jumping during a time interval
dt from that level, i.e., p(x)λ(x) dx dt, and then normalising
it by the total probability of jumping during the interval dt”
(verbatim quote).

Combining (36), (37) and (B2), we find that p(x) and
ps(x) are related via

ps(x) =
1

〈λ〉

∫ 1

x

dy λ(y)η(x|y)p(y), (B3)

and

p(x) = 〈λ〉e−Λ(x)

∫ x

0

dy ps(y)eΛ(y). (B4)

From equations (B2), (B3) and the master equation
(28), we arrive at the important result

p′(x)

〈λ〉 = ps(x)− pe(x). (B5)

Finally we establish the equality of the mean avalanche
size and the mean waiting time between glitches. To do this
we multiply the master equation (28) by x and integrate
over 0 < x < 1. After a little algebra, including integration
by parts of xp′(x), an interchange of orders of integration in
the double integral, and the renaming of one of the dummy
integration variables, we find

1 =

∫ 1

0

dy λ(y)p(y)

[
y −

∫ y

0

dxxη(x|y)

]
. (B6)

We can rewrite (B6) as

1 =

∫ 1

0

dy λ(y)p(y)

∫ y

0

dx (y − x)η(x|y). (B7)

Because y − x corresponds to the avalanche size when the
glitch occurs at Xe = y, the inner integral equals the mean of
∆X, conditional on the system glitching at Xe = y, which
we denote by 〈∆X|Xe = y〉. Combining with the relation
(B2) between p and pe, we find
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1 = 〈λ〉
∫ 1

0

dy pe(y)〈∆X|Xe = y〉 (B8)

= 〈λ〉〈∆X〉. (B9)

Finally, inserting 〈∆t〉 = 〈λ〉−1 from (A11), we obtain

〈∆t〉 = 〈∆X〉. (B10)

Equation (B10) proves, for general λ and η, the equal-
ity of the mean dimensionless waiting times and sizes. This
matches the results from numerical simulations for the spe-
cial choices of λ and η in Section 4, illustrated in Figure
4.

By integrating (B5) over 0 ≤ x ≤ 1 and inserting (B9),
we confirm the intuitive result

〈Xs〉 = 〈Xe〉 − 〈∆X〉. (B11)

APPENDIX C: SOLUTION OF THE MASTER
EQUATION WITH SEPARABLE η(x|y)

In this appendix we show that the stationary master equa-
tion (28) with a separable conditional jump distribution
given by (41) and (42) has the solution (43) and (44), pro-
vided that

Λ(x)→∞ as x→ 1 from below, (C1)

with

Λ(x) =

∫ x

0

ds λ(s). (C2)

We also establish that under the condition (C1) this solution
is the only non-negative solution that satisfies the boundary
conditions

p(0) = 0 = p(1). (C3)

Let us begin by rearranging the stationary master equa-
tion (28) into the form

p′(x) + λ(x)p(x) =

∫ 1

x

dy p(y)λ(y)η(x|y) (C4)

and define

p∗(x) = Φ(x)e−Λ(x). (C5)

The limits Φ(x)→ 0 and Λ(x)→ 0 as x→ 0 imply p∗(0) =
0. The condition (C1) also implies

0 = lim
x→1

e−Λ(x). (C6)

As Φ(1) is finite, we have p∗(1) = 0.
It is easily verified by direct substitution, integration by

parts and use of the result (C6), that Cp∗(x) is a solution
of the integrodifferential equation (C4) and boundary con-
ditions (C3) for any constant C given η(x|y) = ϕ(x)/Φ(y).

Choosing C according to (44) returns the correct normali-
sation to make p(x) a PDF.

More generally, we seek a solution of the form

p(x) = r(x)p∗(x), (C7)

where r(x) is non-negative. We show that the boundary
conditions (C3) imply r′(x) = 0 for 0 < x < 1, making
r(x) = constant the only solution.

Inserting the trial solution (C7) into (C4), we find after
a little algebra

[r′(x)Φ(x) + r(x)ϕ(x)]e−Λ(x) = ϕ(x)

∫ 1

x

dy r(y)λ(y)e−Λ(y)

(C8)

= −ϕ(x)

∫ 1

x

dy r(y)y
[
e−Λ(y)

]
.

(C9)

The requirement p(x) → 0 as x → 1 and the observation
that Φ(x) is nonzero in this limit imply r(y)e−Λ(y) → 0 as
y → 1. Consequently on integrating (C8) by parts we find

r′(x)Φ(x)e−Λ(x) = ϕ(x)

∫ 1

x

dy r′(y)e−Λ(y). (C10)

We can rewrite (C10) as

0 = x

[
Φ(x)

∫ 1

x

dy r′(y)e−Λ(y)

]
, (C11)

so that we have

A = Φ(x)

∫ 1

x

dy r′(y)e−Λ(y), (C12)

for some constant A in the domain 0 < x < 1. If we are able
to conclude that A = 0 holds, it follows immediately that
we have r′(y) = 0 for 0 < y < 1.

If A is nonzero, then the integral in equation (C12) di-
verges as x → 0 from above, given Φ(x) → 0 as x → 0.
Hence for all fixed a with 0 < a < 1 we have

A = lim
x→0

Φ(x)

∫ a

x

dy r′(y)e−Λ(y). (C13)

However, we also have Λ(y) → 0 and e−Λ(y) → 1 as y → 0,
implying

A = lim
x→0

Φ(x)

∫ a

x

dy r′(y), (C14)

that is,

r(x) ∼ − A

Φ(x)
. (C15)

To stop the solution becoming negative, we require A ≤ 0.
Moreover, as x→ 0 from above we have

p(x) = r(x)Φ(x)e−Λ(x) → |A|, (C16)

and the boundary condition p(0) = 0 implies A = 0. Thus
we confirm that one has r′(x) = 0 throughout the interval,
as previously claimed.
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APPENDIX D: ANALYTIC PDF FOR
SEPARABLE, POLYNOMIAL η(x|y)

For a separable conditional jump distribution of the form
(41), with ϕ(x) = xδ, where δ is a non-negative constant,
the stationary PDFs given by (43), (45) and (46) equate to

p(x) = Cxδ+1(1− x)α, (D1)

ps(x) =
C

〈λ〉x
δ(1− x)α, (D2)

and

pe(x) =
C

〈λ〉x
δ+1(1− x)α−1, (D3)

with C = Γ(α+δ+3)
[
Γ(α+1)Γ(δ+2)

]−1
, where Γ denotes

the usual gamma function. Equations (D2) and (D3) can be
used to integrate (47) and (48) analytically to obtain the
observed waiting-time PDF,

p(∆t) = (1 + α+ δ)(1−∆t)α+δ. (D4)

Equation (D4) is equal to the size PDF p(∆x), as η(x|y)
is separable. We find from appropriate integrals based on
(D1) and the identities (A12) and (B10) that the following
moments satisfy

〈∆X〉 = 〈∆t〉 = 〈λ〉−1 =
1

α+ δ + 2
. (D5)

The results (D1)–(D4) are plotted and discussed in Sec-
tion 6.4. The choice ϕ(x) = xδ favours small jumps, consis-
tent with the power-law avalanche sizes observed in GPE
simulations, and serves as a semi-quantitative approxima-
tion to the nonseparable η(x|y) given by (18) and (19) and
used in the Monte Carlo simulations in Sections 4 and 5.

APPENDIX E: GENERAL DETERMINISTIC
SPIN DOWN

For the sake of completeness, we extend Section 6 to the case
of a general, lag-dependent deterministic spin-down law. In
this case, (7) no longer holds, and the equation of motion is
instead (Daly & Porporato 2007)

X(t)t = f(X)−
N(t)∑
i=1

∆X(i)δ
[
t− T (i)

]
, (E1)

where f(X) is the instantaneous spin-down rate, and ∆X(i)

and T (i) are the size and epoch of the i-th avalanche, re-
spectively. Equation (E1) reduces to (7) for the special case
f(X) = 1 relevant to pulsars. We assume that the instanta-
neous spin-down rate does not depend explicitly on time.

The stationary master equation associated with (E1)
takes the form [cf. (28)]

0 = −x
[
p(x)f(x)

]
− λ(x)p(x) +

∫ 1

x

dy p(y)λ(y)η(x|y). (E2)

E1 Observable PDFs

We obtain the waiting-time and size PDFs as follows. For the
case of trivial forcing, f(X) = 1, when a glitch at time t sets
the lag toX(t), the lag evolves asX(t+∆t) = X(t)+∆t until
the next glitch. For general f(X), the equation of motion in
the deterministic phase between two glitches is given by the
first-order differential equation

Xt = f(X), (E3)

which yields

∆t =

∫ X(t+∆t)

X(t)

dξ

f(ξ)
. (E4)

Equation (E4) must be inverted to obtain an expression for
X(t+ ∆t) as a function of X(t) and ∆t. We denote this as

X(t+ ∆t) = g[∆t,X(t)]. (E5)

With this definition, inverting the integration terminals in
(E4) yields the relation X(t) = g[−∆t,X(t+∆t)]. We stress
that equations (E3)–(E5) hold only for the deterministic evo-
lution between two glitches. As an example, if we choose
f(X) = 1 − X, so that the forcing slows to zero as we ap-
proach the critical lag, (E5) becomes

g[∆t,X(t)] = 1− [1−X(t)]e−∆t. (E6)

Now let X(t) equal y at the start of a deterministic
phase of motion, immediately after a glitch at time t. The
conditional waiting-time PDF (13) for the time until the
next glitch is

p[∆t|X(t) = y] = λ[X(t+ ∆t)]e−
∫ t+∆t
t dt′ λ[X(t′)]. (E7)

Changing the variable of integration in (E7) through (E3)
and inserting the relation X(t + ∆t) = g(∆t, y) from (E5),
we obtain

p[∆t|X(t) = y] = λ[g(∆t, y)]e−Ψ[g(∆t,y)]eΨ(y), (E8)

where Ψ(x) is defined as

Ψ(x) =

∫ x

0

dξ
λ(ξ)

f(ξ)
. (E9)

At stationarity the value of X(t) = y immediately after a
glitch has PDF ps(y). The observed waiting time PDF is
therefore obtained by marginalising (E7) over y:

p(∆t) =

∫ g(−∆t,1)

0

dy ps(y)λ[g(∆t, y)]e−Ψ[g(∆t,y)]eΨ(y).

(E10)

The upper terminal of (E10), g(−∆t, 1), gives the largest
value of Xs = y, such that the stress does not exceed the
critical lag, if the system evolves for time ∆t before the next
glitch occurs. Daly & Porporato (2007) took an alternative
route to obtain the waiting-time PDF, by solving the sta-
tionary master equation (E2) in the absence of jumps, and
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obtaining a survivor equation for the time until the total
probability vanishes. The expression for the avalanche size
PDF is unchanged from (35):

p(∆x) =

∫ 1

∆x

dy pe(y)η(y −∆x|y). (E11)

E2 Lag PDFs

We now derive relations between ps(x), pe(x) and p(x).
The generalisation of equation (36) is

pe(x) =
λ(x)

f(x)
e−Ψ(x)

∫ x

0

dy ps(y)eΨ(y). (E12)

Equations (37) and (40) remain unchanged:

ps(x) =

∫ 1

x

dy pe(y)η(x|y), (E13)

pe(x) =
p(x)λ(x)

〈λ〉 . (E14)

It follows from (E17)–(E14) that the time-independent mas-
ter equation (E2) can be written as

1

〈λ〉x [p(x)f(x)] = ps(x)− pe(x). (E15)

By a trivial extension of the argument after (B5) in Ap-
pendix B, the relation between the mean avalanche rate and
size is now

〈f〉 = 〈λ〉〈∆X〉, (E16)

where 〈f〉 =
∫ 1

0
dξ p(ξ)f(ξ) is the ensemble expectation value

of the instantaneous spin-down rate.

E3 Separable η(x|y)

If we now restrict attention to the special case where η is
separable, as defined by (41) and (42), the master equation
(E2) is satisfied by

p(x) =
CΦ(x)e−Ψ(x)

f(x)
, (E17)

where C is a normalisation constant,

C−1 =

∫ 1

0

dx
Φ(x)e−Ψ(x)

f(x)
. (E18)

The other stationary PDFs are given by

ps(x) =
Cϕ(x)e−Ψ(x)

〈λ〉 , (E19)

pe(x) =
Cλ(x)Φ(x)e−Ψ(x)

〈λ〉f(x)
. (E20)

We use (E6) and (E7) to obtain explicit expressions for the
waiting-time and size PDFs:

p(∆t) =
C

〈λ〉

∫ g(−∆t,1)

0

dy
λ[g(∆t, y)]

f(y)
ϕ(y)e−Ψ[g(∆t,y)],

(E21)

p(∆x) =
C

〈λ〉

∫ 1

∆x

dy
λ(y)

f(y)
ϕ(y −∆x)e−Ψ(y). (E22)

E4 Relating λ(x) and f(x)

We conclude this section by noting the connection between
λ(x) and f(x). In (E2), we can substitute a solution of the
form p(x) = q(x)/f(x) to obtain

0 = −q(x)x− γ(x)q(x) +

∫ 1

0

dy η(x|y)γ(y)q(y), (E23)

with γ(x) = λ(x)/f(x). Referring to (27), we see that
q(x) is itself the solution to a master equation with triv-
ial deterministic evolution and an avalanche rate function
γ(X) = λ(X)/f(X).

What does this mean, physically? Consider the example
λ(X) = α/(1−X) from (11) with f(X) = 1 from Section 4.
We obtain the same equation for q(x), using the substitution
leading to (E23), from a constant rate avalanche process,
λ(X) = 1, and deterministic forcing f(X) = (1 − X)/α.
Although the avalanche rate is constant, a glitch is more
likely to occur in the interval (x, x + dx) near the critical
lag (where the forcing is slower) than far away, because the
system spends more time there. In the limit X → 1 we have
f(X) → 0, meaning that near the critical lag the system is
hardly spinning down at all. We stress that the PDFs p and
q are the distributions of two completely different physical
variables. All observable quantities, including avalanche sizes
and inter-glitch waiting times, must be computed from p(x).
As an example of the observable differences, we note that
f(X) = (1−X)/α with λ = 1 does not enforce a maximum
cut-off of inter-glitch waiting times. In contrast, in Sections
3–6, we find ∆t < 1 always for λ(X) = α/(1 − X) and
f(X) = 1.
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