
D-BRANES ON GROUP MANIFOLDS AND FUSION RINGS

PETER BOUWKNEGT, PETER DAWSON, AND DAVID RIDOUT

Abstract. In this paper we compute the charge group for symmetry preserving D-branes

on group manifolds for all simple, simply-connected, connected compact Lie groups G.

1. Introduction

D-branes on group manifolds have been the subject of intensive research over the past

few years (see, e.g., [1–23]), as they provide a good laboratory for testing our intuitive

understanding of D-branes on curved spaces and a case where both geometric and algebraic

methods can be applied.

Algebraically, D-branes on a group manifold G are obtained as solutions to the gluing

conditions of the chiral currents of the WZW-model [3, 6, 7, 14]

J(z) = ω · J̄(z̄) , for all z = z̄ , (1.1)

where ω is an automorphism of the Lie algebra g of G. In this paper we will restrict ourselves

to the sector ω = 1, i.e. the so-called symmetry preserving (or untwisted) D-branes.

Geometrically, symmetry preserving D-branes wrap conjugacy classes C(h) = {ghg−1 :

g ∈ G}. Even though the conjugacy classes C(h) are contractible within G, the D-branes

correspond to a stable configuration due to the process of flux stabilization [8,16,17]. Upon

quantization, it is known that the symmetry preserving branes are in 1–1 correspondence

with the integrable highest weight modules of the affine Lie algebra ĝ (at level k) (see,

e.g. [24]) through the so-called Ishibashi-Cardy boundary states. In the geometrical picture,

the D-brane associated to a boundary state labelled by an integrable weight µ ∈ P
(k)
+ wraps

a conjugacy class C(hµ) where [3, 4, 6, 7]

hµ = eζµ , ζµ = (2πi)
µ + ρ

k + h∨ . (1.2)

[More precisely, the conjugacy classes around which the D-branes are wrapped get slightly

smeared out (see [5, 6]).]

In this paper we consider the charge group C(G, k) for symmetry preserving D-branes on

general compact, connected, simply-connected, simple Lie groups G.
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By considering the process of brane condensation, it was argued in [14] that the charge

associated to a D-brane labelled by λ ∈ P
(k)
+ is given by the dimension dλ of the finite

dimensional irreducible representation L(λ) of the horizontal Lie algebra g, modulo some

integer x, i.e. the charge group is of the form Z/xZ, where x is determined such that the dλ

satisfy the fusion rule algebra modulo x. We find the result that the charge group C(G, k),

for sufficiently large k, is given by Z/xZ, where

x =
k + h∨

gcd {k + h∨, y}
, (1.3)

and y is given in Table 3.1. This generalizes the results for G = SU(N) found by, in

particular, [14, 16] (see also [3, 19] for N = 2, 3), in which case y = lcm(1, 2, . . . , N − 1) and

h∨ = N . Geometrically, it has been conjectured that the charge group, in the large volume

limit, should be given by the twisted K-theory of G [25–27]. For SU(N) it has been shown

that the algebraic and geometric definition of the charge group are consistent. A comparison

for other groups awaits the computation of the relevant twisted K-theory.

The paper is organized as follows. In Section 2 we review fusion rings, in particular for the

WZW conformal field theory. In Section 3 we present our results. Section 4 contains some

details of the proofs for the An and Cn cases. In Section 5 we discuss some exceptions to

the discussion in Section 3, and in Section 6 we discuss symmetry properties of the resulting

D-brane charges. We conclude with a discussion in Section 7. In the three Appendices we

summarize our conventions, provide a list of generators for the fusion ideals and discuss an

alternative derivation of our results using fusion potentials.

2. Fusion rings

Consider the chiral algebra A of a (rational) two dimensional conformal field theory to-

gether with a (finite) set of irreducible representations, labelled by i ∈ I (where I is some

index set), closed under modular transformations of their characters. To these data one

can associate a commutative, associative, unital ring F , the so-called ‘fusion ring’ of A.

Explicitly, in terms of a (preferred) basis {φi}i∈I of F we have

φi × φj =
∑

k∈I

Nij
k φk , (2.1)

where the coefficients Nij
k ∈ Z>0 are called the fusion coefficients. The matrices Ni, with

components (Ni)j
k = Nij

k, are mutually commuting and are simultaneously diagonalized by

the modular matrix S. This leads to the Verlinde formula [28]

Nij
k =

∑

l∈I

SilSjlS
∗
kl

S1l

, (2.2)

where S∗
ij denotes complex conjugation, and we have denoted the unit of F by 1. In terms

of S, the eigenvalues λ
(l)
i of Ni are given by

λ
(l)
i =

S∗
li

Sl1
. (2.3)
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On abstract grounds (cf. [29]) it follows that F is isomorphic to a free polynomial ring

factored by an ideal I, i.e.

F ∼= C[x1, . . . , xN ]/I . (2.4)

In fact, when the generators x1, . . . , xN correspond to (a subset of) the primary fields

φi1 , . . . , φiN , the ideal I can be explicitly characterized as those polynomials P ∈ C[x1, . . . , xN ]

which vanish on the set
{(

S∗
li1

Sl1
,
S∗

li2

Sl1
, . . . ,

S∗
liN

Sl1

)
∈ C

N : l ∈ I

}
.

We refer to I as the ‘fusion ideal’ of F . The ideals arising from the fusion rules of a RCFT

are actually of a special kind, they correspond to so-called Jacobian varieties (see Appendix

C).

In the case of the conformal field theory corresponding to the WZW model for a compact,

simple, connected, simply-connected, Lie group G, the relevant representations are the inte-

grable highest weight modules of the associated (untwisted) affine Lie algebra ĝ at level k.

They are parametrized by weights λ̂ = (λ, k) ∈ P
(k)
+ (see Appendix A for a list of our Lie

algebra conventions and notations).

The modular S-matrix can be expressed as

S∗
µλ

Sµ1
= χλ(ζµ) , ζµ = (2πi)

µ + ρ

k + h∨ , (2.5)

where χλ is the character of the finite dimensional irreducible representation L(λ) with

dominant integral weight λ, defined as

χλ(σ) =

∑
w∈W ε(w)e(w(λ+ρ)|σ)

∑
w∈W ε(w)e(w(ρ)|σ)

, (2.6)

for σ ∈ h∗. [We identify h∗ with h, by means of the nondegenerate bilinear form ( | ),

throughout.]

It follows that

χλ(ζα)χµ(ζα) =
∑

ν∈P
(k)
+

Nλµ
ν χν(ζα) , (2.7)

for all α ∈ P
(k)
+ . That is, we can think of the fusion rules of an affine Lie algebra CFT as

truncated tensor products. [In fact, this leads to a useful algorithm for determining explicit

fusion rules, the so-called Kac-Walton algorithm, which is a generalization of the Racah-

Speiser algorithm for determining tensor product coefficients (see, e.g., [30] and references

therein).]

Thus we have the following characterization of the fusion ring for a WZW model at level

k

Fk = Z[χ1, . . . , χn]/Ik , (2.8)
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where χi denotes the character of the fundamental representation with highest weight Λi,

and where the fusion ideal can be explicitly described as those elements in the Grothendieck

ring of characters which vanish on the all the points ζµ, µ ∈ P
(k)
+ .

Elements in Ik can easily be constructed by making use of the identity (see, e.g., [30])

χw·λ(ζµ) = ε(w)χλ(ζµ) , (2.9)

for all w ∈ Waff, where w ·λ = w(λ+ρ)−ρ denotes the shifted action of the affine Weyl group

(see Appendix A for more details). This implies that χw·λ − ε(w)χλ ∈ Ik for all λ ∈ P+ and

w ∈ Waff. In particular, we conclude that χλ ∈ Ik if there exists a positive root α ∈ ∆+ such

that (λ + ρ|α) ≡ 0 mod (k + h∨), as this implies rα · λ = λ, where rα denotes the reflection

in the root α, and hence χλ(ζµ) = 0, for all µ ∈ P
(k)
+ . For example, we have χλ ∈ Ik for all

weights λ on the hyperplane (λ|θ) = k +1. Let us call such a weight a ‘boundary weight’ (at

level k). Thus all the characters corresponding to a level-k boundary weight are in the fusion

ideal Ik. In fact, we believe that the fusion ideal Ik is generated by the set of characters

corresponding to the boundary weights (this is true for An [29, 31]). 1

While this would characterize the fusion ideal in terms of a finite set of generators, the

number of boundary weights grows rapidly with k and the corresponding set of generators is

still far from optimal. In Appendix B we provide what we believe is a substantially smaller

set of boundary weights, whose characters generate Ik. For An and Cn this has been proven.

The sets provided are not always optimal, but it appears that what is an optimal set in those

cases behaves chaotically with respect to k.

3. D-brane charge group

The charge group for symmetry preserving D-branes on group manifolds was investigated

in [11–14,16]. In particular, by considering the process of D-brane creation and annihilation,

it was argued in [14] that the charge of a D-brane associated to an integrable weight λ ∈ P
(k)
+

is given by the dimension dλ of the finite dimensional irreducible representation L(λ) of the

horizontal Lie algebra g, modulo some integer x. That is, the charge group is of the form

Z/xZ, where x is determined (as the maximal integer) such that the dλ satisfy the fusion

rule algebra modulo x 2

dλdµ =
∑

ν∈P
(k)
+

Nλµ
ν dν mod x . (3.1)

Of course, the dimensions dλ give rise to a homomorphism

dim : Z[χ1, . . . , χn] → Z , χλ 7→ dλ , (3.2)

1With the exception of E8 level 2, see Appendix B.
2In fact, this is a necessary condition. It is not clear whether this condition is sufficient in all cases.

Cf. Section 6.
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so the problem can be rephrased as the determination of the maximal value of x ∈ N, such

that the dimension homomorphism (3.2) descends to

dim′ : Fk = Z[χ1, . . . , χn]/Ik → Z/xZ . (3.3)

Clearly, a necessary and sufficient condition for dim to descend to a map on Fk is that

dim(Ik) ⊂ xZ. Note, however, that this analysis presumes a particular presentation of Fk

as the quotient of the whole character ring Z[χ1, . . . , χn]. When not all the fundamental

representations are integrable at the level k considered, i.e. when k < max{a∨
i }, the fusion

ring Fk can be presented as a quotient of a subset of the character ring, and the condition

considered above is too strong for a homomorphism Fk → Z/xZ to exist. We will discuss

this further in Section 5, but for now we analyze the condition dim(Ik) ⊂ xZ.

It is sufficient to check dim(Ik) ⊂ xZ on a set of generators of Ik. In particular, assuming

the set of boundary weights generate the fusion ideal, as discussed in Section 2 we have,

x = gcd {dλ : (λ|θ) = k + 1} . (3.4)

The main result of our paper is that the maximal value of x for which dim(Ik) ⊂ xZ is

given by the following formula

x =
k + h∨

gcd {k + h∨, y}
, (3.5)

where y is an integer, independent of k, given in Table 3.1.

g h h∨ y

An n + 1 n + 1 lcm {1, 2, . . . , n}

Bn 2n 2n − 1 lcm {1, 2, . . . , 2n − 1}

Cn 2n n + 1 lcm {1, 2, . . . , n, 1, 3, 5, . . . , 2n − 1}

Dn 2n − 2 2n − 2 lcm {1, 2, . . . , 2n − 3}

E6 12 12 lcm {1, 2, . . . , 11}

E7 18 18 lcm {1, 2, . . . , 17}

E8 30 30 lcm {1, 2, . . . , 29}

F4 12 9 lcm {1, 2, . . . , 11}

G2 6 4 lcm {1, 2, . . . , 5}

Table 3.1. The Coxeter number h and dual Coxeter number h∨ for each

(finite dimensional) simple Lie algebra, and the number y occurring in

Eqn. (3.5).

This generalizes a result in [14] (see also [16]) for g = An. Note that in all cases we can

write y = lcm {yα}, for some integers yα. For the simply laced Lie algebras, these integers are

found to be consecutive, from 1 up to h∨−1, but for non-simply laced Lie algebras, additional
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integers are required. Note, moreover, that for all Lie algebras, with the exception of Cn, y

is given by the lowest common multiple of all integers from 1 up to h− 1 (cf. the discussion

in Section 6).

We will prove Eqn. (3.5) in Section 4 for the algebras An and Cn. In the other cases we

have strong numerical evidence, based on explicit computations for levels up to k = 5000,

using both the explicit fusion rules (calculated with the help of [32]) and sets of elements in

the ideal constructed with the procedure outlined in Section 2. In Appendix B we provide

what we believe is a set of generators for the ideal Ik.

For an intuitive way to see how the formula for x may arise, let us consider the Weyl

dimension formula

dλ =
∏

α∈∆+

(λ + ρ|α)

(ρ|α)
. (3.6)

When λ is a boundary weight, we find that (λ + ρ|θ) contributes a factor k + h∨ to the

numerator, so it is not surprising that it appears in the formula for the greatest common

divisor of these dimensions.

Let us now concentrate on the factors (ρ|α) of the denominator. For simply laced Lie

algebras these factors run from 1 up to (ρ|θ) = h∨ − 1 (with some repetitions). These are

the yα whose least common multiple gives the parameter y in (3.5). For non-simply laced

algebras, the factors (ρ|α) need not be integers. It is easily verified that setting

yα =





(ρ|α) if (ρ|α) ∈ Z ,

(ρ|α∨) if (ρ|α) /∈ Z ,
(3.7)

and taking y = lcm {yα : α ∈ ∆+}, reproduces the results for y given in Table 3.1.

4. Analytical Results

In this section we provide explicit proofs of (3.5) for the algebras An and Cn. While

the result for An has already been established in [14, 16], using simple currents and outer

automorphisms, respectively, we will present an alternative proof which generalizes, at least

in principle, to the other simple Lie algebras.

4.1. An. We claim (see (3.5)) that for symmetry preserving D-branes defined on the group

An, (n > 1), at levels k > 1, the charge group has the form Z/xZ, where

x =
k + n + 1

gcd {k + n + 1, lcm {1, 2, . . . , n}}
. (4.1)

The first proof we present is based on the results in [14]. There it is shown by an induction

argument, using the simple currents of An, that the fusion ideal is generated by the characters

of the boundary modules with weights {kΛ1 + Λi : i = 1, . . . , n}. We thus have

x = gcd {dkΛ1+Λi
: i = 1, 2, . . . , n} . (4.2)
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To prove that this equals (4.1) we proceed as follows: The dimensions dkΛ1+Λi
are given

explicitly by

dkΛ1+Λi
=

i

k + i

(
n + 1

i

)(
k + n + 1

k

)
=

(
k + i − 1

k

)(
k + n + 1

n + 1 − i

)
. (4.3)

The second expression immediately shows that

gcd {dkΛ1+Λi
: i = 1, . . . , n} > gcd

{(
k + n + 1

i

)
: i = 1, . . . , n

}
. (4.4)

To show the reverse inequality, we prove the following relation

n+1−j∑

i=1

(−1)i−1

(
n + 1 − i

j

)
dkΛ1+Λi

=

(
k + n + 1

j

)
. (4.5)

Substituting the first expression in (4.3) for dkΛ1+Λi
into (4.5), we find that this relation

reduces to
(

k + M

k

) M∑

i=0

(−1)i−1 i

k + i

(
M

i

)
= 1 ,

where we have put M = n + 1 − j. Using i
k+i

= 1 − k
k+i

and
∑M

i=0(−1)i
(

M

i

)
= 0, we reduce

this further, obtaining

k

(
k + M

k

) M∑

i=0

(−1)i 1

k + i

(
M

i

)
= 1 .

This equation is clearly true for M = 0 and all k ∈ Z+, so we can finish the proof of the

relation by induction on M (for all k). In the induction step we use
(

M + 1

i

)
=

(
M

i

)
+

(
M

i − 1

)
, (4.6)

and change the summation variable in the sum arising from the second term from i to i + 1.

This then establishes Eqn. (4.5) and, hence, the equality sign in Eqn. (4.4). Finally, it is

proven in Appendix C of [16] that

gcd

{(
k + n + 1

i

)
: i = 1, . . . , n

}
=

k + n + 1

gcd {k + n + 1, lcm {1, 2, . . . , n}}
, (4.7)

completing the proof of Eqn. (4.1).

It is clear from the discussion in Section 2 that the charge group parameter x may be

obtained from any set of generators of the fusion ideal. It is obviously highly desirable to find

generators for which the above evaluation gives nice expressions. The proof given above uses

the generators corresponding to the weights {kΛ1 + Λi : i = 1, . . . , n} whose dimensions are

a little cumbersome to manipulate – hence the proof is not straightforward. An alternative

set of generators for the fusion ideal was constructed in [29] (see also [33]), and given by

{(k + i) Λ1 : i = 1, . . . , n} , (4.8)
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This set is particularly nice because

d(k+i)Λ1
=

(
k + i + n

n

)
. (4.9)

We now have

x = gcd

{(
k + n + 1

n

)
,

(
k + n + 2

n

)
, . . . ,

(
k + 2n

n

)}
(4.10)

= gcd

{(
k + n + 1

1

)
,

(
k + n + 2

2

)
, . . . ,

(
k + 2n

n

)}

= gcd

{(
k + n + 1

1

)
,

(
k + n + 1

2

)
, . . . ,

(
k + n + 1

n

)}
,

by repeatedly using relation (4.6). With Eqn. (4.7), this completes the proof of (4.1). An-

other reason for why the set of generators (4.8) is nice is that this set is intimately related

to the fusion potential for An [29] (see Appendix C).

4.2. Cn. For Cn (n > 2), at levels k > 1, the result (3.5) is explicitly given by

x =
k + n + 1

gcd {k + n + 1, lcm {1, 2, . . . , n, 1, 3, 5, . . . , 2n − 1}}
. (4.11)

Consider, as in the second An proof, the set of weights {(k + i) Λ1 : i = 1, . . . , n}. While,

contrary to the An case, these weights in general do not correspond to elements of the fusion

ideal, we can use them to construct elements in the ideal by using the (shifted action of the)

affine Weyl reflection r0, as explained in Section 2. We find that

r0 · (k + i) Λ1 = (k + 2 − i) Λ1 . (4.12)

Hence, the following set of combinations of characters are in the fusion ideal Ik
3

{χ(k+1)Λ1 , χ(k+2)Λ1 + χkΛ1, χ(k+3)Λ1 + χ(k−1)Λ1 , . . . , χ(k+n)Λ1 + χ(k+2−n)Λ1} . (4.13)

In fact, as shown in [33–35], these combinations actually constitute a set of generators of Ik.

Using

dkΛ1 =

(
k + 2n − 1

2n − 1

)
, (4.14)

we find

x = gcd

{(
k + 2n

2n − 1

)
,

(
k + 2n + 1

2n − 1

)
+

(
k + 2n − 1

2n − 1

)
,

(
k + 2n + 2

2n − 1

)
+

(
k + 2n − 2

2n − 1

)
, . . . ,

(
k + 3n − 1

2n − 1

)
+

(
k + n + 1

2n − 1

)}
. (4.15)

3At low levels, some of these weights will lie outside the fundamental Weyl chamber, and have to be

reflected back to the fundamental Weyl chamber. This does however not impact on the general validity of

the analysis below since the dimensions dλ are invariant under the (shifted) action of W .
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Upon judicious use of the identity (4.6) this can be rewritten as

x = gcd

{(
k + n + 1

1

)
,

(
k + n + 2

3

)
, . . . ,

(
k + 2n − 1

2n − 3

)
,

(
k + 2n

2n − 1

)}
. (4.16)

Using a generalisation of Eqn. (4.7), which may be proven the same way, we arrive at

Eqn. (4.11).

Alternatively, one may use a different set of generators of Ik, corresponding to the bound-

ary weights {kΛ1 +Λi : i = 1, . . . , n}. This leads to the same result, and we leave the details

to the reader.

5. Exceptions

In Section 3 we have argued that a necessary and sufficient condition for the dimension

homomorphism (3.2) on the character ring Z[χ1, . . . , χn] to descend to Fk is that dim(Ik) ⊂

xZ. Let us illustrate that this condition is sometimes too strong for a homomorphism

Fk → Z/xZ to exist, i.e. does not give the charge group as defined by Eqn. (3.1), by looking,

for example, at the Lie algebra G2 at level k = 1.

There are two integrable representations, corresponding to the weights Λ0 (the unit of the

fusion ring) and Λ2. The nontrivial fusion rule reads

φΛ2 × φΛ2 = φΛ0 + φΛ2 . (5.1)

Substituting the appropriate dimensions we find that this equation is satisfied modulo x = 41.

However, (3.4) would suggest x = 1, as the representations with boundary weights Λ1 and

2Λ2 have dimensions 14 and 27, respectively.

To explain what is going on, consider the tensor product decomposition

χΛ2χΛ2 = χΛ0 + χΛ2 + χΛ1 + χ2Λ2 . (5.2)

The truncation in going from the tensor product rule to Eqn. (5.1) therefore consists of

setting χΛ1 + χ2Λ2 to zero rather than setting χΛ1 and χ2Λ2 to zero separately, as we would

have required in Section 3.

The resolution of this apparent dilemma lies of course in the fact that the fundamental

representation with weight Λ1 is not integrable at level k = 1, so rather than writing the

fusion ring as

Fk = Z[χ1, χ2]/Ik , (5.3)

with Ik = 〈χ1, χ
2
2 − χ1 − χ2 − 1〉 we can write

Fk = Z[χ2]/I
′
k , (5.4)

with I ′
k = 〈χ2

2 − χ2 − 1〉, and clearly dim(I ′
k) ⊂ 41Z. Thus this is the correct presentation

to use for determining the charge group in this case.

Summarizing, when not all the fundamental representations are integrable at the level k

one is considering, i.e. k < max {a∨
i }, the presentation of the fusion ring as a quotient of the

complete character ring is redundant, as it introduces artificial generators (the non-integrable



10 P BOUWKNEGT, P DAWSON, AND D RIDOUT

fundamental representations) which must then be factored out again. In those cases it is a

simple matter to compute x directly from (3.1), using the explicit fusion coefficients (which

were calculated with the help of [32]). We have tabulated these values in Table 5.1 whenever

they disagree with the result of (3.5). Note that in many cases in which k < max {a∨
i },

formula (3.5) continues to hold. [Note also that for E8 at level 1 the charge group is just Z

as there is only the trivial fusion rule.]

g k x

Bn 1 2 gcd (2n (n + 1) , n2n, 22n−1 − n − 1)

Dn 1 gcd (2n − 1, 22n−3 − n, 22n−2 − 1)

E6 1 26

E7 1 3135

E8 1 ∞

E8 2 4

F4 1 649

G2 1 41

Table 5.1. Exceptional cases

Finally, note that in almost all exceptional cases x is not a divisor of k + h∨. For reasons

to be discussed in Section 7 these exceptional results therefore are not consistent with the

prediction that would follow from a computation of the twisted K-theory.

6. Symmetry considerations

In this section we discuss some of the symmetry properties of the charges Dλ = dλ mod x,

with x given by (3.5). To simplify the discussion let us extend the dimension formula for dλ

in (3.6) to all (not necessarily dominant) weights λ. It is obvious that dλ (and hence Dλ) is

invariant under both the Weyl group W and the group of outer automorphisms Aut0(g) of

g. For elements Ω ∈ Aut0(ĝ), i.e. symmetries of the affine Dynkin diagram, we find however

that

DΩλ = e2πi(Λi|ρ)Dλ , (6.1)

where i is determined by Λ̂i = ΩΛ̂0. We recall that

e2πi(Λi|ρ) = ε(wΩ) , (6.2)

where wΩ ∈ W is the Weyl group element determined by (see [30] for details)

Ωλ̂ = k(Ω − 1)Λ̂0 + wΩλ̂ . (6.3)
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This symmetry reflects a similar symmetry in the fusion rule coefficients

NΩ(λ)µ
Ω(ν) = Nλµ

ν ,

NΩ(λ)µ
ν = NλΩ(µ)

ν . (6.4)

It is well-known that Aut0(ĝ)/Aut0(g) is isomorphic to the center Z(g) of g. The homo-

morphism for Ω ∈ Aut0(ĝ), such that ΩΛ̂0 = Λ̂i, is explicitly given by

Ω 7→ zi = e−2πiΛi·H ∈ Z(g) . (6.5)

Geometrically, acting with an element of the center corresponds to rotating the conjugacy

class around which the D-brane is wrapped and hence should leave invariant the charge, up

to a possible sign [16,19]. In fact, in [16] (see also [19,20] for SU(3), where this was referred

to as the ‘multiplet structure’) it was shown that requiring the invariance (6.1), in the case

of SU(N), leads to the same charge group. This is however not the case for the other Lie

groups.

Finally, the charges Dλ have a symmetry under the affine Weyl group Waff = T (Q∨) oW ,

that reflects the symmetry in, e.g., the modular S-matrices and specialized characters (see

(2.9))

Dŵ·λ = ε(ŵ)Dλ , ŵ ∈ Waff . (6.6)

The affine Weyl group Waff and the outer automorphism group Aut0(ĝ) combine into a group

which projects onto the finite weight space as T (Q∗) o W , where Q∗ is the lattice dual to

Q. It turns out that, apart from a few low level exceptions, enforcing charge invariance (6.6)

under T (Q∗)oW determines the charge group in all cases. Including the expected invariance

under affine outer automorphisms is therefore not in conflict with the charge group results.

Rather surprisingly, when studying the action of the extended affine Weyl group W ′
aff =

T (P ) o W on Dλ, where P is the weight lattice of g (in the simply laced case P = Q∗), one

finds that (6.6) holds for ŵ ∈ W ′
aff as well, in all cases except Cn, n not a power of 2, at

certain levels.

In Figure 6.1, we show as an example, the charges for C2 at level 4 (for which (6.6)

does hold for ŵ ∈ W ′
aff). The symmetry about the dashed line corresponds to the outer

automorphism of C
(1)
n . It is easily seen to be an element of W of negative sign composed

with a translation by (k + h∨) Λ2 = 7Λ2 (note Λ2 ∈ Q∗). The dotted lines correspond to

more general symmetries. The lower line is an element of W of negative sign composed with

a translation by 7Λ1 (but Λ1 /∈ Q∗). The upper dotted line corresponds to the composition

of an element of W of negative sign composed with a translation by 7 (−Λ1 + Λ2).

Requiring (6.6) to hold for all ŵ ∈ W ′
aff for Cn would lead to the requirement that x is

given by (3.5) with y = lcm{1, 2, . . . , 2n− 1} = lcm{1, 2, . . . , h− 1}, and thus would lead to

a universal expression for all compact, simple, connected, simply-connected Lie groups (cf.

the discussion in Section 3). This is suggestive of the idea that maybe, in the case of Cn,

the fusion rule constraints (3.1) on the charge group do not take into account all physical
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2

5

1

5

6

0

Figure 6.1. The integrable highest weights of C2 at level 4 (shifted by ρ) and

the charges of the corresponding symmetry preserving D-branes. The charges

take values mod 7. Note that the charges are negated (mod 7) under reflection

about the dashed and dotted lines.

constraints that the D-brane charge group needs to satisfy. For this reason it would be very

interesting to compute the twisted K-theory for Cn and make a comparison.

7. Conclusions and discussion

It has been argued [25–27] that the charges of D-branes on a manifold X in the background

of a nontrivial NS-NS B-field, i.e. an element [H ] ∈ H3(X, Z) (where H = dB locally), are

classified by twisted K-theory groups [36], at least in the large volume limit. In particular, for

D-branes on a compact, simple, simply connected group manifold G, by K•(G, (k+h∨)[H0]),

where [H0] is the generator of H3(G, Z) ∼= Z and k is the level of the (supersymmetric) WZW

model [14]. It has been verified that this proposal is consistent with the results based on

boundary conformal field theory, i.e. the techniques used in this paper, for the the cases

G = SU(2) [3, 14], G = SU(3) [14, 19] and G = SU(N) [14, 16].

In other cases, the comparison of the results of this paper with the corresponding twisted

K-theory awaits a computation of the latter. In particular this would settle the issue of

whether the consistency equations of [14], used in this paper, suffice to determine the charge

group, in particular in the case of Cn (as discussed in Section 6).
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Beyond that, it would be very interesting to have a direct understanding of why the two

approaches should lead to the same result. For instance, while it is obvious in twisted K-

theory that x is a divisor of k + h∨ (through the Atiyah-Hirzebruch spectral sequence [36]),

there does not appear to be a simple explanation for this in our approach.

By a result of Freed, Hopkins and Telemann (cf. [37]) the fusion algebra Fk for the level-k

WZW model can be identified with the twisted equivariant K-theory KG(G, (k + h∨)[H0]).

It would be very interesting to establish a direct link between the equivariant and non-

equivariant twisted K-theory of G on the one hand, and the relation between the fusion

algebra Fk and homomorphisms Fk → Z/xZ on the other.

A particularly concrete presentation of twisted K-theory is as the Grothendieck K-theory

of (isomorphism classes of) bundle gerbe modules [38]. Bundle gerbes show up naturally in

the discussion of the WZW model [22,39], and the bundle gerbe for G = SU(N) has recently

been constructed in [22,40]. It would be interesting to explicitly construct the bundle gerbe

modules corresponding to a particular D-brane charge.

Finally, it would be interesting to extend the results of this paper to the non-symmetry

preserving branes (i.e. twisted branes) [6, 19, 21], branes on coset spaces [15, 41–43], and

beyond [44, 45]. We hope to report on this in the future.

Appendix A. Lie algebra notations

We summarize the Lie algebra notations used in this paper for convenience. Let g denote

a simple finite-dimensional Lie algebra of rank n, and ĝ its untwisted affine extension, i.e.

ĝ = (g⊗C[t, t−1])⊕Ck. The Cartan subalgebra of g is denoted by h and its dual by h∗. The

set of positive roots in h∗ is denoted by ∆+, the set of simple roots by Π = {α1, . . . , αn}.

The fundamental weights Λi of g are defined by

(Λi|α
∨
j ) = δij , (A.1)

where α∨ = 2α/(α|α) is the co-root corresponding to α. Here we have normalized the

nondegenerate positive bilinear form ( | ) on h∗ such that (θ|θ) = 2, where θ is the highest

root of g.

The Weyl vector is denoted by ρ and is defined by

(ρ|α∨
i ) = 1 , (A.2)

for all i = 1, . . . , n, i.e., ρ = 1
2

∑
α∈∆+

α =
∑n

i=1 Λi. The marks {ai}
n
i=1 and co-marks {a∨

i }
n
i=1

are given by

θ =

n∑

i=1

aiαi =

n∑

i=1

a∨
i α∨

i . (A.3)

We denote the Coxeter and dual Coxeter numbers by h and h∨, respectively (see Table 3.1),

the root and co-root lattices by Q and Q∨, and the lattices of integral weights and dominant

integral weights by P and P+, and integrable weights at level k by P
(k)
+ = {λ ∈ P+ : (λ|θ) 6

k}.
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For the affine Lie algebra ĝ we use the same notations except that we put a hat on the

symbols. To simplify notations, however, we will sometimes simply use the notation λ for

an integrable weight λ̂ = (λ, k), when the level k is understood.

We denote the Weyl groups of g and ĝ by W and Ŵ , respectively, and the shifted Weyl

group action by a dot, i.e.

w · λ = w(λ + ρ) − ρ , (A.4)

and similarly for ŵ ∈ Ŵ . The determinant of a Weyl group element w is denoted by ε(w).

The projection of Ŵ onto h∗ is given by

Waff = T (Q∨) o W , (A.5)

where T (Γ) denotes the translation group of the lattice Γ, and the semi-direct product

structure is given by the relation wtαw−1 = twα, i.e. (tγ, w) ◦ (tγ′ , w′) = (tγtwγ′, ww′). In

particular, tθ∨ = r0rθ. Explicitly, the shifted action of tγ ∈ Waff , γ ∈ Q∨, is given by

tγ · λ = λ + (k + h∨)γ . (A.6)

Appendix B. Generating Subsets

In this appendix we provide a subset of the boundary weights, i.e. weights satisfying

(λ|θ) = k + 1, which we believe form a generating set for the fusions ideals Ik. For An and

Cn this has been proven, in the other cases we tested numerically for k < 5000 that these

sets give rise to the result (3.5).

When k is sufficiently small, some of the weights given below will not lie in the fundamental

chamber – these weights should be discarded to get a generating set, except in the following

cases where it is additionally required to include another weight. This occurs with E7 at

levels 2 and 3, adding (0, 0, 0, 1, 0, 0, 0) and (0, 0, 0, 0, 0, 0, 2) respectively, and E8 at levels 4

and 12, adding respectively (0, 1, 0, 0, 0, 0, 1, 0) and (0, 2, 1, 0, 0, 0, 0, 1). However, it may be

verified that for E8 at level 2, there is no set of weights in the fundamental chamber whose

dimensions have the greatest common divisor given in (3.5). In this case it is necessary to

include weights outside the fundamental chamber (extending the dimension formula in the

obvious way).

Fundamental weights are denoted by Λi. For the exceptional algebras, we have listed the

weights appearing in the generating sets in terms of their Dynkin labels, for clarity, using

the conventions of [30].

An:

{kΛ1 + Λi : i = 1, . . . , n} .

Bn:

{(k + 1)Λ1, (k − 1)Λ1 + 2Λn} ∪ {(k − 1)Λ1 + Λi, (k − 2)Λ1 + Λi + Λn : i = 2, . . . , n − 1} .

Cn:

{kΛ1 + Λi : i = 1, . . . , n} .
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Dn:

{kΛ1 + Λn, (k − 1)Λ1 + 2Λn, (k − 1)Λ1 + Λn−1 + Λn, (k − 3) Λ1 + Λn−1 + 3Λn}

∪ {(k − 1)Λ1 + Λi, (k − 3)Λ1 + Λi + 2Λn : i = 2, . . . , n − 2}

∪ {(k − 3)Λ1 + Λi + Λj : 2 6 i < j 6 n − 2} .

E6: For k odd,

{
(
0, 0, 0, 0, 0, k+1

2

)
,
(
0, 0, 0, 0, 2, k−1

2

)
,
(
1, 0, 0, 0, 1, k−1

2

)
,
(
0, 1, 0, 1, 0, k−3

2

)
,

(
0, 0, 0, 0, 6, k−5

2

)
,
(
0, 0, 0, 3, 0, k−5

2

)
,
(
3, 0, 0, 0, 3, k−5

2

)
,
(
1, 0, 1, 0, 4, k−7

2

)
} .

For k even,

{
(
0, 0, 0, 0, 1, k

2

)
,
(
0, 0, 0, 0, 3, k−2

2

)
,
(
0, 0, 0, 1, 1, k−2

2

)
,

(
0, 0, 1, 0, 0, k−2

2

)
,
(
0, 2, 0, 0, 1, k−4

2

)
,
(
1, 0, 1, 0, 1, k−4

2

)
,

(
0, 1, 0, 0, 5, k−6

2

)
,
(
0, 1, 0, 2, 1, k−6

2

)
,
(
2, 0, 0, 1, 3, k−6

2

)
} .

E7: For k odd,

{
(

k+1
2

, 0, 0, 0, 0, 0, 0
)
,
(

k−1
2

, 0, 0, 0, 1, 0, 0
)
,

(
k−3
2

, 0, 1, 0, 0, 0, 0
)
,
(

k−5
2

, 0, 0, 2, 0, 0, 0
)
,
(

k−7
2

, 0, 0, 0, 0, 8, 0
)
,

(
k−7
2

, 0, 0, 0, 4, 0, 0
)
,
(

k−7
2

, 0, 1, 0, 2, 0, 0
)
,
(

k−9
2

, 0, 0, 2, 0, 4, 0
)
,

(
k−9
2

, 0, 1, 0, 0, 6, 0
)
,
(

k−9
2

, 0, 1, 0, 2, 2, 0
)
} .

For k even,

{
(

k
2
, 0, 0, 0, 0, 1, 0

)
,
(

k−2
2

, 1, 0, 0, 0, 0, 0
)
,

(
k−2
2

, 0, 0, 0, 0, 1, 1
)
,
(

k−4
2

, 1, 0, 0, 0, 2, 0
)
,
(

k−4
2

, 1, 0, 0, 1, 0, 0
)
,

(
k−4
2

, 0, 0, 1, 0, 0, 1
)
,
(

k−6
2

, 1, 0, 1, 0, 1, 0
)
,
(

k−6
2

, 0, 0, 1, 1, 0, 1
)
,

(
k−8
2

, 1, 0, 0, 3, 0, 0
)
,
(

k−8
2

, 0, 0, 0, 0, 7, 1
)
,
(

k−8
2

, 0, 0, 0, 3, 1, 1
)
,

(
k−10

2
, 1, 0, 1, 0, 5, 0

)
,
(

k−10
2

, 1, 0, 1, 1, 3, 0
)
} .
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E8: For k odd,

{
(

k+1
2

, 0, 0, 0, 0, 0, 0, 0
)
,
(

k−1
2

, 0, 0, 0, 0, 0, 1, 0
)
,
(

k−3
2

, 0, 1, 0, 0, 0, 0, 0
)
,

(
k−5
2

, 0, 0, 0, 1, 0, 0, 0
)
,
(

k−5
2

, 0, 1, 0, 0, 0, 1, 0
)
,
(

k−5
2

, 0, 0, 0, 0, 2, 0, 0
)
,

(
k−7
2

, 0, 0, 0, 0, 2, 0, 0
)
,
(

k−7
2

, 0, 1, 0, 0, 0, 2, 0
)
,
(

k−9
2

, 0, 0, 0, 0, 1, 0, 2
)
,

(
k−9
2

, 0, 1, 0, 1, 0, 0, 0
)
,
(

k−9
2

, 1, 0, 0, 0, 1, 0, 1
)
,
(

k−11
2

, 0, 0, 0, 0, 0, 6, 0
)
,

(
k−11

2
, 0, 0, 0, 2, 0, 0, 0

)
,
(

k−13
2

, 0, 0, 0, 1, 0, 4, 0
)
,
(

k−15
2

, 0, 0, 0, 0, 4, 0, 0
)
,

(
k−15

2
, 0, 0, 2, 0, 0, 3, 0

)
,
(

k−17
2

, 0, 0, 0, 0, 0, 0, 6
)
,
(

k−17
2

, 0, 0, 0, 3, 0, 0, 0
)
,

(
k−17

2
, 0, 1, 0, 1, 2, 0, 0

)
,
(

k−19
2

, 0, 1, 2, 0, 0, 0, 2
)
,
(

k−19
2

, 0, 2, 0, 2, 0, 0, 0
)
} .

For k even,

{
(

k−2
2

, 0, 0, 0, 0, 0, 0, 1
)
,
(

k−2
2

, 1, 0, 0, 0, 0, 0, 0
)
,
(

k−4
2

, 0, 0, 1, 0, 0, 0, 0
)
,

(
k−6
2

, 0, 0, 0, 0, 1, 0, 1
)
,
(

k−6
2

, 1, 0, 0, 0, 0, 2, 0
)
,
(

k−8
2

, 0, 0, 0, 0, 0, 0, 3
)
,

(
k−8
2

, 0, 0, 0, 1, 0, 0, 1
)
,
(

k−8
2

, 0, 0, 1, 0, 0, 2, 0
)
,
(

k−8
2

, 3, 0, 0, 0, 0, 0, 0
)
,

(
k−10

2
, 0, 1, 0, 0, 1, 0, 1

)
,
(

k−10
2

, 0, 0, 0, 1, 0, 1, 1
)
,
(

k−10
2

, 1, 0, 1, 0, 0, 0, 1
)
,

(
k−12

2
, 0, 0, 0, 0, 0, 5, 1

)
,
(

k−12
2

, 0, 0, 1, 1, 0, 1, 0
)
,
(

k−14
2

, 0, 0, 1, 0, 1, 3, 0
)
,

(
k−16

2
, 0, 0, 1, 0, 3, 0, 0

)
,
(

k−16
2

, 0, 1, 1, 0, 1, 2, 0
)
,
(

k−18
2

, 0, 0, 2, 0, 0, 0, 3
)
,

(
k−18

2
, 0, 1, 0, 0, 0, 0, 5

)
,
(

k−18
2

, 0, 1, 0, 2, 0, 0, 1
)
,
(

k−18
2

, 0, 2, 0, 0, 2, 0, 1
)
} .

F4: For k odd,

{
(

k+1
2

, 0, 0, 0
)
,
(

k−1
2

, 0, 0, 2
)
,
(

k−1
2

, 0, 1, 0
)
,
(

k−3
2

, 1, 0, 1
)
,

(
k−3
2

, 0, 2, 0
)
,
(

k−5
2

, 0, 1, 4
)
,
(

k−5
2

, 1, 0, 3
)
} .

For k even,

{
(

k
2
, 0, 0, 1

)
,
(

k−2
2

, 0, 1, 1
)
,
(

k−2
2

, 1, 0, 0
)
,
(

k−4
2

, 0, 0, 5
)
,

(
k−4
2

, 1, 0, 2
)
,
(

k−4
2

, 0, 2, 1
)
,
(

k−4
2

, 1, 1, 0
)
,
(

k−6
2

, 1, 0, 4
)
} .

G2: For k odd,

{
(

k+1
2

, 0
)
,
(

k−1
2

, 2
)
,
(

k−3
2

, 4
)
} .

For k even, {(
k
2
, 1
)
,
(

k−2
2

, 3
)

,
(

k−4
2

, 5
)}

.

Appendix C. Proof using fusion potentials

It is well-known that in the case of fusion rings, the affine algebraic variety defined by the

fusion ideal is a so-called Jacobian variety, i.e., if F = C[x1, . . . , xN ]/I we can find a so-called

fusion potential V (x1, . . . , xN) such that I = 〈P1, . . . , PN〉, where Pi ≡ ∂V/∂xi [29,33–35,46].

Since the fusion potential provides a set of generators of the fusion ideal, it can be used to
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give an alternative proof of (3.5). While an expression for the fusion potential is known, in

principle, for all compact, simple, connected, simply-connected Lie groups G [46], we have

not been able to make effective use of it for cases other than An and Cn. In this appendix

we present an alternative proof for those two cases.

The fusion potential for An takes the form [29]

V (χ1, . . . , χn) =
1

k + n + 1

n+1∑

i=1

qk+n+1
i , (C.1)

where the (formal) variables qi are related to the standard (overcomplete) basis {εi}
n+1
i=1 for

the weight space of An by qi = exp(εi), with the constraint q1 · · · qn+1 = 1. In terms of these

variables the characters χm of the fundamental representations L(Λm), (m = 1, . . . , n), are

given in terms of the elementary symmetric polynomials, i.e.

χm =
∑

16i1<...<im6n+1

qi1 · · · qim . (C.2)

Defining

Vm =
1

m

n+1∑

i=1

qm
i , (C.3)

we can form the generating function

V (t) =
∞∑

m=1

(−1)m−1 Vm tm = log

(
n+1∑

i=0

χi t
i

)
, (C.4)

where we have set χ0 = 1 = χn+1 for convenience. The fusion potential is now (up to a sign)

the coefficient of tk+n+1 in V (t), and the generators of the fusion ideal are the derivatives of

this coefficient with respect to the χi (i = 1, . . . , n). Differentiating V (t) with respect to χj ,

and evaluating at qi = 1 (i.e. at the point where χi = dΛi
=
(

n+1
i

)
), gives

∂V (t)

∂χj

∣∣∣∣
χi=dΛi

=
tj

(1 + t)n+1
. (C.5)

Taylor expanding this around 0 and extracting the coefficient of tk+n+1 gives the values of

the generators of the fusion ideal under the dimension map, and hence determines x. The

result is

x = gcd

{(
k + 2n + 1 − j

n

)
: j = 1, . . . , n

}
= gcd

{(
k + n + j

n

)
: j = 1, . . . , n

}
, (C.6)

in accordance with Eqn. (4.10).

The proof above for An easily generalizes to Cn. The fusion potential is given by [34, 35]

V (χ1, χ2, . . . , χn) =
1

k + n + 1

n∑

i=1

(
qk+n+1
i + q

−(k+n+1)
i

)
, (C.7)
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where, in terms of an orthonormal basis {εi}
n
i=1 for the weight space of Cn, the variables qi

are given by qi = exp(εi), and the characters χj (j = 1, . . . , n) are related to the variables qi

by

χj = Ej − Ej−2 (Ej = 0 when j < 0), (C.8)

and Ej is defined by
∞∑

j=0

Ejt
j =

n∏

i=1

(1 + qit)
(
1 + q−1

i t
)

. (C.9)

In particular we have Ej = E2n−j , and Ej = 0 for j > 2n. Another consequence of this

is that χj + χ2n+2−j = 0, so there are indeed only n linearly independent characters (in

agreement with the arguments of the fusion potential V ).

In analogy to An, we define Vm = 1
m

∑n

i=1

(
qm
i + q−m

i

)
, and form the generating function

V (t) =
∞∑

m=1

(−1)m−1 Vm tm = log

(
2n∑

j=0

Ej tj

)
. (C.10)

Differentiating with respect to the χi gives

∂V (t)

∂χi

=
ti + ti+2 + . . . + t2n−2−i + t2n−i

∑2n

j=0 Ejtj
. (C.11)

Evaluating this at qi = 1, i.e. at the point χi = dΛi
=
(
2n

i

)
−
(

2n

i−2

)
(thus Ei =

(
2n

i

)
), we find

∂V (t)

∂χi

∣∣∣∣
χj=dΛj

=
ti + ti+2 + . . . + t2n−2−i + t2n−i

(1 + t)2n
. (C.12)

Taylor expanding about 0, and extracting the coefficient of tk+n+1, gives the charge group

parameter as

x = gcd

{
n−i∑

j=0

(
k + 3n − i − 2j

2n − 1

)
: i = 1, . . . , n

}

= gcd

{
i−1∑

j=0

(
k + 2n + 1 − i + 2j

2n − 1

)
: i = 1, . . . , n

}

= gcd

{(
k + 2n

2n − 1

)
,

(
k + 2n + 1

2n − 1

)
+

(
k + 2n − 1

2n − 1

)
,

(
k + 2n + 2

2n − 1

)
+

(
k + 2n − 2

2n − 1

)
, . . . ,

(
k + 3n − 1

2n − 1

)
+

(
k + n + 1

2n − 1

)}
,

as in Eqn. (4.15).
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