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ON STAGGERED INDECOMPOSABLE VIRASORO MODULES

KALLE KYT OLA AND DAVID RIDOUT

ABSTRACT. In this article, certain indecomposable Virasoro modules studied. Specifically, the Virasoro
modelg is assumed to be non-diagonalisable, possessing Jordeksldbrank two. Moreover, the module is
further assumed to have a highest weight submodule, thieiledlule”, and that the quotient by this submodule
yields another highest weight module, the “right moduletic® modules, which have been callstdggered
have appeared repeatedly in the logarithmic conformal fileébry literature, but their theory has not been
explored in full generality. Here, such a theory is devetbfr the Virasoro algebra using rather elementary
techniques. The focus centres on two different but relatezstjons typically encountered in practical studies:
How can one identify a given staggered module, and how carden®nstrate the existence of a proposed
staggered module.

Given just the values of the highest weights of the left agfitrimodules, themselves subject to simple
necessary conditions, invariants are defined which togetith the knowledge of the left and right modules
uniquely identify a staggered module. The possible valdebese invariants form a vector space of dimen-
sion zero, one or two, and the structures of the left and nigbtules limit the isomorphism classes of the
corresponding staggered modules to an affine subspacélyasspty). The number of invariants and affine
restrictions is purely determined by the structures of &fednd right modules. Moreover, in order to facilitate
applications, the expressions for the invariants andicistns are given by formulae as explicit as possible (they
generally rely on expressions for Virasoro singular vestofinally, the text is liberally peppered throughout
with examples illustrating the general concepts. These haen carefully chosen for their physical relevance
or for the novel features they exhibit.
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1. INTRODUCTION

The successes of conformal field theory, in particular isliaptions to condensed matter physics, de-
pended crucially on the theory of highest weight moduleshefYirasoro algebra. Such a theory became
available in the early eighties, ultimately due to the woflKac [1] and Feigin and Fuchs [2]. The corre-
sponding conformal field theories, the minimal models of & constructed from a certain finite collection
of irreducible highest weight Virasoro modules and rigtghjoy their position as some of the simplest and
most useful of conformal field theories.

In spite of this, the past fifteen years have witnessed thetangstion, in varying degrees, of a different
kind of conformal field theory [4,5]. These theories are ¢nrded from certain indecomposable, rather
than irreducible, modules and are collectively known astdbmic conformal field theories. Despite a
promising beginning, logarithmic theories quickly at&gha reputation for being esoteric and technical.
Some impressive examples were constructed, but the fiefieredffrom a perceived lack of concrete appli-
cations. To be sure, there were many attempts to use logacitheories to explain discrepancies in models
of the fractional quantum Hall effect, abelian sandpiledyrne recoil and more (see [6] for references to
these), but none of these attempts really left an enduringk mgon their intended field. Nevertheless,
condensed matter physicists remained interested in thesei¢s for the simple reason that the standard
minimal model description of many of their favourite modefas known to be incomplete or even entirely
missing.

Recently, there has been something of a resurgence in tdg efuogarithmic conformal field theo-
ries, with the aim of clarifying applications to condensedtter physics and developing the mathematical
properties of logarithmic theories so as to more closelyanithose of standard theories. One can isolate
several different approaches including free field methaus@nnections to quantum group theory [7, 8],
lattice model constructions [9, 10] and construction tigloexplicit fusion [11,12]. All of these involve ex-
ploring the new features of a theory built from indecompdsddut reducible modules. Intriguingly, recent
developments in random conformally invariant fractalshi@mm-Loewner evolutions in particular [13],
have started to bridge the gap between the field-theoreticpanbabilistic approaches to the statistical
models of condensed matter theory (see [14-16] for revielmsparticular, the kernel of the infinitesimal
generator of the Schramm-Loewner evolution, which coasi§tocal martingales of the stochastic growth
process that builds the fractal curve, carries a representaf the Virasoro algebra [17-19], and it has
recently been observed that in certain cases this repegganbecomes indecomposable, of the type found
in logarithmic conformal field theory [20]. This has led tovesved proposals for some sort of SLE-LCFT
correspondence [21-23].

Advances such as these have necessitated a better undergtah the representation theory of the
Virasoro algebra beyond highest weight modules. In theesponding logarithmic theories, the Virasoro
elemently acts non-diagonalisably, manifestly demonstrating thatergeneral classes of modules are
required. One such class consists of the so-cataggerednodules and it is these which we will study
in what follows. More precisely, we will consider indecongable Virasoro modules on whidhly acts
non-diagonalisably and which generalise highest weighdutes by having a submodule isomorphic to a
highest weight module such that the quotient by this subreoduagain isomorphic to a highest weight
module. We refer to the submodule and its quotient as thateftright module, respectively (the naturality
of this nomenclature will become evident in Section 3). Rdygpeaking, these staggered modules can be
visualised as two highest weight modules which have beearetijltogether by a non-diagonalisable action
of Lo. Such staggered modules were first constructed for the &ficesigebra in [24].
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We mention that staggered Virasoro modules correspondirgjuing more than two highest weight
modules together have certainly been considered in thetitee [11, 25], but we shall not do so here.
Similarly, one could try to develop staggered module thefor other algebras which arise naturally in
logarithmic conformal field theories. We will leave suchdigs for future work, noting only that we
expect that the results we are reporting will provide a vesgful guide to the eventual form of these
generalisations. Here, we restrict ourselves to the sistglase, treating it in as elementary a way as
possible. We hope that the resulting clarity will allow tleader to easily apply our results, and to build
upon them. Our belief is that this simple case will be a cdra@cl important step towards a more complete
representation theory applicable to general logarithroitf@ermal field theories.

No introduction to these representation-theoretic aspafciogarithmic conformal field theory could be
complete without mentioning the seminal contributions ohBiepe. These appeared thirteen years ago as
a preprint [26], which to the best of our knowledge was newlighed, and a dissertation in German [27].
As far as we are aware, these are the only works which try tesyatically develop a representation theory
for the Virasoro algebra, keeping in mind applications tgaothmic conformal field theory (specifically
the so-called-M(1,q) theories of [24]). Indeed, it was Rohsiepe who first intraellithe term “staggered
module”, though in a setting rather more general than we ubkere. These references contain crucial
insights on how to start building the theory, and treat eifji a particular subcase of the formalism we
construct. We clearly owe a lot to the ideas and results coedietherein.

On the other hand, Rohsiepe’s formulation of the problem2®] s somewhat different to our own,
which in our opinion has made applying his results a littleibconvenient. Moreover, an unfortunate
choice of wording in several of his statements, as well ah@introduction and conclusions, can lead
the casual reader to conclude that the results have beearpioa generality significantly exceeding the
actuality. Finally, the article seems to contain severakcauracies and logical gaps which we believe
deserve correction and filling (respectively). We depamewhat from the notation and terminology of [26]
when we feel that it is important for clarity.

We have organised our article as follows. Section 2 intreduihe necessary basics — the Virasoro
algebra, some generalities about its representations astl importantly the result of Feigin and Fuchs
describing the structure of highest weight modules. Thitige also serves to introduce the notation and
conventions that we shall employ throughout. In Sectionethen precisely define our staggered modules
and state the question which we are trying to answer. Hermage fix notation and conventions. The
rest of the section is devoted to observing some simple bpbitant consequences of our definitions. In
particular, we derive some basic necessary conditionsrthet be satisfied by a staggered module, and
show how to determine when two staggered modules are isdniworphis gives us a kind of uniqueness
result.

Section 4 then marks the beginning of our study of the far nsoigle question of existence. Here, we
prove an existence result by explicitly constructing sexgd modules, noting that we succeed precisely
when a certain condition is satisfied. This condition is nettip a particularly amenable form, but it does
allow us to deduce two useful results which answer the exigteuestion for certain staggered modules
provided that the answer has been found for certain othggetad modules. These results are crucial to
the development that follows. In particular, we concludat tha staggered module exists, then the module
obtained by replacing its right module by a Verma modulelf\lite same highest weight) also exists.

We then digress briefly to set up and prove a technical rethétProjection Lemma, which will be
used later to reduce the enormous number of staggered mpdssibilities to the consideration of a finite
number of cases. This is the subject of Section 5. We thenituBection 6 to the existence question in
the case when the right module is a Verma module, knowingtttietase is the least restrictive. Our goal
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is to reduce the not-so-amenable condition for existencelwive derived in Section 4 to a problem in
linear algebra. This is an admittedly lengthy exercisehviaur separate cases of varying difficulty to be
considered (thanks to the Projection Lemma). The resuleverheless a problem that we can solve, and
its solution yields a complete classification of staggeredintes whose right module is Verma. This is
completed in Section 6.4. We then consider in Section 6.5 toasstinguish different staggered modules
within the space of isomorphism classes, when their leftreggid modules are the same. This is achieved
by introducing invariants of the staggered module striecamd proving that they completely parametrise
this space.

Having solved the case when the right module is Verma, welattee general case in Section 7. We
first characterise when one can pass from Verma to genetal mgdules in terms of singular vectors
of staggered modules. This characterisation is then cosabivith the Projection Lemma to deduce the
classification of staggered modules in all but a finite nundfecases. Unhappily, our methods do not
allow us to completely settle the outstanding cases, butwtkne what we expect in Section 7.3 based
on theoretical arguments and studying an extensive caleof examples. Finally, we present our results
in Section 8 in a self-contained summary. Throughout, wenapt to illustrate the formalism that we are
developing with relevant examples, many of which have a jghysnotivation and are based on explicit
constructions in logarithmic conformal field theory or Smmm-Loewner evolution.

2. NOTATION, CONVENTIONS AND BACKGROUND

Our interest lies in the indecomposable modules of the ¥naslgebrapit. These are modules which
cannot be written as a direct sum of two (non-trivial) suboied, and therefore generalise the concept of
irreducibility. The Virasoro algebra is the infinite-dinganal (complex) Lie algebra spanned by motgs
(n € Z) andC, which satisfy

[Lin, Ln] = (M= 1) Ly + 5m+n,o%1C and  [Lm.C] =0. 2.1)

The modeC is clearly central, and in fact spans the centreief We will assume from the outset th@atcan
be diagonalised on the modules we consider (this is ceytaimé of the modules which have been studied
by physicists). Its eigenvaluzon an indecomposable module is then well-defined, and isdc#ike central
charge of that module. We will always assume that the ceaolratge is real. Note that under the adjoint
action,vit is itself an indecomposabtéc-module with central charge= 0.

In applications, the central charges of the relevant indgmzsable modules usually all coincide. It there-
fore makes sense to speaktbé central charge of a theory. To compare different theortas,Gonvenient

to parametrise the central charge, and a common parantietnissithe following:
c=13-6(t+t™1). (2.2)

This is clearly symmetric undér— t~1. Forc < 1, we may take > 1. Forc > 25, we may take < —1.
When 1< ¢ < 25,t must be taken complex. Many physical applications cornedfot rational, so we
may writet = q/p with gcd{p,q} = 1. In this case, the above parametrisation becomes
c—1_ 8(=0° (2.3)
pq

The Virasoro algebra is moreover graded by the eigenvallig ohder the adjoint action. Note however
that this action o, gives—nL, — the index and the grade are opposite one another. This isseqaence
of the factor(m— n) on the right hand side of Equation (2.1). Changing thisnte- m) by replacingL, by
—Lp would alleviate this problem, and in fact this is often dondhie mathematical literature. However,
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we shall put up with this minor annoyance as it is this defnitivhich is used, almost universally, by the
physics community.
The Virasoro algebra admits a triangular decomposition sutbalgebras,

vit = vit” G oit® G vir™, (2.4)

in whichvit™ is spanned by the modes with n positive or negative (as appropriate) aricf is spanned by
Lo andC. We note thabit™ is generated as a Lie subalgebra by the madesdL, (and similarly foroit ™).
This follows recursively from the fact that commutihg with L, gives a non-zero multiple dfy 1, for
n> 2. The corresponding Borel subalgebras will be denotegiby’ = vit~ @ vit® andvit™® = vit® P oir ™.
We mention that this triangular decomposition respectsthrdard anti-involution of the Virasoro algebra
which is given by

Ll=L, and C'=cC, (2.5)
extended linearly to the whole algebra. We shall often refehis as the adjoint.

We will frequently find it more convenient to work within theiwersal enveloping algebra of the Vira-
soro algebra. As we are assuming tBaalways acts asl1 on representations, we find it convenient to
make this identification from the outset. In other words, wetgent the universal enveloping algebra of
vit by the ideal generated l6y— c1. We denote this quotient by and will henceforth abuse terminology
by referring to it aghe universal enveloping algebra ofc. Similarly, the universal enveloping algebras of
pit, vir", virS andviv” will be denoted by% —, % *, % < and% *, respectively. The latter two are also
to be understood as quotients in whiclandc1 are identified.

The universal enveloping algebra isa-module under left-multiplication. Moreover, it is also bg
gradedvir-module with central charge 0 under the (induced) adjoitibacand it is convenient to have a
notation for the homogeneous subspaces. W&jadenote the elements € % for which

LoU —ULp =nU. (26)

Note that Equation (2.1) forces, € 2Z_,. We moreover remark that the adjoint (2.5) extends to aniratdjo
on 7 in the obvious fashion(Ln, ---Ln )" =L_p, - L_p,.

The most important fact about universal enveloping algelisathe Poinca-Birkhoff-Witt Theorem
which states, fobir, that the set

{3 LBIELT - L3 1 & € N with only finitely manya; # 0}

constitutes a basis o¥. Similar results are valid foZ —, %+, %< and% * (a proof valid for quite
general universal enveloping algebras may be found in [ZBjjo simple but useful consequences of this
are thatZZ and its variants have no zero-divisors and that

dim%z, = p(n), (2.7)

wherep(n) denotes the number of partitionsmE N.

As we have a triangular decomposition, we can define highegihwvectors and Verma modules. A
highest weight vector fovit is an eigenvector ofit® which is annihilated byit*. To construct a Verma
module, we begin with a vectar We make the spad@v into avit=%-module (hence & >°-module) by
requiring thatv is an eigenvector afit® which is annihilated byit™ (vis then a highest weight vector for

Iror applications to field theory, one would normally extemdilinearly, hence the appellation “adjoint”. However, this distioctis
largely irrelevant to the theory we are developing here.
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vit=0). Finally, the Verma module is then thé-module
Cv ® %,
=20

in which the Virasoro action on the second factor is just By rdeultiplication. This is an example of the
induced module construction. Roughly speaking, it just am® to lettinguir™ act freely on the highest
weight vectov. In particular, we may identify this Verma module wi#i~v.

It follows that Verma modules are completely characterisgtheir central charge and the eigenvalue
h of Lo on their highest weight vector. We will therefore denote anve module by#f ¢ (though we will
frequently omit thec-dependence when this is clear from the context). Its higivegght vector will be
similarly denoted by ¢ (SO #hc = % ~Vhc). The Poincag-Birkhoff-Witt Theorem for7/~ then implies
that 7, c has the following basis:

{LonLlon,-LopVne : k=0andn >np>--- > ne > 1},

Lo is thus diagonalisable ort, ¢, S0 7 c may be graded by thiey-eigenvalues relative to that of the highest
weight vector. These eigenvalues are called the conforinamkions of the corresponding eigenstates.
The homogeneous subspa¢e$c) , = Ker(Lo — h—n) are finite-dimensional and in fact,

dlm (A//I'I,C)n = p(n)a (28)

by Equation (2.7). Finally, eachi c admits a unique symmetric bilinear for(n >,/hc contravariant with
respect to the adjoint (2.5)u/,Uu) = (U, u), and normalised byvi ¢, V¢ ) = 1 (we will usually neglect
to specify the module with a subscript index when this caugesonfusion). This is referred to as the
Shapovalov form of'//h’c.2 We will also refer to it as the scalar product. Note that distihomogeneous
subspaces are orthogonal with respect to this form.

A useful alternative construction of the Verma modulg; is to instead regard it as the quotient%f
(regarded now as @t-module under left-multiplication) by the left-ideal (teSubmodule)# generated by
Lo—h1,L; andL; (recall thatL; andL, generatait™ henceZ ™). Itis easy to check that the equivalence
class of the unifl] is a highest weight vector of;, ¢ with the correct conformal dimension and central
charge. We will frequently use the consequence that anyesielth € %7 which annihilates the highest
weight vector of#, c must belong to#: If Uv, ¢ = 0, then

U=Uy(Lo—h1)+UiL1+UsL, for someUp,U;,Up € % (2.9)

As Verma modules are cyclic (generated by acting upon aewggtor), they are necessarily indecom-
posable. However, they need not be irreducible. If the Vemodule 74, ¢ is reducible then it can be shown
that there exists anothkg-eigenvector, not proportional tg, ¢, which is annihilated byit*. Such vectors
are known asingular vectorslf there is a singular vectav € % ¢ at graden, then it generates a submodule
isomorphic to%hnc. Conversely, every submodule of a Verma module is genefagesingular vectors.
Any quotient of a Verma module by a proper submodule is salteta highest weight module. It follows
that such a quotient also has a cyclic highest weight veatdia¢t, this is the usual definition of a high-
est weight module) with the same conformal dimension andrakecharge as that of the Verma module.
Moreover, it inherits the obviousy-grading. Finally, factoring out the maximal proper submledgives an
irreducible highest weight module, which we will denote ;. (or £, whenc is contextually clear).

We pause here to mention that in the physics literature, ¢ t'singular vector” is often used to
emphasise that the highest weight vector in question ishobhe from which the entire highest weight

2n applications to field theory, where the adjoint (2.5) isgeexded antilinearly to all obir, this would define a hermitian form.
Physicists often refer to this form as the Shapovalov formels
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module is generated (that is, it is not the cyclic highestglvevector). This is rather inconvenient from a
mathematical point of view, but is natural because of thiefahg calculation: Ifw (”f/h,c)n is a singular
vector (withn > 0), then for allw = Uvic € (%), (SOU € %), hence for allv’ € ¥,

(ww') = (W,UVhc) = (UTw,vhc) =0, (2.10)

asUT € 7, with n > 0. We will however follow the definition used in mathematinswhich a singular
vector is precisely a highest weight vector, qualifyinggeavhich are not generating psoper. We will
also frequently express a singular vector in the fave: Xw, ¢, X € % ~, in which case we will also refer
to X as being singulat.

Let us further define a descendant of a singular vegtorbe an element o ~w. The above calculation
then states that proper singular vectors and their desoéstiave vanishing scalar product with all’c,
including themselve$ It now follows that the maximal proper submodulef; is precisely the subspace
of vectors which are orthogonal t, c. The Shapovalov forr(u-, >,/hc therefore descends to a well-defined
symmetric bilinear forn(~, >}g on any highest weight modul#” (also called the Shapovalov form). Itis
non-degenerate if and only#" is irreducible.

Through a cleverly arranged computation [29], it is not hir@dhow the following facts: In a Virasoro
Verma module, there can only exist one singular vewter Xw, ¢, up to constant multipliers, at any given
graden (thatis, withX € %,"). Moreover, the coefficient df” ; whenX is written in the Poinca-Birkhoff-
Witt-basis is never zero. If this coefficient is unity, we hgidy thatX is normalised and by association, that
w is also normalised. This particular normalisation is comneat because it does not depend on whether
we choose to represeitas a sum of monomials ordered in our standard Po@8arkhoff-Witt manner
or with respect to some other ordering. We note explicitigtth, ¢ is a normalised singular vector. This
normalisation also extends readily to cover general higivesgght modules: A (hon-zero) singular vector
of such a module will be said to be normalised if it is the petifn of a normalised singular vector of the
corresponding Verma module.

A far more difficult, but nevertheless fundamental, resulYirasoro algebra representation theory con-
cerns the explicit evaluation of the determinant of the $hafov form, restricted tg #, ) o+ The vanishing
of this determinant indicates the existence of proper dargiectors (and their descendants), so understand-
ing the submodule structure of highest weight modules resluio a large extent, to finding the zeroes of
theKac determinant formula

et 5e), = on [ (=Moo (2.11)
\SELy-

rs<n

Here,an is a non-zero constant independenha@indc, and theh, s vary with ¢ according to

hoo Pl rsml €1 (ps—an)®—(p—0)
’ 4 2 4 4pq
whenc is parametrised as in Equations (2.2) and (2.3) (respéglivdhis determinant vanishes when
h = h; s for somer,s € Z, with rs < n. Given such arh = h;s then, it can be shown that there exists a
(proper) singular vector at grads.
The Kac determinant formula was conjectured by Kac in [1] praven by Feigin and Fuchs in [2].

Reasonably accessible treatments may be found in [30, HigjifFand Fuchs then used this formula to

2
, (2.12)

3Admitted|y, X € %y, being singular only makes sense whe(andc) is specified. What this concretely means is thatrfer 1,2
there ar@(é”),xfn),xén) € % such thal.,X = Xé”)(LO —h)+ X"+ Xz(”)Lz (compare with Equation (2.9)). The valuetoshould
nevertheless always be clear from the context, so we trastltis terminology will not lead to any confusion.

“This is in fact the origin of the term “singular” in this comte— it refers to the fact that the matrix representing the®@halov form
at graden has determinant zero.
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Point Link Chain Braid

= %

t>0 t<O0 t>0 t<O

FIGURE 1. The singular vector structure, marked by black circlgsyicasoro Verma
modules. Arrows from one vector to another indicate thatléiteer is a descendant of
the former and not vice-versa. Point and link-type Verma ubesl occur for all central
charges. Chain and braid-type modules occur only vihismational and non-zero. Note
thatt > O corresponds to < 1 andt < O corresponds to > 25.

find all the homomorphisms between Verma modules, effdgtietermining the singular vector structure
of any Verma module [32]. It turns out to be convenient toidgatish four different types of structures
which we illustrate in Figure 1. We will refer to these as “pij “link”, “chain” or “braid” type Verma
modules (hopefully this notation is self-explanatory).e$h correspond to the cases §,ahd IL_ (point),
I, (link), 112 and NP (chain), and Il (braid), in the notation of Feigin and Fuchs. We will also tat
more general highest weight modules are of the above typdised through inheriting their type from the
corresponding Verma module.

We take this opportunity to describe when each of these aasrss (see [32] for further details) and
to introduce some useful notation for each. Recall that émgldepends o and thatt parametrises the
central charge via Equation (2.2).

Point: If t andh are such thah # h; s for everyr,se Z_, then’4 is irreducible and there are no highest
weight vectors besides the multiples of the cyclic highesight vectomn,.

Link: Suppose that ¢ Q (recall thatt may be complex) and that there exist € Z, (unique since is
not rational) such that = h,s. Then”}, possesses a singular vector at grasl&shich generates
the maximal proper submodule @f. This maximal proper submodule, itself isomorphicAg (s,
is then of point type, so there are no other non-trivial slaguectors. We denote the normalised
singular vector at grades by Xivi, (X1 € %5 is therefore also normalised) and for compatibility
with the chain case, we will denote the grade of this singudator by/, = rs.

Chain: Suppose that = g/p with p € Z, andq e Z\ {0} relatively prime, and thah = h; s for some
r,se€ Z. with p|r orq|s. Then, choosing ands such thati = h; s andrs > 0 is minimal, ; has
a singular vector at grads which generates the maximal proper submodule, itself isphio to
Thars- In contrast to the link case, this maximal proper submotiaéso of chain type, exceptin the
degenerate case where 0,r < pands< |q|, in which case it is of point type. Thus, we iteratively
find a sequence of singular vectors as in Figure 1. This segusnnfinite ift is positive and finite
if t is negative (terminating with a degenerate case). We wigenbrmalised singular vectors of
Yh asvh = XoVh, X1Vh, XoVh, - - ., and denote their respective grades by @y < /1 < o < --- (SO
X € u,).
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Braid: Suppose that = q/p with p € Z, andq € Z\ {0} relatively prime, and thal = h, s for some
r.se Z, with pfr andgts. Choose, s, r’ ands’ such thah = h,s = h. ¢, rs > 0 is minimal and
r's > rsis minimal but forrs (suchr’, s always exist except in certain degenerate cases which we
will describe below). Ther, has two singular vectorX; vy andvah at grade$+rsandh+r’s
respectively. Together they generate the maximal propemsdule (not a highest weight module
in this case). The Verma modules generated by these twolangectors (separately) are again of
braid type (except in the degenerate cases), and theis@tton is the maximal proper submodule
of either. One therefore finds a double sequence of singeletovs in this case, as illustrated in
Figure 1. As in the chain case, these sequences are infitiig positive and finite if is negative.

The degenerate cases referred to above occur whed, r < p ands < |g|. Then, there are no

labelsr’, s to be found, the maximal proper submodule is generated bygtessingular vector, and
is in fact of point type. In the non-degenerate cases, weewhi¢é normalised singular vectors of
Th aSVh = X5 Vh, X; Vh, X1 Vh, X5 Vh, X5 Vi, ..., denoting their respective grades by-0/f < ¢; <
0 <ty <tf <. (soXS € %k;) Whent < 0, the double sequence of singular vectors terminates
because of the above degenerate cases, so forlsdimere is noX,” and the singular vectof, v,
generates an irreducible Verma module.

Note that when it comes to the submodule structure, the lageds identical to the degenerate cases of
both the chain and braid cases. However, we emphasise thiataid braid type modules only exist when
t is rational. With this proviso in mind, we can (and often iteat the link case as a subcase of the chain
case.

Suppose that for a (normalised) singular veetes Xvi, ¢, we can factoX € %7~ non-trivially asX’X”
whereX"vy ¢ is again (normalised and) singular. We will then say thgandX) is composite. Otherwise,
w (andX) is said to be prime. A composite singular vector is then que which is a proper descendant of
another (proper) singular vector. We can generalise thiutiier factoringX asXWx@ ... X() where
XOx(+1)... X Py, . is (normalised and) singular for all Such factorisations will not be unique, but when
they cannot be further refined, we will say that ea¢h is prime. Such prime factorisations need not be
unique either when the Verma module is of braid type, butédsy to check from the above classification
that for these factorisations the number of facipis constant. We will refer t@ as therank of the singular
vectorw = Xvy c. Rank-1 singular vectors are therefore prime, and we magrcethe cyclic highest weight
vector as the (unique) rank-0 singular vector. In our démicof Verma modules (Figure 1), the singular
vector rank corresponds to the vertical axis (pointing dpwn

3. STAGGEREDMODULES

The central objects of our study are the so-cafitadjgered modulesf Rohsiepe [26]. The simplest non-
trivial case, which is all that will concern us, is the follmg: A staggered module¢” is an indecomposable
vit-module for which we have a short exact sequence

0— L v LR 0, (3.1)

in which it is understood that#’- and.s#R are highest weight modules,and 1t are module homomor-
phisms, and. g is not diagonalisable ort”, possessing instead Jordan cells of rank at most 2. When we
refer to a module as being staggered, we have these restgdti mind. In particular, our staggered mod-
ules are extensions of one highest weight module by anothemve are assuming that indecomposable
modules such as” have a well-defined central charge, those6t and.2#R must coincide. More gener-
ally, one could consider indecomposable modules consiilfodom more than two highest weight modules,
and with higher-rank Jordan cells fog, but we shall not do so here.
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We call ##" and #R the left andright modules (of.#), and denote their highest weight vectors by
x- and xR, with (real) conformal dimensions- and hR, respectively. /#" is then a submodule of”
(we will frequently forget to distinguish betweet and: (1)), whereas#® is not (in general). We
remark that Rohsiepe uses similar nomenclature in this, cifiming “lower” and “upper modules” such
that the latter is the quotient of the staggered module byahmer. However, we stress that these do not
in general coincide with our left and right modules. In pautar, Rohsiepe defines his lower module to be
the submodule of allo-eigenvectors, which need not be a highest weight modulerferete illustration of
this will be given in Example 2 and the remark following it —etldeneral phenomenon will be discussed
after Proposition 7.2).

Our question is the following:

Given two highest weight modules 7 and .s#R, can we classify the (isomorphism
classes of) staggered modules .~ corresponding to the short exact sequence (3.1)?

Abstractly, if we dropped the requirement that has non-trivial Jordan cells, then we would be asking
for a computation oExt%,, (%R,%'—) in an appropriate category [33], a difficult task. As we slsalé
however, requiring non-diagonalisability leads to a rewddy tractable problem for which we do not need
the abstract machinery of homological algebra.

An answer to our question will be given in the following seats. For convenience, we summarise our
results in Section 8 (Theorem 8.1). This section is largel§j-contained, and so may be read indepen-
dently of most of what follows. However, we suggest that gorapgiation of the dle of the beta-invariants
(Sections 3 and 6.5) represents a minimal prerequisitéhferésult.

As staggered modules necessarily have vectors which arégreigenvectors, we cannot grade the
module by the eigenvalue afy relative to that of some reference vector. Howevgy,can still be put
in Jordan normal form, so we may decompose it into commutiagahalisable and nilpotent operators:
Lo= Lg + Lg. A staggered module may then be consistently graded by gemealues of its vectors under
L, relative to the minimal eigenvalue b§. We will refer toLd-eigenvalues as conformal dimensions, even
when the corresponding eigenvector is not.greigenvector. Note that the malpg are still consistent with
this more general grading — one easily checks that %, maps thel_f)i eigenspace of eigenvalieto
that of eigenvalué —m.

A submodule of a (graded) Virasoro module can be assignealdirgy in at least two distinct ways. First,
it can inherit the grading from its parent, so that homogesesates have the same grade in both modules.
The inclusion map is then a graded homomorphism. Secondydingy may be defined as the conformal
dimension of the states relative to the minimal conformahetision of the submodule. Both have their
uses, but unless otherwise specified, we will always asshateatsubmodule inherits its grading from its
parent.

We introduce some more notation. bet= | (xL) denote the highest weight vector of the submodule
1 () c .7 and choose ahd-eigenvectory in the preimager ! (xR) C .. The vectorx is then an
eigenvector of o whilsty is not (if it were, its descendants would also be, hdnpeould be diagonalisable
on.”). Their conformal dimensions at& andhR respectively. We now define the auxiliary vectors

w=(L-h)y,  w=Ly and w=Lyy. 3.2)

Sincel; andL, generateZ ™, w; andw;, determine the action o+ ony.

Proposition 3.1. wy, wy, wp € 7~ and ay is a non-zero singular vector o C ..
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Proof. Sincelo — hR, Ly andL, annihilatex® = m(y) € #R = .7 /#", their action ony must yield
elements of#Z*. If wp vanished thely would be an eigenvector af, hencewy # 0. Moreover,

Lnto = Ln (Lo —hR)y = (Lo — h®+n) Lny, (3.3)
henceL,awp = 0 for all n > 0, asy hasLd-eigenvalueh®, soLny € s#* hasLo-eigenvaluel® —n. m

Define? = hR —ht. It follows that/ is then the grade of the singular vecto§ and its Jordan partner
y in the staggered modulg’. The grades otu; and w, are therefore — 1 and? — 2, respectively. One
immediate consequence is tlfas a non-negative integer. Exact sequences (3.1) £wthD certainly exist,
but cannot describe staggered mod&ghens = 0, we must havexy = x up to a non-zero multiplicative
constant. Wher > 0, /" has a proper singular vector, hence the Kac determinantilar(2.11) has a
zero. We thereby obtain our first necessary conditions oexistence of staggered modules.

Corollary 3.2. A staggered module cannot exist unléssN. Moreover, if¢ > 0, then k = hy s for some
r,se Z, (where hsis given in Equation (2.12)).

We will assume from here on thaly = Xx, whereX € %, is normalised (and singular). Singds
related to the normalised singular vectay by Equation (3.2), this also serves to normajigequivalently,
we rescalat). However, there is still some residual freedom in the chaity. Indeedy was only chosen
to be anLg-eigenvector i (xR), so we are still free to make the redefinitions

y—y+u for anyu € .7, (3.4)

without affecting the defining property (or normalisatioof)y. Following [21], we shall refer to such
redefinitions as gauge transformations. These transfasmspbviously do not change the abstract structure
of the staggered module (for a more formal statement seeoBitign 3.6).

Itis natural then to enquire about gauge-invariant quigstds one expects that it is these, and only these,
which characterise the staggered module. WherD, a simple but important example is given by [12]

B={xX'y), (recallap=Xx). (3.5)

This B is obviously gauge-invariant, &, Xu) = (awo,u) = 0 for all u € . In the physics literature,
this has been called the logarithmic coupling for field-tietic reason$. Here, we shall just refer to it as
the beta-invariant Note that sincéx,x) = 1 and dim#- = 1,

X'y=pBx  (¢>0). (3.6)

We further note that the numerical value of this invariargeteds upon the chosen normalisationsupfind
y (which is why we have specified these normalisations exyljci It is worth pointing out that iX were

5Apart from the obvious direct sum#’* @ .7R, reducible Verma modules form a simple class of examplebistype.
6We remark that whei > 0, one can extend the definition of the Shapovalov form#b x . by noting that foru = Ux e 2%,

(uy) = (Uxy)=(xU"y) and Ulye.r".

With this extension, we can writg = (wy,y). One can also define an extended scalar product whe®, but in this cas€x,x)
necessarily vanishes:

(x.x) = (x, (Lo—h®)y) = {(Lo—h")xy)=0  (¢=0).
We must instead takéx,y> = 1. These extensions are important in applications to lttgait conformal field theory in which they
give specialisations of so-called two-point correlationdtions [6,34]. However, we will have no need of them here.dMy mention
that the non-diagonalisability dfy on.7 is not in conflict with its self-adjointness because suclersions of the Shapovalov form
are necessarily indefinite [35].
A historical comment is in order here. The notatiBrfor a quantity distinguishing staggered modules dates ba¢R4]. There
however,3 was defined by a particular “gauge-fixing”. In our languagejrtproposal was that one chooses (gauge-fixssich that
Lhy =0 for alln> 1, and then define8 by L[i'y = Bx. Comparing with Equation (3.6) and our normalisationXofwe see that this
choice of gauge will reproduce the values of our definitiont,Bhere remains the question of whether it is always péssitperform
such a convenient gauge-fixing. For the modules considerg#i this was the case, but unfortunately it is not possiblgeneral.
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compositeX = XUX@ with both X)) non-trivial, then
T T T
B = <X7 (X@)T(x®) y> - <x(2>x, (x®) y> —0, (3.7)

becaus&@x e £ is singular an((X<1))Ty € #-. The beta-invariant is therefore always trivial in such
cases. Non-trivial invariants can still be defined whéis composite, though their properties necessarily
require a little more background. We will defer a formal dission of such invariants until Section 6.5.
Consider now the right module#R = %r/ 7. If ¢ is non-trivial, then it will be generated as a
submodule of#{r by one or two singular vectors of the same rank (Figure 1). W\dree generator suffices,
we denote it byX\r; when two generators are required, they will be denote&Xby,r andY*vhR. As
usual, we take all of these to be normalised. The correspgngliades aré or { < 7, respectively.
However, unless we are explicitly discussing the case ofihdependent generators, we shall suppress the
superscript indices for clarity.
We have introducedy, w; andaw, to specify the action of7=C ony. When_# is non-trivial, the action
of 7~ ony will not be free. Instead, we have&x® = 0 in 7R, hence

Xy=w (in.¥) (3.8)

defines a vectow € - (two vectorsw® when ¢ is generated by two singular vectors). The gradevof
is then? + 7. Recalling that¥ as a vector space is just the direct sumgt and.#R, and considering
a vector space basis ¢fr that extends a basis for the submodyfg, it is easy to see that the Virasoro
module structure of” is completely determined byy, w1, w, andw.

The existence ofo also leads to the following important structural obseiwati

Proposition 3.3. WhensR is not Verma, s& is defined, we hav€wy = 0.
Proof. SinceX € %",

Xap =X (Lo—hR)y= (Lo—h?~7)Xy= (Lo—h*~?) w=0, (3.9)
asw is anlLg-eigenvector of dimension + 7. ]

We remark that the vanishing &fwy implies that there are no non-zero singular vectorsﬁj’lz. Indeed,
the normalised singular vector of this gradeXiX x (which is composite i¥ > 0). Thus we may interpret
Proposition 3.3 as saying that if a singular vector/g is set to zero in#R, then the singular vector of
7. of the same conformal dimension must also be set to zes#'in Otherwise, the module” cannot be
staggered. Contrapositively,.i#”- has a non-trivial singular vector (of rank greater than thfady), then
2R must have a non-trivial singular vector of the same confomitaension (more formally, there is a
module homomorphism#R — % which maps® — ). In particular, if. 7" is a Verma module, then
R must likewise be Verma.

It turns out that there is some redundancy inherent in deiscria staggered module in terms of the
vectorswy, wy, w; andm.

Proposition 3.4. The vectorw is determined by the knowledge.#f', 7R, wy and w;.

Proof. We consider the action af, on @ = Xyfor n > 0, recalling thaiX ¢ ; . Firstnote that, X €
annihilatesy,r € ¥, sinceXyr is singular. Hence, we may write

LnX =Up (Lo — h®) + ULy +UsLo, (3.10)

Counterexamples are easy to construct and we offer theestegygnodules witle = 0 (¢ = 3), #* = /71 and R = 5 /¥, with
h=5 and 7 as the simplest such examples.
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for someUg,U1,U; € % (depending om). SuchU; can clearly be computed, for example by Poiear
Birkhoff-Witt-ordering L,X and in each resulting term, rewriting the rightmast (if m > 2) in terms ofL,
andLo.. It follows that

Lhoo = Ut + Uz + Uy, (3.11)

so it remains to demonstrate that knowingo for all n > 0 is equivalent to knowingo € %iz But, the
intersection of the kernels of thg, with n > 0 on j‘fﬁz is just the set of singular vectors of this subspace.
The only candidate for such a singular vectoXisy, and this vanishes by Proposition 3.3. ]

We recall thatwy is already determined by~ and.7#R, which is why it was not referred to explicitly in
Proposition 3.4. We will therefore refer to the pair

(w1, p) € S4B A,

as thedataof a given staggered module. That is not to say thgand thew will not play an importantdle
in what follows. Rather, it just notes that andwy, are sufficient to describe” completely. One simple
consequence arises whee: 0, for then there is only one possible choice of data= w, = O:

Corollary 3.5. If £ =0, there exists at most one staggered module (up to isomanplids any given choice
of left and right modules.

Example 1. In [20], staggered modules with= 0 were identified in the context of the Schramm-Loewner
evolution curve with parametéts = 4t > 0 and p = %(K —4). More precisely, at these parameters a
staggered module” with it = hR =hp; = ;11(2—t) is realised as a space of local martingales of the
SLE(p) growth process. The central charge of this module is €t) = c¢(k/4). The computations do
not in general identify the left and the right modules, botirthe Feigin-Fuchs classification, we may for
example conclude that in the case of irrational. #- = #R = ¥, (these Verma modules are of point
type). In other words, the short exact sequence has the form

0— Ty, — & — Th, — 0  (>01¢Q). (3.12)

We illustrate these staggered modules in Figure 2 (left). Gdyollary 3.5, such staggered modules are
unigue when they exist. But this concrete construction detrates existence, so we can conclude that at
least one staggered module exists for amyRR ., hence two for any central chargec < ¢ < 1 (one for
c=t=1).

Example 2. In [5], it was shown that the logarithmic singularity in a ¢am c= —2 (t = 2) conformal

field theory correlation function implied the existence aftaggered module” with h- = hR = 0. This

module was constructed explicitly in [24] by fusing the tueible module?”_ g with itself. The resulting
structure is summarised by the short exact sequence

0— %/ — & — Y/V3—0, (3.13)

and illustrated in Figure 2 (right). In fact, this exampledkso related to the SLE construction of Example 1.
For k = 8, the weight b1 vanishes and the left and right modules can be computedcéipto be those
given in (3.13) [20].

8For these parameters, we follow here and in later exampkegdtablished notation of the Schramm-Loewner evoluti@ndiure,
where the curve and its growth process are often denotedyslgSLE, (p). Roughly speakings determines the universality class
(the central charge and fractal dimension of the curve),redp is related to the choice of boundary conditions. We are adsagu
p to denote the rank of a singular vector (as in Section 2). W& tihat this will not lead to any confusion as it is clear thiagular
vector ranks are completely unrelated to SLE parameters.
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FIGURE 2. An illustration of the staggered modules of Examples ft)(knd 2 (right).
We have indicated the singular vector structure of the resgeleft and right modules by
using black circles for the generating states and sing@ators, and white circles to in-
dicate singular vectors of the corresponding Verma modutdsh have been set to zero.
The dividing scale gives the grades. It should be understoatdsingular vectors of the
right module need not “lift” to singular vectors of the staggd module, and are indicated
purely to facilitate the discussion. (Technically, theifis resubsingular vectorsf the
staggered module — they become singular upon taking an ppate quotient.)

We remark that in Example 2, the vector,y is an eigenvector dfy which does not belong teé#’". This
shows that the submodule b§-eigenvectors need not coincide with the left module, anfd@b need not
be a highest weight module in general.

There is one obvious deficiency inherent in describing stegymodules by their datav;, a,). This is
the fact that neithec; nor w, are gauge-invariant in general. Under the gauge transtiwons(3.4), the
data transform as follows:

(w1, ) — (@ +Lau,wp+Lou)  (ue 7). (3.14)
This suggests introducing magg for eachu € - which takesZ}- | & 7" , into itself via

Qu (Wi, Wo) = (W + Liuwa +Lou)  (ue J4Y). (3.15)

We will also refer to these maps as gauge transformatiorear{ylthe composition of gauge transformations

is the vector space addition o%,-. It is then natural to lift the scalar multiplication o%/" to the set

of gauge transformations, making the latter into a vect@cepitself. We denote this vector space by

G= {gu ue %@'—}. We further note that the kernel of the map- g, is one-dimensional, spanned by the
singular vectorw. Thus,G may be identified With%”éL/(Cwo. In particular, its dimension is

dimG = dim.7- — 1. (3.16)

Because the gauge-transformed data describes the sargersthgnodule as the original data, we will
say that the datéwr, ) and its transformsy (w1, w) areequivalenfor all u € . The following result
now characterises isomorphic staggered modules comyletel

Proposition 3.6. Let. and.#” be staggered modules with the same left and right modifésand R
and with respective datéw, w) and (w}, w5). Then, upon identifying the two left modules Via=xx, we
have.” =~ .7 if and only if the datg{c, wp) and (w], w}) are equivalent.

Proof. If (], ) = gu(wr,wy) for someu € %, theny = y+ u defines the isomorphisny” = ..
Conversely, suppose theit: .’ — . is an isomorphism extending the identification of the retipedeft
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FIGURE 3. An illustration of the staggered modules presented imiplas 3 (left) and
4 (right). The structure is to be interpreted as in Figure 2 fmark that wheis = 0,
which is possible for the module on the left, the lapel*L; should be interpreted as
saying thai cannot be obtained fromunder the action of;, thatis,L1y =0

modules (that is, such thgt(x') = x). Then,

Loy=h%y+an and Loy (y)=uw (hRy +ap) =h @ (y) + an, (3.17)

soy (y) —yis anLo-eigenvector of dimensionR. We may therefore take= @ (y') —y € %L, hence
(o) =Ly (y)=Ly+tuy=w+Lu (=12), (3.18)
as required. [

This completes the analysis of when two staggered modutas@morphic. It remains however, to study
the existence question. The question of which datg ) actually correspond to staggered modules is
quite subtle, and we will address it in the following sectiorfirst however, we present two motivating
examples from the literature to illustrate this subtlety.

Example 3. In [24], it was shown that fusing the two-€ —2 (t = 2) irreducible modules?’ ;g and %35
results in a staggered modul# given by the short exact sequence

0— %/ s — S — Y4/ Vs — 0. (3.19)

We illustrate.# in Figure 3 (left). In our notation/ = 1, wp = L_1X, w1 = L1y = BX wheref is the
beta-invariant of Equation (3.5), angy = Loy = 0. The explicit calculation shows thgt= —1.

It seems reasonable to suppose that because the(data Bx, w, = 0) of the staggered module (3.19)
is fixed by the beta-invariant, there should exist a contmwi such modules, one for each valugofThis
was suggested in [24], referring to Rohsiepe [27], but we @oé aware of any proof of this fact. Indeed,
one of our aims (see Examples 10 and 11 in Section 7) is to puogtainderstand why this is indeed the
case.
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Example4. Ac=0(t= %) staggered module with the short exact sequence
0— %/V2— & — N/ V5 —0 (3.20)

has appeared several times in the physics literature [1136R We again havé =1, wp = L_1X, wy = BX
and w, = 0. This timeS turns out to be—%. This module is also illustrated in Figure 3 (right).

One could be forgiven for thinking that because of the sintylaf this example and the last, there will
be a continuum of staggered modules with the exact sequar® (parametrised bf. But surprisingly,
this is not the case. It was argued in [21] thBt= —% is the only possible value for such a staggered
module, and hence that such a staggered module is uniqueo(igermorphism). We shall prove this in
Section 7 (Examples 10 and 11).

There are some obvious structural differences between gbes3 and 4, but it is not immediately clear
what causes the observed restriction on the isomorphisssetaof staggered modules. In fact, the desire
to understand this mechanism is precisely the originalvatitn for the research reported here.

Example 5. The above two examples may in fact be regarded as memberstbieafamily of staggered
modules parametrised by t. Fot R, \ {1}, this family can again be realised concretely as a module of
local martingales of SLEs, witk = 4t andp = —2 [20]. Each member hasth=0and IR = 1, but as in
Example 1, determining the precise identityséf- and.#R requires non-trivial calculations in general.
However, wherk is irrational, these identities are settled automaticathgcause thert;. is of link type
and 7 is of point type (irreducible). By Proposition 3.dx € 2" is non-vanishing, se#" = 7, . The
exact sequence is therefore

0— % —.9 —¥—0 (t>0,t¢0Q). (3.21)

The beta-invariant was computed in [20] (see also [21]) fbit & R \ {1} to bef3 = 1—t, which coincides
with the values in Examples 3 and 4 (whea2 and t= % respectively). For these two rational values, the
left and right modules were also computed explicitly in th& Picture, finding agreement with the fusion
computations above. Thus this family of examples showstaregting interplay of continuously varying
beta-invariant, but discontinuously varying left and righodules.

4. CONSTRUCTINGSTAGGERED MODULES. GENERALITIES

In the previous section, we have introduced staggered raedarid determined some simple necessary
conditions for their existence. We now turn to the more suftiestion of sufficient conditions for existence.
As we have seen in Example 4, it is not true that given left @glat modules, every possible choice of data
(o, ap) describes a staggered module. We are therefore faced weittask of having to determine which
data give rise to staggered modules. Such data will be teadstssible

One simple reason [26] why a given set of data, «) might fail to correspond to any staggered module
is that there could exist an elemante % such that

U=UL; = —-Uslo, but Uso +Uzwyp # 0. (4.2)

For thenUy =U;jw; # —Uzap = Uy, a contradiction. We mention that given ady=UiL; = —UoL, €
% L1 N %Ly, the elementl); andU, are uniquely determined becaugehas no zero-divisors.
We therefore define the subset

Q= {(Wi,Wo) € - @A, Upwi +Upwp =0 forallu = Uiy = ~Uplp € ZLiNZ Ly} . (4.2)

%We include a seemingly arbitrary=" sign in the equation which follows (and in similar later edions) because it turns out to be
convenient in the long run to be consistent with expresssoieh as that found in Equation (2.9).
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With this notation, our necessary condition on the data lveso
Lemma4.1. If a staggered module with datau, ay) exists, therfewr, wy) € Q.

We can obtain a useful simplification of this condition thgbuPoincag-Birkhoff-Witt-ordering theU e
UL1NY L.

Lemmad2. %#Lin%Ly=%<(U+ Lan%*Ly).

Proof. If U € ZZL1N% Ly, we may writel = U;L1 = —U,L, with theU; Poincaé-Birkhoff-Witt-ordered:
Ui = $hUSU L with UjsY € 2<% andU;f € % +. Thus,

i,n’

n

U= UsUil == 3 Uy Uy Lo (4.3)
n n

Since similarly orderind) in its entirety will not affect thdaJiﬁo factors, the linear independence of Poirgzar
Birkhoff-Witt monomials implies that (with an approprias@uffling of the indexn) we may takeufr? =
Ufr?. It follows, again from linear independence, tlh}ifnLl = —u;an. This proves tha?/L; H%Lz C
02/<°(52/+L1 N% *Ly) and the reverse inclusion is trivial. ' ]

We apply Lemma 4.2 to the conditions of Equation (4.1) a®¥edl. The first of these just states that
U € ZL1N%Ls,, hence Lemma 4.2 lets us writt= ¥ U5 L1 = — 5 UsU; Lo, for someU;0 e
% <%andU;}, € ", where |
' Ufal1+Us L2 =0, (4.4)
for all n. Moreover, the second condition of (4.1) is ngwU;°U,/ w1 + 5, UOU5  ap # 0, which implies
that | |
U +Uy e #0, (4.5)
for somen. It follows that in Equation (4.1), we may suppose tbatandU, belong to7/ ", without any
loss of generality. In other words, if an eleméhte % L1 N7 L, spoils the admissibility ofws, w), then
there is an element spoiling admissibilityd "L, N % *Ls.
This somewhat lengthy argument then allows us to concluaigximay be equivalently defined as

Q= {(w,Wp) € B, - Upwi +Uswp =0 forallU =UsLy = —Uslp € Z TLiN% "L}
(4.6)
The value of this slight simplification lies in the fact thaethomogeneous subspaceszof Ly N % L,
are finite-dimensional.

Lemma 4.3. For m> 0, the dimension of Z *LiN% "L2) = %" L1 N %, L2 is equal to dm) =
p(m—1) + p(m—2) — p(m). When m= 0, this dimension i§.

Proof. As L1 andL, generatevit™, we have(% L1+ % "L)_,, = %, for m> 0. Taking dimensions
of this equality we get din#," ., +dim%," ,—dim(%Z "LiNn% *Ly)_,, = dim% ", which leads to the
asserted formula. [ |

As an aside to the advanced reader, we mention that by tgetinas a Virasoro module with=c=0 (we
set®it<®1=0), ZtL1N% *L, may be identified as the submodule generated by the singedéons at
grades-5 and-7. Indeed, thinking of ™ as alowestweight Verma module, our intersection corresponds
to the intersection of the submodules generated by the rasikglilar vectors at gradesl and—2. The
Feigin-Fuchs classification for lowest weight Verma modud¢ates that this is generated by the rank 2
singular vectors, which turn out to have gradesand—7 (as stated).

10rhe precise way in which one does this parallels that diszlgsthe context of Verma modules. One starts with the trivree-
dimensional representation oit=C and the inducedic-module is naturally identified as a graded vector space #ith
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We tabulate the first few of these dimensions for convenience

Note that ifU = UjL1 = —UsLp € 24" L1 N %," L2 with m > ¢, thenUyw; andUpw;, both vanish for
all (wg,wp) € %El@jﬁﬁz (for dimensional reasons). We therefore néeg 5 to find examples where
Q# %';1@%';2. We also point out tha® is not necessarily equal to the set of admissible data. Ebednp
provides an illustration of this fact: The dimension®fs dim (2 & 5% ) = 1 in this case, but the set of
admissible data is a singleton.

Example 6. A staggered module” withc=0 (t = %) and short exact sequence
0— N/ — S — 7/715—0, (4.7)

was constructed ifil1]. Note that/ = 6. Its beta-invariant was shown i{i12] to be g = —2028%090 (with
our normalisation foray), where it was also argued to be the unique such value. Whatdgesting here
is that the authors noted that this example presents sontéegubipon trying to “fix the gauge” before
computing@. It is this subtlety which we want to explain here.

With our notation, the problem arose when the authors tredieterminecw, € %”5} and wy € %’j}
in terms of the (unknown. Sincedim.Zt = 6, dim.J# = 4 and there aredimG = dim.# —1=8
independent gauge transformations, they could assumedghatO and w, = (aL_4 + bLEZ) X. There were
therefore two unknowns a and b. The definition of the betariamt then gave a single linear relation
connecting it with a and b.

Whilst the authors of21] were able to divine another linear relation between a andhereéby deter-
mining them in terms @@ and completing the gauge-fixing, we can understand thislemolas arising from
the existence of non-trivial elements#f L1 N % "L,. Indeed,(% "LiN% "Ly)_g is spanned by

(L2Lo+6L5 — Lilg+2L4) Ly = (L} +6L1Lo +123) Lo, (4.8)

and left-multiplying by L gives a spanning element 6% "L1N% TLy) . It follows that the assumed
data (w = 0, = (aL_4+bL?,)x) is not inQ (and hence not admissible) unless

L1 (LLo+6L3 — Lilg+2L4) oy = Ly (L3 + 6LaLo + 12L3) wp. (4.9)
Evaluating this constraint gives the second relation foumg21] through other, less canonical, means.

To attack the question of whictw, w,) can arise as the data of a staggered moddlegiven left
and right modules##" and R, we consider the following explicit construction (genésiag that of
Rohsiepe [26]). We start with the Virasoro modu- @ %, wherevir is understood to act o by
left-multiplication. We let.#” be the submodule of#* @ % generated by

(O.b,hR—Lo), (o, —L1), (an, —L2),

4.10
and  (w,—X) or  (wt,—X") (410

, when appropriate.

Here, we understand that when requireml (or @w™) is deduced from thev; as in the proof of Proposi-
tion 3.4. The idea is thdt€ % will project ontoy € . upon quotienting by4”. More specifically, we will
attempt to construct” as (%L D @/) /4, requiring then only a precise analysis of when this sucgeed
Denote byrR : 7 @ % — % the projection onto the second component. The question efiven this
construction recovers” turns out to boil down to whether the submoduté® = .+ NKerr® is trivial or
not.
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Theorem 4.4. Givens#t, #R, w, € 7| andw, € - ,, we have the following.

(i): If #°={0} then(#"- o) /./ is a staggered module with the desired short exact sequence

(A U)

= LR L0 (4.11)

0— -

and data(wy, ).
(ii): If .47° # {0} then a staggered module with the desired exact sequencesaadides not exist.

Proof. Denote by : - U — (%L @%) /4 the canonical projection, and assume (at first) that
A° ={0}. We will construct the required homomorphismsind 7 by imposing commutativity of the
following diagram:

m

0 A e % 0
| [ | | (4.12)
0 N ;EVB% T, R 0

Here, 1" denotes the obvious injectiam— (u,0) (the top row is therefore exact) am, denotes the
canonical projection onto the quotient@f by the submodule (left idealy generated by —hR, Ly, Lo
andX.

Observe then that= 114 o' has kernel Im- N4 = _#"° = {0}, hence is injective. On the other hand,
the mapr satisfiesrto 11, = 11, o %, which in fact defines it ag, o T maps.# = Kerr , to zero by
construction. The map is clearly surjective as both® and T, are. It remains to check that the bottom
row is exact in the middle. From the exactness of the top rovgete

Mol = om0l =0, hence Im CKerm (4.13)

On the other hand, ifto 114 (w,U) = 0 for some(w,U) € #- @ %, thenU ¢ .# by commutativity of
(4.12). By definition of# and.#", (w,U) = (W,0) (mod.#") for somew € 7", hence

my(WU)=1yoi"(W)=1(W), hence KemCImi. (4.14)
The module(s#- @ % )/./ is then staggered and the data are correct, because
(Lo—hR)y = (a0,0) = 1(aw) and Ljy=(wj,0)=1(w;) (mod.¥), (4.15)

wherey = (0,1) andx = (x-,0) (mod.#"). This proves (i).
If #° #£ {0}, then (given#") there existd)o,U;,U,,U € % such that

Uo(Loth)+U1L1+U2L2+UX:0, but Uo&bJrUla)lJrUza)erUw;ﬁO. (4.16)

Suppose that” was a staggered module with the desired exact sequence ne@dd choosg € . such
that(y) = xR and L;y = wj. Now applying the first of these equationsytevould give zero, contradicting
the second. This proves (ii). ]

The Ble that.4° plays in this construction of a staggered module is best bgeargarding./° =
A NImit as a submodule ofZ". If non-trivial, .4 ° is generated by singular vectors.#f'. The quotient
of s @ % by .+ will then no longer have a left module isomorphic.#", but will be some quotient
thereof. For example, it € .4, then all of. 27" is “quotiented away” and the above construction gives a
highest weight module, not a staggered module. Simildrigmic ./ ° butx ¢ .47°, then the construction
results in an indecomposable module on wHighs diagonalisable. It is only whem© = {0} that.#" is
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preserved, and then Theorem 4.4 tells us that we do indeaithabstaggered module with the correct left
and right modules and data.

Before concluding this section, let us first make two brieg@tvations relating to the above construction
arguments. These allow us to answer the question of existenoon-existence of a staggered module,
assuming we have already answered the question for anetlaged staggered module. Roughly speaking,
existence becomes easier if we take a smaller left modulébagygeer right module. The precise statement
for the left module is as follows.

Proposition 4.5. Suppose that there exists a staggered moddleith exact sequence
0— A — 7 —H#"——0 (4.17)

and data(w, wp) € #-, ® #,. If ¢ is a submodule of#’ not containingay, then there exists a
staggered module” with exact sequence

0— A" — 9 —H#R—0 (H-=") ) (4.18)
and data([wn], [a»]) € -, ® - ,. Indeed, we may identify’ with .7/ 7.

This follows from the fact thap#’- is a submodule of”. We only requireay ¢ j to ensure that the
quotient&”/j is still staggered.
For the right module we have instead the following, somewde trivial, result.

Proposition 4.6. Suppose that there exists a staggered moddleith exact sequence
00—t — 57— #R—0 (4.19)

and data(wi, wp) € -, @ A~ ,. If 4R is a quotient of the highest weight moduiéR, then there exists
a staggered modulg” with exact sequence

00— — 9 #R—0 (4.20)
and the same datéwl, wz) € %”é';l@%”é';z. Moreover, we may identify” as a quotient of? .

Proof. We will show that the submodules o#- @ % used in the construction of Theorem 4.4 satisfy
N C.N,s50.4°C.#° ={0} (identifying the left modules of” and. in the obvious way). As#R

is a (non-zero) quotient of#R, R = hR, and we see thaly = wy. The proposition states that the data of
. and. are likewise identified, so the only difference between theegators (4.10) off” and.# s that
the former includegw, —i) whereas in the latter we have instef@d, —X).** But, as.#R is a quotient

of #R, we may writeX = XX for some singulay € % —, so if we can show thab = x @, then.t’ C A4
follows and we are done. Moreover, this would allow us to evrit
Hou Aeou |N T

y: ~ —~ = T,
v VA A

(4.21)

realising.# as a quotient of”.

It remains then to prove thab = xw. This is a straight-forward check based on Proposition 3at.
whit, the proof of this proposition tells us thatis completely determined by the conditions (one for each
n> 0)

Lot =Uowo+Ure +Ugap,  where  LoX =Ug(Lo—hR) +Usls +Usly.  (4.22)

Here we lighten the notation by omitting possible supepgsri+”. We also note that it#R were Verma, then the inclusion
A C . would follow immediately. In the proof we may therefore exa this trivial case and assume that bitrand X are
non-zero.
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By hypothesis,7 exists, so there is pc . defining thew; as in Equation (3.2). Novi, = xX implies
that
L@ = (Uo (Lo~ ) +UsLa +Uslz )y = LaXy=Lox@  foralln>0. (4.23)

Sinces#- has no (non-zero) singular vectors at the grada @Proposition 3.3), we conclude that= x w,
as required. The proof is therefore complete. ]

Corollary 4.7. Every staggered module can be realised as a quotient of ystad module whose right
module is Verma.

To summarise, Theorem 4.4 shows that the daia wy) is admissible if and only if the module)®
(whose definition depends upeon and wy) is trivial. This construction is therefore fundamentat the
guestion of existence of staggered modules, but as suchdsyet completely transparent. What is missing
are easily checked sufficient conditions to guarantee.thdt= {0}. The best way to proceed is to first
analyse the case in which the right modu#R is a Verma module. By Proposition 4.6, this case is the
least restrictive, and we devote Section 6 to this task, wisidecidedly non-trivial in itself. The treatment
of general #R can then be reduced to the analysis of certain submoduldseaftR Verma case, by
Corollary 4.7. This is the subject of Section 7. First howewe must briefly digress in order to introduce
an important auxiliary result which will be used in both Sexs 6 and 7.

5. THE PROJECTIONLEMMA

This section is devoted to an auxiliary result which we dadl Projection LemmdLemma 5.1). This
will be used at several key places in the sequel, in particsdtions 6.2 and 7.2, but in slightly different
contexts. We will therefore present it in a somewhat gerferah. The relevance to the development thus
far should however be readily apparent.

Recall that we defined a s@tin Equation (4.6). We generalise this definition slightly:

Qm= {(W1,Wp) € S5 1@ A 5 - Uwi+Upwp = 0forallU =Usly = —Uslo € Z TLiN% Ty}
(5.1)

We will always takemto be the grade of a singular vectan,= ¢, or m= /. ThusQ coincides withQ,.
Similarly, we defined a vector spaGethat acts o2, in fact on%jﬁl@jfﬁz, by Equation (3.15). We also
generalise this, defininGm to be the vector space of transformatiaasof - | ® /% , which take the
form

gu (Wi, Wo) = (Wi +Liuwo 4+ Lou),  (ue k). (5.2)
Again, G coincides withG,.

We next define a filtration of, which is induced by the singular vector structure.sf-. Recall
that at the end of Section 2, we discussed the Feigin-Fuelssification of Virasoro Verma modules and
introduced notation for their singular vectors. The stouetand notation differed according to whether the
Verma module was of chain (and link) or braid type, and so tt@i@t forms of our filtration must also
differ according to these two cases.

Chain case: Define subspaces 6%, in which bothw; are descendants of the singular vectgx:

QY = {(W1,W2) € Qm Wi, Wo € Z XX} . (5.3)
Whenm = /;, this gives a filtration of2,, of the form

Qn=a¥ o0y oo 5...oaf? ool Y. (5.4)
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CIearIy,QﬁT‘? = {0} for all k > r. An obvious remark that is nevertheless worth keeping indhisrthat the
spaceﬂﬁ'q() may be trivial even whek < r, for example ifXx = 0.
Braid case: We define subspaces 6, similarly:'2

QW) = { (Wi, Wo) € Qm | Wj € Z XX} (5.5a)
Q) = {(Wi,Wo) € Om | Wj € U X X+ U XX} (5.5b)
Whenmis the grade of a ranksingular vectorifi= /), these subspaces are nested as
Qu=0 o0l oof ool ook P ool . (5.6)
We note again that i##" contains no (non-zero) singular vectors of rankhenQﬁr'fi) = {0}. However,

this case differs from the chain case in that there is theipidigsthat for a certain rank, one of the singular
vectors of 7! is present whilst the other is not.

Lemma 5.1 (The Projection Lemma)Let m= ¢, (m= /) be the grade of a singular vector. Then for any
(w1, W) € Qm, there exists a ge G, such that g (wy, w») belongs to the subspaﬁﬁ*l) (Q,(ﬁ*l;*)).

Before presenting the proof, let us pause to first describedda behind it (in non-rigorous terms). We
will prove the required result iteratively. In the chain easve will show how to take an element ﬁfr'?)

and make a gauge transformation so as to get an (equivalenteet onﬁr'fH). In the braid case, we will

do two slightly different alternating steps, showing howgi from Q%) to Q%) and fromQ&* to
Qﬂq‘”;_). Composing all of these transformations then gives theiredquesult in each case.

The way in which we transform from one subspace to the nexbisttnansparent when we assume that
we are working within a genuine staggered module, with datargby w; = Ljy for j = 1,2. Under this
hypothesis, we will outline the steps required, assumiegctimin case for notational simplicity. Suppose
then that(w;, wp) € Qﬁ'q‘), with m= /. We first note that we can obtakyx from w; or w, by acting with
2 if and only if we can obtain it frony. Thus, we take a basiZ,, } of %/~ at gradem— ¢, and consider
the complex numberg, defined byZZy = (XX By gauge-transforming — y' = y+ z appropriately, it
turns out that we can tune all of tifg to zero. It then follows that we cannot obtaix from y’ by acting
with %/, hence we cannot obtain it from the correspondi‘njgb Liy, j =1,2. w} anda), must therefore
generate a proper submodule@fX,x, and so must be descendants{f 1x.

Of course, we cannot assume from the outset that we are vgpikia staggered module, because we
want to apply the Projection Lemma to the study of when stegghy@odules exist! Nevertheless, the outline
above serves to motivate the steps in the general proof b&logre are a few technicalities to work through,
most of which arise because we must make sure that our catistrs are well-defined in the absenceyof
Moreover, we also have to account for the structural, ancefbee notational, differences which delineate
the chain and braid cases.

Proof. As already stated, there are two cases leading to threetstepssider. The constructions are similar
in all three, but because of structural variations, we mpbt the considerations accordingly. However we
will only provide full details in the chain case, limiting melves to describing what is different in the braid
cases.

Chain caseQ#f) — Q%‘H): We assume thdivy,w) € Q,(ﬁ) with k <r—1, som> ¢ 1. To find a gauge
transformationg; € Gy, such thatg,(wq,w,) € Qr(ﬁ*l), we will introduce a basis 0¥, with a certain

“orthonormality” property. We make this precise as follows

12\ote that in the braid case the highest weight submodulesrggsd by the singular vectors are not nested, which is why th

definition onQf) requiresw; to be in the sum of two highest weight submodules instead.
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First, letX "D € %~ be defined by 1 = X"V X,. We choose a basigvy X * Dy ., } at grade
m— ¢y of the maximal proper submodule of the Verma moddéle, , (whose highest weight vector has
conformal dimension equal to thatXfx). ThusV, < %rn:ém' We can complete this to a basis%;]tHk at
the same grade by adding vectdjss, ., withZ, € @/m*_ék. Since the quotient of a module by its maximal
proper submodule has non-degenerate Shapovalov form,wevea choose thg, to be orthonormat?

<ZIJVhL+fk’ZVVhL+€k> = 6“\/, that iS ZLZVVhL+€k = 6IJVVhL+fk' (57)

This then defines a bas{y, X**V} U{Z,} of %, .
Since thez,, are not scalarsng > ¢), we may writeZ}, = Z} ;L1 + Z} ;L. The choice 0,1 andZ,,;»

is not unique, but i), = ZglLl +ZLJ€2L2 is another choice then
2t -z =—(Z -2 e w Lin% Ly, (5.8)

It follows that eachz,, gives rise to a well-defined elemeﬁ;f,;llerZZ;zwz of (%‘ka)[k, as(wg,wp) €
Qﬁ'?. We may therefore defing, € C by

ZZ;1W1+ZZ;2W2 = (XX (5.9

We can similarly writeV,' = VAT_lLl +VAT.2L2, as theV, are also not scalarsn> /¢x.1). However, the
analogues of thé, all vanish as

(X XEVN VT wy VT wa)) = <Xk+1X,VAT;1W1+VAT;2W2>%XKX ~0. (5.10)

U XX
Here, recall tha(-, ->%ka denotes the Shapovalov form of the submodis®x.

To tune the constantg, to zero, we sez = — 3, {yZ,XkX € % Xx and apply the transformatiogy.
Lettingw] = w; + Lz, for j = 1,2, explicit computation gives

LXx =2 Wy +Z] w5 =0, (5.11)

for all u. Here we use the orthonormality of tifg, Equation (5.7) (which clearly continues to hold upon
projecting ¥, 4, onto % Xix). We need now only verify that eac/ﬂ(j € U X1 (which is the kernel of
the Shapovalov form in the submod@éX,x) by showing that there is no element®f which takeS/\/j to
Xix. We will detail this forj = 1, the casg = 2 being entirely analogous.

Clearly, we need only consider elemehis= OZ/meMk. Write L_jUT € %mjék in the basis defined
above to get

UL =5 ay (X D)V 4§ b,7]
) o
= (XM )T vl + bzl )L+ (XEY) TS @i, + 3 buzhs )L, (5.12)
X a ) T

where thea, andby, denote coefficients. L&l; andU, be the respective prefactorslof andL, appearing
in Equation (5.12). This equation then beconfg$ —U)L; = —UjL, € ZL1N%L,, so we obtain the

equalityUw, = UJw; +Ujws, as (w},wh) € Q. But, (Xk+D)" annihilates all of( % Xx);,,, (compare
with Equation (5.10)), so we see that by tuning {ijeto zero, we have guaranteed that
Uwy = UiW; +Ugwy = 3 by (Z) Wa + Z W) = $ b Xx =0, (5.13)
a a

B3as usual, we can always find an orthogonal ba{ﬂ§} such thaq<Zy,Zu>| = 1. Since every complex scalar is a square, it is trivial
to redefine theZ,, so as to obtain an orthonormal basis. We mention that if wedhasen the Shapovalov form to be sesquilinear
rather than bilinear, then this would not be possible.
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k+1 k+1

ok _, olk+1) ok-) _, olk+) ok+) _, lk+1i-)

FIGURE 4. An illustration of the projections constructed in the @irof Lemma 5.1. On
the left we portray the chain case, in which the projectioroives takingv\/j from the
module % Xx (itself a submodule of##*) to its (maximal) submodulé” X 1x. On
the right are the braid cases. We alternate between stepgodiypes, going from the
module % X X+ % X x to its submoduleZ X/ x (left), and from the modulez X" x

to its submodulez X, X+ @/inlx (right). The shading indicates schematically the
module we start from and the submodule we arrive at, and tiphasised arrows indicate
the singular element$&+D andX k+1%) which are used in the proof.

by Equation (5.9). Since this holds for &lle %jerlHk

w,, we have completed the proaf;(wy, wp) = (W}, W,) € .

Braid case Q) — Q") Suppose thatwi,wy) € Q%) andk <r—1, som > 05, Define
XK € %~ by Xyq = XETEHX . We choose a basigy, - X vy FU{VEXEE vy o}
say, of the maximal proper submodulemH; at gradem— /¢, , and extend it to a basis Cﬁt;LH; itself,

at the same grade, by adding orthonormal eIemEpt@LM‘z. This defines our basis & ,_ as in the
Tk

, Wy € % X¢1X. After repeating this argument for

chain case.

Again, Z}, = ZZ;lLl +Z;2;2L2 defines constantg, by Z;E;lwl + ZZ;ZWZ = {uX % and we use these
to definez= —y , {,Z, X x and (W}, W) = gz(W1,W2) € %), The check thauw) = 0 for anyU €
dZ/ijM; is done by writingL_jU" € %n;fli in the above basis: We thereby obtain the analogue of
Equation (5.12) (but with separate terms for ¥{&2*) andX k1) contributions). This leads 10w} =0
for all U as in the chain case. However, from this we are only able talade thaw] € %X, not that
wj belongs to the maximal proper submod@tex, , X+ U X, 1 x of U X x (for this, we need the last case
below). We therefore havav;,w) € Q.

Braid case Q%) — QK*7): In this final case we suppose tHat;, w,) € Q%) and agairk < r — 1,
to guarantee thah > ¢ ,. We choose a basis &miz; as in the first braid case, and use this to construct

z so thatg,(wy,Ws) is in Q1) Everything now works as in the previous cases. We only roanti

that provingUV\/j =0forallU ¢ %*WHW here lets us conclude that thﬁ belong to the maximal
- k

proper submodules X, ;x+ % X ,x because we have been working entirelyZ."x. Thus,(wj,w,) €

Q1) as required. n

We conclude this section with two small remarks pertainioghis proof. First, we call this result
the Projection Lemma because each subsequent gauge traatém can be thought of as projecting the
(w1, wo) onto the next-smallest subspace in the filtration. Indde@ysi, w.) is already in the next-smallest
subspace, then thg, defined in the proof must already vanish, hemee0 andg;, is the identity map.

The second remark addresses why the sequence of projedgined in the proof terminates. Once in
the submodule corresponding to the rdngingular vector(spﬁ'q() (Qﬁ,'fi)), we were able to project further
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provided thaim > ¢, ; (m > Efﬂ). This guaranteed that thétype basis elements of the maximal proper
submodule of# ", (%n;eki) were not scalars, and so could be written as a sum of ternfslwior L

on the right. As soon as=r — 1, we find that som¥-type basis elements are scalars, and so cannot be
written in this form. The proof then breaks down at the poinEquation (5.12) and its analogues.

And so it should: In the chain case with= ¢, the grade of thev; would be/, — j, so it is completely
unreasonable to expect that we can conslwqcbelonging toZ X:x. In the braid case, we get the same
conclusion ifm= ¢;. Whenm= /;}, one might hope to be able to fivvq belonging toz X" x. However,
it is possible to show (using Proposition 4.6 and Theorerb Bellow for example) that this is only possible

in a rather trivial case: Essentially, the “dai@t;, w,) must be equivalent t(0,0).

6. CONSTRUCTION WHEN THERIGHT MODULE IS VERMA

Throughout this section we assume th&R = Y- In particular, this means that in the construction of
Section 4, the submodule” of #“ @ 7 is generated byay,hR —Lo), (wr, —L1) and(awy, —Ly) (there is
no @ or X). The corresponding exact sequence is

0— A" — .7 — ¥r—0. (6.1)

In principle, we have everything we need for our attack orgihestion of existence of staggered modules
. with exact sequence (6.1). However, the proofs which folmesnecessarily rather technical, given that
they apply to completely general left modules. We will there first briefly outline the main ideas behind
them. We also suggest that the reader might like to keep id thimsimplest case in whiahy is the singular
vector of minimal (positive) grade i#”-. This case not only avoids the most troublesome techriislit
(for example, we do not need the Projection Lemma for thig);dmut it also has the advantage of covering
the majority of staggered modules which have thus far foungieal applicatiort?

Our overall plan is straight-forward. The analysis of ##€R Verma case turns out to afford an important
simplification, namely that the admissibility of the datac@mpletely captured by the s&, defined in
Equation (4.6). This allows us to identify the set of isontogm classes of staggered modules with exact
sequence (6.1) as the vector spaoes, thereby settling the existence question wien0 (Theorem 6.4).
We then turn to the computation of the dimension of the sga@@. First, we use the Projection Lemma to
reduce this to the dimension of an equivalent sgaG&', whereQ' C Q is significantly smaller in general
(Proposition 6.6). This allows us to separate the compmrtatito four cases, according to the singular
vector structure of#’- arounday. In each case, we reformulate the definitiorffso as to realise it as an
intersection of kernels of certain linear functionals (dhem 6.11). The computation of the dimension of
Q' is then just an exercise in linear algebra, albeit a rathartrigial one. The results of this computation
are given in Theorem 6.14. Finally, we discuss generatinatof the beta-invariant of Equation (3.5) which
reduce the identification of a staggered module with exapiesece (6.1) to the computation of at most two
numbers.

6.1. Admissibility. In this section, we study the question of admissibility ofedao;, ) under the hy-
pothesis that the right module is Verma. The result is regabih Proposition 6.2 below. First however,
we need a simple but very useful lemma. Recall that the subleod’™ may be naturally viewed as a
submodule of#-.

14Actua||y, the physically relevant modules we have in mindeh#o not always have right module Verma. However, Propusii.6
suggests that the relevant modules with non-Verma rightutesdshould be recovered from this case as quotients. Weurillto this
in Section 7.
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Lemma 6.1. Whens#R is Verma, uc .#° if and only if there exist Y U, € % such that

Ui +Uswp =u and UL;+UsL, =0. (6.2)
Proof. By definition,u € .4 if and only if there existJg,U1,U> € % such that

Uowo +Urmwn +Usap =u  (in #%) (6.3a)
and  Up(Lo—h7) +UiLli+Usl, =0  (in%), (6.3b)

so one direction is trivial. What we need to show is that we nadkgeUgy = 0, without loss of generality.
Note that by takingi € .- homogeneous, we may assume tbgtU; andU, are homogeneous i# .

ConsiderUiL; +UsL,. Poincaé-Birkhoff-Witt-ordering this combination will give a vesty of terms,
each of which must have a positive index on the rightmost mdfdBoincaé-Birkhoff-Witt-orderingUg
produced any term which did not have a positive index on thketmost mode, then right-multiplying by
(Lo— hR) would preserve the ordering, and so this term could not beealbed by any (ordered) term of
UjL1 +UsL,. This contradicts (6.3b), so all the ordered termsJgfmust have a positive index on the
rightmost mode. ThertJoan = 0, and (6.3a) has the desired form.

But if every Poincag-Birkhoff-Witt-ordered term o)y has a positive index on the rightmost mode, we
may writeUg = U;jL1 4+ UjL, for someU;,U; € % . Hence (folJg € %m),

Uo (Lo—h") +UiL1 +Uslz = (Lo—hR —m) Up+UsL1 +UsL,
= Ui+ (Lo—hR—m)U)) L1+ (U + (Lo—hR—m)Uj) L. =0, (6.4)
and a simple redefinition df; andU, will put (6.3b) in the required form. This redefinition wouddfect
(6.3a), but for the fact that
(Lo—hR—m) (U +Ujan) =0, (6.5)
asUjwr +Ujwy, is anlo-eigenvector of eigenvalu® + m. ]
Recall that Lemma 4.1 gave a necessary conditiorjidar a,) to be data of a staggered module. The-

orem 4.4 and Lemma 6.1 now tell us that under the hypotheats#" is Verma, this condition is also
sufficient: .47° = {0} if and only if

Ui +Uzap =0 for all U=UiL1 = -Wlo e ZL1NnZLo. (6.6)
In the language of Section 4 (see Equation (4.2) in partifulais becomes:
Proposition 6.2. Whens#R is Verma,(wy, w;) is admissible if and only ifw;, wp) € Q.

Example 4 shows that this hypothesis is not superfluous. @ongpthis result with Proposition 3.6 now
gives the following important characterisation.

Proposition 6.3. The space of (isomorphism classes of) staggered modulegxadtt sequence (6.1) may
be identified with the vector spaf¥/G.

Example7. Atc= -2 (t = 2), one can use the algorithm detailed in [24] to fuge ; g with 73,5 and 1
with #. In both cases, a staggered module is obtained with the gxaitt sequence

0—%—— ¥ —0. (6.7)

The respective beta-invariants turn out to Be= —1 (as in Example 3) ang = % This exact se-

quence therefore admits two distinct staggered modules;enby Proposition 6.3, there is (at least) a
one-parameter family of such modules.
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This example highlights in a novel way the physical imparéaof a good theory of staggered modules.
It shows concretely how physically relevant constructi@hmese fusion products) can result in modules that
cannot be distinguished from each other by their charadfgraded dimensions), or even by the action of
Lo alone.

Finally, since/ = 0 implies thatw; = w, = 0, we thereby obtain the first piece of our classification, the
case when ranky = 0.1° For consistency with Section 6.3 below, we will refer to thése as case (0).

Theorem 6.4 (Case (0) of the classificatianGiven left and right modules#’ and #R, for which the
latter is Verma and h = hR, there exists ainiquestaggered modulg” with short exact sequence (3.1).

We remark that it should not be surprising that the precismfof ./#- plays no ble in this result. For
existence whe#’! is also Verma implies existence for generdl (subject only to the non-vanishing of
wp) by Proposition 4.5.

6.2. Choosing Data. We have determined that the space of (isomorphism clas¥esagfgered modules
with exact sequence (6.1) is naturally realised as the eotifQ under the action of, by Proposition 6.3.
These spaces are a little large in general, so it proves og@wveto prune them into something a little more
manageable. This will be achieved by applying the Projedtiemma (Lemma 5.1).

Let us denote by the submodule of#- generated by the singular vectors whose rank is one less than
that of ay. For exampleif rankay = 1 we have# = . When rankw > 1, ./ is generated by one or
two singular vectors according as to whethit- is of chain or braid type (this follows fromy # 0). We
now define our “pruned” space of admissible data to be

Q' ={(w, ) €Q : w,wme A} (6.8)

The Projection Lemma witim = ¢ (sor = rankay) immediately gives:

Lemma 6.5. For any(wi,w,) € Q, there exists ge G such that g(wy, wp) = (w}, ) € Q'.

/
The proof only requires realising that in this applicatitme subspac@ﬁrfl) or Qﬁ{fl‘*) appearing in the

Projection Lemma is precisely’.

The new choice of datéw], ) is equivalent to the old datéws, wy), so the underlying staggered
module remains unchanged. Of course, we still have somddraén the choice. There is a residual set of
gauge transformations, name®y = {g, € G: u € .#;} C G, which preserveQ’. Analogous to the case of
the full G (Section 3), we hav&' = .4, /Cu, (as vector spaces), hence

dim G =dim .7, — 1. (6.9)
Moreover, Proposition 6.3 can now be replaced by

Proposition 6.6. The space of (isomorphism classes of) staggered moduleexatt sequence (6.1) may
be identified with the vector spa€g/G'.

We point out thatwy need not be the singular vector of lowest gradedf (excluding of course the
obvious generating ones). In the braid case whgr= Xx = X7 x (with p = rankay), X; x may be a non-
zero singular vector. TheiX, x € ./ has the same rank a, but its grade is strictly less than that @§.
This case is the source of the most trouble in the followinglysis.

15Although formulated differently and obtained by slightijferent means, the result in this case has already app@&af2€]. In fact
the result is obtained there (and could have been obtained Wwehout the lengthy preparation that our more genersits require.
16The case ranky = O (that is,¢ = 0) has already been analysed in Theorem 6.4, but would béstentswith.# = {0}.
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Case (1) Case (1)

Case (2) Case (2)

AN X

A e Ore

FIGURE 5. An illustration of the possible structures of the left rai.#- in cases
(1), (1), (2) and (2"). As with earlier figures, a black ciectepresents a singular vector
of #*, whereas a white circle indicates a singular vector of theesponding Verma
module which has been set to zero. We use a grey circle whesed dot matter if the
singular vector has been set to zero or not. Note that thangicbrresponding to case (1)
with t ¢ Q has been omitted — it is understood as a subcase of the chegrpaaiured.
Similarly, the degenerate braid case=(Q, t < 0) has not been explicitly portrayed — it
is regarded as a subcase of case (2).

6.3. Characterising Admissible Data. In this section we give a tractable characterisation of thraiasi-
bility of pairs (e, wp) € A1 @ Ay—». As the case ranky = 0 (that is,/ = 0) has already been settled,
we will assume that ranky = p > 1 for the rest of the section.

We will separate this characterisation into four casespuliog to the number of generating singular
vectors of.# and whether there is a non-generating (non-zero) sing@letov in.# whose grade is less
than/ (the troublesome cases). Explicitly, the cases are

Case (1): .« is generated by a single singular vector and this is the anlyutar vector in.# of grade
less thar?. This applies in two situations: Whe#- is of chain (or link) type, and whes#'" is
of braid type with eithetan = X; x, or ap = X;"xandX; x=0.

Case (1'): . is generated by a single singular vector and there is ansthgular vector in# of grade
less thar?. This only applies wher#'" is of braid type withay = X; xandX; x # 0.

Case(2): .# is generated by two distinct singular vectors and theseteehly singular vectors inZ
of grades less thaft This only applies whew#" is of braid type with eithér’ wy = X, X, or
W= Xgrx andX; x= 0.

Case (2'): . is generated by two distinct singular vectors and there @haer singular vector in# of
grade less thaft This only applies wher#’- is of braid type withay = Xp+x andX; x# 0.

It is easy to verify that any possibility is covered by exaaihe of these cases. We illustrate them for
convenience in Figure 5.

1%We mention that this also covers the possibility thgtis the singular vector ainaximalgrade in a braid type Verma module with
t < 0 (Section 2).
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To analyse each of these cases further, it is useful to fiesppgim the conclusions of Lemma 6.1 some-
what. Specifically, we show that takingto be a singular vector of “minimal rank” allows us to choase
andUs in .

Lemma®6.7. If (e, wp) € %@El@%ﬁz is not admissible (and#R is Verma), then#° contains singular
vectors of 7 of grade less thard. For a singular vector Xwhose rank isninimal among those in4°,
there then exist UU, € % such that

Ui +Uzwp = X and ULy +Usly =0. (6.10)
We have stated only one direction, but the converse is alreaplied by Lemma 6.1.

Proof. Suppose thdtw;, ay) is not admissible, which in view of Theorem 4.4, means thétis a non-zero
submodule of#-. Therefore.#° contains non-zero singular vectors, and it is generatedsbginimal
rank singular vectors. Takeé to be one such generator.

By Lemma 6.1, we can fintl,U, € % such that both equations in (6.10) are satisfied. But, if we
Poincae-Birkhoff-Witt-orderU; andU,, we see that terms with negative modes on the left cannotibate
to Uy + Uz by the assumption that was of minimal rank. We therefore drop them. Furthermorg, an
Lo on the left may be replaced by the appropriate eigenvalusesnay assume thaly,U, € 27 " in the first
equation. Linear independence of Poire&irkhoff-Witt-monomials then allows us to likewise drtipe
terms with negative modes in the second equation. We magftrerwriteU;L; + UL, = 5, LgU =0
with UM € %+, Independence and the lack of zero-divisorgirthen means that ea¢h™ must vanish
separately, so we can certainly replace elaghy its eigenvalue here too. This means thathgJ), € 7+
of the first equation also satisfy the second. Finally, wechae fromU;,U; € 27T in the first equation
that the grade of must be less thaf ]

Assuming that w, wyp) € 4,1 ® #;_», the submodule/ is contained inZ by Lemma 6.1. The
minimal rank referred to in Lemma 6.7 is then eittger- 1 or p. In concrete terms, we need to check
whether the ranlp — 1 singular vectors are in¥°, and if this can be ruled out, we do the same for the
rank p singular vector of grade less thdrif necessary (cases (1) and (2’) only). Below, we introduce
functionalsy, ¢+ and " with the aim of reducing these checks to a problem in linegelada. We first
separate our considerations according to the number ofgank singular vectors iZ’t, and then analyse
the further constraints stemming from the presence of argbramkp singular vector.

6.3.1. Caseql)and(1’): Inthese cases# is generated by the normalised singular veedor;x of grade
fp-1. Making use of the fact that;, , is one-dimensional, we define for eadh=U;L1 = —UsL> €

(% Lan%"La),, ,_,, alinear functional

W: My 1O M_2—C by  Urw +Uzxwp = Yy (@i, w2) Xo_1X. (6.11)

Taking (w1, wp) € 1% 4,2, the submodules ™ contains no singular vectors of rank less timan 1.
In view of Lemma 6.7,47° contains the ranjp — 1 singular vector if and only ifiy (¢, ) # 0 for some
Ue (%+Llﬂ%+L2)[p71,g. We formulate this result as follows:

Proposition 6.8. In caseq(1) and (1'), assuming wy, wp) € 41 ® Mo, We have X _1x ¢ 4 if and
only if
(@, wp) € N Keryy . (6.12)

Ue(”/ﬁle”/ﬁLz)l;p_l,k

We point out that in case (1X,—1X is the only singular vector in#Z of grade less thaf, so by Lemma 6.7,
the above condition completely characterises the adniésséta(ws, wp) € Q'. In case (1), there is another
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such singular vector, and so we will have to work harder tceggamplete characterisation (Section 6.3.3).
This proposition is of course crucial for case (1') as wellhce it tells us how to rule out the rank— 1
singular vectors. After thap becomes the candidate for the minimal rank referred to inrbers.7.

6.3.2. Cases(2) and (2'): In this case there are two ramk— 1 highest weight vectors igZ’t, namely
X;ilx, and the submodule? = QZ/XP‘JXJMZ/XJAX is not a highest weight module. We have

///g_j :%:g*

_ _ . o
p_rj.Xp_lir %fé;_fjxpflx for j=1,2, (6.13)
where the sum is direct in case (2), but not in case (2'). Imegitase, giveQws, wy) € A1 @ Mo, We
can writew; = W + ouj+ with mji cU Xpi_lx. The two conditions we will obtain below can be understood
as one for each part~” and “+".

In analogy with thaly, above, we define the functionalﬁi S M1 X My — C by the formulae

Up wr+Uy wp = gy (w1, w2) X, X (6.14a)
and  Uj wr+Uy wp = g (wr,ap)X, gx (mod %X, 4x), (6.14b)

whereU* =Uf"Ly = -UyLy € (LN %*Lz)éirﬁ. These definitions again rely on the fact that both
//{é;,l and(/{/%Xp*_lx)é;1 are one-dimensional.

Assuming(ow, wp) € A1 -2, SO there can again be no highest weight vectors of rank hess t
p—1in #°, Lemma 6.7 tells us under which condition the singul&ﬁglx are in.#°. Precisely as
above X, x € .4 if and only if there is &)~ such that); (w1, @) # 0. The case oxgilx works out
similarly, despite the slightly more involved definition gf". The easy direction is given by Lemma 6.7:
If Xp+_1x € .#°, then there exists * = U; Ly = —U, L such thatyy]. (w1, a») = 1. To see the converse,
assume that there exidis™ such thatl,ULL(wl, w,) # 0 and without loss of generality choose™ so that
this value is unity. Explicitly, this means that

U o +Uy ap = X5 x+u  for someue #X; yx. (6.15)

If u=0, we are done, so assume that V*X,;lx;é OwithV~ € %7 ~. The maximal proper submodule of
U X,_1xis trivial at the grade ofl, so there must exist™* € % * such tha¥ *u= X, x. Asu=V~V*y,
it now follows that

(1-V V) (Uf @+ U @p) = (1=VVH) (X)x+u) =X x (6.16)

Applying Lemma 6.1 tq1—-V~V*)U;", we conclude thaX; jx e .4
In conclusionxﬁilx € /° if and only if for someJ* the value ofL/,ffi (e, wp) is non-zero. This gives
the analogue of Proposition 6.8:

Proposition 6.9. In caseq2) and (2'), assuming wi, W) € #;—1 @ >, We have %ﬁlx ¢ ./ if and
only if

(wn, wp) € N Keryy.. (6.17)
UiE(%+Llﬂ%+L2)éi

1=t

In case (2), the above two conditions again completely charae whenw,w;) € Q'. As with case
(1) however, case (2’) involves an additional singularteeavhich leads to a further condition to check.
However, we can now use Proposition 6.9 to rule out the @rkl singular vectors, so we may assume
that the minimal rank of Lemma 6.7 5 We now turn to the derivation of conditions for the addiibn
rank p singular vector in cases (1') and (2’).
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6.3.3. Further conditions in cased’) and(2'). When(wy, wp) € #,_1® #;_», Propositions 6.8 and 6.9
give complete characterisations of the absence of pgAk singular vectors in4”°, which suffices to settle
the existence question of staggered modules in cases (1(Ranth cases (1') and (2'), Lemma 6.7 still
leaves the possibility that° is non-trivial. We must therefore also characterise theabs of the singular
vectorX, x (which has a lower grade tham = Xp+x) in._4°.

The derivation of this characterisation is similar in flavaéo the considerations of Sections 6.3.1 and
6.3.2, although there are also important differences. Thstimmediate difference is that we must assume
from the outset that thp — 1 singular vectors have already been ruled out. This is secgdor the
application of Lemma 6.7, and we will see that the definitibthe functionalyy, below will only make
sense wherjwi, wy) satisfies this condition. We point out also another diffeesthat will be relevant
later. In Section 6.5, we will construct invariants of staggd modules in a manner closely related to the
considerations of the two previous sections. Howevergthéll be no invariant related to what we have to
do next. We will return to this point in Section 6.5.

To decide whetheK; x is in ./°, we will define yet another set of functiona@m. We recall that
cases (1') and (2’) both requirg#* to be of braid type, the former correspondingae= 1 and the latter
to p > 1. To uniformise notation, we understand in the followingttif p = 1 then ll’J+ stands foryy
(as given in Section 6.3.1) angl;_ is ignored (that is, eacly;_ is to be regarded as the zero map).
ForU"=Uj'L;1 = -UfLp € (%*Lm@/ﬂz)éa_é and(wy, @) € (Ny- Kery;-) N (Ny+Keryy. ), the
defining formula is

Ut o1+ U5 wp = @i (@1, a2) X, X. (6.18)
The definition makes sense, but only because of the restrithiat(cw, ay) is already annihilated by every
llﬁi- This follows from the fact that the maximal proper submedof @/X‘il is generated by the rank
singular vectors. For if)]'w; +Uj'w, were not proportional t&, x, soU'w; +Uj'w, would not be in the
submodule%X,;x C ., there would exist & € % * such thaupjum(an, wy) is equal to eitheb(pilx or
Xy_1X, a contradiction.

The reason for this definition is the same as always. AssuhiagbothX, ;x andX " ;x are not in
N, S0 thattp@m(aa, ) can be defined, Lemma 6.7 tells us th&t is either zero or generated b§5x.
The analogue of Propositions 6.8 and 6.9 is then:

Proposition 6.10. In the caseg1’) and (2’), assuming thatcw, w,) € #;_1 © ;5 is such that4°
contains no ranlp — 1 singular vectors, we have/® = {0} if and only if

(@, wp) € N Kergy)n. (6.19)

UNe@+Lunz+ly),-_,
.

This completes the characterisation of admissibility iesta cases.

6.3.4. Summary.We have defined functionalfy, t,uji andyy), whose kernels characterise when data is
admissible. We note that each of these functionals is msthifgauge-invariant, so these kernels respect
the gauge freedom we have in choosing the data. By combirgngnha 6.5 with Propositions 6.8, 6.9 and
6.10, we now arrive at the complete classification of the adible data in terms of these functionals.

Theorem 6.11 (Cases (1), (1), (2), (2') of the classificationfsiven - and #R = %z with ¢ > 0,
choose(wy, W) € A—1® M—». Then,(wy, ) € Q, so is the data of a staggered modute (with exact
sequence (6.1)), if and only if the appropriate conditiotoleis satisfied:

Case(1): yu(w,wy) =0forallU € (Z Lin% " La)i,

Case(1'): Inaddition to condition(1), Y~ (w},ws) =0forallU™ e (Z LN %ﬂ-Z)z;—z-
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Case(2): Y. (w|,ab)=0forallU* e (% LN %ﬂ‘z)ﬁirf'

Case (2'): In addition to condition(2), Y (w},w) = 0forallU" € (% "L1N %+L2)€57€.

Here, p = rankay, and the relevant condition to use matches the case nunthgiien at the beginning of
Section 6.3. Moreoveftw, wy) € -, & 7", is in Q, hence is the data of a staggered modgfeif and
only if there exist equivalent data], o) € Q'.

We remark that the single case excluded from the above theffre- 0, case (0)) was already settled in
Theorem 6.4.

6.4. Counting Dimensions. The results of Theorem 6.11 are very concrete descriptiériseopossible
data of staggered modules witfR = %z, even if they might seem somewnhat technical. Their valuless t
they involve linear maps with simple definitions, and sowlieasonably straight-forward computations, in
each case, of the dimensions of the vector s|@{¢€&'’ of inequivalent staggered modules.

To use Theorem 6.11 to compute the dimensioR91G’, we will analyse the functionalgy, ¢, LLIJ+
and t,u{jm. In fact, it proves convenient to abstract one level furthed consider also the induced maps

W (7 unu ), (M ® )" Uy,  (6:20a)
Yo (TN ) (M S M2) U —yy, (6.20b)
Yo (wtLun %)y (Ma M) Ut gy, (6.20c)

W (N7 tL), — ((muf Kerg,_) N (Nu- KerL,UJQ)*, UM g, (6.20d)

All of these analyses are somewhat similar so we presergddstwo abstract results along these lines
from which the required dimension results will be extracteca case-by-case basis. So consider a highest
weight module#” with highest weighth,c) and cyclic highest weight vector Fix a gradem. Then for
(W1,Wo) € Fm-1® HFm—2andU =UiL; = —Usly € (@/+L1 N %+L2),m, we defineWy (wi,w») by

Uiwy + Uowo = Wy (Wl,Wz))?. (6.21)

This definition is clearly in the same spirit as thoseyaf ™ and ¢/”. As above,Wy is then the cor-
responding functional on#y,_1 @ #m_2, andW¥ alone stands for the map frof% "Ly N % *Ly)_m to
(Jm-1® Hm-2)* that associates to aty the functionaly.

We want to know whef¥y is non-trivial. This is the subject of the following resuilt.

Lemma6.12. The functionalWy € (m-1® #m-2)* is zero if and only if U=U;L1 = —Usly € (ZTL1iN
U L) _mis such that the @vh (j =1,2) are in the maximal proper submodule of the Verma modgle

In particular, we will often use this result to establish ihjectivity of W by noting that if there is no proper
singular vector iy, of grade less tham, then the onlyJ for which Wy vanishes i&J = 0 (at gradesn— |
the maximal proper submodule is trivial).

Proof. Write U = U;L; = —UoLp. By definition, Wy = 0 meandJiwy + Usw, = 0 for all (wi,we) €
Hm-1D Hm-2. Takingw, = 0 andw, = 0 (separately), we see that this is equivaleritfa/; = O for all
wj € Jm-j (] =1,2). Writing wj = V;X, we can further reformulate this &§VjX = 0 for all V; € %_;
(j = 1,2), from which we derive

0=(UVi%%) , = (Vi&U[%) , = (Vive,U W), | (6.22)

where we have distinguished the Shapovalov forms by a sipbstisplaying the relevant highest weight
module. We therefore conclude th#t, = 0 if and only if botthvh and Uvah belong to the maximal
proper submodule off,. ]
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Let us now assume that there is a non-zgrione singular vectoryX in Z (playing the dle of wy),
wherey € %4~ is singular (and normalised, say). We take=|. If the corresponding Verma modulg,
has another (normalised, prime) singular vector of grage tleari, we will denote it byx ~v, and its grade
by~ < 1. In this new setup, the content of Lemma 6.12 is simply dbsdras follows. Ify~ is not defined,
thenWy = 0 only if U = 0, as follows from the remark immediately following the staent. On the other
hand, if x~ is defined, then we see th#{; = 0 if and only ifU € (x )"(#*Lin% *Lz),-_,. This
follows from factorising eathJjT as(UJ-’)Tx‘,Which leads tdJ = U L1 = (X‘)TUiLl andU = —UslL, =
—(x)usLa.

The following result will allow us to compute the dimensiooisthe space of inequivalent staggered
modules. We mention that the first of the three cases apglagire was at the heart of Rohsiepe’s analysis
[26], although he only stated it for modules of chain type.

Lemma 6.13. The subspace a¥{_1 @ #{_» that is annihilated by ever’y has dimension given by

p(l) if x~ is not defined,
dim (\Ker%y =< p(1)—p(I —1") if x"X=0, (6.23)
v p()—p(l—17)+p(l 1= 1)+ p(l—1-—2) if x"X£0.

In the first two cases the result coincides witim_# and in the third case witllim_# + dim(Z L, N
UTL2) -

Proof. TakingU,, such that{ Wy, } is a basis for I, the mapping
(Wl,Wz) — (Lpul (Wl,Wz)7 e qJUn (Wl,Wz)) S (Cn (6.24)

has kernel given byy KerWy and rank equal to dim M. In other words, each linearly independent
equation¥y (w1,ws) = 0 reduces the dimension we want to compute by one:

dim (|KerWy =dim (J4_1® ) — dim Imy
U

=dim (4 _1DH o) —dim (Z Lan% TLy) | +dim Kery. (6.25)

Consider therefore the case in whi¢h has no singular vector of grade less thaexceptvy), SOx ™ is
not defined. Then we have dio¥{_; = p(I — j) for j = 1,2. But, Lemma 6.12 tells us that in this case
(withm=1),U — Wy has a trivial kernel: dim Ke# = 0. Plugging these facts and the result of Lemma 4.3
into Equation (6.25), the first formula follows.

Consider now the cases for whigh is defined. Regardless of whethgrX vanishes or not, Lemma 6.12
gives (withm=1) Ker¥ = (x )" (ZtLin% *Lz),-_,, hence

dimKerW =dim(#% "LanZ"La)- y=p(I—1" =) +p(l—1"=2)—p(1—-17), (6.26)
by Lemma 4.3. Wheix~X = 0, the graded dimensions of” are dim#{_; = p(l — j) — p(l =1~ —j) for
j = 1,2. Plugging everything in and observing cancellations gjivee second formula. On the other hand,
if x~X# 0 the graded dimensions are difi_j = p(l — j) and the third formula follows. ]

With help of Lemma 6.13, we are ready to state and prove oneuofhmin results, that giving the
dimensions of the space of isomorphism classes of staggeoedles,Q’/G’, when the right module is
Verma.

Theorem 6.14. The dimension of the vector spa@&/G’ of isomorphism classes of staggered modutées
with short exact sequence (6.1) is the number of rarkl singular vectors in“. Explicitly,
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Case (0): (¢=0) dimQ’'/G' =0,
Cases(1) and(L'): (" of chain type opp = 1 braid type)  dimQ’/G' =1,
Cases(2) and (2'): (" of p > 1 braid type) dimQ’/G =2.

Proof. Case (0) being already done (Theorem 6.4), we will have t&wat the cases (1), (1'), (2) and (2')
of Theorem 6.11 separately. As we already know that@irs dim.#, — 1 (Equation (6.9)), it remains to
be shown that dir®’ = dim.#, in cases (1) and (1’), and that diod = dim.#, + 1 in cases (2) and (2').
Case (1): Let ¥ = .# = % Xp—1x and defingy by X = X, = xX,_1. This x is then normalised and
prime, and is given byl — {,_1. LetW be ), as defined in Equation (6.20a). Whefit is of chain type
or of braid type withan = X; x, Lemma 6.13 applies witly ~ undefined. Sinc®’ = N, Keryy, we read
off the dimension
dimQ' = p(¢—lp_1) =dim.. (6.27)
The outstanding possibility, wheg#’- is of braid type withawy = Xfx, is such that Lemma 6.13 applies
with x~ = X, henced ™ = £; . But for case (1)X; x= 0, so the second formula in the lemma also gives
the dimension of)’ as
dimQ’ = p(¢) — p(¢;) = dim.. (6.28)
Case (1'): This can only occur in the = 1 braid case witlwy = X;"x andX; x # 0. We set# = .# =
A" andy = X" =X, x~ =X, sol =¢andl~ = ¢;. From the third case of Lemma 6.13, we read off

dim (\Keryy = dim .#; +dim (%*le%+L2)q4. (6.29)
U

Butin case (1) Q" is a only a subset of this intersectia! = Ny ¢/} € Ny Kerygy (and the inclusion is
typically strict). Accounting for the extra conditions imged by thejy), means that the dimension of the
admissible data is reduced by dim i, which is of course given by

dim Imy" = dim (%*le%+L2)ZIJ—dim Kery". (6.30)

Thus, dimQ’ = dim ., +dim Kery".

To show injectivity of " and complete the computation, note first thatX; x),_1 ® (Z X{ X)¢—2 C
Nu Keryu, soy" is defined on this subspace. Now we apply Lemma 6.12te- % X; x, m= {—¢; and
W=y". Since”VhLH,,I has no singular vectors of grade less thz(iexceptth% itself), we conclude that
Y{j» =0 impliesU” = 0.

Case(2): In the braid case witjp > 1 we have

M =UXG XA UK % (6.31)
In case (2), the sum is direct at grades smaller thao we may uniquely decompose evaryc .#;_j as

wi=wiwl, o withw e (7% 0x) (6.32)
/]
We proceed by considering the-" and “+” pieces separately.
The space whose dimension we want to compute is

Q' = (ﬂ KertﬂJ) N (ﬂKerg@). (6.33)
u- Ut

We take. " = %X, 1%, W= g*, X = xX; 4, | =£—(; 4, and if definedX; = x "X, ; and|~ =

b, — Eﬁfl. Then, the first or second formula of Lemma 6.13 (as apprtgrigives the dimension of
Nu= KerL/JaEi , Where the;,UdEi are restricted to the direct sum of the subspe(c%@(;ilx)g 1@ (%X;ilx) '
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(spanned by theﬁwf,w%) of Equation (6.32)). The result is that this dimension cmlas with that of
_ +
A= (%prlx)é
But from the definition of thequdﬁi, Equation (6.14), we quickly determine that ﬂﬁi always annihilate
T . . . . .
the subspacé%xpflx) . ® (@/prlx) " The dimension we want is therefore just the sum

dim Q' = dim (%xp—,lx)z +dim (%X;le)g = dim .2, +1, (6.34)

where the additional 1 derives from the fact that the decasitipn (6.31) is not direct at gradebecause
of the one-dimensional intersection spanneddy

Case (2'): As in the previous case, we use Lemma 6.13 to compute the diorenf (=« Kerwji,
where the(,ujti are restricted to act on pairs of descendants (of the apptegrade) ob(;ilx. This time
we must use the third formula, with the result that this disien is

dim (%x;ilx)ﬁdim (Z unztLs),, .
The sum (6.31) is no longer direct at grades less thédut we still know that eack;udﬁi annihilates pairs
(w1,w2) whose elements; are in (@/Xﬁil )/ . Consequently, any pair whose elements are in the
— ]

intersection of these subspacé?{ng)( , Is also annihilated. It follows then that
(]

dim ((ﬂuf Kerg-) N (Nu+ KerwJ+))
=dim (7%, x) +dim (X5 ) +2dm (7 LnwtL),

—dim(#x; ) —dim(2X;x)
- p(z—e;,l) +p(z—z;,1) +p(£—£;—1)+p(£—£;—2) —2p(£—e;)

=dim .4 +1+dm (2 L% L), . (6.35)

Finally, we recall thatQ’ = Nyn Keryy), € (Ny- Keryy ) N (Nu+Keryy),). Asin case (1), this
implies that
dim Q' =dim .#; + 1+dim Kery", (6.36)

and the injectivity ofy” follows from the same argument as before. This completesomputations. m

6.5. Invariants as Coordinates. We have seen in Theorem 6.14 that the number of @nkl singular
vectors of#°" coincides with the dimension of the vector sp&¢G’ (equivalentlyQ /G) of isomorphism
classes of staggered modules with the short exact sequérige Next, we will construct coordinates on
this vector space by defining invariarisor 31 of the data defining the staggered module.

In cases (1) and (1), recall tha# is generated by the singular vectds_1x. We definex € %~
so thatX = xX,_1 (x is then singular, normalised and prime). Sirngéds not a scalar, we may write
xT =YiL1 + YL, thoughY; andY, are not uniquely specified. Nevertheless, every choicé aind Y.
defines a functionaﬂ? E(My_1® Mi—2)* by

Y101 + Yot = B0, @2)Xp - 1X. (6.37)
Becauseg is singular, this functional is invariant under the actidrihe gauge grouf®':

B+ L1t wp+ Lou) — B, wp) = VL1 + Yalo)u=xTu=0  (ue.Z). (6.38)
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Moreover, it should be clear that if the data is admissitda, w,) € Q/, thenﬁ does not depend upon the
choice made fo; andY,. In this case, gauge invariance implies that we have a vediived functional on
Q’/G'. This is our coordinate, and we denote itBy

Similarly, in cases (2) and (2'),# is generated by the singular vectoks_1X and X;le, and we
definexy. € 7~ so thatX = Xixp{1 (making thexy singular, normalised and prime). Again, tiye
are not scalars, hence we may wripe. )" = YliLl +Y21L2 (non-uniquely), and define function@ €
(M1 @ AMy—2)* DY

Yy @+ Yy @ = B (o, @)X, 4X (6.39a)
and Y/ +Y, wp= f3+(w1,w2)xl_:1x (mod % X, 1X). (6.39b)

As above, the singularity of thye, implies that these functionals are invariant un@grand wher{ws, w,) €
Q', the definitions do not depend upon the choic¥ofandY,". Thus, we obtain two coordinates @i/G’
in this case, and we denote the corresponding functionafs. by

We remark that even in the cases (1') and (2"), we do not defirievariant related to the singular vector
X, X. We cannot even write down a formula analogous to Equatié:i#) and (6.39), because = Xp+x
is not a descendant of; x. Even if one could concoct such a formula, it is difficult toagine why the
corresponding quantity should be gauge invariant. In asg cae will see in Theorem 6.15 below that the
invariants we have already defined are sufficient to comiyletearacterise a staggered module with exact
sequence (6.1).

Note that if (w1, @) € Q', so we do indeed have a staggered module (with right moduleaje then
wj = Ljyfor j =1,2. Hence we may write (abusing notation in an obvious manner)

BXo-1x= (YiL1 +YoLo)y = xTy — B = (Xp_1X, XTy>%Xp_1X. (6.40)

Similar formulae may be written foB.., although forf3,, one should include a projection from# onto
w X;_lx. It is in this form that we may compare these invariant cawaities with the beta-invariant defined
in Equation (3.5).

It is the latter invariant which has been used in the liteatio distinguish staggered modules with
the same exact sequence, though we have already noted iifq(8a®)) that this beta-invariant vanishes
wheneverp = rankay > 1. This has not been found to problematic thus far becaustetdest of our
knowledge, only modules witp < 1 have been found to be relevant in applications. Neversielis
vanishing is a conceptual problem which is solved by theriaw coordinates introduced above. Namely,
whenp = 1 (cases (1) and (1)), the beta-invariant of Equation (8&hcides with the (value of the)
coordinatef, becausegy = X (this is why we have risked some confusion by using the sartegion for
the coordinates and invariants). When- 1 and the beta-invariant vanishes identically, we haveatsthe
coordinateg3 (cases (1) and (1") g8+ (cases (2) and (2)). We therefore feel justified in conahgdihat
the invariant coordinates defined here shaafglacethe (in hindsight, niave) definition of the beta-invariant
given in Section 3.

There is one point that remains to be addressed. The beatddantof Section 3 vanishes identically when
p > 1, hence is useless in this case for distinguishing staggecelules with the same exact sequence. We
claim that the invariant coordinates defined above are superthis respect, so we need to establish that
the invariant coordinatg3 or 3, arelinearly independerfunctionals on the vector spa€®/G’, that is, that
they are actually coordinates. We remark that this wouldmete our analysis of staggered modules when
the right module is Verma. Indeed, the vector space of inedgemt staggered modules with a given short
exact sequence (6.1) was seen in Theorem 6.14 to have doneéhsl or 2. As the number of coordinates
we have constructed precisely matches the dimensid¥ &' in each case, they completely characterise
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the staggered module (again, given a short exact sequéPree}ically, this means that the formulae given
in Equations (6.37) and (6.39) reduce the identification sfeggered module (6.1) to the computation of
one or two numbers.

Theorem 6.15. In cases (1) and (1), the functionglis not identically zero on the one-dimensional vector
spaceQ’/G/, and so parametrises it. In cases (2) and (2'), the functiefa and 3, are non-zero and
linearly independent on the two-dimensional vector sgag&s’, and so parametrise it.

Proof. We first note that to show that a functiorfhbn a finite-dimensional vector spa¢ds non-vanishing
on the intersection of the kernels of a collection of functits{ i, }, it is enough to prove thrfi is linearly
independent of this collection. This follows quite readilytaking a basis for the span ofii, }, extending
it to a basis ofV*, and then considering the action Bfon the dual basis (identifying** andV in the
standard way). Our strategy below is therefore to prove ﬁmnd its variants are linearly independent of
the iy (and its variants), s@ is non-zero.

Case (1): Assume thaﬁ is a linear combination of they : [3 =Subuu =Y € (A_18 A_2)* for
someB = ¥, byU = B1L1 = —ByL,. Then, from the definitions (6.11) and (6.37), we get

Yiwi + Yowo = Biwq + Bows forallwy € .#;,_1 andwy € .Z;_», (6.41)

whereYiL1 +YsLo = xT is such thaiX = XXo—1 (S0 x is non-zero and singular). Setting = 0, we find
thatY; — B; must annihilate#,_1. However, this implies that

(a=B) %o 1) = (Xp1x(u—B) 1) =0, (6.42)

hence thatY; — Bl)TXp,lx is a grade/ — 1 descendant of a (non-cyclic) singular vector#4f But, in case
(1), .# has no non-trivial singular vectors of grade less tiigaexcept of course foK,_;x itself). Thus,
(Y1 —B1)" X, 1x=0.

When the Verma module corresponding.# has no singular vectors of grade less tifanve may
conclude tha¥; = B, and repeating this argument fog = 0, thatY, = B,. Then, we obtain a contradiction:

X-r =YiL1+YoLo =BiL1 +Bolo =0. (643)

However, case (1) also includes the possibility thét= 7" is of braid type withp =1, x = X = X
andX; x=0. Then, we can only conclude thi — Bl)Jr =V1x~ forsomeVy € %, wherex™ =X; is
singular. Similarly, takingv> = 0 now leads tqY, — BZ)Jr =V, x~ for someV, € %7 —, and we arrive at

X' =YLy +Yolo = ByLy +Bolo+ (x7)] (Vle +v2TL2) = (x)" (Vle +v2TL2) . (6.44)

This is again a contradiction, because it implies twat= X;"x is a descendant gf ~x = X; x. It therefore
follows that in case (1)3 is linearly independent of th@ly ), soB € (Q'/G')* is non-vanishing.

Case (1'): In this caseQ’ C Ny Keryy, so we again neeﬂ to be linearly independent of tha,. If
this were not the case, we would use the argument which seifise (1) to derive the contradiction of
Equation (6.44) (the sole difference arises becguse# 0 (x~ = X; ), so Equation (6.42) would give
(Y; —Bj)"x = Vjxx for someV; € % ~, recovering(Y; —Bj)" = V;x~). Therefore,3 does not vanish
identically ony Keryyy. However, we still have to rule out the possibility trﬁtmight vanish on the
(typically proper) subse®’ = (N;n Keryy)». To do this, note that there exists a pair, w2) € Ny Kerygy
for which B(wy,w2) # 0. We will use this pair to construct a pdiv;,w5,) € Nyn Keryy), which has the
same (non-zero) value &&/,W>) underfi, thereby establishing th&;«é OonQ'.

The key observation is that aiiw;,wy) € (% X X);_1® (% X~ X)¢_2 is annihilated by3 and everyjiy,
but not in general by the)).. We may therefore “shift” our paifw, w2) by any suchiwy',w5") without
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affecting membership ifi}, Keryiy or changing its value undgt. Take then a basi‘t%w@p} of Imy", and

notice that as the restriction t& x ~X)—1® (% X~ X)¢—2 of ¢))» is zero only forU" = 0 (Lemma 6.12),
this remains a basis for the restrictions. Extend arblfraoi a basis of( (% X~ X)—1® (%x‘x)g,z)*. Let

the corresponding dual basis @ xX)¢—1 (% X~ X)-2 be denoted by (w(l“),w(z“)) }, so in particular,
4 (Wi wh”)) = 5, . Choosing now

W, = %WGE (W1, Wy) W}“), (6.45)

we quickly compute thatw;,w5) = (w1 —wj',wo — w5 is annihilated by everyy,. Since(wy,w,) €
Nu Keryy andﬁ(vx/l,vx/z) = ﬁ(wl,WZ) # 0, this proves thaB 0 on<Y'.
Cases (2) and (2'): In these cases, we once again use the decomposition
My = (7%, 1) ot (%x;_lx)gij , (6.46)
where the sum is direct in case (2) but notin case (2'). Weefoee writew; = w; +w;” withw; € %/ X ;x
(j =1,2). The non-uniqueness of this decomposition in case (2fddo no difficulties in what follows.
We start by observing that the restrictions of our functlera the “wrong” subspaces are trivial:

W =Bo=0  on (X)) @ (wXT.x), . (6.47)

In particular, in case (2’), all these functionals vanishtba intersection(%xpfx)[ 1@ (%Xp*x)

(which is why non-uniqueness leads to no difficulties). lkdiws from this that if theB3, are non-zero on
Q’, their linear independence, and hence that ofghgfollows for free.

However, proving that the functiongs. are non-zero reduces to demonstrating (separately-foahd
“+7) that the correspondinﬁi are linearly independent of th[ﬁi and furthermore (in case (2’) only), to
checking that thg8. do not vanish identically oMy~ Keryy,. After splitting the(wz,w,) according to
Equation (6.46), the arguments establishing these reardt&gentical to those presented in cases (1) and
(1), so we do not repeat them here. ]

We close this section with a couple of examples illustrathmg formalism constructed above. The first
illustrates a simple case in which there are two invariaordmatess.. .

Example 8. By Theorem 6.14, there is a two-dimensional space of isonmrpclasses of staggered mod-
ules. withc=0(t = %) and short exact sequence

0— 7 — & — ¥ —0, (6.48)

becauses#’- = ¥ is of braid type and its gradé = 5 singular vectoray has rank2 (this is a cas€2)
example). The dimensionality @f /G’ can also be demonstrated directly as follows.
The normalised rank singular vectors generating the submoduié of 7% are

L.ax  and (L2 3L5)x (6.49)

This example is rather special because the only stateg’bfnot in.# are x and its (non-zero) multiples
(the irreducible highest weight modulg, is one-dimensional). It follows th&@’ = QN.# = Q. Since
¢ =5, we should check the constraint on the possible datacwy,) € .#4 ® .#3 coming from the non-trivial
element of % *L1N% *L2)_g given in Equation (4.8):

(Lo +6L3 — Lila+2La) wn = (L3 +6L1Lo +12L3) ap. (6.50)
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However, both sides must be proportional t§ 7, hence must vanish for all; andw,. There is therefore
no constraint upon the data.

Sincedim.#, = 5 and dim.#3 = 3, the space of admissible data has dimens8orAs the space of
gauge transformations'G= G has dimensiodim.#s — 1 = 6, we conclude that the space of inequivalent
staggered modules with exact sequence (6.48) is two-dioteisas expected. Finally, asy may be
represented in the forms

wo= (L% —LL L2 +4L2,+4L gL_3—4L_4)L_qx (6.51a)
= (L3;—6LoL_1+6L_3) (L%} — 3L 2)x, (6.51b)
it follows from Equation (6.39) and Theorem 6.15 that thigcspis parametrised by two invariants:
B-L_ix= (LT — RLiLo+4L5+4L1ls—4ls)y (6.52a)
and By (L2;— 3L )x=(L§—6L1Llo+6Ls)y (modCL?;x). (6.52b)

Any choice of values for these beta-invariants correspdodsdistinct staggered module.

This example is admittedly special, becaugecoincides with.#" at all positive grades. One conse-
quence is that botA_ andf; are defined for al{cu, ) € Q and are invariant under the full group of gauge
transformationss. In general however, this is not true. Practically, the betariants may be viewed as
numbers to be computed in order to identify representatittistherefore somewhat inconvenient that they
are in general only defined for datay, ;) € Q', hence for only certain choices gfand are consequently
only invariant under the restricted set of gauge transféionaG’ C G preservingQ'.

While the Projection Lemma, Lemma 5.1, guarantees that weat@ays choose (equivalent) data in
Q’, it is sometimes desirable to define the invariants so thataam easily compute them for general data
(o, an) € Q, and hence for general choicesyofin the following example, we illustrate how to combine
the content of the Projection Lemma with the above defindtiofithe beta-invariants to deduce a generally
valid formula.

Example 9. We consider the one-dimensional space sf €2 (t = 2) staggered modules with short exact
sequence
0— % — — ¥3—0, (6.53)

" is of chain type with singular vectors kx andwy = (LE1 - 2L,2) L_ix at gradesl and3 respectively.
wy is therefore composite, of rar¥k and.# is generated by Lix. We note first of all, supposing that y is
chosen such thdiw, ay) € @', that the invarian3 of Equation (6.37) may be defined by

BL_1x= (L —2Ly)y. (6.54)

Our aim is to derive a similar formula that can be used with ampice of y (assuming only that it is
correctly normalised).

To do this, we recall that in the proof of the Projection Lemma constructed projections onto ap-
propriate submodules of#" which take data to equivalent data. This was achieved byideriag an
orthonormal basis of the complement of the submodule (astawvgpace) at the right grade. In the case
at hand, we only need one projection to get frmo Q’, the submodule we want to project ontaig,
and the grade of our basis is= 3. Sincedim.#3 = 2 anddimj‘fgL = 3, we may take & %L,g to define
our orthonormal basis{Zx} (recall that the Shapovalov form is assumed bilinear, nstiséinear). On
the other hand, the vectorsﬂx and L 5L _1x span.# at grade3 (they are the YL_1x in the notation of
Section 5).



40 K KYTOLA AND D RIDOUT

Given data inQ, the key step in the proof of the Projection Lemma was to finitvabpnt data inQ’ using
a carefully chosen gauge transformation ¢n the case at hand, one can check that the choice amounts to
z=—2Z'y. In terms of gauge-transforming y, this corresponds toyipg the operatorl — ZZ' to obtain
the new y (for which the corresponding data iS3f). This immediately yields an improved version of the
definition (6.54) of3,

BL_1x= (L2 —2L5) (1-2Z")y = (L2 - 2Lp) (1 + 3L _sL3)y, (6.55)
which may be used for any (admissible) choice of y.

It should be clear that the same strategy will recover foaatbr the beta-invariants of general staggered
modules (with exact sequence (6.1)) which are valid foreyerorresponding to admissible data. All that
will change is that the orthonormal basis may consist of isgv@ementsZ,,, and that one might need
several consecutive projections. Indeed, in the chain mmsletZLk) denote the basis elements chosen at

thek-th step of the projections of Section 5 and define

P=(1 zzp Dz (2 zz“ D) (-yz @), 659

The formula defining the invariant now becomes

BXo-1x=x"(1-P)y. (6.57)

In the braid case, projecting from raikk- 1 to k required two steps and we will denote the corresponding
orthonormal bases bZ( (k=Lit) andZLk;f). Now,

=(l—ZZLp*1;*)(ZL"’7 )( Zzp 2+ p 2+ )(1 Zz(p 2;- p 2;- ))T)
(13 ZF @) )(1—22“’ () )(LZZ,}'* Z)"), 658

and the invariants are defined by

BX, x=(x)T(1-P)y and B,Xjx=(x;)"(1-P)y (mod%X, 1x). (6.59)

As a final simplification in such formulae, we can even remesihconvenient quotient in the definition
of B;.. Specifically, we can choose one more bl }, this time for%, , . suchthatthe correspond-
p—1""p-1

ing baS|s{W“th+g;_l} of ”VhLHE_l is orthonormal. Then for any € t///@il, the vectory , W, W u is in
@/X;_lx, andu— quuWJu is proportional toxptlx by virtue of orthonormality. A completely explicit
formula for 3, is thus

BiXy ,o1X=(1- zWu )(x) (1-P)y. (6.60)

We make one final remark about this way of defining invariaitse explicit forms of the projections
1—P e  will in general depend upon the choices of orthonormal bases. However, the values taken
by the beta-invariants of course do not.

7. GENERAL RIGHT MODULES

In view of the general construction of Theorem 4.4, the exise question in the the case of arbitrary
right moduless#R seems at first to be more involved than t#R Verma case elucidated in Section 6.
The vector @, —X) that are added to the list of generators ¢f (Equation (4.10)) contain botdw, which
is only determined by the data in a rather indirect fashiow X, for which no simple, explicit general
formula is known. However, Proposition 4.6 suggests anradte strategy. Indeed, given left and right
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modules#" and.#R, we can first use Theorem 6.14 to determine the space of ignison classes of
staggered moduleg’ with exact sequence

00—t 7 "y 0, (7.1)
and then for each isomorphism class, decide whether therrighule can be replaced by’R, obtaining
0—- L LR 0. (7.2)

In practise, the isomorphism classes are determined byetzaeibvariants ofs”, so our task in this section
is to analyse, in terms of these coordinates, when such aceplent is permitted. Throughout this section,
we will assume that the right modul#®R of .7 is not a Verma module.

Note that the definitions o, G, Q’, G’ and.# depend only upon the left modul&- which is un-
changed in the replacement proposed above. We will therefontinue to use these notations in this
section without comment. Similarly, the important defimits (Equations (6.37) and (6.39)) Bfand B
make perfect sense for’. Indeed, since the data of and.# coincide by Proposition 4.6, it follows that
their beta-invariants coincide too. We therefore obtasramimmediate consequence of Theorems 6.14 and
6.15, a unigueness result covering every case except thelhwias already treated in Corollary 3.5.

Corollary 7.1. There exists at most one staggered moddléup to isomorphism) for any given choice of
left and right modules and beta-invariangsor 3. of Section 6.5 (as appropriate).

7.1. Singular Vectors of Staggered Modules. It was observed in Corollary 4.7 that’ may be realised
as a quotient of”. We give in this section a sharpening of this result. Firswvéeer, we recall from
Proposition 3.3 that wheX & %f is defined, it is necessary for the existencestthatXwy = 0 in 7"

A similar statement holds if botl ¢ @/zi andX " € 02121 are defined. We therefore assume in what
follows that.#* satisfies this requirement.

Proposition 7.2. WhenX is defined, a staggered modu#é exists if and only it has a singular vectoy
atgradel +/. Then,” = j/%y. WhenX ~ andX " are defined,” exists if and only it has singular
vectorsy~ andy* at grades!/+ ¢ and¢+7 ", respectively. Theny = SNUY +UY").

We remark immediately that by Proposition 3.3, the left mMedi#’" does not have a (non-zero) singular
vector at grade + ¢, so the singular vectorgor y* in . are not annihilated by the projection oritgr.
Indeed, we may assume the normalisations

(Y) = XV or  T(y) = YivhR. (7.3)

The singular vectors therefore have the foxim— @ orYiy— w*, wherew, w* € #". The uniqueness
of such singular vectors follows again from Proposition. 3\ mention that it is in considering situations
such as these that the terminology employed by Rohsiepejrbgzomes inconvenient. In particular, we
see once again that fot, Rohsiepe’s lower module, which he defines as the subspdggaifenvectors,
is not a highest weight module (it contaiyp)s

Proof. We first assume tha# exists. Denote by#” and.#” the submodules of#- & % in the construc-
tions (Theorem 4.4) ot/ and.s respectively. As we have seen in the proof of Proposition A6 N .
We will show thatLy (@, —X) € .4 for all n > 0 and (Lo — hR —7) (w, —X) € .+, thereby establishing
that (m, —X) becomes singular in the quotie(?’" & %)//V =& (we will only detail this direction in
theX case, that oK™ being identical).
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We first writeLnX = Up (Lo — hR) +U;L1 +UsLo, as usual becauseéis singular. Then in#- & %, the
definition of 4 gives

Ln (@, —X) = Ln (@,0) —Ug (0,Lo — h7) —U1 (0,L1) — U2 (0,Ly)
= Ln (@,0) —Uo (w0, 0) —Us (@1,0) —Uz(2,0)  (mod.4#"), (7.4)

and each of the four terms on the right hand side are obvidnsly(#1) = s~ & {0}. Now, (w, —X) is
one of the generators of”, so the sum of the four terms is irt” (since/ C /). But the existence of”
implies that 4" N1t (%L) = #° = {0} by Theorem 4.4, hence that the sum of these four terms is zero.
We conclude thalt, (@, —X) € ¥ as required.

The argument fofLo — hR —7) is similar. In fact, we havéLo —hR — 7) X = X (Lo — h®), so

(Lo—hR—7) (w,~X) = =X (0,Lo— h¥) = =X (w0,0) (mod .A). (7.5)

But we are assuming th&wy = 0 (Proposition 3.3), hence we find thity —hR —7) (@, —X) € ./, as
required. This completes the proof that the clasémf—X) modulo.#” is a singular vector of”.

The other direction requires us to show that the existenctefsingular vectoy ¢ 5% implies that
the quotient by the submodule generatedyliyg the desired staggered modulé. The strategy here is
rather similar to that used to prove Theorem 4.4. First olesérom Equation (7.3) thalr(#y) = 7,
where #R = R/ # . We denote the projections from to j/%y and from#r to 2R by T and
1z, respectively. We then define module homomorphisrasd r so as to make the following diagram
commutative:

0 - —— I Y —— 0
H m [ : (7.6)
%
L ! 7 n R
0 W4 7y I — 0

Our task is now to show that the bottom row is exact. For injégtof 1 = 7701, we must show that
Kermnimi = %y N i(s#") = {0}. But, if Uy € (") for someU € %, then we can assume that
U € %~ by the singularity ofy. Exactness of the top row now gives=077(Uy) = UXVr € %r, hence
U = 0 as Verma modules are free @ -modules. This proves thatis injective. The projectiornt is
well-defined byrmrom= 1,4 o 7T because Ker is annihilated by the right hand side by construction. Its
surjectivity follows from that ofrt , and7t.

Exactness then follows from that of the top row, whemoe! = moTTol = Tyo =0, and the
following argument: Ifrro 7i(u) = O for someu € .7, thenrt ; o 77(u) = 0, hencer(u ) =UXvr for some
U € % . We therefore conclude that

u=Uy (modi(s#%)), so Ti(u)=0 (modTi (") =1(A")). (7.7)

As Tt is surjective, we are done.

We have therefore constructed an exact sequence with thardfright modules of”. The data of
Y/?/y is obtained by acting oy = Ti(y) (which is indeed mapped & € R underm), and coincides
with that of & (and.#). By Proposition 3.6, =~ y/%y as required.

The argument for th& ™" case is similar, though slightly more complicated. Firstagastruct an exact
sequence forﬁ/@/y‘ as above (with injection’ and surjectionr), obtaining a commutative diagram
very similar to (7.6). The arguments for this step are eyatit same as those above. Then, we define
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and 1t so as to make the following augmented diagram commute:

T

0 Y 7 " Hr —— 0
H 7 [

0 ot L %y)_;, i Z;“Fi 0. (7.8)
H [m [

0 e 7 TR ——0

wUy +Uyt
Here, 7t corresponds to quotienting by the submodule generated land T 4+ corresponds to quotient-
ing by the submoduleZ * generated bX vz orX X as appropriate, wheré is the highest weight vector
of %#r/_ 7~ . The arguments demonstrating exactness and the isomorjolfii” and j/(%y* +Uy")
are also identical to those above, except as regards thétpado is injective.

Note then that will be injective if the onlyU € % ~ for whichUy* € 1’(#") are such thatly" € y~.
But applying7 and using the exactness of the middle row of (7.8) giv&s X = 0. The module generated
by the highest weight vectof is not Verma, so we can only conclude that=V~x, +V* x| for some
V* € %, where theXfYJthR denote the (normalised) singular vectors/iix whose rank is one higher
than that ob_(+vhR (in particular, the)(j,E are singular). Thus,

Uyt =V x;y +Vixiy'. (7.9)

We use the fact thaﬁfr = x*X" for some singulax® € % ~ (which follows from the Feigin-Fuchs
classification of singular vectors in Verma modules). Itsity verified thay £y — x=y~ € . are singular
vectors and furthermore that they are in iKet Imi. By Proposition 3.3, we then ha\}ejfy =xiy .
Substituting into Equation (7.9), we therefore see thatwbetorUy" ¢ . must be in the submodule
generated by, establishing the injectivity of. ]

This result validates the practical technique propose@1ij fo find constraints on the beta-invariant of
a staggered modul¢” by searching for singular vectors in the correspondﬁ"?g The power of Proposi-
tion 7.2, when combined with the classification of Theoref6is evidenced by the following examples.

Example 10. We are finally ready to demonstrate the claims made in Exaiplend 4 concerning the
allowed values oB. In the former case, the staggered modutehad c= —2 (t = 2), 7+ = #y/73 and
AR =1/ 6. By Theorem 6.14, there is a one-dimensional space of sriagmodules? with the same
left module butz#R = 77, parametrised by3 (Theorem 6.15). We search i for a singular vector at
grade6, finding one foreveryf3 € C:

y=(L3,-8L oL 1+12 3) (L2, —2L 5)y— (—1—36 (B+1)L2,L2, +4(148+5)L ol oL 4
—6BL2,—6(B—2)L 4L2;+8BL 4L »—2(58+2)L 5L 1 +4[3L,6)x. (7.10)

Here, we have use(l.%leL,g) L_1x = 0 to eliminate terms of the forrﬁ;’/*L?;lx.18 It now follows
from Proposition 7.2 that there also exists a one-dimerai@pace of staggered moduleg (likewise
parametrised by3) with the desired left and right modules.

The case of Example 4 is different. The staggered modullead c=0 (t = %), A = W)V and
R =1 /5. Searching for a grads singular vector in thes” (with unknown3), we find that a singular

8This is nothing but the requiremeMiwy = 0 of Proposition 3.3. Combined with the observation thatghage freedom here is
trivial, .%1'- = Cup, this also explains why Equation (7.10) is valid independdhe choice of.
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vector existsf and only if 3 = —%, in which case it has the form

Y= (L4 DL L% 442,44l gl 1 — AL 4)y— (- RL sl o+ BL gL 1 +2L 5)x.  (7.11)

Here, we have use(L?, — 2L ,)x = 0 to eliminate terms of the forr@ ~L2 ;x. Proposition 7.2 now
states that there is a unique staggered moddlevith the desired left and right modules, and that it has

beta-invariant = — 3.

Whilst searching for singular vectors gives a useful gertechnique to determine how many staggered
modules correspond to a given exact sequence, it is clehisanethod is computationally intensive. For
instance, even the relatively simple module discussed anipte 6 requires searching for singular vectors
at grade 14, hence determining the formwmf(when it exists) within a space of dimension diff; =
p(14) — p(10) = 93. Clearly, it would be very helpful to have stronger existeresults, and it is these that
we turn to now.

7.2. Submodules and the Projection Lemma. The previous section reduces the existence questiogrfor
to a question about singular vectgréor y*) in . We will first develop the idea of this section in the case
in which there is only on&, briefly noting afterwards the slight changes needed indhecase. Recall
that these singular vectogsnecessarily take the forldy— w, wherew € jfé:—[ In searching for these
singular vectors, we are naturally led to consider the selerhents obtained fromdy through translating
by an element O%L#,' This translation is strongly reminiscent of gauge transiag data, and it is this
similarity that we shall exploit in this section.

To make matters more transparent, let us consider insteat, af staggered modulg that differs only
in that its left module is also Verma. This does not changedimeension of the space of isomorphism
classes, by Theorem 6.14, and we have the usual definitionsyptw, w1, wp and (or B1). However,
this slight change of viewpoint necessitates a reinteatiaat of the results of the previous section, because
a Verma left module obviously conflicts with the conclusidriPooposition 3.3 when the right module is
not Verma (upon setting a singular vector.#fR to zero). Instead of searching for singular vectors of the
form Xy — w, we will therefore instead consider the submodules’ofienerated by th&Xy— u, whereu
ranges ovef#.),,; C 7.

More precisely, let us consider the submodufégu) C .7 which are generated byandXy—u. Because
we have insisted that the left module is Verma (and this is whyare insisting upon this in the first place),
these are all staggered modules with exact sequence

0— %L — 7 (u) — Yryg — 0. (7.12)

Indeed, puttingy = Xy— u, we define in the usual wagip = (Lo —hR — ) y = Xaw, @1 = L1y, @> = Loy,
and thenceB (or B..) by Equation (6.37) (or (6.39)). Varying € (7L )47 then really does amount to
performing gauge transformations on any given represeata? (0) say. In particular, all theZ (u) are
isomorphic.

Apply now the Projection Lemma, Lemma 5.1, to the staggeredute.7 (0). This tells us that we can
always make a gauge transformation so that the transforram{a)”’l,w’z) belongs to the submodule’
of % generated by the singular vectors of rgmk p — 1, wherep is the rank oftn = Xxin ¥ andp is
the rank ofXwg in #r (sop +p is the rank ofto € 7). In other words, there exists € (#.),.,; such
thatvic™ (Xy— ) C .#. The submodule&” (Xy— @) C 7 is then a staggered module with left module
. (or even some submodule thereof), right modyle, 7, and beta-invariarn (or B_.).
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Consider now the quotient o7 by .7 C 7. If we assume thatw ¢ .# (which is equivalent to
assuming thap > 1), then Proposition 4.5 tells us that this is a staggeredJieQﬁ; with exact sequence

0— Yy /Ml — F — Yp — 0. (7.13)

Moreover, its beta-invariant is obviously the same as tiat’o namelyf3. It should now be evident that
y = Xy— w s a singular vector o, so by Proposition 7.2, we may construct a mod#le= ﬁ/%y for
each beta-invariart whose exact sequence is

0— Y/ Ml — S — Vg UXvr — 0. (7.14)

We can even reduce the left module&ffurther by quotienting by any submodule not containing

It remains only to remark upon the differences in fKie case. We may apply the above formalism
to consider separately the submodu@si(u) C 7 which are generated by and Yiy— u. Applying
the Projection Lemma to each, we conclude that there exissuch thatic™ (Yiyf w*) C . for the
submodule# C ;. generated by the rank+ p — 1 singular vectors (we emphasise that this is the same
submodule for both“” and “+”). The vectorsy™ = Yiy— w* are therefore both singular in the quotient
S =T /., so an appeal to Proposition 7.2 then settles this casén@thits all together, we have proven
the following result.

Proposition 7.3. Let p and p denote the ranks of the singular vectas = Xx € % and X\r € #g.

If there are no (non-zero) singular vectors i~ of rank p +p — 1, then the dimension of the space of
staggered modules” with exact sequence (7.2) matches the dimension of the sppataggered modules
. with exact sequence (7.1).

Example 11. This result allows us to understand why the exact sequeni8)(8f Example 3 admits a
one-parameter family of staggered modules. In Example &Qpraved that this was indeed the case, but
now we see it as a direct consequence of Proposition 7.3, ancehas a corollary of the Projection Lemma.
To whit, the left module i¥5/%3 and the right module i91 /7% (see Figure 3 in Section 3). The ranks of
wp = L_1x andXyr are 1 and 2 respectively, so that @by is p + p = 3. But, there is no (non-vanishing)
rank 2 singular vector of#" (it would have dimensio8), hence the proposition applies.

We note that the proposition does not apply to the exact segugd.20) considered in Example 4. In
this case, the left module i& /%> and the right module i1/ 75, so we find thap + p = 2. But there is
a non-vanishing rank singular vector ins#", namelyay. This failure to meet the hypotheses should be
expected as we have already shown (Example 10) that the sliomeof the space of” differs from that of
the correspondin@z. We will therefore have to work harder to get an intuitive ersfanding of why this
is so (beyond a brute force computation of singular vectors)

Example 12. In the study of the so-called LM, q) logarithmic conformal field theories [24], one encoun-
ters staggered modulegs with c= 13— 6(q+ q*l) (t = q) and exact sequence

0— Q15— Ss— o@l,s+2(q—a) —0, (7.15)

where 2y s = 7h, ./ 'h -+ Here, sis a positive integer not divisible by q, éet o < q is the remainder
obtained upon dividing s by g. The left and right modules dmehain type, the former being irreducible if
s < ¢ and reducible with singular vectors of ran@sand 1 if s > g. The right module is always reducible
with singular vectors of rank8 and 1.

We then have = 0when s< g andp = 1 otherwise/ = (q— 0) (s—0) /q,p =2and/ =s+2(q— o).
Since the left module has no singular vectors of rarkl, it follows from Proposition 7.3 and Theorem 6.14
that the exact sequence (7.15) describes a one-parametelyfaf staggered modules. Identifying the
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staggered modules appearing in the [(Mq) models therefore requires computing the corresponding-bet
invariants. Unfortunately, this has only been done for aersmall s.

Proposition 7.3 states that.i#- has no (non-zero) singular vectors of rank greater than aaletp
p+p —1, then the existence question for staggered modulas equivalent to the same question for the
corresponding?z. Moreover, Proposition 3.3 tells us that the left mode#é- of . cannot have a singular
vector of rankp +p or p+p + 1, according as to whethe#’" is of chain or braid type, respectively. We
have therefore solved the existence question for staggeoeldiles in all but a finite number of outstanding
critical rank cases. It is these cases that we now turn to.

7.3. Existence at the Critical Ranks. If .#- has non-zero singular vectors at the critical rank p — 1,
we can still follow the strategy of Section 7.2 to try to const.”, but we cannot in general quotient away
the full submodule# without ending up with a left module smaller tha#f-. We will therefore have to
perform a more detailed analysis to determine when we catiequdy a smaller submodule.

For convenience, we will separate the outstanding casesding to the configurations of the singular
vectors of - and R at the critical ranks. We leg € {0,1,2} denote the number of ran+p —

1 singular vectors of##- andn € {0,1,2} denote the (minimal) number of singular vectors needed to
generate 7, where#R = YR/ _Z . The critical rank cases correspond to neitheor n vanishing, so we
have four singular vector configurations which we illusgrat Figure 6. Thereg represents the number
of black circles in the top row fog#’- andn represents the number of white circles in the bottom row for
R, We label the critical rank cases by this pair of integers).

Let us first consider the cagé,1) with modules of chain type for simplicity. Recall that thetal@f
the module7 (@) was denoted by, @), wherew was chosen so tha@l; = L;y=L; (Xy— @) € .Z.
Instead of quotienting” by .#, we would now like to quotient by the smaller submod#@y = % X XxC
. ltis clear thaty will become singular in the quotient if and onlydi; = 0 for j = 1,2. Of course, we
have the freedom of gauge transformations in choosingo the question should be whethen;, ;)
is equivalent to(0,0). From this, we conclude thgt= Xy— w will be singular in.7 /% @y (for some
choice ofw) if and only if the beta-invarianB of .7 (w) vanishes. We remark that this is equivalent to the
vanishing of for any.7 (u), u e (Y),,7 by gauge invariance.

In generalg andn may be greater than 1 and there are a few possibilities antengubbmodules of#7
that we might want to quotient out. We will analyse whether snbmodules/ (Ysy— wf) C 7 contain
the singular vectors(;;ﬁflx € ¥, whereg’ € {—,+} parametrises the non-vanishing singular vectors
Xg;ﬁflx # 0 of #*. As in the argument above, we find that to each generatingiingector of ¢
and each ranf + p — 1 singular vector of#Z", there is a corresponding beta-invariant which must vanish
Specifically, given vectorgt = X°y — @ such thatof = L;¥* € . and elementx:, € % ~ (singular and
prime) such thake, = X&XE' -, andXE' S, x#0in.#", we definegn € {0,1,2,4} beta-invariants by

e toe  wE - N _
(x2) V=0 pip X and  (X%) y‘E:BiX,;ﬁflx (mod %X, 5 1%)- (7.16)

These are the beta-invariants of thé (w®), and we may quotien?” to get a staggered modulé with left
modules#- and singular vectorgf if and only if all of theﬁi, vanish (the easy proof of this is sketched
below). We have indicated which beta-invariants are reieva each critical rank case in Figure 6 for
convenience. We further remark that we will suppress thizé®t ande’ in cases where they take a single
value (as in casél, 1) above).

Theorem 7.4. Given#t, #R = g/ _# and (w,w,) € Q such that#" contains non-zero singular
vectors of ranko + p — 1, a staggered module” with these left and right modules and data exists if and
only if By, = Ofor all £ € {—,+} suchthalX®vig € _# and all¢’ € {—,+} such that X5 1X#0.
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Case(1,1) Case(2,1)
B B
Case(1,2) Case(2,2)
B B.

FIGURE 6. The critical rank configurations for which Proposition8 and 3.3 are not
sufficient to settle the existence question. Pictured agesthgular vectors of#’- of
ranksp +p — 1 andp + p, and their counterparts of ranjs— 1 andp in J#R. Black
indicates that the singular vector is present, white tHastbeen set to zero, and grey that
either possibility is admissible. The (curved) horizorgabws indicate the non-diagonal
action ofLg. It is understood that in certain circumstances, some ositngular vectors
pictured may not actually be present in the braid cases gamgle wherp = 1, #R
has only one singular vector of raftk— 1 = 0). We also indicate for each configuration
the beta-invariants of Equation (7.16) whose vanishingjisvalent to the existence of
the associated staggered module.

Proof. In view of Proposition 7.2 and the above, all that needs torogen is that the vanishing of the
appropriate invariant8 occurs precisely when thebecome non-vanishing singular vectors in the quotient
S = T | (recall that#” is then a submodule o). To lighten the notation, we will omit superscript
indicese. It is understood that what follows must be repeated seplgrftr then values that takes.

It is clear thaty will be singular if and only if bothiw; and @, belong to.#. When.#" is generated
by singular vectors of grades+ ¢ or greater, for example whe#. is of chain type, this requires that
the data vanishes (this direction is always easy in fact)w,Nbe data can behosento vanish using a
gauge transformation if and only if all beta-invariafter ., vanish, because vanishing data is admissible
(Proposition 6.2), gauge transformations connect any tywivelent pieces of data (Proposition 3.6) and
beta-invariants completely determine the isomorphismssc(@heorem 6.15). The proof is then complete
for such.z".

However,.# C .# may be generated by singular vectors of lower grade thard. To deal with this
possibility, note that

©EUXy 5 X = Br=0 (7.17)
Indeed, this is just the analogue of (a part of) Equation7pid the present situation, and it immediately
implies that ify becomes singular in the quotiefit/ ¢, then the invariantgg/ vanish. Roughly speaking,
the converse is also true: Split the datags= @ +o;, Wherewji € @/Xpimflx. From the arguments in
Section 6.4 and Section 6.5, we can infer that the admiséibfe @, ) modulo the gauge transformations

Ou, ue (%Xpiqtﬁfl)ml' form a one-dimensional vector space parametriseﬁpyThen,Ei = 0 implies
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that we cart:hoosewji = 0 by a gauge transformation. It follows that the “full da@]j can be chosen
to belong tO?/ijF 51X When.# is generated by(’ibflx, the vanishing of3... therefore implies that

+
y becomes singular in the quotiedt/. 2. When.7" is generated by singular vectors of graale-p, the
vanishing of both theEi implies the same. This completes the proof. ]

Determining when the beta—invariarﬁé of the staggered moduleg” (u) vanish is an explicit condition
which can be checked in particular examples (see Exampleslt8vip To get more insight into this, we
revisit the definitions of these beta-invariants using trens given in Equations (6.57) and (6.59). This
allows us to seti = 0 and write

€ e ey T o eyt e
BoXs 5 ax=(X5) (1-P)y = (x&) (1-P)X"y, (7.18)
moduloﬁz/Xp‘ 51X if &’ =+, wherel — P denotes the net effect of the Projection Lemma (as in Se6tin

Jr
Now, X°© is singular, and botf(Xg,)Jr andP have positive modes on the right of each of their terms (see

Equations (6.56) and (6.58)). We may therefore write

(x5) (1-P)X* = Ul (Lo—hR) + UL, + UL, (7.19)
for someU&<” ULE) UE€) € %, hence
BaxE 5 x=U5 ap+ U5 o + U . (7.20)

This expresses thézl asaffine-linearfunctionals of the datéw;, wp) of 7 (and thus also 0155). Finally,
applying a gauge transformatiag to (s, «y) results in the left hand side of Equation (7.20) changing by

x5) ' (1-P)Xu—U{F) (Lo—R)u=0, (7.22)

sinceu has conformal dimension® and (1— P)X“u € .#, ;. This gauge invariance then lets us conclude
that theﬁi, are affine functions on the spafyG of isomorphism classes of staggered modufésith
exact sequence (7.1). Assuming tliat 0, so that the beta-invarianfsor B+ of . are defined, we can
therefore consider thEi, as affine functions o8 or 3.

Example 13. We consider the existence of a=c-2 (t = 2) staggered module”” with exact sequence
0— %/Vs— S — N/V3—0. (7.22)

We therefore have X L_1, p=1, X=X = LEl —2L_candp=1. Sincewp=L_1xhasrankp+p—1=1,
this is a critical rank example.

By Theorem 6.14, there is a one-dimensional space of stadgaodules” with left module’; and
right module¥;, parametrised by3. We must determine the beta-invarightof the submoduleZ (0)
generated by x andy. Referring to the calculation of Example 9, we have

Bao=X"(1-P)Xy= (L2 —2L,) (1+ 2L 3L3) (L2, —2L ,)y
= (8L-1LoL1 —15L_1L14+4(2Lo+1) (Lo—1))y = (—158 4 12) a. (7.23)

The conclusion is then tha? exists by Theorem 7.4 if and only if the affine relata- 12— 158 = 0
holds, which require$ = ‘g". This value is of course reproduced by searching for an eiiingular vector
of the formy = Xy — w with @ € %/% Xwn = " (as in Section 7.1).

Consider a casél, 1) staggered module” of chain type (orp = 1 braid type). If¢ > 0 (sop > 0),
then there is a single invariafit to consider. By Theorem 7.4 exists if and only if a single invariant
B vanishes. We have shown that the latter invariant is an afinetion of the former, so there are three
possibilities:
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e B is constant and zero, s& exists for all.
e B is constant and non-zero, s6 does not exist for ang.
e [ is not constant, so” exists for a uniqu¢s.

In the absence of any information to the contrary, we shoxjitet that the last possibility is overwhelm-
ingly more likely to occur. And indeed, this is what we obsenFor instance, the staggered modules of
Examples 4, 6 and 13 all admit only a single valuggofWe can now finally understand this as the generic
consequence of imposing one (linear, inhomogeneous)ar|d = 0, on one unknown3.

More generally, we can use Equation (7.20) to decomposedtzeibvariants of theZ* (0) as

Be (wr, 02) =V (w1, wp) + B (0,0). (7.24)

This definedinear functionalsy;, on the space of data of th& (and 55). Letb € {0,1,2} denote the
number of beta-invariants needed to describe#heAssuming that theZ, are all linearly independenif,
we therefore obtaign linear relations irb unknowns. Analysing these numbers in each case then leads to
simple expectations for the dimension of the space of staggaodules.

More specifically, when the left and right modules are of ohgipe,b is O or 1, depending on whether
p =0 or not. In the braid casé,is 0, 1 or 2, depending on whether=0, p =1 orp > 1 (this is a direct
restatement of Theorem 6.14). We should theretoqeectthat the staggered moduleg corresponding
to the critical rank configurations of Figure 6 will exist iase(1,1) provided thatp > 0 and case§l, 2)
and(2,1) provided thatp > 1. We should not expect the’ to exist otherwise. Moreover, we expect that
when . exists, it is unique, except in cagg, 1) with braid type andp > 1, in which case we expect a
one-parameter family of staggered modules.

Example 14. Itis easy to investigate examples of critical rank stagdem®dules using the singular vector
result of Proposition 7.2. For example, we know from Exanilehat a c=0 (t = 2) staggered module
with 7% = 75/ 75 and 2R = 71/ is unique, admitting only3 = —3. Similarly, replacing the right
module by¥; /77 leads to a unique staggered module V\mt 1. These beta-invariants are the unique
solutions of = —22%(2B + 1) = 0 and B = — 2722309933 — 1) = 0 respectively. Moreover, both of these
examples fall into casgl, 1), but we may deduce from their unlqueness (which was antagijpgbove) that
the case1,2) staggered module” corresponding to replacing the right module %Y/ (75 + ¥7) does not
exist The associated” would have to have singular vectors at gradeand 7, requiring bothf3 = —%
andp = 1.

For case(2,1) examples, we taker" = %/ (¥5+ 77) and #R = ¥4, /%y forh=1,2and H = 5,7
(and c=0). In all these caseg = 1, so we do not expect that such staggered modules exist. Anchon
explicitly check in each case that the appropriate singuktor does not exist, confirming our expectations.
It is more interesting to consider the = 2 examples with#" = 75/ (#12+ 715) and R = ¥/ 4, for
h = 12and15. The singular vectors turn out to exist if and only if

p.=-1420 p 1080 and B =580 g 3860 (7.25)

respectively, in line with expectations. Finally, if we lage the right module by/s/ (#12+ 715) to get a
case(2,2) example, we see from the differght above that this staggered module cannot exist, again as
anticipated.

Our last example illustrates cagé, 1) with p > 1. We search for a e 0 staggered module” with
Y =%/ "7 and 7R = ¥5/ 712, hencep = 2. The correspondlngﬂ turns out to have a singular vector

19Unfortunately, demonstrating this linear independenoeérticular, the non-vanishing) seems to require a sigmfly more deli-
cate analysis than that presented in the proof of TheoreB V& hope to return to this issue in a future publication.
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at gradel12 provided that

1893_ + 808, = —3360 (7.26)
It follows that there exists a one-parameter family of suelggered modules”, just as we expect.

The above examples completely support olive@&xpectations concerning the dimensions of the spaces
of critical rank staggered modules. However, things areenquite as simple as one might like.

Example 15. Letc=1(t = 1) and.#" = #R = ¥4/ 5/4. These are chain type modules witk: 0, so
the corresponding staggered modutéwould be a casé¢l, 1) critical rank example wittp = 0. With nof3
but oneB, we should not expect that such afiexists. Nevertheless, it is easy to check that the vector

(L)~ L o)y— 4L oxe ./ (7.27)

is singular. By Proposition 7.2, a staggered module witls fkft and right moduleloestherefore exist,
contrary to our expectations.

Example 16. We can readily generalise the realisation of Example 15 fbepn/ = 0 examples. Lett be
arbitrary but let h= h,g, r,s€ Z,, vary with t as in Equation (2.12). ThelX, € % also varies with

t, though it need not remain prime (that i§,= X for generic t only). We may therefore methodically
investigate the existence of staggered modules.with= J#R = 7}/ 7. s by computing

B'x=X'Xye 7 (7.28)

for small r and s (becausé= 0, there is naP). Clearlyﬁl need not coincide with the true invariaftif X
is composite. Some results are (note that swapping r and siatsito inverting t):

(9 | ] | B-o
(LY 2 _

(2,1) 4(t2—1) t=+1
(3,1) 24(t2—1) (42 -1) t=41
(4,1) 288(t2—1) (42 -1) (92— 1) t=41 +3
(5,1) 5760(t2—1) (4> —1) (%> —1) (162 —1) t=+41
(6,1) | 172800t —1) (4 —1) (9t>—1) (16:2—1) (252 1) | t =1, +3, +1
(2,2) —8t4 (12— 1)° (12— 4) (42— 1) t=+1 +2
(3,2) ~19276 (12— 1)° (12— 4) (42— 1)° (92— 1) t=+1 +2

Here, we list those t for WhiCB/ vanishesandfor which this vanishing implies the vanishing®{which
requiresX to be prime), hence the existence of a staggered modulexgtth= R = 4,/ #,rs. This
sequence of examples makes it clear that given r and s, seygedules of this kind can certainly exist.

In the ¢ = 0 case discussed above, the invarigBtare evidently constants. As we have seen, their
vanishing is nevertheless a subtle question. Howeverjragng the analysis of Example 16 leads to a clear
pattern for the existence question in this case, and in flaist,question was already solved explicitly (for
chain type modules) by Rohsiepe in [26]. His argument exdeéadny staggered module for whih= 0
or (B—,B") = (0,0) andX is prime p = 1), and we outline it below. Note that this is always a critieak
case.

Proposition 7.5. Suppose that” is a staggered module with left modui*, right module’{r and all
beta-invariants vanishing (if any are defined). Suppos¢héurthat the prime singular vectokyg of
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smallestgrade? is such thalKay = 0. Then there exists a singular vector.i at grade? -+ 7 if and only if
hR = h s with t = § € Q (whereged{p,q} = 1), p|r, q| s and|p|s# [q]r.

Proof. We will prove the existence of the singular vector by demiistg the vanishing o or B,.. We
immediately remark that the assumptior/dfeing the smallest grade of a prime singular meansftkats
for a pair(r,s) € Z, x Z that satisfie$, s = hR with minimal productrs.

Since any invariants o vanish, we may choosge . such thatw, = w, = 0, by Propositions 3.6
and 6.2 and Theorem 6.15. WritingX = Vp(Lo — hR) +ViL1 +VWoLo, we notice that with this choice,
LjXy = Vown € A, so we need no projections to define Iﬁg. Now, one of these invariants is given
(perhaps modul@” X; x) by

Bao=X"Xy=Up (Lo—hR)y, (7.29)
where we have writteX 'X — Uo(Lo—hR)4U1L1 +UsL; as usual. But by PoincésBirkhoff-Witt-ordering
appropriately, we may choo&k = f (Lo) for some polynomiaf, sinceX X e . We therefore obtain

Bun = f(Lo) (Lo—hR)y = f (h7) ap. (7.30)

The vanishing of3 is therefore equivalent toR being a zero off, hence a double zero af(h) (h — hR).
Consider now the highest weight vectgre 74. We have

XXk = Ug(Lo — hR)viy = £ (h) (h—hR) i, (7.31)

By extending{Yvh} to a basis of 74, it is possible to show thg® = 0 if and only if the Kac determinant
(Equation (2.11)) of, at grade = rs possesses a double zertat hR (this is an innocent generalisation of
the statement of [26, Lemma 6.2] — its proof needs no chandes)’,s') with hy ¢ = hR hasr’'s' < 7 =rs,
so the double zero can only occur if there is another such(pag') # (r,s) with r's' = rs. Such a second
distinct pair is easily verified to have the forfri,s) = (|t| *s, |t|r), and integrality and distinctness yield
the conditions given in the statement of the proposition.

These conditions are equivalent to the vanishinthisf 3. But, they also imply that#R and.»#" are of
chain type. Hence this is the onB/and its vanishing is actually sufficient for the existencehef singular
vector. This completes the proof. ]

The restriction thaK v have minimal (positive) grade is not serious, but RohsEepajument requires
some refining in this case. Essentially/ff is of braid type withX = X;", we generalise [26, Lemma 6.2]
to conclude thaB = 0 is equivalent to the Kac determinant4f at grade/ = Zf having a zero ah = .#R
of orderp(?f — (1) +2 (or greater). However, coupling the explicit form of thed<eterminant formula
with the conclusion of Proposition 7.5 f&f = X;, we can deduce that the order of this zero is precisely
p(?; —7; ) +1. Thus,B cannot vanish.

This solves the existence question for staggered modadlewith no non-vanishing beta-invariants,
Xap =0 and#R = #,/ % Xw, whereX is prime: They exist if and only i = P |p|,ulq fOrsomeA, u e Z,,
wheret = % € Q andA # p. In particular, the left and right modules must be of chajmetyOne can also
deduce existence for generd| assuming existence whefiis prime, by inductively applying Proposi-
tion 7.5 to certain submodules of (quotient modules of) theespondingZ. However, deducing general
non-existence from non-existence whéiis prime requires far more intricate extensions of Rohsgae
gument. Such arguments could complete the analysis in sortief special cases, but the details are not
in the spirit of what we have achieved here, so we will not efate any further upon them.

As mentioned before, the existence of thése0 critical rank staggered modules is certainly not in line
with our ndve expectations based on counting constraints and unksoowever, viewed in the light of
Example 16, we can conclude that these counterexamples gxpeactations are in fact quite rare — given
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/, then in all the continuum of values bthere are only finitely many for which such staggered modules
exist.

Of course, we should contrast this with the critical rankesasot covered by Proposition 7.5. In these
cases, whilst we have not been able to rule out counterexemtpbur expectations, we know of none! We
would like to offer a speculative argument suggesting why ihso. Recall that the analysis of the cases
covered by Proposition 7.5 is simplified by not requiring thehen defining the8. Structurally, we only
need considemwo singular vectorsqy (which may as well bein the analysis) an& v (which is prime),
in our calculations. The key observation which we exploiteHxample 16 was that such a configuration of
two singular vectors can be continuously deformed fot.allhe result was (modulo issuesXfremaining
prime) an expression fg8 as apolynomialin t andt~1. Given this, it is no surprise that this polynomial
will vanish for some values df In other words, because eaBltorresponds to a configuration of only two
singular vectors, we should expect that ouiveacounting arguments will fail from time to time.

In contrast, the more general critical rank cases requéeetimsideration of at least three singular vectors.
Such configurations cannot be deformed smoothly — varyimgthout at least one of singular vectors
disappearing is impossible. There is therefore very littieoe gained from trying to express tifeas
polynomials int andt—! because the result will not correspond to a meaningful etadiant for almost
all t. For this reason, we suspect that counterexamples to due mxpectations of this more general
type must besignificantly rarerthan those guaranteed by Proposition 7.5. Indeed, one reigt be
tempted to conjecture that there are in fact no counterelesripeyond those which we have described
above. Evidently, more work is necessary to further undesthis important situation.

8. SUMMARY OF RESULTS

In the preceding sections, we have answered our main quoestithat of the characterisation and clas-
sification of staggered modules — in an expository yet dedaihanner. We fully expect that the formalism
developed throughout the course of this study will be ingbla when faced with further questions concern-
ing these kinds of indecomposable modules and their gésatiahs. Moreover, we have tried throughout
to illustrate with examples how such questions arise in cB@ractical studieand can be answered

The details should nevertheless not prevent us from prieggtite reasonably simple answer that we
have obtained to the original question. The results may ksegmted in purely structural terms, as one
would hope, and we are finally in a position to summarise wrahave shown.

Theorem 8.1. Given two highest weight modulgg" and.##R of central charge ¢ and highest weights h
and IR respectively, the spa&eof isomorphism classes of staggered modutesith exact sequence

0—ut Ly LR 0
is described as follows. Let:
e /=hR—ht be the grade of a singular vectan € 7.
e p be the rank otw, if ay # 0.
e n e {0,1,2} be the number of generating singular vectiras/hpe of 7, where#R="7r/ 7.
e p be the rank of th& v, if n > 0.

b € {0,1,2} be the number of (non-zero) rapk- 1 singular vectors in#-.
g € {0,1,2} be the number of (non-zero) rapkt p — 1 singular vectors i7", if n > 0.

Then:

e There exists no sucl unlessuy # 0 (requiring ¢ to be a non-negative integer).
e There exists no suck unless eacﬁswo =0.
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Assuming these necessary conditions are met, we have:

e Whenn=0o0rn>0butg=0, Sis a vector spac&€/G of dimensiorb. When non-trivial, this
vector space is parametrised by the beta-invariants ofi@eét5.

e In general,S is an affine subspace @ /G characterised by the vanishing of tiga auxiliary
beta-invariants of Section 7.3.

Theorem 8.1 gives a complete description of the sffadeence a complete classification of staggered
modules, whem = 0 orn > 0 andg = 0. In the few remaining cases in whiah> 0 andg > 0 (the critical
rank cases of Section 7.3), our classification is not coraplebr these cases, pictured in Figure 6, we can
however say that it = O (or all the beta-invariants of Section 6.5 vanish), thenrtature of is determined
by Proposition 7.5 and its simple consequences. Otherwisexpect (based on some speculative reasoning
and an extensive study of examples) that the dimensiGn®given by

dimS=b-gn, (8.1)

where negative dimensions indicate tBas empty. We hope to report on the validity of this expectatio
the future.
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