5AI(2)_1/2 AND THE TRIPLET MODEL

DAVID RIDOUT

ABSTRACT. Conformal field theories withl (2)71/2 symmetry are studied with a view to investigating logarithmic
structures. Applying the parafermionic coset constructmihe non-logarithmic theory, a part of the structure of
the triplet model is uncovered. In particular, the coset thés shown to admit the tripléV-algebra as a chiral
algebra. This motivates the introduction of an augmeﬁt(aﬂ)fl/z-theory for which the corresponding coset theory
is precisely the triplet model. This augmentation is envigdigdead to a precise characterisation of the “logarithmic
lift” of the non—logarithmicgl(2)_1/2—theory that has been proposed by Lesetal.

1. INTRODUCTION

We continue here our investigation, begun in [1], of the tiawal level Wess-Zumino-Witten model with
chiral symmetry aIgebrE[(Z) and levelk = —%. Such fractional level theories were originally proposgfl [
and studied [3—13] long ago as (supposedly) rational comdbfield theories. These works were inspired by
attempts to generalise the coset construction of [14] to-umdtary models and the discovery [15] that the
characters of certain fractional level irreducible reprstions carry a finite-dimensional representation of
the modular group. Despite a significant amount of work hawefractional level theories remained poorly
understood and their consistency as theories was regasdgakeationable at best [16].

More recently, a study of thie= —‘3‘ sl (2)-theory revealed that the obstacle to understanding swtrits
was the assumption of rationality [17] (in fact, non-ratitity had already been pointed out in the vertex al-
gebra literature [18]). Using powerful algorithms to contgthe abstract fusion of representations [19, 20], it
was shown that this fractional level theory is not ratiomrather, it possesses an infinite spectrum of distinct
representations. Moreover, this theory was proven to barltigmic, meaning that the Virasoro zero-mdde
failed to be diagonalisable. Subsequent studiek ier—% confirmed this lack of rationality and suggested that
for certain levels one could have both a non-logarithmic atagyarithmic fractional level model [21,22]. These
later works utilised the well known fact (see [23] for exampthat thec = —1 system of bosonic ghosts, which
we shall hereafter refer to as tffay ghost system, exhibits aArn(Z)_l/2 symmetry.

One of the stated aims of [21] was to put the equivalence of3theystem and thcs[(Z)fl/2 model on
a firm basis. There, this problem was attacked with the helano&uxiliary free field realisation and some
rather formidable computations of four-point correlatofsmotivation for the research reported in [1] was to
simplify and make precise this equivalence by working imgigally, that is without needing any free fields.
This was achieved by using the elegant formalism of exterdigebras developed in [24, 25] to realise e
chiral algebra as the simple current extensioaAlc()E)_l/Z. This precise treatment allowed us to correct several
errors in the literature and led to a complete descriptiothefmeaning of modular invariance in fractional level
theories.

The rational (non-negative integer level) Wess-Zumindt® models have long been regarded as the funda-
mental building blocks of unitary (rational) conformal fidheory. Their proposed fractional level counterpoints
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were intended to play a similar foundationéle in constructing non-unitary (but still rational) comnfeal field
theories. What the results of [17,21, 22] suggest is thatitésof fractional level Wess-Zumino-Witten models
might be extended so as to also regard them as fundamenitdihigudlocks of (rational and quasi-rational) log-
arithmic conformal field theory. This is of not insignificanterest. Logarithmic conformal field theory, itself
introduced almost twenty years ago [26, 27], has recentietgone a resurgence of activity as various groups
have started using it to describe so-called non-local easées in the continuum limit of statistical lattice mod-
els [28—43] (see also [44-54] for further mathematical aeldiftheoretic studies) and propose bridges with the
theory of Schramm-Loewner evolution [51, 55]. Moreovehdis recently been suggested that the conformal
field theories dual to certain topological gravity theoresAdS; are logarithmic [56].

With this in mind, we are continuing our studyﬁf(Z)fl/z—theories with the twin aims of understanding the
logarithmic model proposed in [22] and evaluating the (echjred) dles of these theories as building blocks
from which we can construct other logarithmic conformaldi¢heories. To be sure, the closely relafed
ghost system is commonly used as such a building block infiedgbrealisations. However, our philosophy is
different. Just as we have understood the reIationshipekmm?l(2)71/2 and thefy ghosts by starting with the
former rather than the latter (even though the latter is)fre@ we would like to achieve our stated aims without
resorting to free field methods where possible. As we will seeare only partially successful in following this
philosophy, but our deviations are not crippling to the @lledea. The advantages of this approach are clarity
and, more importantly, generality. By developing methadtesl to an intrinsic understanding &(2)71/2, we
expect to be able to apply these methods to other fractieval theories for which free field realisations are
not obvious.

The article is organised as follows. First, in Section 2, wesarise our notations and conventions and
review some pertinent results on the non—logarithﬁh(QL1 /Z—theory that were obtained in [1]. We take some
time to explain how modular invariance is interpreted witlinis theory, emphasising in particular thide
played by what we call the “Grothendieck ring of modular atders” and its relation to the fusion ring. Sec-
tion 3 commences with a detailed study of the —2 coset theory obtained from thsiAs(Z)fl/z-theory and its
obviousu (1)-subtheory. We identify the spectrum of the coset theorgims of irreducible Virasoro modules
and compute the multiplicities with which they appear.

We then note in Section 4 that grouping the states of the ¢beety appropriately gives rise to characters
which match those of two of the irreducible modules of thebedtedriplet modelof [57,58]. This is perhaps
the best known, and certainly best understood, examplerati@nal logarithmic conformal field theory. We
subsequently verify that our coset theory admits the triplgebra as a chiral algebra. Here the computations
become slightly unwieldy, so we depart from our usual pluifds/ and instead derive the chiral algebra of the
corresponding coset of thgy system. Naturally, this gives the simple current extensibthe triplet algebra,
the algebra of symplectic fermions [59, 60]. The tripletedden result follows straight-forwardly, leading to the
relationships summarised in the following diagram:

. . u(1)-coset
Symplectic fermlons<L By ghosts
Simple current extensio}u TSimple.current extension
. u(1)-coset ~
Triplet model Jlb)-coset s[(2)_q),
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The theories at left have = —2 whereas those at right ace= —1. Reversing the horizontal arrows in this
diagram roughly corresponds to finding free field realisasidHowever, we would like to stress once again that
the methods we employ generalise much more readily.

Perhaps the most important realisation of this identifaratf the coset chiral algebra is that the coset spec-
trum is incomplete. Indeed, the latter is not even modulariant even though the parent theory is (in the sense
described in Section 2). We rectify this unsavoury featar&eéction 5 byaugmentinghe originals?[(Z)fl /2"
theory with additional irreducible modules. These turn tmube of the class known as relaxed highest weight
modules [61, 62]. This motivates the introduction of a “l:égg?[(Z)_l/z-theory, which we expect will be the
sought-after intrinsic realisation of the “logarithmié'liof [22].

However, we do not verify this here. Rather, we prefer to dife confirmation and investigation of the log-
arithmic nature of our augmentation to a companion artié8}.[ This is necessitated by the technical subtleties
involved in determining the fusion rules of this new theongdully analysing the mathematical structure of the
indecomposabIeA[(2)-modu|es so-obtained. We instead conclude in Section 6Ganlittief comparison between
what we have achieved and the constructions of [22] and aogedgor how one can still accommodate the
notion of modular invariance within our augmented theory.

2. By GHOSTS AND;[(Z)_l/Z

We first review for convenience certain features of the (femarithmic) fractional leves( (2)_4 /2 model, as
detailed in [1]. Our conventions faif (2) are given with respect to the badig h, f} for which the non-trivial
commutation relations are

[he] =2e ef]=—h and [|h f] =-2f. (2.1)

The second of these relations perhaps deserves commenbaBis®ewe use is not the usual Cartan-Weyl one
(in which [E,F] = H). Rather, it is related to the Cartan-Weyl basiseia § (E+F +iH), h=1(E —F) and
f= % (E+F —iH). In particular, the Killing form is determined by

k(hh) =2 and k(e f)=-1, (2.2)

with all other combinations giving zero. We make this chaféasis from the outset because it is tailored to
the s[(2;R) adjoint, e’ = f andh' = h, and it is with this adjoint that one derives tfg ghost system as an
extended algebra. Indeed, the usawa(2) adjoint gives rise to a closely related, but mildly non-asatve,
extended symmetry algebra.

The above conventions fef (2) carry over to the affinisatioﬁ[(Z) in the usual way. With the central mode
being replaced by the levkl= —%, the non-trivial commutation relations are

[hmﬁn} = 2€mn, [hm, hn] = —Mdmn,o, [am fn] = —hm+n+%m5m+np and [hm7 fn] = —2fmin. (2.3)
It follows from Equation (2.2) that the energy-momenturnstarof the theory is given by
T(2= 3 <§ :h(2h(z): —:e(@f(2): —: f(2e(2) :) ) (2.9)

and corresponds to central chae —1. As one expects, the fielé$z), h(z) and f (z) are affine primaries of
conformal dimension 1.
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FIGURE 1. Depictions of the modules appearing in the spectrum aadnithuced action of
the spectral flow automorphispn Each “corner state” is labelled by itg(2)-weight and
conformal dimension (in that order). Conformal dimensiorsease from top to bottom and
s[(2)-weights increase from right to left.

The spectrum of this model consists of two infinite familidsreeducible modules,y[(Zo) and yf(f:l),
where/l € Z. Here,Eo is the vacuum module of the theo@q is a “spin” module, andy denotes &pectral
flow automorphism ofl (2):

1 1 1
y(en) =en-1, V(hn):hn+§5n,07 y(fa)=fayr  and V(Lo)zLo—ého—@ (2.5)

As usual, such automorphisms allow us to twist any represientr of s?[(Z) on a space (module) by
considering insteadro y ! (the inverse power is conventional). This is indeed a repreion, but it will not
be isomorphic tatin general, even though the underlying representationespiibas not changed.

We wish to concentrate on modules rather than represensatiowhat follows. It is therefore convenient
to distinguish the above twisting at the level of modules bfirdng (somewhat artificially) the twisted module
y*(M). As a vector space, this is identicalX6, but the action of[(2) is different. Specifically, ifv) € M, so
y*(Jv)) € y*(M), thensl(2) is defined to act on the twisted module via

)y (V) =y ((rey ) (W) @=ehh. (2.6)
Dropping the representations makes this more succinct:
W (V) =v (vi@)|v) @=ehf). (2.7)

We will moreover usually drop the superscriptyti and instead speak of the automorphigrimducing twist
maps, also denoted ly between modules.

We illustrate the families constituting the spectrum oftAIh(EQ)fl/z—theory in Figure 1. Note that the con-
formal dimensions of the states of the modules with> 1 are not bounded below (in particular, they are not
highest weight modules). Practically, we will refer to thednlesy’(Lo) andy(£1) with ¢ # 0 as being
twisted. The untwisted moduléso andZ, are then irreducible highest weight modules whose highegjiw
states have respectig&(2)-weights 0 and 1, and respective conformal dimensions O%arﬁd)r later reference,
we illustrate them with their first few weight space multgiies in Figure 2.
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1 11
111 1221
12321 124421
1256521 12588521
12591295 21 1 25101515105 2 1
1 2510182118105 2 1 1 2 51019272719105 2 1
1 25102031383120105 2 1 1 2 510203447473420105 2 1
1 2 51020355563553520105 2 1 1 2 5102036607979603620105 2 1
Lo L4

FIGURE 2. The multiplicities of the weights of the generating regaetations ol (2)_1/2 to
grade 7. As in Figure 1, the (2)-weight increases from right to left (the weights are even fo

f:o and odd forf:l) and the conformal dimension increases from top to bottartegiral for
Lo and half-integral forl,).

The only other highest weight modules in the spectrum are(tinisted) modulesz,l/z = y(ﬁo) and
2,3/2 = y(Zl) which are generated by highest weight states[@t)-weight—% and—%, respectively, and
conformal dimensiom%. Together withﬁo andzl, these exhaust the so-called admissible modules of Kac
and Wakimoto [15] (ak = —%). However,Zo andZ, are self-conjugate representations, Wherﬁa@z and
3,3/2 are not — in general, the twisted modu}é(f:A) is conjugate ta/ ¢ (ZA) As usual, conjugation may
be identified here with the standard (induced) action of tleyMé&flectionw corresponding to the simple root
of s[(2):

w(ey) = fn, w (hy) = —hy and w(fh) =en. (2.8)
On the other hand, the spectral flow (2.5) may be identifietl eisquare root of an affine Weyl translation (and

soy is an outer automorphism). We mention thaandy generate the group of automorphisms?de) which
preserve the Cartan subalgebra. They do not commute.

The fusion rules of ouﬁ(Z)-modules are extremely simple, taking the form

VE(Lx) %1 Y2 (Lp) = VA2 (Lnsp). (2.9)
Here,l1,¢7 € 7, whereas\ andp take value 0 or 1 and their sum is taken modulo 2. The computati these
fusion rules assumes that they respect the outer autonsongtof the chiral symmetry algebra, in this case the
spectral flow, in the sense that

V(W) ¢ Y2 (N) = Y22 (M x4 N) (2.10)
for all (suitable) module$l andN. This assumption is very natural, but to our knowledge hagmnbeen
proven, despite a significant amount of evidence in its favdle mention that (2.10) does hold for the integrable
modules of the rational Wess-Zumino-Witten models, thothghstandard proof is not at all elementary as it

relies upon the Verlinde formula (see [16, Sec. 16.1] fomepi). We also note that (2.10) does not hold if we
replacey by the (inner) conjugation automorphism Instead, we have

M N*=w (M) xpw (N) =w (M xtN) = (MxN)", (2.11)

where we use*” to denote conjugate modules.
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Putting?; = ¢, = 0 andA = i = 1 into Equation (2.9) give§1 X f 21 = Eo, which means thail is a simple
current in the fusion ring. Extending the chiral algebra lg torresponding simple current fields leads, and it
is here that the choice of adjoint is key, to tBg ghost system. This latter system is a conformal field theory
defined by two bosonic ghost fields of dimens%)whose operator product expansions are

-1
BZ)BwW) =2eW)+..., B(2yw) = ﬂ+h(w)+... and y(z)y(w)=2f (w)+... (2.12)
The adjoint and non-trivial commutation relations of thedes are
Bi=v-n and  [ymBn] = dmino. (2.13)

The operator product expansions (2.12) make it clear timgtiost system is a free field theory. It is therefore
easy to obtain fermionic character formulae for its modukss each ghost module decomposes into two level
k= —% g[(Z)-moduIes, we deduce similar character formulae for thedalh particular, [1, Egn. (9.18)] yields
0 qm+én ZZn

R ) — R Lo _ t/24—¢?/8
xy{(ﬁ)\)(z,q) try{(LA)zthO z "% : (2.14)

nNeZ+A /2 m=|n| (q)m—n (Q)m+n

where(q), = |‘|?:1 (1—qj) as always. This should be compared to the standard bosoaiaathr formulae
(reproduced in [1, Egns. (6.4)—(6.5)] for example):

A qGr2 . z A q6r2
N _1/24reZ+(3z+2/\ +2)/12 reZ+(3¢-21-2)/12
XV" (i)\) (z9)=q Z4qur2 _ Z ZéquZr2 (2.15)
reZ+(20+1)/4 rez+(20-1)/4
Both the bosonic and fermionic forms convergelifir< 1 and must be expanded in the annulus
ol < |2? <o (2.16)

in the complexz-plane so that the correct weight multiplicities of the miedare generated [21].

We emphasise however that g ghost theory isiotequivalent to thel (2)71/2-theory under consideration.
The former is obtained by formally extending the chiral &lgeof the latter by the fields of the (2)-module
£1. But the modular invariants of th%(Z)_l/z-theory were completely classified in [1, Sec. 10] and it $uvnt
that the fields ofZ1 arenevercoupled to the (antiholomorphic) identity field. The “ecalence” of the theories
can therefore only be regarded as pertaining to their chiables, not as full conformal field theories. This is
not insubstantial however. For example, it allows us to ffigertain chiral correlation functions in the two
theories (although we would then have to “glue” the holorhar@nd antiholomorphic results differently when
constructing the full correlators of the two inequivalemédries).

It remains to discuss the modular invariance of the theolye theory is onlyquasi-rational(in the sense
of Nahm [19]) so its modular properties are significantly meubtle than those of rational conformal field
theories. We will therefore take some time to emphasise ifferehces. First, we normalise the characters (in
the standard way) by multiplying by*q—¢/24 = y-1/2q1/24, They may then be expressed in terms of Jacobi
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theta functions and the Dedekind eta function:

rm@ [y ],
X 12.0) = 2 [194(2?Q)+193(Z;Q) if £is even, .
XW(EA)(y'Z’q)_ ~1/2 /2, A (2.17)
y “7n(a) | (=1 i (-1 R
? 91(za)  92(zq) .

The normalised characters therefore span a four-dimeabieetor space, despite the fact that they are supposed
to collectively encode the weight space multiplicities ofiafinite number of modules. Modules with the same
character are only distinguished by their (disjoint) ano@iconvergence (2.16) in theplane. However, these
annuli are not preserved under modular transformationsjesoan only define an action of the modular group
if we agree to ignore convergence regidris follows that the modular properties of the theory will biinl to
such distinctions, so only four independent charactersoearelevant to such considerations. We will refer to
the characters (2.173ansconvergence region, asodular charactersn what follows.

To summarise, we have a bijective correspondence betweelnlesand characters with a given region
of convergence. To consider modular properties, we are mweetl to “forget” these convergence regions,
thereby losing the bijectivity. What we gain is that the sadaited modular characters are now, artificially,
defined (almost) everywhere in ttzeplane, so that they admit a well-defined action of the madgtaup.
Formally, we are defining a projection from the abelian gr¢wjth operation®) generated by th&e(z,\),
the Grothendieck group of moduleg® the abelian group generated by the corresponding n@etatharacters
(2.17), theGrothendieck group of modular characte@ne can easily check that the kernel of this projection is
precisely generated by the modules of the form

VAL (Lo) @ Y FH(L1). (2.18)

Now, the Grothendieck group of modules comes equipped withiléiplication — fusion. We may therefore
speak of the Grothendieck ring of modules, or in more stathtiEnrminology, the fusion ring. But it is easy to
check from Equation (2.9) that the kernel of the projectigstdssed above is an ideal of the fusion ring, so
the fusion operation descends naturally to the Grothekdiecup of modular characters (fusion is therefore
well-defined at the level of these characters). This latteug may thus be given a ring structure, so we will
refer to it as thesrothendieck ring of modular characters

The above discussion makes it clear that the Grothendiegkaf modular characters is a quotient of the
true fusion ring of our theory. However, it does not posseseesof the nice features that one would expect
of a fusion ring. In particular, the structure constants &ision ring (the fusion coefficients) are non-negative
integers in the canonical basis, and the conjugation autgi&mw acts as a permutation there. Neither of
these statements holds in the Grothendieck ring of modilaracters (note that has a well-defined action
on this quotient). They are spoiled by the consistent amear of negative integer coefficients, which we can
trace back to thedy” in Equation (2.18).

Nevertheless, it is the Grothendieck ring of modular chizracon which the modular group actsyt the
fusion ring. TheS and T-matrices of the theory are therefore 4 by 4 matrices, ana dutt to be symmetric

10f course, we could just conclude from this observation thatlular transformations are meaningless for the conformal ffeddry
under consideration. We regard this conclusion as unaatisfy because the proposal here leads to the well-knowte-fifinensional
representation of the modular group and a perfectly reasenaslinde formula. However, the relevance of this propdsaphysics
remains to be determined. In particular, it is not clear atgmeg such a modular invariant guarantees the consistentlyeatheory on a
torus.
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and unitary as one would hope. But, as has been known for atilmegS? is not a permutation matrix and the
Verlinde formula,

r Sir r
N”k:ZL Sfi, (2.19)

gives positive and negative integer “fusion” coefficientiowever, one easily verifies th&t is precisely the
matrix representing conjugation in the Grothendieck rifighodular characters and that tN%k are precisely
the structure constants of this ring. This realisation {dljfresolved the puzzle of “negative fusion coefficients”,
at least fO[sA[(Z)fl/z, and it is clear that the story should be analogous for otfaetibnal level theories.

3. THE COSETTHEORY

We will construct the coset theory

((2)_1/2
u(d)
where thai (1) subtheory is generated by the Virasoro primary fie{d). This is then a fractional level analogue
of the parafermion theories of [64]. Th&1) subtheory has energy-momentum tensor given by

(3.1)

t(z) = f% :h(2)h(2): (3.2)
and central charge 1, so the coset theoryds-a—2 theory with energy-momentum tensor
T(2)=T(2—-t(2) = g ‘h(2)h(2): —% re(z)f(2): —% :f(2e(z):. (3.3)

It follows that the Virasoro zero-mode in the coset theoketathe form

1
Lo=Lo+=h3+ S h_;h. (3.4)

The states of the coset theory may then be realised as(thehighest weight states of tr@(Z)_l /Z-theory.
The coset construction [14] guarantees that these statgsacgepresentation of the Virasoro algebia
As 1i(1)-Verma modules are always irreducible, it is easy to decampbes( (2)-modules into theifi (1)
constituents (this of course assumes that these congsitaenactually highest weight modules). The character
of au(1)-Verma module ofil(2)-weight h € Z is
qunz —2n? 2 3 4 5 6 7
@ =q 1+9+20°+39°+59"+79°+119°+159" +.. .|, (3.5)
so by subtracting these multiplicities appropriately frimse of Figure 2, we arrive at a picture of the multi-
plicities of u(1)-highest weight states in th;ﬁ(Z)-moduleszo andZLy. This is illustrated in Figure 3. These
1 (1)-highest weight states therefore carrg & —2 representation afic whose character we can now read off
(at least to grade 7).
For example, restricting to the subspacef@fwhose states have vanishisig 2)-weight, Figure 2 gives its
character (to order 7) as

1+q+39°+60°+ 129" +210° +380° + 639" + ... (3.6)

Since the highest state is obviously @l)-highest weight state of dimension 0, we can subtract théiptiaities
of Equation (3.5) to get

o+ 30 + 79" + 140° + 27° + 489" + ... (3.7)
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1 11
101 1111
11111 111111
1122211 11222211
112232211 1123333211
11234443211 112345543211
1123556553211 1123567 7653211
112356888653211 112357910109 753211

Lo L4

FicuRE 3. The multiplicities of th&i (1)-highest weight states in the generating representa-
tions ofs((2)_, , to grade 7. Thel(2)-weight and conformal dimension are as in Figures 1
and 2 (the dimensions are with respecﬂ(ﬂ)_l/z, not its coset).

This indicates that there must be anothét)-highest weight state of dimension 2. Repeating this psces
obtain the multiplicities (for the zero-weight subspacgjicated in Figure 3:

1+ +29°+3q" +49° +60° + 89" + ... (3.8)
Now the highest of these(1)-highest weight states must beia-highest weight state of dimension 0 (under

the coset Virasoro action). There is i¢1)-highest weight state with weight 0 and dimension 1, so this
highest weight state can be identified as the vacuum of thet tiesory. Indeed, as= —2, we can therefore

conclude from the structure theory of highest weight Virasmodules [65] that this vacuum generates an
irreducible module with character

1—

T 9 1 P rPragt 20 AP+ aq + ...

(3.9)

Subtracting these multiplicities from those of EquatiorBj3we deduce that there must exisbia-highest
weight state of dimension 3. It too is seen to generate adunible module (by checking that its singular
descendant at grade 3 vanishes), so we find thailit®-weight zero states decompose into irreducikike
modules of dimension 0 and 3 (and probably others).

This decomposition procedure is tedious, but easily impleted on a computer. We can therefore explore
the coset theory in terms of its Virasoro modules to sometdeBefore describing the results of such inves-
tigation, let us just note the simple case in which we anallgséhighest state in the subspace of states whose
s[(2)-weights are constantnZ Z say. Such a state is obviously a highest weight state in thettbeory and
Equation (3.4) indicates that its conformal dimension wéin| — (—34n?) = |n| (2|n| + 1).

By repeating this decomposition analysis deeper ins?(mé)-modules, we are led to a precise conjecture:

The set ofu(1)-highest weight states with giveri(2)-weight 2h € Z decomposes as w@wir-module into the
irreducibles

2 1
@ Lm(m+1)/2- (310)

m=2|n|
Here, L}, denotes the irreducible & —2) vit-module whose highest weight state has conformal dimerision
and the prime indicates that the sum inaeincreases by 2. We emphasise thanay take half-integer values,
so Equation (3.10) describes the coset decomposition hf%(ﬂ)—modulesﬁo andzl. It now follows that the
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character of this infinite sum of modules is then

“, qm(m+1)/27q(m+l)(m+2)/2 B 0 m-2n qm(m+1)/2
= > ()T (3.11)
mzz‘n‘ (q>oo n‘pz\n\ (q)oo

(the unprimed sum on the right hand side increases by 1 aspaf)juComparing with Equation (2.14), we see
that our conjecture will be proven if we can demonstrate thieding equality:

[ 72n2 [*)

qm . q m-2n _m(m+1)/2
- - 2nez). 3.12
m;n\ (Dm-n (q)m+n (q)ozo mZZZ\n\( ) q 2ne?Z) ( )

The additional factor 0(1*2”2 /(9), on the right hand side precisely accounts for the chara¢8% of the
1(1)-modules with respect to which we have decomposed our thedeyerify Equation (3.12) in Appendix A.

We could also decompose the twisted modL))é(sE,\) with ¢ # 0 into u(1)-modules and determine the
corresponding coseiit-representations. However, we would quickly discover thate is little point to this
exercise, as the coset representations obtained are thee szgardless of the value é6f This should not be
surprising as the Virasoro algebra does not admit any neiatspectral flow automorphisms. To verify this
properly, note that under the action of the spectral flow muatgohismy (given in Equation (2.5))! (2)-weights
are only shifted by a constant, in fact by the lelket — % Spectral flow therefore maps a set of states of constant
s[(2)-weight to another set of states of constalr{2)-weight, preserving the multiplicities. The decompositio
into 1 (1)-modules will therefore be identical. It remains only to ck¢he conformal dimensions of the coset
(Virasoro) highest weight states. But, applyintp Equation (3.4) gives

1 1 1 1 1\?2
Lo) =vy| Lo+ =h2 hoh | =Lo—=hg—=+=(ho+= h h =L 1
y(Lo) V( ot3 O+,; rr) 0~ 5ho 8+2< o+2> +r; rhr = Lo, (3.13)

so the coset dimensions do not change under spectral flow.

In summary then, we have derived the spectrum of the (chixadpet theory. With the usual field identi-
fications derived from chiral algebra automorphisms (spédtow), we can restrict our attention to the de-
composition of the untwisted modulé‘\s) andzl. The spectrum then consists of the irreducittiemodules
Limm+1)2 for me N, and each such module appears with multiplicity- 1. However, thesen+ 1 copies are
not completely identical. Because the states of the cosetytareii (1)-highest weight states of (2)-modules,
they come equipped with an extra quantum numberst(i2)-weight (or equivalently, thei(1)-charge). It is
therefore more honest to say that the- 1 copies of thevit-moduleL ,m, 1)/2 are distinguished by theé (2)-
weights, which aren, m—2, ..., —m+2 and—m.

4. THE TRIPLET MODEL

Readers familiar wittc = —2 conformal field theories will no doubt recognise the confar dimensions
%m(er 1) which appear in the spectrum of our coset theory. Indeedgtisenstitute the first column of the
extended Kac table for this central charge, a part of whictejgoduced in Table 1 (the Kac table proper is
empty). This lists the conformal dimensions of the highesight states whose Verma modules are reducible,
and hence have non-trivial singular vectors. Eer —2, the corresponding dimensions are given by

2
hrs = % (r,seZy). 4.1)

2Strictly speaking, it is this character which we conjecto@sed on the above analysis.
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o|-3|lo0| 2|13
1] 2 |o0|-tj0| 2|1
3|21 %]o0o|-30
6| 2|3 |12 0
1086|231

TABLE 1. A part of the extended Kac table for= —2, listing the conformal dimensions
hrs. Here,r increases downwards, asdncreases to the right, so the top-left-hand corner
corresponds to the vacuum with ; = 0.

The central charge = —2 occupies a special place in the history of logarithmic comfal field theory as it
was here that the presence of logarithmic singularitieoimetation functions was first linked to the presence
of non-trivial Jordan cells in the normal form af [27]. Indeed, one of the best understood examples of
these theories, thegiplet modelof Gaberdiel and Kausch [57, 58], has= —2. This model has an unusual
extended chiral algebra that is generated by an energy-minmetensofl and three (Virasoro) primary fields
W' (whence the appellation “triplet”) of dimension 3. The agter product expansions take the form (when
normalised appropriately)

W (2 W (w) =

i |2 6T (W) 30T(w) 30°T(w)—8:TT:(w) 30°T(W)—8:9TT: (W)
z-w)®  (z-w?*  (z—w)? (z—w)? zZ—W

+Z i [5wk(w?)’ . gawk(vzv) . 192wk (w) + 22 TWK: (w)

(z-w?  (z-w) z-w
wherek'l and fijk are the Killing form and structure constantsstf2) with respect to some (arbitrary) basis.
This algebra is not the enveloping algebra of any (finitelgegated) Lie algebra, but it nevertheless admits an
obvious triangular decomposition. The notions of highesight state and highest weight module are therefore
well-defined, and it turns out that only four irreducible hégt weight modules appear in the triplet model.

The relevant irreducibles turn out to be generated by higheight states of conformal dimensiohng; = 0,
hp1=1,hio= —% andhy o = g, respectively [57]. Furthermore, there is a single stapet(unormalisation)
of dimensions 0 andr% in the corresponding modules, whereas the multiplicityhaf states of dimensions 1
andg in their modules is two. We mention for later reference tinat fusion rules of the theory close on the
dimension 0 and 1 modules, but that fusion among the dimangaandg modules leads to two new modules.
These may be identified as indecomposable extensions ofrttendion 0 and 1 modules and are responsible
for the logarithmic nature of the triplet model [57]. Theifws rules close on this larger set of modules.

For now we wish to concentrate on the two highest weight nexiaf the triplet algebra whose dimensions
are 0 and 1. All the states of these modules then have integéorenal dimension. This should remind the
reader of our coset theory. By the end of Section 3, we hadméted that our coset had precisety+ 1
Virasoro highest weight states of dimensim(m+ 1) /2. Takingm= 0 and 1, we thereby recover just one state

..., (4.2
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of conformal dimension O but two states of conformal dimensi, just as in the triplet model. Moreover, the
three primary field3\' which generate the triplet algebra correspond to threesdia highest weight states
in the vacuum triplet module. This also accords with the bgthwveight state multiplicities which we have
observed in our coset theory (take= 2 in the above), leading us to conjecture that this cosetryhismothing
but the triplet model.

More precisely, we conjecture that our coset model (3.1)thasame extended chiral symmetry algebra as
the triplet model. This is a reasonable hope as we know tedtetts of thesl (2)_1/, vacuum module are chiral,
so the fields into which these decompose in the coset modehlad be chiral. Moreover, by Equation (3.11)
the “extended” coset vacuum module has character

qm(m+1)/2 _ q(m+1)(m+2)/2 q71/8 2Zm+l _ —2m-1

© , Zzn _ (4m+1>2/8. ez 43
né m:zz|n| (q)oo (q)oo mgzq 7Z— Z—l ( )

which coincides with the character of the triplet vacuum oled59, 66] (thez-dependence can be verified
within the symplectic fermion framework). This coincidensuggests that the coset theory admits the same
chiral algebra as the triplet model, but proving this regsisome non-trivial arguments and computations. We
turn to these next.

In principle, we should start calculating correlation ftinns in the coset theory. This would then enable us
to deduce operator product expansions for the chiral fialdd we would expect to thereby uncover those of the
triplet algebra (Equation (4.2)). However, determiningretators of coset theories is generally acknowledged to
be quite hard — the coset mechanism is not well-suited fdn somputations [16] — and in most cases one has
to resort to a free-field realisation. Luckily, here we caagared chirally by using thBy ghost system, itself a
free-field realisation of th§[(2)71/2-theory that we started with. We will show in what follows thiae algebra
structure of the coset of the ghosts byiit€l)-subtheory is completely fixed by its vacuum module struetur
This will then allow us to deduce the chiral algebra of ﬁﬁeZ)_l/z-coset? We remark that this approach is
constructive — the rather complicated form of the triplejeddra operator product expansions (Equation (4.2))
will be verified as a simple corollary of those of the ghostatdkeory.

To begin, we recall that the vacuum module of the ghost theofgrmed from thek = —% 5A[(2)—modules
Eo andﬁl [1]. The two zero-grade states of the latter module (seerEigugive rise to twait-highest weight
states in the coset theory of dimension 1. We will denoteetlieghest weight states ljﬁ) and \n) noting
that they havel(2)-weights 1 and-1 (respectively). Since such weights are conserved in tmepaoduct
expansions, we can immediately deduce from Figure 3 andrmawledge of conformal dimensions in the coset
theory that

2(2) 2 (W) =W+ (W) (Z— W) + ... n(z)Z(w):ﬁ+bT(w)+... (4.42)

Z(z)n(w):(Zfiv)z+ub1f(w)+... n@nw =W (w)(z—w)+..., (4.4b)

wherea andb are unknown constantg, = +1 describes whethe&f andn are mutually bosonic or fermionic,
and thew= (w) are Virasoro primaries of dimension 3 asid2)-weight+2. It follows immediately that

T(2=bt:n@2(2:. (4.5)

Sin fact, the algebra of the triplet model can be fixed using dhé/underlying vacuum representation. However, this megua long and
convoluted analysis of associativity and null-vectorp@réed in [67] though not detailed there). We propose stugiynstead the ghost
coset algebra because the corresponding analysis is exgreimple.
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Assuming that andn are mutually bosonici( = 1) leads tdl' having central charge 2, whereas assuming
that they are mutually fermioniq(= —1) givesc = —2. With either choiceT (z) T (w) has the wrong operator
product expansion for an energy-momentum tensor ualeds—= 0. This fixes{ andn to be mutually fermionic
and the operator product expansions (4.4) require thatditiad, { andn are both mutually fermionic with
respect to themselves. Normalising so that 1, the defining operator product expansions become

1

(27 (W) =W (W) (z—w)+... n(z)Z(w):m—T(wﬂ-... (4.6a)
Z(2)n(w) = -1 5 +T(W)+... n@nw =W (w)(z—w)+... (4.6b)
(z—w)

We recognise these as the defining relations of the chirabadgof (a subtheory of) symplectic fermions [60].
This proves that thé (1)-coset of theBy ghost system admits the same chiral algebra as the theory of
symplectic fermions. To deduce from this the correspondesult forsA[(Z)fl/2 and the triplet model, we
will show two things: First, that the triplet algebra can berided as a subalgebra of the chiral algebra of
symplectic fermions, and second, that the fields generdltiadriplet algebra are expressible in terms of the
coset representatives of the chiral fields of El{Q)fl/z-theory. In fact, this first requirement is already well
known — such a demonstration may be found for example in [59but-we will nevertheless outline the
derivation for completeness.
Indeed, the triplet algebra generators are now evident. &fiea

Wt (z2)=:97(2¢(2): and W (2=:9n(2)n2: (4.7)

and check that these are indeed primary fields of dimensioitrti3espect tdl'. The operator product expansion
of W* with itself is regular, as expected, and we compute (withhisle of OPBEFS[68]) that

W= (2)WT (w) =
~2 6T (W)  30T(w) 30°T(w)—8:TT: (w) 30°T(w)—8:9TT: (W)
(z—w)®  (z—w)?*  (z—w)® (z—w)? Z—wW
5 0 132\4/0 12. 0.
- 5\/\/0(\/\2 20w (v:) £0°WO (W) + 3 : TWO: (w) 48
(z—w) (z—w) zZ—Ww

whereW? (w) is the third Virasoro primary of dimension 3 (ié§(2)-weight vanishes), normalised as
Wo(2)=:00(2n(2): —:{(29n(2):. (4.9)

We mention thatV° (w) appears, along witAT (w), in the first omitted term of the operator product expansions
(4.6) of { andn. The remaining operator product expansions of the tripdetegators turn out to be

BWE (w) N 20WE (w) N 102W* (W) + 2 1 TW* : (w)

0 + _
WO (2)W (W)_iZl(Z_W)3 G’ . +... (4.10)
and
WO (2) WP (w) =
o[ =2 6T(wW)  30T(w) 30°T(wW)-8:TT:(w) 30°T(wW)-8:0TT:W)|
(z-w)°  (z-w*  (z-w)?® (z—w)? zZ—w
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Comparing Equations (4.8), (4.10) and (4.11) with Equaf®g), we conclude that*, W° andwW~ indeed
realise the triplet algebra with the Killing form and struie constants ofl(2) for the sl (2;R)-type basis
{e,h, f} of Section 2 W+ corresponds te, W° to h andW~ to f).

The triplet algebra therefore appears as a subalgebra ahila algebra of symplectic fermions. We note
that because the triplet generativs’, W° andW~ have dimension 3 ansl (2)-weights 2, 0 and-2 respec-
tively, they must be coset representatives of fields astautta thes! (2)-modu|eﬁo.4 The triplet generators are
therefore coset representatives of child)-fields, completing our proof that the coset thesk{2) , /2/%(1)
admits the triplet algebra as an extended chiral algebra.

In fact, it is easy to see from the coset conformal dimensthasW™ is the representative &andW is
the representative of, up to some normalisation. The field corresponding® requires more work, but a
straight-forward computation verifies that the onlf1)-primary field of dimension 3 andl (2)-weight 0 which
is also primary with respect to the coset energy-momentunsotel is

0’°h—6:0hh: —8:hhh: —27:9fe: +3:def: +12:fhe:. (4.12)

This field therefore has coset representaii again up to some normalisation.
So much for the chiral algebra. Could it be that our cosetrthexjust the triplet model? We know that the
s?[(Z)—moduIeZl decomposes in the coset theory into a module with charamengare Equation (4.3))

©, qrmtD/2 _gmiLmi2)/2 o gol/8 am-1/s. 2m_ ,-2m

neZ+1/2 m=2)n| (@e BCR mgz z—z1

which coincides with the character of the irreducible &ipinodule whose highest weight state has conformal
dimension 1 [59]. A nice corollary of the above chiral algeltentification is that we can now conclude that
f:l does indeed become this irreducible triplet module in treetmodel, because the triplet algebra admits no
other module with this character. As for the other modulesAI()t)_l/z, we have already noted in Section 3
that these other modules are twisted versions of eiﬁ@elr 21 and so they yield identical coset modufethe
standard “field identification” now removes them from furtkensideration.

But we also have to wonder about the remaining modules ofifiiettalgebra. What we have shown so far is
that our coset theory consists of two irreducible tripletdules, both of which have states of integer conformal
dimension. This is not true for the other irreducible tripheodules (recall that their highest weight states had
conformal dimensionsé andg), so the triplet model cannot be our coset theory. Furthesmmee have already
noted that the triplet model is a logarithmic conformal fitldory, so there are additional indecomposable (but
reducible) modules in the theory.

The coset theory we have constructed above is thereforeitdgfinot the triplet model, but this reasoning
suggests that we should identify our coset theory with a @fte triplet modef One possible conclusion is
then that our coset theory is not complete because the themstarted with was too small. We will therefore

: (4.13)

4This follows from the fact that the other possibilit@a, has only odds((2)-weights. We remark that in Section 5, we will introduce
additional:?[(z)—modulesgo andgl whosesl (2)-weights are even and odd, respectively. But the dimensibttseccorresponding coset
fields are never integers, so fields from these modules canédx out as well.

Sinfact, the spectral flow generator does shift the set ()-weights by multiples ok = — % so the coset modules would be distinguishable
on this basis. However, the triplet algebra cannot see thilsdbes not contain any element likg.

6But is thispartial coset theory well-defined in itself? The answer appears tmbé In particular, it has no modular invariant. This is
very interesting to note, especially when one recalls thatstandard method for analysing cosets of rational theaigsfirst establish
the modular properties of the coset characters and then waels avay back [16]. A more interesting question is then whethe non-
logarithmic parent theor;A'[(Z)_l/2 is well-defined! We hope to report on this in the future.
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return to the fractional level theo@ (2)_1/2, seeking a natural augmentation of the spectrum. Sinceithett
model is logarithmic, we expect that this augmentation aldb lead to a logarithmic conformal field theory.

5. AUGMENTING sl (2) ;

At first sight, it seems unreasonable to try to augment thatifraal IeveIsA[(Z)_l/2 theory. Itis well known
[1, 21] that the structure of the irreducible vacuum modwdéests the four admissible modules of Kac and
Wakimoto as the only highest weight modules allowed in theotin These are all irreducible, and all four
are required if we insist upon modular invariance [15]. Hwere these highest weight modules do not close
under fusion or conjugation, rather they generate infiretuences of irreducible modules which are not highest
weight (Section 2). It is therefore germane to wonder if ¢hare not other non-highest weight “admissible”
modules (in the sense that they are likewise selected bytietgre of the irreducible vacuum module) which
we have not yet considered.

A strong clue as to where we should look for such additionatiadible modules is contained in Gaberdiel’s
work [17] on§[(2)74/3. There, it was found that the admissible highest weight rrexdand their spectral flows
do not close under fusion but also generate modules whosegzade subspace is neither highest nor lowest
weight forsl(2). Such modules are not generated by fusion ins?j(@)_l/z model, but they do form natural
candidates for augmenting the theory.

Consider therefore the (non-trivial) vanishing singulactor of the vacuumA[(Z)—module atk = —%. This
hass[(2)-weight 4 and conformal dimension 4 and is given explicitlp (0 normalisation) by

(156e_3e_1 — 71€?, + 4de_oh_1e 1 —52h €%, + 16 165, —4h? €2 4) |0). (5.1)
The corresponding (vanishing) field is therefore
78:0%e: —71:0ede: +44 :dehe: —52:0hee: +16:feee: —4:hhee =0. (5.2)

We have omitted the customary explicit coordinate depecelefthis field for conciseness. For computations,
it is more convenient to consider instead its weight 0 dedaenhof the same dimension (which therefore also
vanishes):

64 :eeff: +16:ehhf: —136:ehdf: +128:edhf: —12:ed?f : —8:hhhh:
+200:0ehf: —108:9edf : +8:0hhh: —38:0hdh: +156:9%ef: +24:0%hh: —3*h=0. (5.3)
We expand this (chiral) field into modes and let the zero-macteon a stat¢vm> of sl(2)-weightm which
we assume is annihilated by eagh h;j and f; with j > 1. Such statefv,) are not necessarilyt (2)-highest

weight states and have sometimes been referredrdasedhighest weight states in the literature [61,62]. The
resulting constraint is

(64f2e§ + 16fohden — 192fohoep + 180foeg — 8h§ — 83 -+ 10h3 -+ 6hg) |vim) = 0. (5.4)

If ]vm> is indeed arﬂ(Z)-highest weight state, this constraint restrietto be one of the admissible weights
0,1, f% or f%. If not, we have to work a little harder. Our conventions4£6f2)-modules which are not highest
weight are summarised in Appendix B. In particular, Equa(B.1) defines constants, by
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and Equation (B.4) shows that they are related by
Om2 = O+ m. (5.6)
The constraint (5.4) therefore becomes
64Qm40m2 + (16(m+ 2)2-192(m+2) + 180) Qmio— 8 — 8mP+10mMP +6m=0,  (5.7)

and substituting Equation (5.6) fory,, 4 allows us to solve this explicitly. The result is that there anly two
possibilities:
m(m+ 1) (2m—-1) (2m-3)

am = —— or Om= 16 . (5.8)

As we already know the highest weight states, we may sup¢m¢vpn> is not such a state. If bothy,
andam. 2 are given by the first possibility of Equation (5.8), then stitiiting into Equation (5.6) implies that
m= —1, hence thatry,, = 0. We thereby deduce that in this c45e1> is the non-highest weight zero-grade
state of the?[(Z)—moduIefl. If oy andam, 2 are given by different possibilities in Equation (5.8) thea also
get constraints on the weights However, in this case one finds thmat R which is impossible if we want to
equip the corresponding module with a (hon-zero) hermiioaum that respectbg = hp (Appendix B).

It remains then to study when both, anda,, 2 are given by the second possibility of Equation (5.8), and it
turns out that there is now no constraint uponTo understand what Equation (5.8) means in this case, vee not
that it is equivalent to the eigenvalue of thg2)-CasimirQ = %hz —ef— febeing

1 3
szémz—m—Zam:—é. (5.9)

Recalling thafT (2) is closely related t@ (see Equation (2.4)), this means that a relaxed highesthiveigte
\vm> is admissible — which we henceforth (re)define to mean ndtiflalen by the structure of the irreducible
vacuum module — if its conformal dimension @m = —%. This covers all the zero-grade states of the
(twisted)sA[(2)-modulesz,1/2 andﬁ,g/z and their conjugates.

However, it also allows for many more possibilities. In jarar, given an arbitrary weightn, we can
construct relaxed highest weight stamﬁ> with conformal dimensiopr% by choosing

_ (2m—-1)(2m-3)
me 16 '

These states are therefore admissible, and constitut®@ayzatde subspace which has neither highest nor lowest
weight states (as as1(2)-module)’ This analysis, similar to that reported in [17, 22], therefindicates that
there should be further modules, built from these zero-ggadspaces, which are not forbidden irﬂa(ri)_l/z-
theory. We now ask ourselves how we can decide which of theskiles we should choose to augment our
current theory by, so as to obtain the triplet model as a dbeetry.

The answer to our question lies in determining the confordialensions of the coset theory states corre-
sponding to these new zero-grade states. Since the reléyeesh weight states are assumed to be annihilated
by theh; with j > 0, Equation (3.4) gives the conformal dimension as

(5.10)

1 1
imz—é. (5.11)

7Actually, here we must stipulate that¢ Z + % for the alternative leads tay, = 0 form= % or g indicating a lowest weight state.
Nevertheless, zero-grade states witke Z + % are not excluded from being admissible.
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Note that formintegral, this formula precisely reproduces the dimensipn of the extended Kac table, Table 1,
with r = |m|+ 1. It follows that arelaxedhighest Weigth[(Z)-module whose zero-grade subspace consists of
relaxed highest weight states of conformal dimensi@ands[(Z)-weights in Z will decompose in the coset
model into Virasoro modules with highest weight states miefnsions—%, %’, %3 and so on. Similarly, when
the zero-grade subspace B&&2)-weights in Z + 1, the Virasoro highest weight states will have dimensigns
%5, %9 and so on. This is obviously suggestive for the two irredigcttiplet algebra representations discussed
at the end of Section 4. Indeed, we mention that this decommogives a single Virasoro-highest weight state
of dimension—% but two of dimensiorg, just as one finds in these triplet algebra representations.

Let us therefore consider the augmentation ofﬁTi”(Q)fl/Z-theory by the integer weight modules described
above (and their twisted versions under the spectral flong. WM refer to the theory generated by this aug-
mentation as th§[(2)"i”lg/'2—theory. In the language of [22], this idié of the originaIsA[(Z)fl/z—theory, though
we emphasise that the modules we are augmenting by were msitleoed in that article.

We want to be precise about the nature of these Ek{\ﬂl)-modules, so let us first consider the infinite-

dimensionak! (2)-representations formed by their zero-grade subspaceseTdre defined by
2m—-1)(2m-3

en-yEm-3), . ez

for m either all even or all odd. Both have the required CasimieriglueQn, = —g. Moreover, they lift to
representations of the positive Borel subalgebraA[()Z) by imposinge; |vm> =h;j |vm> = f |vm> =0forj>1
(and declaring th&k = —%), and thence to induced moduIeSEAOQ‘Z) itself. We denote these induced modules by
Wo or Wl according to whethenruns over the even or odd integers respectively. They anmpbes of relaxed
Verma modules in the language of [61, 62]. Becauseethi; and fj with j < —1 act freely, the characters of
theWA are easily computed to be

€|Vm) = |Vms2), h|Vim) = m|vin) and  flvp) =

X (20) = = " z2“:q71/8 e _d"! 2+-i)
A I_|(1—z_2qi) (1_qi) (1_22qi) neZ+A /2 (q)oo nez+A/2 i,J=0 (Q)i (q)j
—(;l/smiimq—j RPN 20 3
~ (). i;) (@) J;(q)j nez; 2 @ nez%/z : (5.13)

Such induced modules are universal for relaxed modulesarséme way that Verma modules are for highest
weight modules.

As with genuine Verma modules, we can ask if these relaxeth&enodules are themselves irreducible. It
is easy to show inductively that any proper submodule ofﬁh@must be generated by highest weight states
(relaxed or genuine), and we have seen that the vanishingimasingular vector forbids these from appearing in
the theory unless they have conformal dimensio%u Or — %. As these dimensions are impossible for generators
of proper submodules dﬁ?o andWl (recall that the zero-grade states of these modules haverﬂion—%),
any such proper submodules must be set to zero. It followtswhkashould not try to augment our theory by
the relaxed Verma modulé@o or \7\71, but rather by their irreducible quotients. We will dendte frreducible
quotients ofWo or Vvl by o andgl (respectively). That these irreducibles are indeed prgpetients of the
relaxed Verma modules is demonstrated by the states at gjrafighe form

(2m—1) (2m+3)
e

2m—+3
e 1lvm-2) — T afvm) + £ 1lvime2), (5.14)
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which may be checked to be relaxed highest weight stateadirtiis is true for alin, not just forme 7). These
states therefore generate proper (relaxed) submoduldsa(ﬁ?}; and so are set to zero in the corresponding
irreduciblesgA .

While there does exist a detailed structure theory of reldferdha modules foEI(Z) [61,62], it is perhaps
easier to obtain the characters of the irreducﬁﬁ(éi)-modules@o andé, by using the free field realisation of
the By ghost system. This does depend upon the fact that the simpknt modulely 01‘3[(2)71/2 remains a

simple current irI?I(Z)f“l%, more precisely that

El Xféozgl and 21 Xfé\l:go. (5.15)

aug.
—1/2

Taking the above rules as given however, we have the natuetpretation that the two irreducib@(Z)-
modulesgo and&; combine to form a single irreducible module for tRg ghost algebra. This latter module
will therefore have a zero-grade subspace with one Mt)efor each integral weighth € Z.

It is easy to work out the character of the correspondingkegld/erma module for th8y ghosts. The same
computation as in Equation (5.13) gives

q e AL B (5.16)
M-z -0 & (@2 & |
Comparing with the sum of the characters of the relaxed Vemodules ofsA[(Z) given in Equation (5.13), we
see that the character of ttg~-module is the same up to multiplication by the simple factor

The computation of these fusion rules will be deferred td,[6®ng with the rest of the fusion ruIest(Z)

(@ =1-0-F+P+q —q?— g+ g?+¢%* ... (5.17)

The multiplicities of theBy-module are therefore smaller in general, so it seems giuiat thisBy-Verma
module is in fact irreducible. This is to be expected basestatus of thg8y ghost system as a free field theory
(or as a simple current extension [24, 25]). Indeed, we cawepthis irreducibility by looking at the inner
products of states in th@y-module® To wit, this module has a PoindaBirkhoff-Witt basis of the form [69]

{Bfil"'Bfiryfjl’”y*js|vm> : |l>>|r21, J1>> js>17 meZ}7 (518)

which is easily checked to constitute an orthogonal basiggue commutation relations of Equation (2.13).
The norms of these basis elements have the fort)1+Js (Vm|Vm), and(vim|Vm) # O by Equation (B.2) (as
am # 0 for m € Z by Equation (5.10)). The module therefore has no null staests irreducibility follows
from standard arguments.

We pause briefly to mention that the expansion (5.17) styosggigests that the relaxed Verma modaT@,s
atk = —% have the same “braided” submodule structure as the “adngssierma modules. More precisely,
the above expansion is consistent with the picture thaethes two independent submodules, generated by
states of grade 1 and 2 respectively, whose intersectidreisum of two independent submodules, generated by
states of grade 5 and 7 respectively, and so on. In fact, th@sdule structure of relaxed Verma modules was
elucidated in [61] and is in agreement with this observatiime submodule generators at grade 1 have already
been given in Equation (5.14) and those at grade 2 are easihdfto be

(2m—7) (2m— 3) (2m+ 1) (2m+5)
256

(2m—3)(2m+1) (2m+5)
32

92,1|me4> -

(h_1e_1—€_2)|Vm-2)

8We could also verify explicitly that Equations (5.14) andl®) (below) vanish identically upon rewriting them usingyothe 8y modes.
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(2m+1) (2m+5) (h2_1 12t 501 hg) v — 2m+5

16 2
(and checked to be independent). We note that the coeffiodéniis formula have a surprisingly regular form.
The conclusion of this exercise is then that the irredue?b{é)-modules% have characters of the form

~1/8
Xz (z9) =9 ", (5.20)

A (Do nedFas2

(f-ah_1—f2)|Vini2) + F21|Vina)  (5.19)

so that their weight space multiplicities do not depend upesl( (2)-weight. We can now play the same game as
in Section 3 to decomposéAfQ, andé into c= —2 Virasoro modules in the coset theory. In fact, decomposiag
subspace ofl(2)-weight 2h € Z states intai (1)-modules (recalling the latter’s character from Equatirb))
corresponds to the simple character decomposition
A q 27 qUe e g2 geniaz (5.21)
@5 (@ (WDe (@e (oo
This latter factorg2n-+12 / (Q)o, is therefore the character of tike= —2 Virasoro module corresponding to the
weight 2n subspace.
In contrast to the constast(2)-weight characters of Equation (3.11), this character do¢siniquely deter-
mine a Virasoro module. For example, it is obviously the alser of the Virasoro Verma module with highest
weighthy|q 41 2. But one can check that this character is shared by the (@eiplreducible) direct sum

* !
D Lom1)emiys (5.22)

m=2|n|
where the primed summation means again that the sum imdegreases by 2. Of course there are many other
possibilities as well. Comparing with Equation (3.10), wiglht suspect that (5.22) is indeed the correct module
structure for the weightr2subspace of the coset decomposition of@fhe By the way of evidence for this, we
note that the first singular vector in the Verma module with hy , = —% (ands((2)-weight 0),

(L%l - %]L_z) o) = (L2_1 - %L_z - %hil) Vo), (5.23)
has zero norm in the modu@o, hence must vanish iﬁo. This singular vector is therefore zero in the coset
theory, ruling out the Verma module possibility.

This does not prove that the coset module decomposes a2i).(Fowever, we do not need such a result
because we have already determined that the chiral algébra coset theory is the triplet algebra. By massag-
ing the above characters as in Equations (4.3) and (4.13yowelude tha@o and§1 give rise to coset modules
with respective characters

q71/8 (4m)2/8 . 2l -2m-1 and q71/8 (4m72)2/8 . Z22M _ —2m
(q)w MEZ z—z1 (q)oo MEZ z—z 1t
Since these coincide with the irreducible triplet modularatters with highest weight states of dimensions
—% and% respectively [59], we can conclude that the coset modulssriteed above are precisely these triplet
modules.
What we have thus shown is that augmentf?ng)_l/2 by the admissible irreducible modulé@ and§1
(and their twisted versions under spectral flow) leadsit¢l3-coset theory which contairasl of the irreducible

modules of the triplet model. It only remains to show thas thigmentation also generates indecomposable

(5.24)
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modules corresponding to those of the triplet model, thestiflying the coset theory as the triplet model. We
will accomplish this in a sequel [63] by analysing the fusiates of our augmented theogy(Z)‘i“f}'z in detail.

6. DISCcUSSION ANDCONCLUSIONS

In the preceding sections, we have identified the coset cordidfield theory obtained frorﬁ[(2)71/2 and
its 1 (1)-subtheory. While this coset resembles Hyeparafermion theories of Zamolodchikov and Fateev [64]
in form, we see little in the way of structural resemblancestéad, we find that this fractional analogue of
the parafermions forms (a part of) the triplet model of Galimrand Kausch [57]. More precisely, we have
shown that theaA[(Z)fl/z—theory detailed in [1] yields two of the four irreduciblepiet modules under this
identification, and moreover that the coset theory admitsttiplet algebra as an extended chiral symmetry
algebra.

This left us in an interesting situation in which the cosettty was not modular invariant despite the invari-
ance of the parerflI(Z)fl/z—theory. Of course, as we explained in Section 2, the modinariance of the latter
theory is quite a subtle affair, so perhaps it is not surpgshat mismatches such as this can occur. Nevertheless,
it led to the realisation that the consistency of our cosebith was far from satisfactory (at least on a torus).
Such a situation is not unheard of, and generally one addsnie sort of twisted modules to restore modular
invariance to the coset. Here, the resolution was the sam@facourse previous studies of the triplet model
tell us exactly which additional modules were required. ldegr, we took this one step further by insisting that
these new modules should be obtainable frorrﬁlﬁé)fl/z-theory. In other words, we reverse-engineered our
original5[(2)71/2—theory,augmenting't with additional modules, so as to guarantee the modulariance of
the coset theory.

Following this philosophy, the two irreducible triplet &llgra modules which were missing from the coset
theory were discovered to be obtainable fr5m2)—modules, albeit from a class of modules which were not
originally considered, the so-called relaxed highest Weigodules. Specifically, we found two modulé@,
and&,, which were the only (relaxed) highest weight modules tddyiee missing triplet modules. Moreover,
both € and&; were shown to be admissible in the sense that they are natlétab by the structure of the
vacuum module (mathematically, they are representatibtiseocorrespondingertex algebr This led to a
proposed augmentation of the origilfa(Z)_l/z—theory bygo, El and their images under the spectral flow. We
have denoted the corresponding augmented theo@@ﬁ%.

In contrast tos[(2)_; ,, we do not expect to have identified the full spectrunfdﬂ)f“l%. Indeed, the
additional two irreducible triplet modules which necest@tl this augmentation are well-known to fuse into
modules which are reducible but indecomposable [57]. hésé indecomposables which are responsible for
the logarithmic nature of the triplet model conformal fidi@ory. By now it should not be surprising to learn that
the same turns out to be true for fusions@@fandgl (this will be addressed in a sequel [63]). The augmented
theory:?[(Z)"’l“l‘}'2 is therefore likewise a logarithmic conformal field theory.

6.1. Comparison with [22]. A logarithmic version of the?[(Z)_l/z—theory was previously proposed in [22]
where it was referred to as a logarithniift. Actually, the authors of this paper proposed two diffetdts based
on different versions of the free field realisation that thelyed upon. This realisation utilised two fermionic

9Actua||y, this lack of parafermionic behaviour is probablyedto the fact that the “integral part” [16, Sec. 18.6] of thedlk = —% is 1.
It would be very interesting to check for parafermionic bebavat more general levels. For examgter % has integral part equal to 3.
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fieldsn anddé& to generate the chiral algebra and the two proposed liftesponded to whether they extended
this algebra with formal antiderivatives of one or both cfgk fields.

Extending with one formal antiderivative led them to the stouction of two relaxed highest weight modules
(for E[(Z)) similar to our€g and €1, but with weights belonging to%+% and %+% respectively. Neither
module was irreducible — in accordance with Equation (5.118) zero-grade states Witlh(Z)-weights% and
% are lowest weight states fef(2) which thereby generate propﬁr(Z)-submodules. We will therefore denote
these indecomposable modules of [22]?@)/2 and§3‘/2 (the “—" superscript indicating the presence of a lowest
weight state with the weight given in the subscript).

It now appears that this particular extended free field satitbn amounts to another augmentatioEn[Qﬂ)fl/z,
different to that which we have proposed here. Furthernmttieauthors of [22] claim that their augmentation
is closed under fusion (without any justification) and letdiso logarithmic phenomena, the complete opposite
to what we expect for our augmentation. But we think it impattto point out that their augmentation modules

o~

EI/z andgg/2 are neither self-conjugate nor conjugate to one another e-ctimjugates would b@fl/z and

8f3 /2 respectively (in hopefully obvious notation) — in contrastgo and 51. We therefore conclude that
even if the augmentation @I/Z andgg/2 closes under fusion, it is automatically unsatisfactorg @andidate
for a conformal field theory because many of its fields will éao conjugate and so must decouple from all
correlation functions. The only recourse is to augmentierby the conjugate moduléi\il/2 andgjg/z. We
strongly suspect that this, more consistent, augmentatitbnot close under fusion.

We speculate that the reason v@ﬂ/l/z and@jg/2 were not uncovered in [22] was because the chiral algebra
was only extended by the single formal antiderivatfve This clearly breaks the symmetry betwe2& and
n, so it seems reasonable to suppose that extending instehéd byrmal antiderivative ofy would lead to the
conjugate module@fl/2 andgfs/z, rather than?{/2 andgg/2 (after all, n is the conjugate field t@& in their
setup). If this is so, then we could conclude that the comscst of the augmented theory requires extending by
bothformal antiderivatives.

Happily, the authors of [22] also analysed this possibilitging symplectic fermions and a free boson, they
proposed twcaA[(Z)—moduIes with logarithmic structures (non-diagonalifighof Lp). These structures were
not however derived from any underlying insight into augtaéions ofsAI(Z)_l/z, but were rather determined
directly as a consequence of the known logarithmic strestwf symplectic fermion modules [60]. Given
however that symplectic fermions are intimately relatedhi triplet model, it therefore seems likely that the
logarithmic structures pictured in [22] will turn out to bérslar or identical to those (which we expect to
find) in our proposed augmentation gy and&;. We refer to our forthcoming article [63] for a more detailed
discussion of this point.

Even if this turns out to be the case, there are compellingom®sato continue investigating the augmentation
sl (2)3“19/'2 which we have proposed in this article. First, itis logigatiotivated through studying the consistency
of the theory and its cosets. In particular, we have provext th obtain the triplet model as a coset, we
must include@o and 51 (and hence their twisted images under spectral flow). Thesdutas do not seem
to appear in other discussions reIatiﬁQZ)fl/2 and the triplet model (or symplectic fermions). Second, the
levelk = —1/2 is the simplest example of a variety of fractional leveldties whose properties remain largely
unexplored. We do not expect that many other admissiblddédwave easily guessed free field realisations, so
it makes sense to develop methods and techniques whichnedyah realisations as little as possible. Finally,
fusing €0 and€; should lead to indecomposab?IE(Z)—moduIes whose algebraic structures can be explored in
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detail. These indecomposables should provide analoguée efell-known staggered modules of the Virasoro
algebra [70, 71]. Elucidation of their general propertie$ e essential in unravelling further properties of
fractional level theories.

6.2. Modular Invariance. We turn now to a brief discussion concerning the modularravee of the aug-
mented theorﬁ(Z)i‘E‘z. The spectrum of our originaT[(Z)fl/Z-theory was already known to be modular
invariant with a perfectly satisfactory Verlinde formul@gction 2). We should therefore explain why augment-
ing the theory b)@o and§1 does not destroy this rather nice state of affairs. At firahgk, the situation appears
hopeless. The characters (5.20)§@fand§1 do not converge for any value af so making any sense of them
beyond formal generating functions for weight multiplie& seems pointless. However, there is one possibil-
ity which accords well with the mathematical principles chéized in Section 2 and which also preserves the
modular structure found fQﬁ(Z)_l/Z.

It is perhaps best to first describe this possibility for ofiehe@ indecomposable modules studied in [22],
EI/z say. The corresponding character is easy to compute andfétimlso given by Equation (5.20) (with
A= %). It too does not converge for any value of However, as remarked abovﬂéi/2 has a submodule
generated by the zero-grade state of we%hnd itis not hard to see that this submodule must be isomotphi
2’:1/2 = y‘l(zo). Moreover, the quotient by this submodule can onlyﬁl%/z = y(zl). It therefore follows
that, at the level of formal (normalised) characters,

Xe, W29 =X (2, BZD+X(z,) %29 (6.1)

As modular characters, where we forget about convergehedgeft hand side makes no sense. But the right
hand side does, as the sum of the modular charactqrsjiﬁﬁo) and y(fl).lo It is therefore natural to define
the left hand side to be this sum also. And of course, this suesgerobecause of Equation (2.18) (and the
surrounding discussion).

The above prelude is intended to convince the reader thatiatural to assign the modular character 0 to
the modulegi/z. We now want to extend this argument to the irreducible mesiﬁb and &, which cannot
be decomposed into a non-trivial submodule and its quotidiathematically, the above argument amounts to
splitting the (otherwise horribly divergent) sum

2" (6.2)
NeZ+A /2
into two pieces, one witlm > ng and one withn < ng — 1. The cutoffng in fact depended upon the grade in
the module (power off in the character). And of course if one completely ignoresftict that the two sums
thereby obtained converge on disjoint sets, then summivesd), independent of the chosen cutoff.

The proposal is then that the irreducible mod@@sand@l should also be assigned modular character 0. A
consequence is that these modules join those of Equatid8)(ix generating the kernel of the projection from
the fusion ring onto the Grothendieck ring of modular ches; thereby preserving the modular structure of
Section 2. This might seem unpalatable to some, but we leelieu this is the only logical way of extending
the notion of modular invariance to our augmented theorycddirse, that this makes a modicum of sense does
not guarantee that this proposal has any physical releydntet least we can be content in knowing that it

100f course, the intersection of the annuli of convergencEgPof the corresponding charactersimpty But that is the point of modular
characters — to forget completely about regions of convergen
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preserves the mathematical structures, in particular #réinde formula, that have contributed so much to the
recent interplay between mathematics and physics.

6.3. Future Work. We conclude with a brief outlook. The most immediate questicaised by the work
reported here involve “fleshing out” our proposed augmémab thesA[(Z)fl/z-theory. This means computing
the fusion rules of the augmented theory and work is alreadieway in this direction [63]. As noted already,
we expect that the results of these fusion computationsmwitilve indecomposablﬁ (2)-modules on whiclhg

acts non-diagonalisably. The investigation of the mathemalastructure of these indecomposables is therefore
also of immediate interest and we will also report on thisrso@d/e further remark that fusion computations
such as these should be of significant interest to those witty sttring theory orbL (2;R) and its universal
coverAdSas.

It is perhaps worthwhile emphasising that a consequenckeoivork reported here is a new construction
of the triplet algebra. This is a well known example of what generally referred to a#/-algebrasin the
conformal field theory literature — chiral algebras geneddty fields with conformal dimension greater than 2.
Such algebras are not universal enveloping algebras ofly@beas, so we know comparatively little about their
structure and representations, except in a few isolatezsqase [72] for an example). Various W-algebras have
recently been proposed (but without specifying the algetstucture!) as extended chiral algebras for many
logarithmic conformal field theories [40,47,54]. Itis thére evident that a construction of such algebras from
a much simpler algebra, analogous to obtaining the trigggtlaa fromz?[(Z), would be extremely desirable.
We hope that the ideas outlined here will be of some use irirdhtasuch constructions.

Another pressing matter is to lift our conclusions from ahiconsiderations to the bulk regime. To our
knowledge, this question has not yet been seriously adehides admissible level theories such§i$2)"i”lg/‘2.
Even for the originaE[(Z)_l/Z-theory of Section 2, the coupling of holomorphic and arlthworphic sectors
is obscured by the fact that the modular invariant only dbssra small quotient of the fusion ring. We expect
that the work of [49, 58] on such couplings for the triplet rebdill be very useful aids in this regard. Finally,
we mention that it might be very interesting to consider m&trangent constraints upon the consistency of a
proposed conformal field theory, such as crossing symmetmnre general sewing constraints). In particular,
it is important to confirm that the tw5[(2)71/2-the0ries discussed here are indeed consistent conforefzl fi
theories (or not, as the case may be!).

Finally, it has recently been brought to our attention that(a) coset of thesA[(2)74/3 theory of [17] has
been studied in the vertex algebra literature [73]. Thellevé theory hasc = —6, so the coset theory shares
its central charge = —7 with another triplet theory, the so-call¢tl 3) triplet model (the original triplet model
of [20] corresponds to thél, 2) theory in this framework). Nevertheless, it is predicted78] that the chiral
algebra of the coset theo:sAy(Z)Jr/3 /1 (1) is generated by a single field of conformal dimension 5. Th&)
triplet algebra hashreegenerators of this dimension, so this prediction is at odils what one might expect
from the results presented here. It would be extremelyéstizmg to understand why ttke= —% case is different
from thek = —% theory in this regard.

Whatever the outcomes, it should now be clear that the workitlafissible, fractional level Wess-Zumino-
Witten-theories is ready to be explored. The technologylus®e and in [1, 17, 63] will greatly improve our
knowledge of these important models. We therefore envittagjefurther study, emphasising that these models
should provide basic building blocks for quasi-rationatldagarithmic conformal field theories, just as the
integer-level Wess-Zumino-Witten-models do for ratiocahformal field theories.



24 D RIDOUT

ACKNOWLEDGEMENTS

I would like to thank Pierre Mathieu and Yvan Saint-Aubin fiiscussions and detailed comments on various
drafts of this paper. | likewise thank Hubert Saleur for lasenents and Thomas Creutzig, Matthias Gaberdiel,
Thomas Quella and Alexei Semikhatov for useful and enjay/aoinversations related to the work presented
here. | also thank Antun Milas for bringing various resultenh the vertex algebra literature to my attention.

APPENDIXA. A COMBINATORIAL IDENTITY

In this appendix, we prove Equation (3.12) foe: 0. The result fon < 0 then follows from symmetry under
n < —n. This proof will follow from an identity of Cauchy [74, Thm.2]:

(@2, _ o @)
2. ]; @) Z. (A.1)

Here,(a)j denotes the usugtHactorial |‘|ij;01 (1— acf). Settinga = 0 andz = g¥ then gives

1 > gk

@~ 2 (@),

As is often the case, it is easier to prove a generalisatidtgoftion (3.12). We therefore consider

(A.2)

oo

qm <qm+2n+1)

00

9" @min _ (Ao g
Deo o (D (@G™H21),
)

m=0 (q)m (q) m+2n

(
_(aoo d qm il (q/a)] J j(m+2n)
= (@ o O 2y (@ 20 by (A1)
_ (@ < W j o < qHY
(@ o () o (D
_ (a)oo o (q/a)J ] 2jn
= (@ 2@, @D, by (A.2)
:% < 2jn j A A3
@2 &t e (a3)
Puttinga = 0 then gives
S q = 1 < _ 1\ gi(i+1)/2+2jn
n;) (@m(Dmizn ()5 J;)( ba : (A.4)

Replacingm by m— n on the left hand side andby m— 2n on the right hand side then gives Equation (3.12).

APPENDIXB. NON-HIGHESTWEIGHT s[(2)-MODULES

Let |vm> be an eigenstate @fe s[(2) with eigenvaluem. If we assume thdt/m> is not highest weight, then
we may write
[Vin+2) = €[Vim) and  f|vm) = Om|Vimn—2), (B.1)
for some constant,. Repeating this fofvm+2>, |vm,2> and the states thereby generated, we construct a basis
for the module generated Bym). Note however thae" = f gives

<Vm‘Vm> = <Vm—2’ f |Vm> = am<Vm—2|Vm—2>7 (B.2)
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S0 0y € R wheneverVin|Vim) (and(Vm_2|Vm—2)) are non-zero. Moreover,

m[Vm) = (fe—ef) |Vm) = (ams2 — am) |Vm), (B.3)

which gives
Omi2 = Om+m. (B.4)

We remark thatm ¢ R would now imply thatay, ¢ R, hence tha(vm\vm> = 0. This reflects the fact that one
cannot define a non-trivial hermitian form on &ii{2)-module with non-real weights.
Recall that the quadratic Casimir is defined (up to normatisa by inverting the Killing form (2.2):

Q=1in—ef-—fe (B.5)
Using Equation (B.4), we calculate its eigenvalue|an) to be
Qm= 2m? — am— ami2 = 1n? —m—2am, (B.6)

and it is easily checked (using Equation (B.4) again) @gis periodic inmwith period 2. This eigenvalue is
therefore constant on th#(2)-module generated blym), as it must be.
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