FUSION IN FRACTIONAL LEVEL g[(Z)-THEORIES WITH k= —%
DAVID RIDOUT

ABSTRACT. The fusion rules of conformal field theories admitting%m)-symmetry at levek = f% are
studied. It is shown that the fusion closes on the set of urtéde highest weight modules and their images
under spectral flow, but not when “highest weight” is repthegth “relaxed highest weight”. The fusion of the
relaxed modules, necessary for a well-defindd)-coset, gives two families of indecomposable modules on
which the Virasoro zero-mode acts non-diagonalisably. €bi¥irms the logarithmic nature of the associated
theories. The structures of the indecomposable modules amgletely determined as staggered modules and it
is shown that there are no logarithmic couplings (beta-iawés). The relation to the fusion ring of tiee= —2
triplet model and the implications for th#y ghost system are briefly discussed.

1. INTRODUCTION

This is a continuation of the study, initiated in [1] and deped in [2], of the fractional level Wess-
Zumino-Witten model based (fm(Z) atlevelk = —%. Our aim in this series of papers is to put the fractional
level models on firm ground as logarithmic conformal fieldathes [3, 4], starting with what is arguably
the simplest, and perhaps most important, example. Whanglisshes this study from previous attempts,
in particular that of [5, 6], is the philosophy that one slibus$e intrinsic methods wherever possible. The
resulting picture is far more complete than was previoushilable and we expect it to generalise in a
straight-forward manner to other fractional levels.

The aim of this note is to describe, in some detail, the fusites of theories witisl (2)_1/o-symmetry.

In view of our stated philosophy, we will rely upon the abstriusion algorithm developed by Nahm [7]
and Gaberdiel and Kausch [8]. This is described very cleartye latter article, but see also [9-11] for
expositions. This algorithm is well-suited to the explaratof theories in which one suspects representa-
tions more exotic than the irreducible highest weight oies &re familiar from rational conformal field
theory. Its chief virtue is that it does not presuppose thafftision product of two representations belongs
to any given module category. It may therefore be used to detrete, for example, that the category
generated by the highest weight modules need not be clogk fusion (although one may have to think
laterally in order to expose this). It has so far been usedvestigate module structure for the Virasoro
algebra [8,11-16], itt\ = 1 andN = 2 extensions [17]3[(2) at level —% [18], and certainW (p/, p)
algebras [19, 20].

Despite its advantages, the Nahm-Gaberdiel-Kausch fudgorithm has been criticised in the past as
“too formal” and its application “tedious”. Certainly, anyoderately complicated fusion process does lead
to a significant amount of unpleasant algebra if done by h#dmudigh no more so than the computation of
four-point correlation functions or the operator produgbansion of normally-ordered products of fields.
We refer to [21-26] for some alternative methods to compuséoh products. The point is that to iden-
tify the structure of exotic representations, it is usuakcessary to analyse in detail the descendant fields
rather than just the primaries, and it is this that leadseé@tmplexity. However, the algorithm of Nahm and
Gaberdiel-Kausch is straight-forward to implement withinomputer algebra package, relieving a signifi-
cant amount of the burden. Our own implementation useg M and is based on a similar implementation
for the Virasoro algebra.
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One significant difference between the Virasoro computatend those described here fd)(’Z) is that
many of the fractional level representations haverdimite number of linearly independent states of the
same conformal dimension. However, we note that there idinitgeregularity to the structure of these
states. We may therefore use symbolic calculus to encode audnfinite set of states using (rational)
functions. This is the technical realisation that we expioithe explicit computations that follow. We
mention that the rational functions can become extremelyieldy and that memory issues are expected
to become a problem eventually. However, the results pteddrere were all derived rather quickly on
standard desktop workstations.

Let us briefly outline the rest of this article. First, Sentd reviews our notations and conventions for
the Kac-Moody aIgebrEI(Z) and describes the results obtained in [1, 2] that will be adad the sequel.

In particular, we discuss the irreducible representatibasa theory with?[(Z)_l/Z-symmetry admits and
collect explicit formulae describing the singular vect¢irs the appropriate Verma-like modules) which
have been set to zero in forming the irreducibles. Theseistémy singular vectors” are an essential input
of the Nahm-Gaberdiel-Kausch algorithm.

The algorithm itself, in its simplest form, is described ec8on 3. Here, we detail the explicit computa-
tions that yield the fusion rules of the irreducible highestght modules with one another (Section 3.2) and
with the irreduciblerelaxedhighest weight modules (Section 3.3). Specifically, we caormpvhat amounts
to the zero-grade subspace of the fusion product and detacesult from there. One novel feature of
this deduction is that we use the (conjectured) good behawbfusion under spectral flow tprovethat
in each case, the fusion product involves no additionaltesisnodules whose presence would normally be
hidden in the zero-grade analysis. We then turn to the fusfitime relaxed highest weight modules with one
another (Section 3.4), again computing just the zero-gsatispace of the result. However, we are wary of
making any deductions in this case as the proof that twistediues do not contribute breaks down.

In fact, our wariness is justified. In Section 4, we revisé fasion of the relaxed highest weight modules
with one another, this time keeping track of slightly morarthust the zero-grade subspace of the fusion
product. We find that the results of such fusion processesedahécible but indecomposable modules of
the type referred to astaggerednodules in the Virasoro setting [15, 27]. We deduce the giracof these
indecomposables in terms of exact sequences (composéiesy and prove that the structure uniquely
specifies the module — there are no flegarithmic couplingsn the language of [12]. This is followed by
a brief account of the fusion of the relaxed highest weightlubes with these new staggered indecompos-
ables, demonstrating that the fusion ring thereby closesré&3ults are summarised in Section 5, where we
also briefly remark upon the relation between the fusionsr'mng[ (2)71/2 and thec = —2 triplet model, and
upon the implications of our results for tilsy ghost system. This summary may be read independently of
the detailed fusion computations in Sections 3 and 4, atthdbie reader will miss the explicit description
of the structure of the indecomposable modules. For thisrghder should consult Sections 4.3 and 4.4.

Throughout, we describe the fusion algorithm and its resultsignificant detail in order to explain
clearly how such computations are performed and to give ¢hedar a sense of what evidence must be
gathered before a conclusion is reached. We hope that thas#on will be of use to others interested in
Kac-Moody fusion beyond the integrable category.

2. BACKGROUND

We will first review thesA[(Z)fl/2 fractional level theories as discussed in [1, 2]. We fix orue: far all
our preferred basiée h, f} of s[(2) to be that for which the non-trivial commutation relatioms a

[h.e] =2e, ef]=-=h and [hf]=-2f. (2.1)
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This basis is tailored to thel (2;R) adjoint,e’ = f andh" = h, and we prefer it because it is this adjoint
which leads to thg8y ghost system as an extended algebrafloz)fl/z. The Killing form is given in this
basis by
K(hh) =2 and k(e f)=-1, (2.2)
with all other combinations giving zero.
These conventions fail (2) carry over tos! (2) in the usual way. Replacing the central modekby —%
for convenience, the non-trivial commutation relationshaf affine algebra are

1
[hmaen] = 2€mn, [hm, hn] = —MAmn0, [eﬂh fn] = —hmin+ §m5m+n,o and [hm, fn} = —2fmn.

(2.3)
Equation (2.2) now determines the energy-momentum terishedheory as
T(z)= % <; :h(zh(2): —:e(9f(2): — : f(20e(2) ) (2.4)

This yields the central charge= —1 and a conformal dimension of 1 for each of the primary fiels,
h(z) andf (2).

It is important to note that the automorphisms?b(fZ) which preserve our choice of Cartan subalgebra
are generated by the conjugation automorphisand the spectral flow automorphigmThese act on our
basis elements (witk= —3) via

w(en) = fn, w (hn) = —hp, w (fn) = en, w (Lo) = Lo, (2.52)
1

1 1
y(€n) = €én-1, y(hn) =hn+ §5n,o, y(fn) = fata, y(Lo) =Lo— Eho ~ 35 (2.5b)

Moreover, they induce maps* and y* from any§[(2)-moduIeM to new modulesv* (M) and y* (M)
(respectively). The underlying vector spaces remain theeséut the new algebra action is given by

J-w* (V) = w* (w(3)|v)) and  J-y (V) =y (v 1(I)|v)) J esi(2). (2.6)

We will not usually bother with the superscripts which digtiish the algebra automorphisms from the
maps between modules. Which is meant should be clear fronotitexa.

There are (at least) two candidate conformal field theoriiés s71/(2)_1/2 symmetry, distinguished by
their chiral spectra. The first is built from two infinite sequences of irreducikﬂe{Z)—modulesy“(Eo)
and %(El), where/ € Z. Here,Zo and £, denote the irreducible highest weight modules which are
generated by highest weight statess6f2)-weight and conformal dimensiaf ,h,) = (0,0) and (1, %)
respectively. The former state is the vacuum of the theore iNstrate these families of irreducible
modules schematically in Figure 1. Note that fér> 2, the conformal dimensions of the states of the
modules are no longer bounded below.

We mention thav(f:o) and y(fl) are also irreducible highest weight modules with respedtighest
weights—3 and—3. Itis therefore appropriate to wril?é,l/z = y(zo) andz,g,/z = y(zl). This brings the
number of highest weight modules in the theory to four. Tla@eeno others; in fact, these four constitute the
admissible modules (fdec = —%) of Kac and Wakimoto [28]. Wherea?So andzl are both self-conjugate
modules, the conjugates fif,l/z andf:,g/z are the non-highest weight modulgs! (f;o) and )Fl(zl),
respectively. In general, the module conjugat@/@)\ ), forA =0,1,is y“(f)\ ).

The second candidate theory extends that described abdbatiit is constructed from four infinite
families of irreducible modules which are generated by speflow from the irreducibleﬁo, Zl, Eo
andgl. The new module@o and§1 are examples of so-calladlaxedhighest weight modules and are

Iin fact, there are most likely infinitely many, characteriseaebifolds of the8y ghost system (with maximal spectrum).
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(0,0)

FIGURE 1. Depictions of the modules constituting the spectra otgcbm)fl/z-theories,
emphasising the induced action of the spectral flow autohisnpy. Each labelled state
declares its! (2)-weight and conformal dimension (in that order). Confordiaiensions
increase from top to bottom asd(2)-weights increase from right to left.

generated byelaxedhighest weight states [29, 30]. These are states that waugrebuine highest weight
states except for the fact that they need not be annihilatesgd.dt is not hard to see that every zero-grade
state|vm> of §0 andEl is a relaxed highest weight state. The common conformal e of these zero-
grade states is% and theirs((2)-weightsm are either even?(o) or odd (21). Moreover, there is a single
\vm> (up to scalar multiples) for each weigitand they are related by thAé(Z)-action as follows:

€o|Vm) = [Vmi2)  and  fo|vm) = (2m— 1)1é2m_ 3) |Vi-2). (2.7)

The E,\ and their images under spectral flow are also illustrateémeltically in Figure 1. We note that
yf(@) andy ! (5;\) are conjugate modules and that the conformal dimensiortedtates of/(g,\) are
not bounded below whejd| > 1.

The irreducible modul&, plays a special role in these theories because it fuses tsél to give the
vacuum moduléfoz

21 szlzzo. (2.8)
This was argued to be true in [1] and we shall give a full proo$ection 3.2. This property mak@a an

order 2 simple current by which we may extend the chiral a‘@EdZ)_l/z of our theories. The resulting
extended chiral algebra is the well knoy@y ghost algebra. This is a free field algebra that is generated b
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two bosonic fields andy, of dimensior% whose modes satisf§ =y n,

[Bm,ﬁn} = [Vmayn] =0 and [Vma Bn] = Omtno- (2.9)

Chirally, the modulesﬁo andﬁl combine to form a single irreducible module for tB¢ ghost algebra.
As we shall see in Section 3.3, so too &@and€;. Moreover, both conjugation and spectral flow lift to
automorphisms of the extended algebra, so we end up withrtfivite families of irreduciblg8 y-modules,
related by spectral flow (aﬁ-type and ar€ -type family).

The fusion rules of thé)\ are then derived from Equation (2.8) by using the followingriulae, as-
sumed to be valid for all modulég and\:

w(M) xgw(N)=w (MxtN)  and (M) x¢ y2(N) = Y172 (M x¢ N). (2.10)

The first is in fact not difficult to prove, but we know of no pfdor the second despite much evidence in
its favour. We mention however that the second formula do&sfor the integrable modules of the rational
Wess-Zumino-Witten models, though the standard proofriréen elementary (it relies upon the Verlinde
formula — see for example [31, Sec. 16.1]).

It has long been known that the characters of the four adbhéskighest weight module@o, 21, 2,1/2
and £_3/, close under the usual action of the modular group. Becaweséatter two are spectral flow
images of the former two, we learn from (2.10) that the fusigdles do not close on these four modules.
In fact, the smallest set of modules containing these fouchvts closed under fusion and conjugation
consists precisely of the two infinite families which cohge the spectrum of the firsft(Z)_l/Z—theory
discussed above. Moreover, the characters of this spedtiliform a four-dimensional representation of
the modular group due to certain periodicities in the cht@raaunder spectral flow. Forrational theory,
this closure under fusion and modular invariance would kertas strong evidence that one can construct
a consistent conformal field theory from this spectrum. Hemwugethe theory is not rational because of the
infinite number of distinct modules.

The secondA[(Z)fl /2—theory discussed above can be motivated by the obsentatidithe coset theory
of the first by thei (1)-subtheory generated by the fiddds not modular invariant. Indeed, this coset gives
only two of the four irreducible modules which can be regdrds the building blocks of that archetype
of logarithmic conformal field theory, the= —2 triplet model [19]. In order to obtain the remaining
two irreducibles, the spectrum of the fiEEKI(Z)fl/z-theory must be augmented Eys and 31. Invariance
under spectral flow and conjugation then leads to the fouiliesrof irreducibles that generate our second
H(Z)fl/z-theory. This augmentation even preserves modular invegiaalthough in a somewhat weaker
sense than one would like [2].

In contrast to the first theory, we do not expect that the fusites of our seconsl (2)_4 /z—theory close
on the irreducibleLo, £1, £g and &1 (and their images under spectral flow). Indeed, the two it
irreducible triplet modules which necessitated the augate@m of our spectrum are known to fuse into
indecomposable modules, giving the triplet model its Igbaric structure. We therefore expect that fusing
the E,\ with one another will also lead to indecomposables. Variythis, and analysing the resulting
logarithmic structure, is in fact the main aim of what follaw

It remains to collect some explicit formulae which will beefil in achieving this aim. To compute the
fusion rules involvingfo, L1, Eo andé&1, we will make use of explicit expressions for the (relaxedyslar
vectors of the (relaxed) Verma modules that have been setrtoupon forming the irreducible quotients.
Such quotients yield non-trivial relations which give riseso-calledspurious statesrhen computing fusion
products [7, 8]. Setting the non-trivial vacuum singulactee to zero inzo gives

(1562 ze_1 — 71€? , +44e_sh_je 1 —52h €%, +16f 1%} —4h? ;€ )[0) =0 (2.11)
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and repeating this fot, yields
(Te_2—2h_1e 1) |ur) +4€%;|u_1) =0. (2.12)

Here, ]u1> and ]u_1> = fo]u1> denote the two zero-grade statesqu. To obtaingo andgl, one has to
quotient the corresponding relaxed Verma modules by subtesdvhich are themselves relaxed Verma
modules. In this case we do not have a single generatinglaingector, but rather two infinite families of
relaxed singular vectors (relaxed highest weight statéappily, these have a regular explicit form for both
Eo andgl. At grade one, the relaxed singular vectors give the reiatio

(2m—1) (2m+3)

16

and at grade two we obtain the independent relations

2m+3

e,1|vm,2> — h,1|Vm> + f,1|Vm+2> =0 (2.13)

(2m—7) (2m— 3) (2m+ 1) (2m+5)
256
(2m+1) (2m+5)

+ T (h21+2f_18 1 —h_p) |vim) —

(2m—3)(2m+1) (2m+5)
32

92,1|me4> -

(h_1e_1— € 2)|Vm-2)

2m+5

(f,lh,l — f,z) |Vm+2> + fEl|Vm+4> =0.
(2.14)

These relations appear somewhat asymmetric, but this auseove have chosen to relate the zero-grade
states|vm> as in Equation (2.7). Substituting this back into the ab@lations leads to more symmetric
forms. We find the latter forms useful when applying spedtost to the above vanishing vectors.

Let us mention that the non-trivial vacuum relation (2.1d3ds, in the usual way [32], to non-trivial
constraints on the spectra of 021(2)_1/2-the0ries. In particular, thel (2)-weight of any highest weight
state is restricted to being 0, 1—,% or —%. It follows that the only highest weight modules that can be
admitted in the theory are the four irreduciblég L1, f;,l/z andf;,g/z. Similarly, relaxed highest weight
states are restricted to either being a zero-grade staf@ of 21, or having conformal dimension%.
This covers all the zero-grade statesfofl/z andz_g/z, their conjugategjl/2 = rl(zo) andzi3/2 =
rl(f:o), as well as the zero-grade states€gfandé;.

However, it also allows more general modu@,ﬁ with A ¢ Z, provided that their zero-grade states
|vm> havesl (2)-weight m and satisfy Equation (2.7). Of course, we have the idenﬁﬁne@,\ = §A+2-
IfA¢Z+ % thenEA is irreducible and the relations (2.13) and (2.14) stillchoThe case\ € Z+% is
interesting as the relation (2.11) admits four distinceioomposable relaxed highest weight modules, two
with lowest weight states aff (2)-weights3 and 3, and two with highest weight states €f(2)-weights
—% and—%. We will denote these indecomposablesgqyz, Eg/z, Efl/z andéfg/z, respectively, noting
that conjugation gives

w(€s) =€,  and  w(E5,) =, (2.15)
The zero-grade states Bf/z and§§/2 still satisfy Equation (2.7), though those@ﬁ_*l/2 andgfg/2 will not
— (2.7) manifestly assumes no highest weight states. Rdtieestates oﬁfl/z and 8f3/2 may be taken
to satisfy the equations obtained by applyindo (2.7).

3. FUSION TOGRADE O

3.1. Preliminaries. We now turn to the fusion rules of the irreducible modufe}s 21, §0 andgl. These

will be calculated with the help of the algorithm of Nahm andb®rdiel-Kausch [7, 8] which abstracts, in
terms of coproduct formulae, the natural action(s) of thieatlsymmetry algebra on the chiral operator
product expansions of the theory. The key assumption wyidgrthis algorithm is that the vector space of
the fusion product of two modules may be realised as a quatsetspace) of that of the (vector space)
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tensor product of these modules. Given this, the masterdiaendefining the fusion coproduct for affine
Kac-Moody algebras are most usefully given in the forms [33]

A = io <:1>Jm®1+1®3n (n>0) (3.1a)
A = io (”*2_1> (—)"In@1+100 (n>1) (3.1b)
Jn®1mzn <:‘:11>A(Jm)(1)”r§o (”*:_1>1®Jm (> 1) (3.1¢)

Here,® denotes the usual vector space tensor product (@yandJ stands for eithee, h or f. The first
two formulae define the action of the affine modes on the fusiodule, whereas the last may be viewed
as a necessary auxiliary formula for explicit computatibagtually amounts to imposing the equivalence
of two distinct fusion coproducts). We will also need the mzjuct formula for the Virasoro zero-mode:

Al =L_1®1+Lo®1+1aLo. (3.2)

Note that for these sums appearing in (3.1) to be finite, thdutes to be fused should have their
subspaces of constasit(2)-weight consist of states whose conformal dimensions avadbed below. This
is the case for all the modules that we shall consider as thjsgpty is preserved by the induced action of
the spectral flow automorphism Even so, the first sum in Equation (3.1c) will still be infanitHowever,
we will only be interested in computing in certain quotienfsthe modules, and this will truncate the
remaining infinite sum. In this section, we will restrict salves to explicitly computing only the most
readily available information about the fusion rules. Weer¢o this as fusing to grade 0 because from this
we will only obtain information about the zero-grade staiBthe fusion module.

To compute this grade 0 fusion of tvﬁd)(Z)-moduIes, one applies these formulae in the (vector space)
tensor product of the zero-grade subspaces of both modiiegeneral, vectors which vanish in either
module, but not in their Verma or Verma-like parents, willlirce linear relations in this tensor product
space which must be imposed to get the correct fusion spauaeh I8ear relations are referred to as
spurious states [7]. We mention that the vanishing vecthisimgive rise to the spurious states do not have
to belong to the zero-grade subspaces.

Before beginning the calculations, it will be useful to exaenthe basic premise of the fusion algorithm
in slightly more detail. This somewhat formal discussiorkesthe above description precise and makes
contact with the generalisations necessary for fusing hegoade 0 (Section 4). Let us defigle to be the
subalgebra of the universal enveloping aIgebraA[QE) which is generated by the_,, h_, and f_j with
n > 1. This obviously acts 06[(2)—modules. A precise version of the above claim regardindukion of
theﬁ(Z)-modulesM andN to grade 0 is then that

Mx N M N
- ®
ART) (MxsN) A= M AN

(3.3)

as (complex) vector spaces. The point here is #g@2~ M reduces to the usual notion of zero-grade
subspace whel is a (relaxed) highest weight module. Then, we can intetthietrelation as saying that
the zero-grade subspace of the fusion product may be fouthdnvwthe tensor product of the zero-grade
subspaces of the original modules. However, (3.3) is a gdieation of this which makes sense for all
modulesM, in particular for the images of (relaxed) highest weighdules under spectral flow.

Proving (3.3) amounts to demonstrating that the followingcpdure terminates. Consider a representa-
tive statev) @ |w) € M@ N for an element of the left hand side of (3.3).
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(1) If [v) = J_n|V') for somel_, € %™, then we apply Equation (3.1c) to obtain

V)@ |w) = —(-1)" i <n+21> V') & Jm|W), (3.4)

m=0
as form> 1, A(J_m) = 0 when acting upon the left hand side of (3.3).
(2) If |w) = J_n|w) for some_, € A~, then we apply Equation (3.1b) f(J_p) (|v) @ |W')) =0,

obtaining

Vo =-3 (”* 2‘1> (D)™ V) @ W), (3.5)

Repeating these steps as needed, any representativestateleft hand side of (3.3) should be reduced to
a linear combination of representative states for the tigimd side.

However, the actual termination of this procedure isagriori guaranteed. In step 1\/> might have
the formJ_n|v") with J_, € A~, so we would have to apply step 1 again. We thereby see tisapaini of
the procedure will terminate if eve|1y> (from an appropriate basis) has the fodmy, J_n, ---J_p, |u> for
some|u) € M/~ M. One can check that fovl of the formZ,, &, or yﬂ(f:,\), this is guaranteed, hence
termination is inevitable. The analysis is identical fas2, so we conclude that when béthandN are
of the formZ,, €, or yﬂ(ﬁA), then the (grade 0) fusion algorithm terminates.

In the remaining cases, when eitidror N is one of the twisted modulqé(ﬁ}\) with [¢| > 1 or y((EA)
with ¢ = 0, one can check that the respective quotfeiril~M or N/2(~ N is in fact trivial. Termination is
therefore not clear, and in fact seems rather unlikely. Wget, applying step 2 might lead to new states to
which step 1 should be applied and vice-versa. We concluaigtie termination of the fusion algorithm is
a subtle business in general, even when computing to grade 0.

Finally, we mention that a lack of termination does not neagfy mean that one cannot use the fusion
algorithm at all. Rather, it means that Equation (3.3) isapyiropriate for the modules which one is trying
to fuse, and an alternative space must be sought for thehagid side. We shall see an example of this in
Section 4.5. In what follows, we shall take some care to amghe termination of the fusion algorithm
wherever possible.

3.2. Fusing L1 and £1. We begin by investigating the fusion of the irreduci@[eéZ)-modulezl with
itself. We have already given the result in Section 2, bueitvas the illustrate the fusion procedure in a
very simple setting, while paying close attention to thetkaties that one has to deal with in affine theories.
Letting |u1) and|u_1) = fo|u1) denote the zero-grade states(af the fusion to grade 0 will be contained
within the space spanned by

|u1) ® |uy), lur) @ |u_1), u)®|u) and  |u1)®|ug). (3.6)

This follows from the above termination discussion: Bo#pst and step 2 are guaranteed to terminate, and
it is easily checked that we do not need to apply step 1 agtén@impleting step 2.
Note that the[ (2)-weights of the spanning states are 2, 0, 0-aBdso the weight spaces have dimension
1 or 2. This is well-defined because t1€2)-weight is conserved by the fusion operation (as one expects
from operator product expansions). This follows readiynirtakingn = 0 in Equation (3.1a) to get the
usual tensor coprodtfct
A(J) =d®1+1®Jo, (3.7)

withJ=e¢, hor f.
21t also follows from this formula that fusing two modules on walinhg is diagonalisable, highest weight modules for instancd, wil

result in a module on whichy is diagonalisable. This means that the logarithmic conforreld theories that we are generating will
have the affine zero-mode acting semisimply. This argument dutezpply toLg as Equation (3.2) shows.
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Let us first remark that substituting the Sugawara form. of into Equation (3.2) and applying Equa-
tion (3.1c) gives
1 2 2
A(Lo) =Lo®1+1@Llo+ Zho@ho— €0 fo—Zfome (3.8)
on the zero-grade subspacequxf Zl. We therefore find thdtg is represented on th&(2)-weight spaces
of weights 2, 0 and-2 by

: (3.9)

Wl

A(Lo):ga A(Lo) = (

WIN WIN
WIN WIN

) and A(Lg) =

respectively. The matrix in the middle is diagonalisabl¢hvgigenvalues 0 ané, so we have anl(2)
singlet of dimension 0 and a dimensiénriplet. However, zero-grade states are forbidden fronirtgathe
latter conformal dimension (Section 2), so we conclude dinét the eigenstate of dimension 0 is actually
present in the fusion. The rest must be set to zero (they mogide examples of spurious states).

This is very encouraging, but we will take some time to relgs®the situation using the more rigorous
algorithmic approach. In part, this serves to illustrate ¢leneral procedure, which can become quite in-
volved, but it also serves to allay doubts that the aboveraegui might have loopholes. In particular, one
might imagine that the “forbidden eigenstates” of dimenécmight belong to some peculiar indecompos-
able module for which the dimension argument of Section 2 aa¢ apply.

We therefore turn to the vanishing vectors of the second od)ﬁM in order to deduce relations between
the states of the weight spaces. Such vectors are descendetht (vanishing) singular vector

(Te_2—2h_1e 1) ’U1> +4e§1]u_1> =0. (3.10)

As we are computing to grade 8J_n) must be identically zero for each= e h, f and alln > 1. Thus,
Equation (3.1b) gives

0=A(7e_2)|u)® |u1) = 7ep|u) ® |ug ) + 7|u) ® e_o|u1), (3.11a)
0=A(—2h_1e 1) |u) ®|uz)

= —2hpep|U) ® |u1) — 2ep|u) @ h_1]ur) — 2ho|u) @ e_1|u1) — 2|u) @ h_1e_1|u1), (3.11b)
0=A(4€%1) |u) ® |u_1) = 4€5|u) @ |u_1) + Beo|u) @ e_1|u_1) +4|uy ® €? 1 |u_1), (3.11c)

where|u) might be|u;) or |u_1). For|u) = |u1), we add these results and take into account the vanishing
singular vector (3.10) to get
—2|u) ®e_1]u;) =0. (3.12)
We therefore apply step 2 of the fusion algorithm to rewtie left hand side as
2ep|ur) ® |ur), (3.13)

which vanishes identically. This means that no spuriougstare obtained. However, whﬁ@ = |u_1>,
repeating this computation gives

—5’U1> ® |U1> + 2‘U1> X h,1’U1> + 2’U,1> ® 671’U1> — 8|U1> X e,1|u,1> =0, (3.14)
and applying step 2 to the left hand side now gives
—5|u1) ® |uz) = 0. (3.15)

It follows that|u1> ® |u1> is a spurious state, so the weight 2 space is in fact trivial.
We can deduce further spurious states from this one by apgplyiep) andA (o). In this way, we obtain

m)@[u_1)+|u)®fu)=0 and |u1)®|u_1)=0. (3.16)
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We get no further spurious states by using descendants dfinigellar vector (3.10), nor by using the
vanishing singular vector of the first copy Bfl (using Equation (3.1c) and step 1), so we conciutiat
the fusion to grade 0 is one-dimensional. The surviving Wesgpace has weight 0 and one can check from
Equation (3.8) that the corresponding conformal dimenisandeed O.

The obvious conclusion to draw from this is that

21 szlizo (3-17)

asZlo is the only admissible module with this zero-grade subspabés is what was reported in [1] (and
Section 2). However, we should be careful and note that thgoatations we have carried out will not be
sensitive to modules whose zero-grade subspace is trikgalve have already noted, these include those
twisted modules of our theory whose conformal dimensioesnat bounded below. This means that it is
possible that modules such ;a”s(f;\) (¢ > 1) andy”(g,\) (¢ # 0) could contribute to the decomposition
of the fusion process, and the above computations will netlsem.

To investigate the possible appearance of twisted modulesshould try to repeat our computations
beyond the zeroth grade. More precisely, this entails oépdpthe algebr&(~ in the fusion algorithm of
Section 3.1 by a subalgebra which will detect twisted mosluldowever, we are already assuming that
fusion respects the spectral flow as in Equation (2.10), sariis out that there is a second, easier, path
which we can take.

Assume then that the fusion rule (3.17) is not correct, bse#uere are states on the right hand side that
are associated to twisted modules. We may choose a cantlidsted moduleyé(M) say, and test for its
presence in the fusion by considering instead the fusion

Zl X f y*e(ﬁl). (3.18)

By Equation (2.10), if our chosen twisted module appear8.itq), then itsintwistedversionM will appear
in (3.18). The fusion algorithm of Section 3.1 will now detéd, provided of course that the algorithm
terminates when applied to (3.18).

We therefore examine the termination of the fusion algarithpplied to a stat¢v> ® /W} €eL1®
y‘f(zl). Step 1 obviously still terminates, so we may assume [\ats [u1) or |u_1). Iterating step
2 then allows us to assume th} is a state of minimal conformal dimension for #52)-weight. If the
twist parametef has|¢| = 1, then we have already shown that the algorithm termin&estion 3.1) for
(3.18). Forl¢| > 1, we may define an infinite sequence of staies$ < y“(ﬁl) by

‘W> = ‘J*nl‘W1> = ‘J*nl‘Ln2|W2> = J,nlJ,an,n3|W3> = (3.19)

in which each]vvi> also has the minimal conformal dimension fordt$2)-weight. HereJ denotes either
f or e according as to whethéris positive or negative. But we can only apply step 2\1}0@ |W> twice
before]v) is annihilated (bng). As this application introduces no states to which step $trba applied,
the fusion algorithm thereby terminates.

However, for|¢| > 1, y“"(ﬁl) has trivial zero-grade subspace, hence the fusion produst loe trivial
by Equation (3.3). It follows thadM does not appear in the fusion (3.18), hence W%M) cannot appear
in (3.17). Forl¢| = 1, M must be of the fornﬁ,\ for %(M) to be undetectable in (3.17). But, the weights of
the zero-grade subspaceyof’ (Z 1) are bounded either above or below, so those of the (vectoe¥ensor
product of the zero-grade subspaceﬁpﬁndy‘é (21) are similarly bounded. Itis now clear tl“%,{ cannot
appear in the fusion (3.18) because the weights of its zezdegsubspace are neither bounded above nor

3n fact, it is difficult to ever be sure that the relations sled are exhaustive. However, in practice the module strecioe deduces
from an incomplete set of relations is almost always found tmbensistent (especially when one computes beyond grade 0).
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below — such an appearance would contradict Equation (8/8)therefore conclude that Equation (3.18)
is indeed correct after all. There are no contributions ¢oripht hand side associated with unseen (to grade
0) twisted modules.

3.3. Fusing L1 and E,\. We can now turn to the elucidation of new fusion rules, inipatéar to the fusion

of the irreducibl&?[(Z)-modulele andg;\. Letting ]u1> and]u_1> = fo\ul> denote the zero-grade states
of 21 and |vm>, me 27+ A, denote those o@,\ (normalised as in Equation (2.7)), the result of this grade
0 fusion will be contained within the space spanned by

|u1) ® |Vin) and  |u_1) ® |Vns2) (Mme 2Z+A). (3.20)

In contrast to Section 3.2, this is an infinite-dimensionqelce. However, the weight spaces are only two-
dimensional, so we can still invoke linear algebra on theseas separately.
Note first that applying Equation (3.8) to the spanning stateeach weight space gives the matrix

representation
1 A+3 -2
A(Lo) = 3 (1 8 7) . (3.21)
s@AA+H)(2A+3) —A—3

This matrix has eigenvalues% and2—54 for all A. Again, zero-grade states are forbidden from having the
latter conformal dimension (Section 2), so we suspect thigtthe eigenstates corresponding to eigenvalue
—% are actually present in the fusion. The other eigenstatsidhhen be spurious states.
As in Section 3.2, we use the vanishing vectors (2.1§)pfn the fusion algorithm of Section 3.1 to
search for spurious states in the weight spaces. Applifey1) = 0 to |u1> ® /vm,2>, A(h_;)=0to
|u1) ® [Vm) andA (f_1) = 0 to |u1) ® |Vins2), we find that (2.13) leads to the spurious states
m+3
4
which must be removed from each weight space. The weighesfzae therefore (at most) one-dimensional.
We can repeat the above exercise after replaq:\ing by ]u_1>, but find no further spurious states.
Similarly, the vanishing vectors (2.14) 85\ and the vanishing singular vector (3.10)15_{ (using Equa-
tion (3.1c) for the latter) yield nothing new, so we conclullat the relations (3.22) are exhaustive. The
result of the fusion to grade O is therefore an infinite-disienal space whose (2)-weights belong to
27,4+ A + 1 and have multiplicity one. There is only one admissiﬁl@)—module with this zero-grade
subspaceEA 11, So this strongly suggests that the fusion rule is

[U_1) ® |Vmp2) — 2 lu)®|vm)=0  (forallme 2Z+A), (3.22)

Lixi€y=Exp, (3.23)

where the addition is of course understood modulo 2. We hhgeeked that the action of the zero-modes
(Equation (3.7)) is consistent with this conclusion.

As in Section 3.2, one is required to rule out the presenc¢hi;mfusion decomposition, of twisted
modules which are not detected at grade 0. The argumentpeesthere works just as well in this case,
except now we use the twisted fusion rule

Lixey'(&2)  (I01=1). (3.24)

Termination of step 1 follows becaugs is highest weight (even relaxed highest weight would suffice
Step 2 again terminates essentially because it reducee twasfer ofs[(2)-weight from the infinitely
many states offf(g,\) whose conformal dimension is minimal for their weight to #texo-grade states
of El. This can only be done twice before the latter states arehdated. The termination of the fusion
algorithm then implies that (3.24) is trivial to grade 0,imgl out undetected twisted modules in (3.23).
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Equation (3.23) is therefore correct, proving our earli@in (Section 2) thatZl remains a simple
current when we augment the theory by @yeand their spectral flow images. Note that it follows now
from associativity [33] that the vacuum modlﬁe continues to act as the fusion identity in this augmented
theory. Of course one can explicitly check this too usinggtegle 0 fusion algorithm.

3.4. Fusing &, and Eu. We now turn to the fusion of , with @u (for A, u € {0,1}) to grade 0. This time,
the result is found within the vector space spanned by thessta

Va) @ [Vm) (M€ 2Z+A, me 2Z+ p). (3.25)

We mention that this is infinite-dimensional and that, intcast to the case studied in Section 3.3, the
s[(2)-weight spaces are also infinite-dimensional. We will tfene not be able to (immediately) use the
action (3.8) ofLg to analyse (heuristically) whether these states are athigssThis also serves as a hint
that perhaps the structure of this fusion product is moréetifian those we have analysed thus far.

Let us therefore repeat the analysis of Section 3.3, stawtith the vanishing vectors (2.13) 3{,. Since
A(J-1) = 0 identically, we can use Equation (3.1b) to derive the i@hat

2m—1)(2m+3 2m+3 2n—1)(2n—3
(2m )12 m-+ ( m:: )n (2n )1én )’Vn72>®|vm+2>20.

(3.26)
We interpret these spurious states as second-order racanrelations for the states €f(2)-weightm+-n.
It follows that for each weighin+ n, these relations reduce the number of linearly indeperstatgs from
infinity to just two! We will fix these two states in each weigdpgace by choosing (and thereforen)
arbitrarily. The “basis” states then have the form

 vo2) @ vin-2) Vo) & v} +

Vo) @[vm)  and  Vai2) @ |Vim_2). (3.27)

Since the weight spaces are now finite-dimensional, Equé8@) can be applied to determine the action
of Lg. With respect to the basis ordering above, we find the matprasentation

1 —(2n+1) 2m—-1
Albo) =15 <—(2n+ 1)(2n+3)/(2m—1) 2n+3) (3.28)

which has eigenvalues 0 a%d This suggests that the result of fusiﬁ,g with 5“ will involve the module
Lo or £1.* Note however that the result is (thus far) independent otaked s((2) weight m+ n, which
compares poorly with the situation sziro andZ;.

To analyse the fusion space in more detail, we note that tagaes (3.26) are not symmetric mand
n. Indeed, if we start with the vanishing vectors (2.13f@fand use Equation (3.1c), we derive instead the
slightly different relations

(2m— 1)1((32m— 3) Vi 2) ® [Vim_2) — w Vi) & [Vim) + W Vn—2) @ |Vm42) = 0.
(3.29)
Substituting (3.26) into (3.29), we obtain
(m+-n) [(Zm— 1) |Vat2) ® [Vm-2) — (2n+3) |Vn) ® ]vm>} =0. (3.30)

The resulting spurious states therefore reduce the dimerfithe weight spaces to 1 except when the
weight ism+n = 0. In the latter case, Equation (3.30) is vacuous so the dinememains at 2.

It remains to study the vanishing vectors (2.14)@,}1‘ and Eu. These by themselves vyield rather un-
appealing third-order recurrence relations. However,iwhe- n = 0, applying (3.26) reduces both these

4of course, it cannot involve both. Thé&(2)-weights ofg,\ are either all even or all odd, depending on the paritk ofThe weights
of the fusion module will therefore accord with the paritylof- .
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recurrence relations to the simple form

We conclude that the weight space of weight n = 0 is therefore one-dimensional. Whemtn #£ 0, we
can apply instead Equation (3.30) to derive that

(M+n—1)(M+n+1)|Vq) ®|Vm) =0  (M+n0). (3.32)

We conclude from this that the weight spaces of weightn = +1 are also one-dimensional, whereas those
with weight not equal ta:1 (or 0) are trivial! Moreover, computing the action®fLg) on the remaining
states witrm+n =0 and+1 gives conformal dimensions 0 aédespectively. As we have been unable to
find any further relations, this suggests the following dusiules:

Erxt&u=2Ly iy (3.33)

where the addition is once again taken modulo 2. We rematkttiese fusion rules are consistent with
associativity.

However, we recall from Section 2 théb andé; decompose in the (1)-coset theory into the highest
weight modules of the triplet algebra whose highest weitfites have conformal dimension% and g,
respectively. These triplet algebra modules are well kntmwnse with one another to give indecomposable
modules on whichy cannot be diagonalised [19]. This is responsible for thadibigmic structure of the
triplet model and we would expect that this logarithmic stane is mirrored in the fusion rules of the
3[(2)71/2 theory studied here. Thus far, we have not uncovered ang tfiadecomposability — aHA[(Z)—
modules considered to date are in fact irreducible. Thiddess to suspect that the fusion&f and &,
is not as simple as the above grade 0 calculation would habelieve. We will therefore check carefully
whether it is possible that this calculation might have milssontributions coming from twisted modules.

Suppose then, as in Sections 3.2 and 3.3, that there are atsieciated to twisted modules appearing in
the fusion of@,\ andgu (unlike what was proposed in (3.33)). Then, we can try toate¢teem by studying
instead the grade 0 fusion

&y xry () (3.34)
with ¢ #£ 0. Since the twisted module above has a trivial zero-gratdspace, we may conclude, as before,
that Equation (3.33) has no twisted module corrections ag ks the fusion algorithm of Section 3.1
actually terminates for (3.34).

Now, step 1 still terminates, atA’sA is a relaxed highest weight module, but the situation fop &tés not
so happy. We can still reduce a st@é@ |w> so that we may assurﬁe) to be a zero-grade state 5j
and that|W> € ré(gy) has the minimal conformal dimension possible for its weigBtit, using step 2
repeatedly to reduc]erv> to certain stateM) with i € Z,, as in Equation (3.19), we encounter an infinite
regression. Each iteration moves some weight frord\l\hﬁonto \v> € EA via the action ofly (J=eor f),
but ]v) is never annihilated this way, so the algorithm does notiteata. It follows that we cannot exclude
the presence of unseen twisted module corrections to Eouédi33) by computing to grade 0. To study
this question further, we will therefore have to bite theldtudnd study fusion to higher grades, or in the
more precise language of Section 3.1, exchange the algebfar a carefully chosen subalgebra.

4. FUSION BEYOND GRADE O

4.1. More General Fusion Algorithms. We consider the generalisation of the fusion algorithm af-Se
tion 3.1 to higher grades. W andN are the modules to be fused, this means choosing a subakjeiira
2~ and determining the (vector space) quotient of the fusioduteon which2( acts as zero. The general
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formalism of Nahm and Gaberdiel-Kausch [7, 8] suggeststtiiatjuotient should satisfy

MXfN M N

A(A) (M xt N) Saw fan 41

Note that?~ still appears on the right hand side. As before, demonsgétiis inclusion amounts to
showing that a certain algorithm terminates.

This fusion algorithm for is in fact only a slight generalisation of that of Section.3V¥e have now
three steps which we may apply iteratively to a st&}@ |W> € M®N, though the third is little more than
an afterthought:

(1) If [v) = J_n|V') for some_, € 2, then we apply Equation (3.1c).
() If |w) =J_p, -+ I, |W) for somed_p, ---J_p, € 2, then we apply Equation (3.1b) to expand

B3+ d-n) ([v) @ |w)) =0 (4.2)

and substitute fojv) ® |w).

(3) It may happen thajw) = J_p, ---J_p,|W) € AN (formally), butJ_pn,---J_n, ¢ A. This occurs
whenJ_p, -"J,n[|V\/> is one term of a vanishing state df, the other terms of which belong to
2AN. Then, we simply use this vanishing to substituteXoy, - -- J_p, |V\/>

We will see an example in the next subsection of step 3 beird.ués in Section 3.1, it is not hard to
verify that this algorithm is guaranteed to terminate whmndX are (relaxed) highest weight modules.
In general however, termination is a very subtle affair asaw in Section 3.4.

4.2. 3,\ X ¢ Eu Revisited. Our first task, and it is a very important one, is to choose thelaa?( that
appears in the fusion algorithm. One might expect, esggdfadne is familiar with similar fusion com-
putations for the Virasoro algebra, that a natural choicald/be the subalgebra generated by all products
of negative modes whose indices sum-2 or less (this would be a good candidate for fusion to grade
1). However, computations with th@ tell us little more than the grade 0 computations of Sectioang!

the reason is because thlss likewise blind to the appearance of non-trivial twisteddules in the fusion
results.

We will therefore first consider taking the algetato be that generated Bz 1, h_, and f_j with
n> 1. We will refer to the corresponding fusion algorithm asifigsto grade(1,0,0). Sinceej_1 ¢ 2 for
any j, we expect that fusing in this way will expose twisted moguéthe formy? (L) andy(gu). Other
twisted modules might not, however, be visible with this raagh.

Having choser?(, we now compute. As in Sections 3.3 and @}/(m—%) consists of just the zero-
grade state$v,) of €,. The quotient@u/(ﬁgu) should consist of the zero-grade stafes) of &, and
theire_j-descendants. However, Equation (2.13) lets us write
4 16

& S R g 4.
2m—1 am 1) (ami3) Hvm2) € Aeu, (4.3)

e 1|Vm-2) = h_1|Vm) —

for all m. It follows that&, /(A€ ,,) likewise consists of just the zero-grade stdigsg of €.
Equation (4.1) now tells us that the fusion quotient is cioretd within the vector space spanned by the

Vo) @ Vim) (M€ 2Z+A, me 2Z+ p). (4.4)

Before beginning the computations, we pause to considet thiearesult will be if the suggested fusion
rules (3.33) are correct. We therefore illustrate the wmﬁﬁ,\+u/(912,\+y) for A +pu =0,1in Figure 2,
along with the actions of_;, ey, fp andf;. There are several comments in order here. First, Equaia0)
gives

4ez,l|u,1> = (Zh,le,l — 7872) |U1> € Qlﬁl, (4.5)
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Lo/ (ALo) L1/(AL1)
FIGURE2. Schematic illustrations of the states of the (vectorepquotientsfo/ (leo)

anle/(Qlﬁl). As usual, the conformal dimension increases from top ttohoand the
s[(2)-weight increases from right to left. Each dot representate $or the corresponding
weight space (the multiplicity of which is always one). Theek represent the actions of
e_1 (south-west)gy (west), fg (east) andf; (north-east).

explaining why the picture fof, has only one infinite string of stateei1|u1>, rather than two. Seconeg
and f; do not preservé@l (under the adjoint action), hence they are not truly weflra on the quotients
under consideration. In particular, in any quotient of thierf N/ (QLN) we may write

eo|V) = ep(|V) +h_1|w)) = eg|v) + h_1&0|W) — 2e_1|W) = ep|v) — 2e_1|W) (4.6)

for any |w). Assuming (without any loss of generality) tHab has a definite( (2)-weight and conformal
dimension, it follows that we can only defilaas|v> unambiguously if the?[(Z)-weight space oéojv> has
trivial intersection with the image af_;. Similarly, f1 is only defined on state|y> for which thesA[(Z)-
weight space offl\v> has trivial intersection with the image d§. It follows that bothey and f; can be
defined on all ono/(QlEo) andzl/(mﬁl) except for the state which corresponds to the south-easgrcor
of the parallelogram in Figure 2. Note however that, hy, fo andLg are perfectly well-defined.

We now begin the computations. As in Section 3.4, the weightss are infinite-dimensional. One
difference is that we cannot start by using the vanishintgsté2.13) ofgu. These vectors have already
been used to reduce the stateé\pf (2@“) to the zero-grade states@[,. One can check that trying to use
them further takes us around in circles. Instead, we mustwith the corresponding vanishing states of
E,\. Applying Equation (3.1c) to the tensor product of such sestath ]vm> and using the fusion algorithm
of Section 4.1, we arrive at a third-order recurrence refator each weight space. The weight spaces are
thereby reduced to having dimension 3.

We continue our search for spurious states, now using thishiag states (2.14) cﬁu. These turn out
to yield an independent set of spurious states which rechedimension of each weight space by one.
Furthermore, applyind (fo) (which is well-defined) to these spurious states yields negs@xcept when
the weight ism+n= +1. We have found no further spurious states using thesehiagistates, nor by
exploiting those 0{’3\,\, so we conclude that the weight spaces of the fusion prodacbe-dimensional
unless the weight is-1, in which case they have dimension 2.

We can now determine the action lof on the weight spaces using Equation (3.2). Applying the Sug-
awara form ofL_; and Equation (3.1c) again, we find that

1
AlLy) =Lo®1+1®Lo+ 3 (h_1hgp—2e_1fo—2f_160) ®1
1
=Loi®1+1® Lo+§(ho®h07290® fo—2fp@e—2efo1—-2fi®e ;). 4.7)

We should be concerned thetmay not be well-defined in the second factor where it acts @pgnj%lgu)
As remarked above however, this is only a problem when thdtrekapplyingey has the same weight and
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A+u=0 A+u=1

FIGURE 3. Schematic illustrations of the states of the (vector spagiotients of the
fusion moduIeEA X 5“ to grade(1,0,0) for A + =0 andA + u = 1 (modulo 2). The
conventions are as in Figure 2 and the north-east arrowfiggtinate_; is acting trivially
whereasf; is not. The dashed lines serve to delineate the point belowhathe result
resembles that of Figure 2.

conformal dimension as a non-trivial element of the image ef It is not hard to check that Equation (4.3)
implies that this image has already been set to zerey #in fact well-defined oﬁﬁy/(mgu). It follows
that the above action &fy makes sense.

Computing the action dfy on a generic weight space now gives a conformal dimensi@b(nﬂ- n),
wherem+n = +1 is the corresponding (generic) weight. e#-n= 1, A(Lp) is a matrix with eigenvalues
1 and 3, and form+n = —1 the eigenvalues ark and 5. The fact that these states have conformal
dimensions which are unbounded above and below proves thatién (3.33) is incorrect — twisted
modules do contribute to the fusion. We illustrate the weggiaces of the fusion module to grade0, 0)
in Figure 3. There, as in Figure 2, we indicate the actioe af ey, fo and f;. Note thatey and f; are
well-defined except on the state ©if2)-weight 1 and conformal dimensiojﬁ(the south-east “corner” of
the parallelogram of states appearing in Figure 3).

Now, if we twist these results by the spectral flow automasphy 1, we end up with two weight
space configurations whose conformal dimensions are unlijdsounded below (by%) and whosel (2)-
weights are half-integers. Indeed, when- 1 = 0, the configuration suggests that the twisted result is
indecomposable with a submodule isomorphicy(@l) = 2_3/2 and whose quotient by this submodule
is isomorphic torl(ﬁo) = E*—l/Z (the “«” indicates the conjugate representation). This indec@able
module therefore has a zero-grade subspace with nonktsigight spaces of arbitrarily large weights, both
positive and negative. In this, it resembles the modﬁl,e,sexcept that its zero-grade subspace contains
an sl (2)-highest weight state of weight%. From Section 2, we therefore identify this indecomposable
as§f3/2 (recall that the 4" indicates that there is a highest weight state of the giveigm—g). When
A + 1 =1, the corresponding twisted result is obtained by swapgingnd £1. This results in the inde-
composable modul?:fl/2 whose zero-grade subspace hasld8)-highest weight state of weight%.

Undoing the spectral flow, we see that the grati®,0) result suggests that the true fusion rules take
the form R

£ ey {y(fjg/z) ifA+u=0 (mod 2, “s)
y(&fl/z) if A+u=1 (mod 2.

This result strongly confirms our suspicion that the restifusing g)\ with gu involves a reducible yet
indecomposable module. However, the above identificatitimeofusion cannot be correct either! Applying
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Equation (2.10) to the left hand side of Equation (4.8), weedver that the right hand side should be self-
conjugate. What we have concluded above is not. This is becsashave based our conclusion on the
result of fusing to gradél, 0, 0), corresponding to an algeb?awhich is not invariant under the conjugation
automorphisnw. Indeed, if we had fused to grad@,0, 1) instead, corresponding & being generated by
e_n, h_pandf_,_; with n> 1, then we would be drawing mirror images of the weight spacdigurations
of Figures 2 and 3. We conclude that we are yet to unravel thetfucture of the fusion module.

We therefore generalise the above fusion computationsadedd,0,1), that is we redefin@l to be
generated by the (conjugation-invariant set)_1, h_, and f_,_; with n > 1. It follows that the fusion
guotient that we will uncover will be contained within thecter space spanned by the states

Va)®@|Vm),  and  |vn)®e_1|Vm2)  (NE€E2Z+A, me 2Z+ ). (4.9)

Here, we have used the vanishing states (2.13) and (2.1@,) b eliminate states of the forrﬁ_ljvm>
ande? 1\vm> respectively. We will therefore not be able to use theseshang states to construct spurious
states.

We instead apply Equation (3.1c) to the tensor product ofréstidng state (2.13) of » and the state
\vm> € gu- As before, this yields non-trivial spurious states in eaghight space. Repeating this, with
|vm> replaced bye,1|vm,2>, yields independent spurious states which, together Wghfitst set, define
recurrences that reduce the dimension of each weight spagie.tNow, the actions oy and fg are not
well-defined on the fusion quotient, but thoseeofy and f_; are. This turns out to be very useful —
applyingA(e_1) repeatedly to the spurious states which have already béemueed yields a complete
set of spurious states. No further constraints have beerdfoot even if we use the vanishing states (2.14)
of EA.

The resulting weight spaces are found to be genericallydintensional, whereas those of weightifl,
or +£2 have dimension 3. Computing with the appropriate generalisation of Equation (4.7), wd fhat
the generic weight space correspondingt®)-weightm+ n is spanned by p-eigenstates of conformal
dimension&t% (m+n). The spaces of weight?2 yield eigenstates of dimensiesl, 1 and 3, and weights
+1 give dimensions-3, 3 and3. The most interesting weight space is, however, that of t€lgHere, the
computations reveal twiy-eigenstates of dimensions 0 and 2 and one generaliseds&genf dimension
0. Thus,Lg is not diagonalisable on this weight space, possessingadst Jordan cell of rank 2. We
illustrate the fusion module modulo the actionfin Figure 4, along with the observed (well-defined)
actions ofe_; and f_;.

4.3. Analysiswhen A + 1 = 0. Let us restrict ourselves to the analysis of the above fustnputation

in the case whei + u = 0 modulo 2. We will come back to the cadet+ u = 1 later, as the observed
lack of Jordan cells for this fusion quotient suggests thastill have further structure to uncover. Consider
therefore the stat|e<g> appearing at gradd, 0, 1) whoses[ (2)-weight is 2 and whose conformal dimension
is —1. We suppose that this state has norm 1. Applyfing the observed result is the weight 0, dimension
0 eigenstat¢wo> of Lo. We normalise this eigenstate by defining

ao) = fo1]xg). (4.10)

The above fusion computations indicate tﬁaﬂw@ = 0 (to grade(1,0,1)). Similarly, we introduce
the state|x; ) of weight —2 and dimension-1 by requiring thataw) = e_1|x; ). As we know that the
corresponding weight space is one-dimensional, this dzap(g@ uniquely. We mention tha|L1|ab> =0
(to grade(1,0,1)) as well. Finally, we denote the Jordan partnefcaf) by |yo). It satisfies

Lo|yo) = | ), (4.11)
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A+pu=0 Ad+p=1

FIGURE 4. Schematic illustrations of the states of the (vector spagiotients of the
fusion modulé‘l\,\ X Eu to grade(1,0,1) for A + 4 =0 andA + u = 1 (modulo 2). The
conventions are as in Figures 2 and 3, except that we onlgatelithe actions o 1
and f_1 (hence the arrows). The dashed lines serve to delineateothehelow which
we can identifyZ,\ +u- We also indicate for convenience the splitting of the weigro,
dimension-zero space into th@-eigenvectoriwo> and its Jordan partn¢yo> (in white),
as well as the statgsg ).

which serves as a normalisation, though this relation doeden‘ine|yo> uniquely. Within this (generalised)
weight space of weight 0 and dimension 0, we are free to adttasbmultiples of}wo> to \yo> without
affecting the latter’s defining property.

We first consider the (induced) action of the conjugatiomearphismw defined in Equation (2.5a). As
the fusion module we are studying is self-conjugate, we robngbse how to identify the module with its
image undew. This will be achieved by setting

w(|yo)) = [¥o)- (4.12)
The other states defined above will therefore satisfy
w(lw)) =|wo)  and  w(pg)) = x5)- (4.13)

Indeed,]yo> will turn out to generate the fusion module, so EquationZcdompletely defines the action
of w.

Consider now the effect of applying the spectral flow autgzhiam y to these states. In particular,
y(|x$)) has weight and dimension-§ whereasy(|wp)) has weight-3 and dimension-3. They are
related by the action dfy. It now follows from the classification of admissible reldxaghest weight mod-
ules (Section 2) thay(|ub>) must be a highest weight state generating an irreduciblaufeasomorphic
to 2_1/2 = y(zo). Quotienting by the submodule generated/jy)), we find that the equivalence class
of y(|x§ )) must generate an irreducible module isomorphiEig/2 = yfl(ﬁl) (refer to Figure 1). Sum-
marising, the statg(|x{)) generates an indecomposable submodule isomorp@tltg of the y-twisted
fusion module. This indecomposable is described by the gixact sequence

0— y(Lo) — gfl/z — y (L) —o0. (4.14)

SWe mention that one could have tried to instead define theraofia by w(|yo)) = |an). This is not correct, as the self-conjugacy
of Lp now implies thatw(}wo>) = 0, contradictingw? being the identity. However, such an action is intimatelyated to the
contragredientdual of the fusion module. This highlights nicely the factttbanjugate and contragredient need not coincide in a
conformal field theory.
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Undoing the spectral flow, we have therefore deduced fronfutsien results to gradél, 0,1) that]wo>
generates a submodule isomorphicft@and |x§> generates an indecomposable submoduPe(Efl/z)
which is described by the short exact sequence

0— Lo— yfl(gfl/z) — Yy 2(L1) — 0. (4.15)

We should therefore identifyq)> with the vacuun10> (since the vacuum is supposed to be unique). A sim-
ilar argument demonstrates tljxg> likewise generates an indecomposable submodule whicbrisigphic
to y(El‘/z). The corresponding short exact sequence is

0— Lo — V(€1,,) — V?(£1) —O. (4.16)

Note that the two indecomposablgst (Efl /2) andy(EI/z) are manifestly conjugate to one another.

One can ask how we were able to conclude thay generates a submodule isomorphi@towhen the
above fusion calculations show that;|ap) = f_1|wp) = 0. The resolution is that the states; |wn) and
f,1|w0>, and in fact all other states descended frhm>, are in the image of the grad@;0,1) algebra
2, hence are set to zero in the fusion quotient that we have gtmdmbove. This can be demonstrated
explicitly: Sincef2,[x;) =0in y 2(L1), it follows thate? f2,[x;) =0in y 2(£1) and so

Ef2,x)) =ae_1jap) in yfl(gfl/z), for somea, (4.17)

by weight space considerations. In fact, applyfado both sides yieldsr = 8. Commuting thes; modes
to the right now gives

8e 1]an) = &%) = (f261f 2 —2h 1eaf 2+ 2f se0—2h 5) x]), (4.18)

which clearly vanishes to grad&,0,1). The corresponding conclusion f<br1|ab> follows similarly.

It remains to consider the Jordan partner sty@é From Figure 4, this weight 0, dimension 0 state
appears to generate a highest weight module muchf]'tke More precisely, if we quotient the fusion
module by the submodule generated |y ) and|x; ), then what remains should be isomorphicQg.
That the grade 4 singular vector does indeed vanish in thisient is deducible from its explicit form
(2.11) and Figure 4 — if this singular vector did not vanisarttwe would observe dimension 4 states of
weights 0,£2 and+4 when computing to gradd, 0,1).

We therefore finally identify the result of fusing the modnﬁ; andgu whenA + u = 0. We will write
the result in the form

Exxt€u=8 ifA+u=0 (mod 2, (4.19)

Wherego is an indecomposable module with two composition series,
0C LoC y‘l(gfl/z) C y‘l(gfl/z) + y(@I/Z) c 8o (4.20a)
and  0C Lo C y(Ep),) Cy H(EY,,) +V(Ey,) C So, (4.20b)

which are related by conjugation. The composition factorghese are the quotients of the successive
submodules of a composition series — are the (in order)ucide modules

207 V72(21>7 V2(21)7 20 and 207 y2(21)7 V72(21)7 207 (421)

respectively. Alternatively, we can descriﬁ@in terms of a short exact sequence involving two (twisted,
relaxed) highest weight modules. Specifically, there agesuch short exact sequences,

(N () ) — So— (€, 1) — 0 (4.22a)

and  0—y(€;,) — 80—y (€5, —0, (4.22b)
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So
[ ] [ ]
(1,0,0) (0,0,1)
[ ] [ ]
2(2) (2,0,0) (1,0,0) (0,0,1) (0,0,2)
[ ] [ ]

(5,0,0) (2,0,0) (0,2,0) (0,0,2) (0,0,5)
(10,0,0) (4,2,0) (1,2,1) (0,2,4) (0,0,10)

(19,2,0) (8,4,0) (2,6,2) (0,4,8) (0,2,19

FIGURES. A schematic illustration of the states of the staggeredmmASo. We indicate

the composition factor;rz(zl), Lo andyz(fll) with dashed boundary lines (left) and
the multiplicities of a few of the weight spaces (right). Thtter are separated into those
for each composition factor (the order is as above) with thétiplicities for Lo doubled

(as it appears twice as a factor). At left, we split the wegp#ces to distinguish the two

Eo factors (as in Figure 4, they-eigenstates appear above their Jordan partners). We also
indicate with arrows a few fundamental actions which defireihdecomposable struc-
ture.

again related by conjugation. By analogy with similar inoi®posable modules for the Virasoro algebra
[15, 27], we will therefore refer to the modu‘% as astaggered modulewe iIIustratego with some of its
multiplicities in Figure 5.

It is well known that staggered modules for the Virasoro bigeneed not be completely determined by
their exact sequences [8, 15, 27]. Indeed, one must in decargoute (up to two) additional numerical
invariants, called beta-invariants or logarithmic congt, which completely specify the module given an
exact sequence [12, 15]. We should therefore analyse thespamding situation for our staggerﬁcﬂZ)—
moduleSo. Referring to Figure 5, we see that tE{QZ) action on|y0> (and hence th§[(2) action ongo)
will be determined once we have specifigdlyo), €1]yo), fo|yo) and f1|yo).

Let us recall our state definitions:

First, choosqx(ﬂ to be a state ofl(2)-weight 2 and conformal dimensionl. Declaring it to
have norm 1 defines the scalar product on the submaﬂ(l?e)|x§> = rl(gfl/z) generated by
)

Define|wp) = f_1|x]) and note thaer|an) = 0 implies that{wy|wn) = (ap|f_1|x;) = 0. The
Zo-submodule ogo generated bﬁ/wo> is therefore null.

Define |x; ) by imposinge_1|x; ) = |ap). Since|xy) ¢ sl(2) g ), we may suppose thaty ) is
also normalised. This then defines the scalar product onwhmsdulegl(Z) ]xg} & rl(EI/Z).
Note that both of these scalar products agree (indeed, thiéyanish) on the intersection of the
submodulesl (2) [} ) Nsl(2) %) = 51(2) |wn) = Lo.

Finally, let ]yo> be a state ofl(2)-weight 0 and (generalised) conformal dimension 0 safigfyi
Lo|yo) = |a). This only definegyo) up to adding arbitrary multiples diw). We cannot nor-
malise|yo).

From the multiplicities of Figure 5, we can write

ellyo) =Boxs)  and  eolyo) = (Biho1+BY f_oen) x5 ), (4.23)
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wherefy, By andB{ are unknown constants. Note that a redefinitiody@} through adding some multiple
of |wo> would not affect the values of these constants. There arprimtiple, three similar constants
defining the action of, and fo:

filyo) =Boxg)  and  folyo) = (Béh—l +L§6’e—zf1) X5 )- (4.24)

However, By = (x5 | f1]yo) = (wo|yo) = (x{|e1|yo) = Bo and one can similarly use the scalar product to
show that
20— By+3BY =0 and —2B,+3B) =0. (4.25)
Thes?[(Z)—action is therefore defined by the three numifyr g3, and ;.
However, these three unknown constants are themselvesdegieéndent, because

hieo|yo) = 2e1|yo) = 2B+ B +3B5 =0 (4.263)
and  exep|yo) =0 = 25+ 3B4 = 0. (4.26b)

It now follows that[%, =B and B/ = BZ, exactly as one would expect from applying the conjugation
automorphisnw to Equation (4.23). Moreover, one may check teﬁ)|y0> = eoel|yo> leads to two con-
straints which are not independent of those given in (4 86}e that these constraints are all homogeneous.
In contrast, the normalisation that we chose above for thdahgpartner gives an additional inhomogeneous
constraint:

Lolyo) =|ab) = 4Bo+4fy=-3. (4.26¢)
We can therefore solve the three independent constraif28)(# obtain

1 ;1 1

_ = — _ = n__ =
Bo= 2 Bo 5 and 0 =3 (4.27)

These numbers uniquely determine ﬁnéZ)-action onSo.

4.4. Analysiswhen A 4+ u = 1. Combining the associativity of the fusion rules with Eqaas (3.23) and
(4.19), we obtain

Exxt&y=L1x180=81 fA+u=1 (mod 2, (4.28)
which defines thel (2)—module§1. As we have exhibite@o as an indecomposable combinatiory%(zl),
y‘z(zl) and two copies oon, it is very natural to presume thgtl may be likewise exhibited as an
indecomposable combination (o), VZ(ZO) and two copies of 1. Indeed, comparing Figure 1 with
the fusion results pictured in Figure 4 (right), we see thia presumption is supported except in that we
only see one copy of.

The explanation for the missing copy 6f is much the same as for the missing descendanﬁm@f
in the previous section. First, our presumption above ferdtnucture ogl lets us choose a staﬁkﬂ of
s[(2)-weight 1 and conformal dimension%. This generates the copy WZ(EO), or more accurately, it
generates an indecomposable mod,u1é(§ir 3 /2) defined by the exact sequence

0— L1 —> y*1(§f3/2) — ¥y 2(Lo) — 0. (4.29)
The highest weight state of tkfel—submodule is then
| ) = —enf_1|x]). (4.30)
Substitutingm = % into the vanishing?,-type singular vector (2.13) and applyipg! now gives

) = %(hfl_ f2e1) [xp), (4.31)
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FIGURE 6. A schematic illustration of the states of the quotientha fusion module
8_0 x¢ €1 when the algebral is generated by the_,, h_, and f_, with n > 2 and the

hLl with j > 2. Again, we only indicate the actions ef;, h_1 and f_;. Weight spaces
carrying a non-diagonalisable action are indicated byngjirey the states vertically (the
white states are the Jordan partners). Also noted are ttes gtg ), |w;) and |x; ).

which shows that this copy o@l would not be uncovered in a fusion computation to greté®,1) in
accord with what we have observed in Section 4.2.

Of course, this is currently pure supposition, if ratherlvfi@inded. We have not yet managed to observe
a non-diagonalisable action bf on §1_ However, Equation (4.31) indicates how this can be aclieWe
can simply excluddn_; from the algebral controlling the fusion algorithm. With such an algebra,tbot
|w;") and its Jordan partngy; ) should be visible. We therefore expect that this slight geato2( will
enable us to detect a Jordan structure fpr

We have therefore repeated the fusion computatioﬁ,{orf §,, one last time, taking the algebgto be
generated by the_, h_, andf_,, with n > 2 andthe h‘;l with j > 2. This may seem like a small change,
but the corresponding increase in algorithmic complextgignificant. The part of the fusion module that
this uncovers may be found within the space spanned by ttessta

V) @ |Vim), [Vn) ®h_1| Vi), Vi) @ €_1|Vm—2) and  |vp)®h_1e1vm2).  (4.32)

Using the vanishing vectors (2.13) and (2.14)§qf, we derive four recursion relations which together
bound the dimension of the (2)-weight spaces by 12. Further analysis reduces this to 6 wWieeweight
is £1 and 4 in general. The explicit constructionlgfconfirms that it indeed has a non-trivial Jordan cell
corresponding to eigenvaIL%awhen thesl (2)-weight is+1. For completeness, we illustrate the results of
this fusion computation in Figure 6. It is not hard to chect these results completely support the structure
of §1 proposed above.

It is now appropriate to ask if th§(2)—action ongl is uniquely determined by its structure, or if there
are additional logarithmic couplings to compute. We defia¢es inS; as follows:
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o o e (1,0,0) (0,0,1)
y2(Zo) / V(Lo)

° o o (2,0,0) (1,0,0) (0,0,1) (0,0,2)

R o o (5,0,0) (1,2,0) (0,2,1) (0,0,5)

. /8/ 88 \\:i:&\ . (9,2,0) (3,4,0) (0,4,3) (0,2,9)

7 N (18,4,0) (6,8,1) (1,8,6) (0,4,18)
£ ::i118 8 8 8 * &ii:

FIGURE 7. Schematic illustrations of the states and multiplisitié¢ the staggered mod-
ule 81, following the conventions established for Figure 5. Thdtiplicities are for the
composition modulesfz(fo), £1 (doubled) and/z(f;o). As before, we indicate with
arrows a few fundamental actions which result from the indgoosable structure.

. Choose]x{) to be a state ofl(2)-weight 1 and conformal dimension%. We define the scalar
product on the submodulg(2) X)) = rl(ng/z) by declaring thatx{ ) has norm 1.

o Define|w; ) = f_1|x) and |w/) = —eo|w; ). Then, fo|w; ) = |w; ) and theZs-submodule
generated bj/wf > consists entirely of zero-norm states.

o Define|x; ) by settinge_1|x; ) = |w/"). The scalar product osi (2) [x; ) = y(gg/z) is then deter-
mined by defining the norm cﬁq> to be 1. Again, these scalar products agree (they both Vanish
on the intersectionl (2) |x} ) Nsl(2) |x; ) = £1.

e Choosdy; ) to be a state aff (2)-weight 1 and conformal dimensidsthat satisfie§lLo — 3 ) |y ) =
|w). Then, defindy; ) = foly]) so that(Lo— 3) |y; ) = |e ). Thely; ) are not normalisable.
Note that|y ) is only defined up to adding arbitrary multiples|of;”) and h_1|x]").

We illustrate the structure &, and the multiplicity of some of its weight spaces in FigureThe latter
multiplicities make it clear that there aten unknown constants which define the actiorgb(f2) on§,.8
We let

hilyD) =BIx0), fayi) =Bufx), elyl)=Belxi), ely])=(neo+yrhae)|x) (4.33a)
and  eoly;) = (18 1+ a2h 1e0+ash oer + ash® e+ asf 3€f) [x7 ). (4.33b)

As in Section 4.3, these constants are not all independent.
We proceed by considering the effect of combining these idiefits with the commutation relations. For
example, we can evalua@e2|yf> in two ways, leading to

Boef|x) ) = e1en]y] ) = ee1lyy ) = viesen|x{ ) + yoeoh_1e1 X)) = —2ef|x] ), (4.343)

henceB, + 2y, = 0. Similarly, considering the action efh;, eghy, €y f1, hoeg andesey on [yi’> leads to six
more independent homogeneous constraints:

B+2B—2y+y=0, Yo — Q2+ as+2as =0, B+2y—2a1+0a,—4as5=0, (4.34b)

6Actually, it is clear from the outset that knowing the actafrey and f; is sufficient in this case. We shall, however, ignore thigtgli
simplification for pedagogical reasons.
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B2 — a1+ as+3a5 =0, 4a3—8as+7a5 =0, 2B —3a1 —4a; —2a3— 404 = 0. (4.34c)

Again, the Jordan structure leads to inhomogeneous camstr&xpandind-oly; ) = 3|y{ ) + |y ), for
example, leads to
—2P1+4B2 + 21 + 8y2 + 402 + 803 + 1604 = 3. (4.34d)

Repeating this foty;> and}wﬁ leads to another independent inhomogeneous constraint:
2B+6B1—2y1 — 2y —2a1 —4a, —4a3 = 3. (4.34e)

However, its derivation requires a significant digressi@xs |yI> has been defined to bib\yﬁ it is
straight-forward to obtain

hlyr) = =2Bifx0), elyr)=(a+v—-B)|x), f2ly;)=0 and fily;)=pifo/x;). (4.35a)

Determiningfo|yI>, however, requires more of the games that led to the contr@d.34). We omit the
details and give only the result:

folyy ) = Bl = (31— 7h1fo+9h 2f1—h2 f1+4e 3f2) [x). (4.35b)

With this, (4.34e) is easily derived.

We therefore have nine constraint equations in ten unkn@mdsthese are all the constraints that one
can find. This does not mean that there is a one-parametdyyfafmodules that form candidates f@[.
Rather, it reflects the fact that we can only chopge) up to multiples ofje;”) andh_s|x{ ). As |w/) is
annihilated byhy, f1, e, €1 andey, a redefinition of the form

i) — yi) +afey) (4.36)
does not change the constaptsS, y anda; which we defined in Equation (4.33). A redefinition of the
form

i) — |yi) +ah_a|x), (4.37)
however, will change some of these constants, specififal§y, \a, 2, a1 anda,. This is reflected in the
general solution to the constraints (4.34):

29 1 14 71 7

B__37)_a’ Bl—z, BZ__TS_ZG’ V1——67)—20’» Vo=1g1T0 (4.382)
17 3 1 4

a; = —TS—ZG, a=a, az = 3 ay 15’ as = 15 (4.38b)

In the language of [12], the constaisf,, y, Vo, a1 anday are notgauge-invariant

We conclude this analysis by remarking that a quick comparef Equations (4.33) and (4.35) shows
that, unlike that of Section 4.3, our analysis has not beeari@ant under the conjugation automorphigm
The reason can be traced back to the definiﬁq‘n} = f0|yf>. This breaks conjugation-invariance rather
badly because

eolyy) = —|y1) + foeolyy ) = —[y{) + <1l5+a)h*1|xl> ( +2cr)|w1> (4.39)

rather than juseo|y1> |y1 > It would be nice to correct this, but we feel that the comipiethat this
would add is rather unjustified at present.

4.5. Fusing E,\ and gu- It remains to compute the fusion rules involving these naggtred moduleSo
andgl. Associativity and Equation (4.28) show that

2)\ Xf/S\“ :g/\'Hl’ (440)
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SO our next task is to determine the fusiongqf andgy. Performing the fusion algorithm with staggered
modules is not an easy task, especially in view of the ratherved structure 031. Luckily, associativity
again reduces the burden somewhat — the fusions&iﬂwill follow once we know those witfﬁo. We
therefore turn to the computation Bj Xt go to grade 0.

We first need to decide on an appropriate tensor product spasich to find the grade 0 fusion
product. The general theory suggests that we should canbielspace spanned by the zero-grade states of
@,\ tensored with the zero-grade stateggf The latter are those states which are nal'rrgo (recall that
we defined the algebrfd™ in Section 3.1), hence cannot be WritterUas|w> forsomeJ=¢eh,f,n>0
and ]W} € §o. A little reflection shows that onlyyo> has this property, hence we should consider the space
spanned by the

Vm) ®|Yo) ~ (ME2Z+A). (4.41)
However, it seems that this cannot be the right space asdtisl@ar how to use Equations (3.4) and (3.5)
to reducevim_2) ® |3 ), say, to something proportional fa,) © |yo).

Instead, we can try the space spanned by

Vm2n) @€Y xg),  [vm)®|yo) and V)@ 1 xg)  (ME2Z+A,neZy). (4.42)

Applying spectral flow to the vanishing singular vectord @, we obtain a relation expressiagafl“1|x5’>
as a linear combination ¢f_1€]|x} ) and f_,€]*|x] ). There is a similar relation fofo f;" *|x; ), hence
we see that the states complementary to the span of (4.43)llda& expressed as (linear combinations of
the) J,n]W> with J =eh, f andn > 0. It is now easy to see that the procedure of Section 3.1 teaites,
hence that the span of (4.42) contains the grade 0 fusioruptod

Note however thah (e_1) = 0 implies that

2D ) 2 72 ) = [vn) @@ 1o ) = —eolvm) © 12156 ) = —imez) @ ig), (449

hence that everjvm) ® f|x; ) is proportional tgvim_2n) ® |y ). Similarly,

M) ) ) =~ 2N ) ), (@.4)

S0 |vm) @ €]|x¢ ) is seen to be proportional tem2n) ® |xJ ). Moreover, the same manipulations give

Vi) ® x5 ) = vy s = 2 1)1((32m73) Vin_2) ® |x§). (4.45)

The upshot is that the rather large space spanned by thevett@.42) may be replaced by the span of
Vm)®|yo)  and  |Vm)@|ap). (4.46)

We have not yet used the vanishing singular vectors to sdarctpurious states. We have therefore
coupled the vanishing vectors (2.13) and (2. 14}2th0 |w0> and |yo> but find nothing. We have also
checked that the vanishing vector (2. 11)123 C So yields no spurious statés.The space spanned by
the vectors of (4.46) therefore seems to give the correcteg@afusion product. Thel(2)-action may be
checked to be that of the zero-grade subspace of two copEAe)s afid we compute that

)
A(Lo) = ( 08 > (4.47)

_1
8

"There is also the vanishing singular vector obtained frori(pby replacind0) by |yo) and adding certain terms froai(2) %)+
1(2) \xa) We did not check this singular vector as determining thet@a ésrms did not seem worth the trouble.
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with respect to the ordered basis (4.46). This suggests that
&) x180=2E,. (4.48)

To confirm this, we have repeated the fusion computation &0ef0,0,1), meaning that we take the
algebra?l of Section 4.1 to be that generated by ¢hg, h_, and f_,,_; with n> 1. This time, we consider
the span of the

Vm2n) @€7xd), Vi) @ fM)Yo)  and  |Vman) @ 1) (ME2Z+A). (4.49)

Applying spectral flow to the vanishing singular vectord®.and (2.14) allows us to deal wiﬁaegfljx@,
foff’1|x5> and f,lff’1|x5> as before. Again, Equation (4.43) and the first equality afidpn (4.45)
allow us to replace this space by the span of the

Vm-2n) @€Y xd ), Vi) @ fYalyo)  and  [vm)®|wo)  (ME2Z+A). (4.50)

A little computation now shows that the singular vector@pfthen reduce the grad®,0,1) fusion to the
span of the vectors of (4.46), confirming Equation (4.48).réMarecisely, this (and the fact that the fusion
product must be self-conjugate) rules out the twisted nmj,dllz(z“) andyﬂ(gu) as composition factors
of the result.

However, we have reason to suspect that Equation (4.483dsriect, though we shall not elaborate on
why until the next section. Suffice to say that we have alsoprded the fusion to grad@®,0,2), so that
2l is generated by the ,, h_ and f_,_» with n > 1. A careful analysis along the lines of the previous
analyses shows that the fusion product lies within the sppémeovectors

|Vm—2n> X 62_1\X§>7 |Vm—2n> & f7282|xg>3 (4.51a)
[Vins2n) ® f74|Yo), Vmi2n) @ f2f"Yyo),  and  |vim) @ |awo). (4.51b)
This time, the singular vectors é\f;\ reduce the grad@, 0,2) fusion to the span of the vectors

[Vm—2) ® [%¢ ), Vm)®@|yo) and  |vm)®|w)  (ME2Z+A). (4.52)

Explicitly computing the eigenvalues &f(Lo) gives—3, —2 and—m+ 2, confirming our suspicion that

Equation (4.53) is not quite right. Rather, coupling thisulé with the requirement that the result be
invariant under conjugation leads to

Exx180=y 2(Ers1) D283 DVP(Ersn)- (4.53)

This rule is of course conjectural, though we will discusshia next section why we are confident that it
is indeed correct. The fact that there is no indecomposahletare involving@A and the twisted modules
follows from the difference between the fractional partshaf conformal dimensions of the states of these
irreducibles. However, we have not ruled out the presenéertifer twisted modules in the above decom-
position, nor the possibility that tlfte,\ or the twistedé\,\ﬂ are composition factors of an indecomposable.
We view this as unlikely, but settling this completely wouddjuire further computations along the lines of
those presented above, or some abstract mathematicakrgsokralising those of [15] 8(2)—modules.

5. SUMMARY OF RESULTS AND DISCUSSION

The results derived in Sections 3 and 4 give, when couplel agsociativity, the fusion rings of the
s,A[(Z)_l/2 theories considered in Section 2. The spectrum consistswfifreducible untwiste(ﬁ(Z)—
modulesly, £1, g and€&q, two indecomposable untwisted modudzsands;, and their twisted versions
under the spectral flow automorphigmThe fusion rules themselves can be put in a compact formibgus
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their (conjectured) covariant behaviour ungi€Equation (2.10)). This allows us to restrict to the untedst
sector in which the fusion rules are

2;\ szu:z:\AJru, /8\,\ Xf/gH:/S\AJrIJ,
2/\ Xt E€p=Exqps E)\ Xt 8y = V72(8A+u+1) D22 ® V2(8A+y+1)7 (5.1)
Ly Xt 8y =8 1 Sy Xt 8y = V72(5A+u+1) B2y, ;D VZ(S)\—HJ-Fl)a

where, as throughout, the addition of the indices is undedsto bemodulo2. These rules confirm the
claim made in [6] that fusion generates no further indecasaptes. However, no fusion rules were given
there, so our results go well beyond what was previously know

The fusion rules (5.1) report that which was deduced frone#dicit computation of the fusion product
to certain grades, as described in Sections 3 and 4. As sueltamnot always rule out the possibility
that the true fusion product involves highly twisted conipios factors which our analysis has missed.
However, we have been ablepgovethat such factors are absent in the fusion rules involsﬁmglt would
be very useful to refine the argument of these proofs to ruléighly twisted modules for more general
fusions.

In fact, the above results describe somewhat more. The mamiftescription of the@,\ for A ¢ Z+%
means that the results described in Sections 3 and 4 are Iyotadinl for A and u integral® In particular,
we can deduce that the rules (5.1) hold more generally, ¢faethe replacement

~

Sr+u ifA+uez,
V(§A+“+1/2)@Vl(§,\+u_1/2) otherwise.
That the sum is direct in this fusion rule follows from thetf#itat the fractional parts of the conformal
dimensions of the states in the two factors do not agree \elgutly, the eigenvalues of the “central”
elemente?™to are different). This fusion rule should be relevant to mozeeyal models witt?[(Z)_l/z—
symmetry, such as the various compactifications/orbifofdee Sy ghost theories.

We have also completely determined the structure of thecmp@osable modulegso andgl. In brief,
§A is composed of four irreducibles, its composition factors

EAa y72(2A+l)a VZ(E/\+1) and Z)ﬂ (53)

which are “glued” together into an indecomposable as fadlow

/\ /\
\/ \/

The arrows in these diagrams indicate the “direction” of!fl‘(é)—action. For example, the composition
factors appearing in the bottom row describe the uniqudurcible submodules (theocle$ of theg,\. We
also see that eacgl,\ covers the corresponding irreducibﬁq in that the latter is the unique irreducible
quotient of the former. We have also shown that the affine nigde diagonalisable on botﬁo andgl,
but Lg is not. Indeed, the non-diagonalisable actiorigfinks the states of the socles with their Jordan
partners, the latter being associated with the compoditictors in the top row of the above diagram.

8Recall that whe € Z + % the €-type modules are no longer irreducible, so one might havedtués them from this remark, or
modify it appropriately.
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Because of this structure, tlﬁa may also be described ataggeredmodules in the spirit of [15, 27].
Combining the composition factors in the diagrams aboveglbe south-east arrows, we obtain exact
sequences

0— yfl(gfl/z) — 80— y(@fa/z) —0 (5.4a)
and 0— y‘l(gfs/z) — 81— y(gfl/z) —0. (5.4b)

One can obtain similar exact sequences involving§p$y combining the composition factors along the
south-west arrows. We have also demonstrated that theigtesaescribed here completely determine the
sA[(Z)-action on thegA (see Sections 4.3 and 4.4 for the explicit formulae). Thef ome interest because
it was claimed in [18] that this was not the case for at leastafithe indecomposables encountered in the
k= —% fractional level model. More precisely, the statementehsithat the structure of this module was
fixed up to an unknown constant, with different constantsumetrising non-isomorphic modules. It would
be very interesting to understand if there is a structur@deoa behind this difference between the —%
andk = f% cases, similar to that observed in [13, 15] for the Virasdgelara. In any case, it is germane to
ask if there is a theory of staggered modulesgiojﬂ) analogous to the Virasoro story.

For completeness, it is worth mentioning that we have ilatstd the structure of the indecomposables
§o andgl in Figures 5 and 7. These pictures may be directly comparéukettextremal diagrams” of the
indecomposables constructed in [6] from a free field contiva. It appears that we have found agreement,
although their version c§1 is only half complete and their diagrams seem to attach anesmdportance to
the states of conformal dimension O a%1dnost of which are in no way extremal). One may therefore view
the results reported here as a clarification and confirmatidimeir results. In particular, our description of
the indecomposable structure refines the character foengiNen in [6].

We mention some further observations that may be of inteiféisst, theg)\, thefS} and their twisted
versions form an ideal of the fusion ring, suggesting they thay beprojectivein the category of admissible
k= —% s?[(Z)-moduIes. If true, this would give a simple proof that the @laposition of the fusion rule
(4.53) is direct. We note that quotienting the fusion ringthis ideal results in the fusion ring of the
non-logarithmic theory discussed in [1, 5].

Second, one has come to expect that the fusion of staggerddiesanay be computed by temporarily
forgetting some of the indecomposable structure, comgwime more simple fusions, and then reconsti-
tuting appropriate indecomposable structures in the t&3ih particular, the exact sequence (5.4a)§@r
suggests that

€x X180 =&, V_l(gfl/z) +& X1 y<§i_3/2)» (5.5)
where the 4" indicates that we may be forgetting some indecomposabletsire. Assuming that Equa-
tion (5.2) extends tqu € Z+% (perhaps with some additional indecomposable structtiney,suggests
that €, xt 8o should decompose into tHeur irreduciblesé , , rz(g,\_l), VZ(E/\_l) and€&, (at least at
the level of composition factors), rather than just two asdipn (4.48) originally concluded. In fact, this
expectation predicts the fusion result (4.53). Indeed,ai$ whis which originally prompted the additional
computation to grad), 0,2) in Section 4.5.

Third, the fusion ring (5.1) shows significant similaritieshe fusion ring of the = —2 triplet model as
given in [19]. For completeness, we note that this ring issgated by four irreducibles denoted By, V1,
V_1/g andV3/g. There are, in addition, two indecomposables which are téeitayRo andR;. The fusion

%This expectation arises in the consideration of whethefubien product descends to the Grothendieck ring of characHowever,
it is more fundamental than the character product when theskefrthe map from modules to characters is large.
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rules are as followsYy is the fusion identity and

V1 x¢ V1 ="Vo, V_1/8 Xt V_1/8 = Ro,
VixtV_1/8="V3/s, V_1/8 x1 V378 = Ra,
VixtVgg=V_ 1/, V38 %t V38 = Ro, (5.6)
V1 xt Ro =R, Vnxt Ry =2V_1/3®2V35 (h=-3,3:A=0,1),
V1 x¢ Ry = Ro, Ry x5 Ry = 2Ro @& 2Ry (A =0,1).

The relation between the fusion rules (5.1) and (5.6) anstminerely neglecting the spectral flow. More
precisely, if we lefM] denote the equivalence class of all spectral flow imagesatﬁ[(li)-modulejv[, then
the relation becomes a ring isomorphism given by

[20] — Vo, [@0] ——V_1/g, [go] +— Ro, (5.7a)
[21] — VL [E]_] — V3/87 [gl] — le. (5.7b)

This isomorphism gives us confidence thatztAh@QLM2 fusion rules reported here (and the- —2 triplet
model fusion rules reported in [19]) are correct. Of couvge should expect such a relation to hold, given
the realisation of the triplet model as thél)-coset of the (Iogarithmic@[(2)71/2 theory [2]. However,
the familiar argument from rational conformal field theorhieh would guarantee the above relation —
computing the fusion rules of a coset theory from the modptaperties of its characters and the Ver-
linde formula —does not applybecause the fusion ring cannot, in this case, be recomstrdiiom the
modular transformations. This relation therefore requaenore fundamental (and probably more natural)
explanation.

We conclude by briefly discussing the implications of thessults for theBy ghost system (2.9). As
mentioned in Section 2, this algebra corresponds to an extef the affine Kac-Moody algebra by the
(zero-grade fields of the) simple currefit. The orbits in the fusion ring (5.1) under the simple current
action therefore combine into modules for {Big system. Specifically, we find two families of irreducible
By-modulesy’ (L) andy*(E), and a single family of indecomposablgqS), confirming the logarithmic
nature of theBy ghost system. We picture tile= 0 representatives of these families in Figure 8. Their
structure and fusion rules are easily deduced from theteegrdsented here. For exampléds found to be
the fusion identity, whereas

ExtE=S, ExfS=y?(E)@2kE@y?(E) and SxiS=y3(S)@25a)*(S). (5.8)

Note however that th@y chiral algebra admits a much larger spectrum, so that whiglears here (and
in [1]) must correspond to a compactification/orbifold. \Wigph to return to this in the future.
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