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ABSTRACT. A class of non-semisimple extensions of Lie superalgebras is studied. They are obtained by

adjoining to the superalgebra its adjoint representation as an abelian ideal. When the superalgebra is of

affine Kac-Moody type, a generalisation of Sugawara’s construction is shown to give rise to a copy of the

Virasoro algebra and so, presumably, to a conformal field theory. Evidence for this is detailed for the ex-

tension of the affinisation of the superalgebra gl(1|1): Its highest weight irreducible modules are classified

using spectral flow, the irreducible supercharacters are computed and a continuum version of the Verlinde

formula is verified to give non-negative integer structure coefficients. Interpreting these coefficients as those

of the Grothendieck ring of fusion, partial results on the true fusion ring and its indecomposable structures

are deduced.

1. INTRODUCTION

Investigations in recent years have led to an understanding that many interesting problems of theo-

retical physics may be elegantly described in terms of two-dimensional quantum field theories defined

on supermanifolds, in particular, sigma models on Lie supergroups and their homogeneous spaces. An

important class of such models are the principal chiral models — these are two-dimensional sigma

models on a Lie supergroup with kinetic and Wess-Zumino terms, but not necessarily with the rela-

tion between the couplings that characterise the Wess-Zumino-Witten model. An interesting subclass of

these models consist of those for which the Lie supergroup has vanishing Killing form, such as PSL(n|n),
OSP(2n+2|2n) and D(2,1;α) [1–5]. The interest in these cases lies in their conformal invariance for all

values of the coupling constants, rather than just at the WZW point, due to their beta function vanishing

perturbatively to all orders [1, 2, 6].

In spite of this long-known fact, there is still no detailed understanding of how to describe the re-

sulting conformal field theories. The elaborated methods of conventional conformal field theory are not

applicable to such cases because the principle of chiral-antichiral factorization for correlation functions

is invalid. Indeed, one expects that these principal chiral models will give rise to logarithmic conformal

field theories in which the indecomposable structure of the representations comprising the quantum state

space will result in complicated factorization properties for the correlators. This becomes plausible upon

realising that these models may be viewed as deformations (relevant perturbations) of the corresponding

Wess-Zumino-Witten models, which are well known examples of logarithmic conformal field theories.

Recently, various authors have attempted to provide an algebraic description of such principal chiral

models as current algebras [7,8] with a conservation law of the form ∂J+∂J = 0. In order to proceed, the

authors were forced to make several physically natural and plausible assumptions, including the closure

of the operator product algebra, the Lorentz invariance of this algebra, locality, PT-symmetry, and the

conservation of the currents on the quantum level. Moreover, the authors assumed that the Maurer-Cartan

equations held and that the Sugawara construction for the energy-momentum tensor, familiar from Wess-

Zumino-Witten studies, was also valid.

It is not clear to what degree these assumptions can be justified, but one of the interesting results of

this approach was the derivation of a non-semisimple generalisation of a Kac-Moody superalgebra as

a symmetry subalgebra of the model (when defined on a cylinder). In this context, one is now able to
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investigate the problem in terms the chiral current algebra. The non-semisimplicity of the algebra leads

to the appearance of reducible but indecomposable representations in the spectrum, typical of a logarith-

mic conformal field theory. In spite of the conjectural nature of this generalised Kac-Moody symmetry,1

we believe that it is a relevant object of study, at least as a subalgebra of the full symmetry algebra

of the model. This reformulation of the problem of describing principal chiral models algebraically in

terms of chiral, albeit non-semisimple, current algebras means that we can appeal to the well-developed

methods of current algebra representation theory. We therefore view an investigation of the representa-

tion theory of such non-semisimple current algebras as an important necessary step towards an algebraic

understanding of these principal chiral models.

In the mathematics literature, the type of non-semisimple Lie superalgebras which arise in the above

investigations were introduced by Takiff [10], though not in the super setting, as part of an investigation

of invariant polynomial rings. These algebras have since been considered in a slightly generalised form

under the names generalised Takiff algebras [11,12], in which a semisimple Lie algebra is tensored with

a polynomial ring in a nilpotent formal variable t, and truncated current algebras [13, 14], in which

one does the same to an affine Kac-Moody algebra. The algebras that we will consider correspond to

taking t2 = 0, as in Takiff’s original paper, but we extend to embrace Lie and Kac-Moody superalgebras

as well. We will therefore refer to them as Takiff superalgebras. Unfortunately, not much is known

about the representations of Takiff algebras beyond the highest weight theory [13]. We expect that any

application to conformal field theory will require non-highest weight representations, because the theory

is almost certainly logarithmic in nature.

With this motivation, we provide the first steps in investigating the representation theory of Takiff

superalgebras as required by the intended application to conformal field theory and, we hope, principal

chiral models. For the most part, we restrict ourselves to studying the Takiff superalgebras obtained from

the non-semisimple Lie superalgebra gl(1|1) and its affinisation ĝl(1|1). The logarithmic conformal field

theories built from ĝl(1|1) are among the best understood [15–18] and the representations may be clas-

sified using relatively elementary means [19] (see also [20] for a somewhat less elementary discussion).

Our reason for not immediately generalising to the Takiff algebra of ŝl(2) or the Takiff superalgebra of

p̂sl(2|2), for example, is the recent realisation [21–23] that logarithmic conformal field theories built

from affine Kac-Moody algebras (and superalgebras) generically require the introduction of irreducible

representations that are not highest weight.2 We expect that this will be true for Takiff superalgebras as

well and therefore leave the difficult problem of characterising such representations for future work [24].

The structure of the article is as follows: We first define a Takiff superalgebra precisely and then

show, for a reasonably general class of affine Takiff superalgebras, that there is a natural generalisation

of the Sugawara construction which gives an energy-momentum tensor. Moreover, this field has the

desired property that each current is a dimension 1 primary field with respect to it. Whether this energy-

momentum field is physically relevant or not in any given application, the construction is extremely

useful for the investigation of the representation theory that follows. We then specialise to the Takiff

superalgebra constructed from gl(1|1). Keeping in mind potential physical applications, we analyse the

structure of its Verma modules and classify the irreducible highest weight modules. This is followed by

a discussion of the representation ring generated by repeatedly taking tensor products of irreducibles. In

1Actually there are two copies of this algebra, corresponding to the left and right currents, in the full symmetry algebra of the

model, though it is not clear [9] how they talk to each other through the so-called “adjoint operator”. The manner in which this

operator is inserted into the algebra presented in [8] appears to leads to a violation of associativity in the full algebra.
2That ĝl(1|1) provides an exception to this expectation may be understood as resulting from the special feature of gl(1|1) that

the raising and lowering operators are all nilpotent.
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contrast to the case of gl(1|1) [16,19], we are unable to control the plethora of indecomposable modules

that appear as summands of such tensor products — it seems likely that there is no upper limit to the

complexity of the indecomposables. Nevertheless, we can completely characterise the Grothendieck ring

associated to the representation ring.

We next turn to the Takiff superalgebra of the affine Kac-Moody superalgebra ĝl(1|1) and a classifi-

cation of its irreducible highest weight modules. The main problem here is to understand the submodule

structure of the Verma modules and this follows readily from a study of the effect of twisting represen-

tations by certain “spectral flow” automorphisms. As one expects, the Verma modules are generically

irreducible leading to a notion of typicality for irreducibles. Unlike the non-Takiff ĝl(1|1) case, here

we find two distinct non-trivial submodule structures leading to irreducibles that we christen semitypical

and atypical. They correspond, in superalgebra language, to modules of atypicality degree 1 and 2, re-

spectively. Based on these structures, we compute exact sequences realising the irreducibles in terms of

Verma modules (Bernšteı̆n-Gel’fand-Gel’fand resolutions) and so obtain character formulae.

One of the central questions in any formal construction of a conformal field theory is that of the mod-

ular transformation properties of the characters. The full spectrum of representations of an affine Takiff

superalgebra will be much larger than just the irreducibles, even in the case of ĝl(1|1). In particular, fu-

sion will generate a veritable zoo of indecomposable modules of different natures from the irreducibles.

Given that we did not exhaustively list the indecomposables of the Takiff superalgebra of gl(1|1), it is

not reasonable to expect such a list in the affine case. However, characters do not distinguish between

direct and indecomposable sums, so it is reasonable to ask after the Grothendieck ring associated to the

fusion ring. Here, one expects that there will be some sort of Verlinde-type formula with which one

can compute the structure constants of this Grothendieck ring. We find the S- and T-matrices describing

the modular transformations of the affine Takiff superalgebra supercharacters and show that the obvious

generalisation of the Verlinde formula results in non-negative integer structure constants. We therefore

conjecture that these constants are those of the Grothendieck fusion ring. This work concludes with a

brief discussion of what this means for the genuine fusion ring and how fusion results can be verified,

before describing our conclusions and speculating on future work.

2. TAKIFF SUPERALGEBRAS

Let g be a Lie algebra. We adjoin the adjoint representation of g to the algebra itself, making the

result into a Lie algebra by declaring that the bracket of any two elements of the adjoint representation is

zero. More explicitly, if {Ja} denotes a basis of g with structure constants f ab
c,

[
Ja,Jb

]
= ∑

c

f ab
c Jc, (2.1)

then we extend this basis by new elements
{

J̃a
}

and impose

[
Ja, J̃b

]
= ∑

c

f ab
c J̃c,

[
J̃a, J̃b

]
= 0. (2.2)

It is easy to check that the Jacobi identity is satisfied, hence that the extended basis spans a Lie algebra.

Indeed, the result may be characterised as a semidirect sum of g with itself [25]. We denote this Lie

algebra by g̃ and will refer to it as the Takiff algebra of g. It is clear that this construction may be

extended to Lie superalgebras by changing the commutators above to graded commutators and checking

the graded Jacobi identity. We will then speak of the Takiff superalgebra of a Lie superalgebra g.
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Such algebras were studied in [10] and were subsequently generalised as follows:

g〈m〉= g⊗ C [t]

tmC [t]
,

[
x⊗ t i,y⊗ t j

]
=
[
x,y
]
⊗ t i+ j. (2.3)

Because of this, these generalised Takiff algebras are often referred to as polynomial Lie algebras or

truncated current algebras. We will only consider the original Takiff algebras (m = 2) in what follows.

Example 1. Let g be the one-dimensional abelian Lie algebra u(1) with basis element a. Then, the

Takiff algebra ũ(1) is two-dimensional, with basis {a, ã} and the Lie bracket is given by

[
a, ã
]
= 0. (2.4)

Clearly, ũ(1) is isomorphic to the abelian Lie algebra u(1)⊕u(1).

This example is typical for abelian Lie superalgebras — the Takiff superalgebra is always the direct sum

of two copies of the superalgebra. Takiff superalgebras are more interesting in the non-abelian setting.

Example 2. Recall that sl(2) has a standard basis {E,H,F} for which the non-trivial commutation

relations are [
H,E

]
= 2E,

[
E,F

]
= H,

[
H,F

]
=−2F. (2.5)

The Takiff algebra s̃l(2) is then six-dimensional with basis
{

E,H,F, Ẽ, H̃, F̃
}

. The non-trivial commu-

tation relations are those of (2.5) along with

[
H, Ẽ

]
=
[
H̃,E

]
= 2Ẽ,

[
E, F̃

]
=
[
Ẽ,F

]
= H̃,

[
H, F̃

]
=
[
H̃,F

]
=−2F̃. (2.6)

However, it is not hard to check that s̃l(2) does not decompose as a (non-trivial) direct sum of ideals. In

particular, the span of
{

Ẽ, H̃, F̃
}

is an abelian ideal of s̃l(2) with no complement (the commutant of this

ideal is precisely the ideal itself).

Example 3. The Lie superalgebra gl(1|1) is spanned by two even (bosonic) elements N and E and two

odd (fermionic) elements ψ+ and ψ−. The non-trivial relations are

[
N,ψ±] =±ψ±,

{
ψ+,ψ−} = E. (2.7)

We therefore obtain the Takiff superalgebra g̃l(1|1) by adjoining even elements Ñ and Ẽ and odd elements

ψ̃+ and ψ̃−, subject to (2.7) and

[
N, ψ̃±] =

[
Ñ,ψ±] =±ψ̃±,

{
ψ+, ψ̃−} =

{
ψ̃+,ψ−} = Ẽ, (2.8)

with all other brackets vanishing. Again, the Takiff superalgebra does not decompose as a direct sum of

ideals.

Our interest here lies in the Takiff superalgebras of affine Kac-Moody superalgebras. Let us therefore

suppose that g is a finite-dimensional basic classical simple complex Lie superalgebra. This includes the

finite-dimensional simple complex Lie algebras as special cases, while being basic and classical ensures

that there is a non-degenerate even supersymmetric bilinear form κ
(
·, ·
)

in the general case (see [26]).

The affinisation of g is then the Lie superalgebra

ĝ=
(
g⊗C

[
t; t−1

])
⊕ spanC {K} (2.9a)

with the (graded) bracket

[
Ja ⊗ tm,Jb ⊗ tn

]
= ∑

c

f ab
cJc ⊗ tm+n +mκ

(
Ja,Jb

)
δm+n,0K,

[
Ja ⊗ tm,K

]
= 0. (2.9b)
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The central element K will be assumed to act as a fixed multiple k of the identity in the representations

that are of interest. This multiple k is called the level.

Example 4. The affine Kac-Moody algebra û(1) has basis {an = a⊗ tn,K : n ∈ Z} and commutation

relations [
am,an

]
= mδm+n,0K. (2.10)

Here, we have normalised κ
(
a,a
)
= 1. The Takiff algebra ũ(1)≡ ˜̂u(1) then has

{
an, ãn,K, K̃ : n ∈ Z

}

for a basis and the non-trivial commutation relations are (2.10) and

[
am, ãn

]
= mδm+n,0K̃. (2.11)

Because ũ(1) is (mildly) non-abelian, it does not decompose as a direct sum of ideals. However, if we

restrict to a category of representations on which K and K̃ act as fixed multiples k and k̃ (respectively)

of the identity, then we may check that the am and the bn = kãn − k̃an act on these representations as

commuting copies of û(1). We therefore conclude that when k and k̃ are non-zero, such a category of

representations may be regarded as a category of û(1)⊕ û(1)-representations.

This observation generalises to the affinisations of other abelian Lie superalgebras. While the Takiff

superalgebra is technically indecomposable, its action on representations for which K and K̃ act as mul-

tiples of of the identity may be replaced by an action of the direct sum of two copies of the affinisation.

As we are more interested in the representation theory of Takiff superalgebras, rather than in these su-

peralgebras themselves, we shall turn to the analysis of non-abelian examples. In fact, the majority of

this article is devoted to the representation theory of the affinisation of the Lie superalgebra discussed in

Example 3.

Before commencing these analyses, we pause to indicate one reason why Takiff superalgebras could be

of interest to field theorists. Recall that an important fact, both for physics and mathematics, about a Kac-

Moody superalgebra ĝ, based on a simple Lie superalgebra g, is that their level k universal enveloping

algebras contain a copy of the universal enveloping algebra of the Virasoro algebra with central charge

c =
k sdimg

k+h∨
, (2.12)

where h∨ is the dual Coxeter number of g (and k 6= −h∨) and sdim denotes the superdimension. This

gives rise to a vertex superalgebra structure for Kac-Moody superalgebras which underlies a vast amount

of important work in pure mathematics and conformal field theory.

The explicit embedding of the Virasoro algebra into the universal enveloping algebra of ĝ is known

as the Sugawara construction and is best described field-theoretically. If {Ja} is any basis of g, then we

form fields (generating functions) in an indeterminate z from the elements Ja
n = Ja ⊗ tn ∈ ĝ as follows:

Ja (z) = ∑
n∈Z

Ja
n z−n−1. (2.13)

From these fields, one defines

T (z) =
1

2(k+h∨) ∑
a,b

κ−1
(
Ja,Jb

)
: Ja (z)Jb (z) : . (2.14)

Here, κ−1
(
·, ·
)

is the bilinear form on g which is inverse to κ
(
·, ·
)

and the normally-ordered product of

the fields is given, at the level of the modes Ja
m and Jb

n (z is left invariant), by

: Ja
mJb

n : =





Ja
mJb

n if m 6−1,

(−1)pa pb

Jb
n Ja

m if m > 0,
(2.15)
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where pa denotes the parity of Ja (pa = 0 if Ja is even, pa = 1 if Ja is odd). The standard basis elements

Ln of the Virasoro algebra are then, finally, recovered from

T (z) = ∑
n∈Z

Lnz−n−2 (2.16)

and the central charge is found to be that given in (2.12).

It is extremely interesting to observe that this generalises in a not-unpleasant fashion to the Takiff

superalgebras of the affine Kac-Moody superalgebras. The analogue of the Sugawara construction is as

follows:

Theorem 1. If {Ja} denotes a basis of a finite-dimensional basic classical simple complex Lie superal-

gebra g, {Ja
n ,K : n ∈ Z} the induced basis of the affinisation ĝ, and

{
Ja

n , J̃
a
n ,K, K̃ : n ∈ Z

}
the induced

basis of the Takiff superalgebra ˜̂g of the affinisation, then the field

T (z) =
1

k̃
∑
a,b

κ−1
(
Ja,Jb

)
: Ja (z) J̃b (z) : − k+2h∨

2k̃2
∑
a,b

κ−1
(
Ja,Jb

)
: J̃a (z) J̃b (z) : (2.17)

has modes Ln as in (2.16) satisfying the Virasoro commutation relations with central charge

c = 2sdimg. (2.18)

Moreover, [
Lm,J

a
n

]
=−nJa

m+n,
[
Lm, J̃

a
n

]
=−nJ̃a

m+n. (2.19)

The proof is an easy extension of the usual proof of the Sugawara construction (see [27] for example)

and we expect that an analogue for generalised affine Takiff superalgebras should also exist. Because of

this result, one expects to be able to construct conformal field theories with these Takiff superalgebras as

chiral algebras. We remark that we have checked for a few low-rank simple g that the field T (z) given

above is the unique field with these properties.

3. THE TAKIFF SUPERALGEBRA OF gl(1|1)

In this section, we study the representation theory of the Takiff superalgebra g̃l(1|1) introduced in

Example 3. This will be followed by a detailed study of the Takiff superalgebra of the affine Kac-Moody

algebra ĝl(1|1) in Section 4.

3.1. Irreducible Representations of g̃l(1|1). Recall from Example 3 that the Takiff superalgebra g̃l(1|1)
is spanned by four bosonic elements, N, Ñ, E and Ẽ, and four fermionic elements, ψ+, ψ̃+, ψ− and ψ̃−,

subject to the relations given in Equations (2.7) and (2.8). There is an obvious triangular decomposition:

g̃l(1|1) = span
{

ψ−, ψ̃−}⊕ span
{

N,E, Ñ, Ẽ
}
⊕ span

{
ψ+, ψ̃+

}
(as subalgebras). (3.1)

Thus, we regard ψ+ and ψ̃+ as raising operators, ψ− and ψ̃− as lowering operators, and N, E, Ñ and

Ẽ as generating the Cartan subalgebra. It is clear that E and Ẽ are central. Modulo polynomials in

the central generators, there are two linearly independent quadratic Casimirs in the universal enveloping

algebra which we may take to be

Q1 = NẼ + ÑE +ψ−ψ̃++ ψ̃−ψ+, Q2 = ÑẼ + ψ̃−ψ̃+. (3.2)

It is important to note that while the basis we have chosen diagonalises the adjoint action of N, E and Ẽ,

it does not diagonalise that of Ñ: [
Ñ,ψ±] =±ψ̃±. (3.3)
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It follows that Ñ will act non-semisimply on the adjoint module. Moreover, if we split Ñ into a semisim-

ple and a nilpotent part, the former is seen to be central.

This triangular decomposition allows us to define highest weight states in the usual manner. We will

define a highest weight state to be an eigenvector of N, E, Ñ and Ẽ which is annihilated by both raising

operators ψ+ and ψ̃+. The eigenvalues of the action of the Cartan basis elements are denoted by n,

e, ñ and ẽ, respectively. A lowest weight state is, similarly, an eigenvector of N, E, Ñ and Ẽ which

is annihilated by the lowering operators ψ− and ψ̃−. A highest weight state then generates a highest

weight Verma module V
n,e
ñ,ẽ through the free action of the lowering operators. One similarly obtains

lowest weight Verma modules by freely acting with the raising operators on a lowest weight state. We

shall mostly concern ourselves with highest weight Verma modules in what follows, understanding that

this is what is meant when “highest weight” is omitted.

Since the lowering operators ψ− and ψ̃− both square to zero and anticommute with one another, it

follows that every Verma module is four-dimensional. We illustrate the generation of a Verma module

from a highest weight state
∣∣v
〉

as follows:

∣∣v
〉

ψ−∣∣v
〉

ψ̃−∣∣v
〉

ψ̃−ψ−∣∣v
〉

. (3.4)

All of the basis states are eigenvalues of Ñ except for ψ−∣∣v
〉

(hence the dotted arrow):

Ñψ−∣∣v
〉
= ñψ−∣∣v

〉
− ψ̃−∣∣v

〉
. (3.5)

Here, ñ denotes the eigenvalue of Ñ on
∣∣v
〉
. Despite this non-semisimple action, the Casimirs Q1 and Q2

act on this Verma module as multiplication by nẽ+ ñe and ñẽ, respectively.

We remark that we could have generalised the above notion of highest weight state and Verma module

by relaxing the condition that the former must be an eigenstate of Ñ. However, if the resulting generalised

Verma module is to be finite-dimensional, the Jordan cell for Ñ involving the generalised highest weight

state will contain a genuine highest weight state, showing that a standard Verma module will appear as

a submodule. It follows that a finite-dimensional generalised Verma module is always realised as an

indecomposable sum of standard Verma modules. In particular, one will obtain no irreducible quotients

from a generalised Verma module that could not already be obtained from a standard Verma module. As

our first aim is to understand these irreducibles, this justifies the definition of highest weight states that

we have given above.

Proposition 2. Consider the Verma module V
n,e
ñ,ẽ generated from a highest weight state

∣∣v
〉
. There are

three possibilities for the irreducible quotient of this Verma module:

• If e = ẽ = 0, then ψ̃−∣∣v
〉

is a singular vector and ψ−∣∣v
〉

is a generalised singular vector, meaning that

it only fails to be an eigenvector for Ñ. The latter vector generates the maximal submodule, and the

irreducible quotient is 1-dimensional. We will denote this irreducible by A
n,0
ñ,0 and refer to it as being

atypical.
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• If ẽ = 0 but e 6= 0, then ψ̃−∣∣v
〉

is the only singular vector, up to scalar multiples, and it generates the

maximal submodule. The irreducible quotient is then 2-dimensional and we will denote it by S
n−1/2,e
ñ,0

and refer to it as being semitypical.

• If ẽ 6= 0, then there are no (non-trivial) singular vectors, hence the irreducible quotient is 4-dimensional:

The Verma module is itself irreducible. We will denote this irreducible by T
n−1,e
ñ,ẽ and refer to it as being

typical.

We remark that the case in which e = 0 but ẽ 6= 0 is typical (because the Verma module has no non-trivial

singular vectors). We further remark that Ñ is diagonalisable on the non-typical irreducibles. Finally,

the labelling of the N-eigenvalue that we have adopted above deserves some comment. It turns out to be

convenient in the long run to use the average of the N-eigenvalues of the basis vectors rather than that of

some particular generator (such as the highest weight state).

3.2. Tensor Products of g̃l(1|1)-Modules. We are interested in the representation ring generated by

these irreducibles under the graded tensor product. It is clear that the tensor products involving the

one-dimensional atypical irreducibles are rather trivial to calculate:

A
n1,0
ñ1,0 ⊗A

n2,0
ñ2,0 =A

n1+n2,0
ñ1+ñ2,0, A

n1,0
ñ1,0 ⊗S

n2,e2

ñ2,0 = S
n1+n2,e2

ñ1+ñ2,0 , A
n1,0
ñ1,0 ⊗T

n2,e2

ñ2,ẽ2
= T

n1+n2,e2

ñ1+ñ2,ẽ2
. (3.6)

The first non-trivial tensor product is therefore S
n1,e1

ñ1,0 ⊗ S
n2,e2

ñ2,0 , whose decomposition depends upon the

typicality of e1 +e2. To be more specific, let
∣∣v
〉

and
∣∣w
〉

be the highest weight states of S
n1,e1

ñ1,0 and S
n2,e2

ñ2,0 ,

respectively. Then for e1 + e2 6= 0, there are two unrelated highest weight states:

∣∣v
〉
⊗
∣∣w
〉

and e1

∣∣v
〉
⊗ψ−∣∣w

〉
− e2ψ−∣∣v

〉
⊗
∣∣w
〉
. (3.7)

When e1 + e2 = 0 however, the latter becomes a singular descendant of the former. The tensor product

decomposition is then

S
n1,e1

ñ1,0 ⊗S
n2,e2

ñ2,0 =




S

n1+n2+1/2,e1+e2

ñ1+ñ2,0
⊕S

n1+n2−1/2,e1+e2

ñ1+ñ2,0
if e1 + e2 6= 0,

P
n1+n2,0
ñ1+ñ2,0 if e1 + e2 = 0,

(3.8)

where P
n1+n2,0
ñ1+ñ2,0 is an indecomposable 4-dimensional module. We remark that the average N-eigenvalue of

the states of P
n1+n2,0
ñ1+ñ2,0 is n1 +n2, in accordance with its labels. Its structure may be visualised as follows:

∣∣v
〉
⊗ψ−∣∣w

〉
−ψ−∣∣v

〉
⊗
∣∣w
〉

∣∣v
〉
⊗
∣∣w
〉

ψ−∣∣v
〉
⊗ψ−∣∣w

〉

∣∣v
〉
⊗ψ−∣∣w

〉
+ψ−∣∣v

〉
⊗
∣∣w
〉

ψ+ ψ−

ψ− ψ+
. (3.9)

Note that P
n,0
ñ,0 is not isomorphic to the Verma module V

n,0
ñ,0 as the ψ̃± act as zero and Ñ acts semisimply.

They do share the same composition factors: A
n+1,0
ñ,0 , A

n,0
ñ,0 (twice) and A

n−1,0
ñ,0 . However, they are dis-

tinguished homologically by their semisimple length (3 for P
n,0
ñ,0 and 4 for V

n,0
ñ,0). It also follows that the

Casimirs Q1 and Q2 both act semisimply on P
n,0
ñ,0.

The tensor product of a semitypical and a typical is easy to decompose:

S
n1,e1

ñ1,0 ⊗T
n2,e2

ñ2,ẽ2
= T

n1+n2+1/2,e1+e2

ñ1+ñ2,ẽ2
⊕T

n1+n2−1/2,e1+e2

ñ1+ñ2,ẽ2
. (3.10)
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This follows because the tensor product of the highest weight states generates a Verma module with typ-

ical Ẽ-eigenvalue ẽ2 6= 0. Checking eigenvalues shows that it is therefore isomorphic to T
n1+n2+1/2,e1+e2

ñ1+ñ2,ẽ2
.

Similarly, the tensor product of the lowest weight states generates the other summand as a typical lowest

weight Verma module.

It remains then to decompose the tensor product of two typicals T
n1,e1

ñ1,ẽ1
and T

n2,e2

ñ2,ẽ2
. When ẽ1 + ẽ2 6= 0,

the argument justifying (3.10) allows us to deduce that the decomposition will involve the two typical

irreducibles T
n1+n2±1,e1+e2

ñ1+ñ2,ẽ1+ẽ2
. The remainder of the decomposition is more interesting. Searching for

highest weight states of N-eigenvalue n1 +n2 +1, we find only one:

∣∣χ
〉
= ẽ1

∣∣v
〉
⊗ ψ̃−∣∣w

〉
− ẽ2ψ̃−∣∣v

〉
⊗
∣∣w
〉
. (3.11)

Here,
∣∣v
〉

and
∣∣w
〉

denote the highest weight states of T
n1,e1

ñ1,ẽ1
and T

n2,e2

ñ2,ẽ2
, respectively. There is, however, a

generalised highest weight state in the sense that it only fails to be an eigenstate of Ñ. Indeed, we may

choose it to be

∣∣λ
〉
= ẽ2ψ−∣∣v

〉
⊗
∣∣w
〉
− ẽ1

∣∣v
〉
⊗ψ−∣∣w

〉
+ e2ψ̃−∣∣v

〉
⊗
∣∣w
〉
− e1

∣∣v
〉
⊗ ψ̃−∣∣w

〉
, (3.12)

in which case we have ψ+
∣∣λ
〉
= ψ̃+

∣∣λ
〉
= 0 and Ñ

∣∣λ
〉
= (ñ1 + ñ2)

∣∣λ
〉
+
∣∣χ
〉
. It follows that the (typical)

decomposition for the tensor product of two typicals is

T
n1,e1

ñ1,ẽ1
⊗T

n2,e2

ñ2,ẽ2
= T

n1+n2+1,e1+e2

ñ1+ñ2,ẽ1+ẽ2
⊕ (2)

T
n1+n2,e1+e2

ñ1+ñ2,ẽ1+ẽ2
⊕T

n1+n2−1,e1+e2

ñ1+ñ2,ẽ1+ẽ2
(ẽ1 + ẽ2 6= 0), (3.13)

where (2)T
n,e
ñ,ẽ denotes an 8-dimensional indecomposable with the structure

T
n,e
ñ,ẽ T

n,e
ñ,ẽ , (3.14)

the dotted arrow again indicating a non-semisimple action of Ñ.

In more detail, (2)T
n,e
ñ,ẽ is freely generated by the action of ψ− and ψ̃− from two states

∣∣v
〉

and
∣∣w
〉

(say) which are related by Ñ
∣∣v
〉
= ñ
∣∣v
〉
+
∣∣w
〉
. It is therefore one of the generalised Verma modules that

we discussed briefly in Section 3.1. This implies that Ñ − ñ sends ψ̃−∣∣v
〉

to ψ̃−∣∣w
〉

and ψ̃−ψ−∣∣v
〉

to

ψ̃−ψ−∣∣w
〉
. However,

(
Ñ − ñ

)
ψ−∣∣v

〉
= ψ−∣∣w

〉
− ψ̃−∣∣v

〉
, hence

(
Ñ − ñ

)2
ψ−∣∣v

〉
=−2ψ̃−∣∣w

〉
. (3.15)

Pictorially, we have the following:

∣∣v
〉

ψ−∣∣v
〉 {

ψ̃−∣∣v
〉
,

ψ̃−ψ−∣∣v
〉

∣∣w
〉

ψ−∣∣w
〉}

ψ̃−∣∣w
〉

ψ̃−ψ−∣∣w
〉

. (3.16)

In particular, Ñ has a rank 3 Jordan cell when acting on (2)T
n,e
ñ,ẽ.

It remains to analyse the case of typical tensor typical when ẽ1 + ẽ2 = 0, which then splits into two

subcases according as to whether e1 + e2 = 0 or not. These cases are tedious and messy, so we omit a

detailed description of the resulting decomposition into indecomposables. It is, however, easy to deter-

mine the composition factors of the tensor product (the irreducible modules which are “glued together”
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in the result). For T
n1,e1

ñ1,ẽ1
⊗T

n2,e2

ñ2,ẽ2
with ẽ1 + ẽ2 = 0, the composition factors are




S

n1+n2+3/2,e1+e2

ñ1+ñ2,0
, 3S

n1+n2+1/2,e1+e2

ñ1+ñ2,0
, 3S

n1+n2−1/2,e1+e2

ñ1+ñ2,0
, S

n1+n2−3/2,e1+e2

ñ1+ñ2,0
if e1 + e2 6= 0,

A
n1+n2+2,0
ñ1+ñ2,0 , 4A

n1+n2+1,0
ñ1+ñ2,0 , 6A

n1+n2,0
ñ1+ñ2,0, 4A

n1+n2−1,0
ñ1+ñ2,0 , A

n1+n2−2,0
ñ1+ñ2,0 if e1 + e2 = 0,

(3.17)

where the multiplicities of the factors, if greater than 1, are indicated via coefficients. Unfortunately,

one still has the P- and (2)T-type modules. We have not attempted to understand their tensor product

rules, though it is again easy to work out the composition factors of the results. It seems likely that these

decompositions will generate further indecomposables including generalised Verma modules ((m)T-type

modules) in which m identical Verma modules, for arbitrarily large m, are glued together by a non-

semisimple action of Ñ. We therefore content ourselves with describing the general tensor product

rules in the associated Grothendieck ring. This is the quotient of the true representation ring in which

indecomposables are identified with the direct sum of their composition factors. Elements of this quotient

will be indicated by square brackets.

Proposition 3. The product induced by the tensor product on the associated Grothendieck ring of g̃l(1|1)
is given, on the basis of (equivalence classes of) irreducibles, by

[
A

n1,0
ñ1,0

]
⊗
[
A

n2,0
ñ2,0

]
=
[
A

n1+n2,0
ñ1+ñ2,0

]
,

[
A

n1,0
ñ1,0

]
⊗
[
S

n2,e2

ñ2,0

]
=
[
S

n1+n2,e2

ñ1+ñ2,0

]
,

[
A

n1,0
ñ1,0

]
⊗
[
T

n2,e2

ñ2,ẽ2

]
=
[
T

n1+n2,e2

ñ1+ñ2,ẽ2

]
,

[
S

n1,e1

ñ1,0

]
⊗
[
S

n2,e2

ñ2,0

]
=
[
T

n1+n2,e1+e2

ñ1+ñ2,0

]

[
S

n1,e1

ñ1,0

]
⊗
[
T

n2,e2

ñ2,ẽ2

]
=
[
T

n1+n2+1/2,e1+e2

ñ1+ñ2,ẽ2

]
⊕
[
T

n1+n2−1/2,e1+e2

ñ1+ñ2,ẽ2

]
,

[
T

n1,e1

ñ1,ẽ1

]
⊗
[
T

n2,e2

ñ2,ẽ

]
=
[
T

n1+n2+1,e1+e2

ñ1+ñ2,ẽ1+ẽ2

]
⊕2

[
T

n1+n2,e1+e2

ñ1+ñ2,ẽ1+ẽ2

]
⊕
[
T

n1+n2−1,e1+e2

ñ1+ñ2,ẽ1+ẽ2

]
.

(3.18)

We remark that we have not fully decomposed these Grothendieck tensor product rules into equivalence

classes of irreducibles. Instead, we have expressed them in terms of those of the irreducible typicals[
T

n,e
ñ,ẽ

]
and the reducible Verma modules

[
V

n,e
ñ,0

]
=
[
T

n,e
ñ,0

]
, when convenient. For example,

[
S

n1,e1

ñ1,0

]
⊗[

S
n2,e2

ñ2,0

]
decomposes into four atypicals or two semitypicals according as to whether e1 + e2 vanishes or

not. It is tedious, but easy, to perform such full decompositions when required.

4. THE TAKIFF SUPERALGEBRA OF ĝl(1|1)

4.1. Algebraic Preliminaries. The Lie superalgebra gl(1|1) is not simple (it has a non-trivial centre

spanned by E), but it possesses an affinisation ĝl(1|1) because there is a non-degenerate even super-

symmetric bilinear form κ
(
·, ·
)

given by the supertrace of the product in the defining (1|1)-dimensional

representation:

N =
1

2

(
1 0

0 −1

)
, E =

(
1 0

0 1

)
, ψ+ =

(
0 1

0 0

)
, ψ− =

(
0 0

1 0

)
. (4.1)

The affinisation is then as in Equation (2.9). The Takiff superalgebra of ĝl(1|1) thus has the following

non-vanishing commutation relations:
[
Nr,Es

]
= rkδr+s,0,

[
Ñr,Es

]
= rk̃δr+s,0,

[
Nr, Ẽs

]
= rk̃δr+s,0,

[
Nr,ψ

±
s

]
=±ψ±

r+s,
[
Ñr,ψ

±
s

]
=±ψ̃±

r+s,[
Nr, ψ̃

±
s

]
=±ψ̃±

r+s,

{
ψ+

r ,ψ−
s

}
= Er+s + rkδr+s,0,

{
ψ̃+

r ,ψ−
s

}
= Ẽr+s + rk̃δr+s,0,

{
ψ+

r , ψ̃−
s

}
= Ẽr+s + rk̃δr+s,0.

(4.2)

We denote this Takiff superalgebra by g̃l(1|1).
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As usual, the triangular decomposition (3.1) lifts to one for g̃l(1|1), so we may define highest weight

states and Verma modules. Explicitly, we take a highest weight state to be an eigenvector of N0, E0,

Ñ0 and Ẽ0 which is annihilated by ψ+
0 , ψ̃+

0 and every mode with a positive index. Because gl(1|1) is

not simple, Theorem 1 does not apply. However, it is not hard to check that there is a unique energy

momentum tensor coming the the Casimirs (3.2):

T (z) =
1

k̃

[
: N (z) Ẽ (z) : + : E (z) Ñ (z) : − : ψ+ (z) ψ̃− (z) : + : ψ− (z) ψ̃+ (z) :

]

− k

k̃2

[
: Ñ (z) Ẽ (z) : − : ψ̃+ (z) ψ̃− (z) :

]
+

1

k̃2
: Ẽ (z) Ẽ (z) : . (4.3)

The currents of g̃l(1|1) are dimension 1 primary fields with respect to this tensor and the central charge

is c = 0, which agrees with Equation (2.18). It follows that the conformal dimension of a highest weight

state whose weight is
(
n,e, ñ, ẽ

)
(these are the eigenvalues of N0, E0, Ñ0 and Ẽ0, respectively) is given by

∆ = (n−1)
ẽ

k̃
+

k

k̃
ñ

(
e

k
− ẽ

k̃

)
+

ẽ2

k̃2
. (4.4)

If we let V
n,e
ñ,ẽ denote the Verma module generated by a highest weight state of weight

(
n+1,e, ñ, ẽ

)
, so

that n labels the average N0-eigenvalue of the states of minimal conformal dimension, then this minimal

conformal dimension will be

∆n,e
ñ,ẽ = n

ẽ

k̃
+

k

k̃
ñ

(
e

k
− ẽ

k̃

)
+

ẽ2

k̃2
. (4.5)

We remark that when k and k̃ are non-vanishing, we are free to rescale the generators as follows:

Nr −→ Nr,

Ñr −→
k

k̃
Ñr,

Er −→
1

k
Er,

Ẽr −→
1

k̃
Ẽr,

ψ±
r −→ 1√

k
ψ±

r ,

ψ̃±
r −→

√
k

k̃
ψ̃±.

(4.6)

The commutation relations of the rescaled generators now have k = k̃ = 1. We will not be interested in

the critical case k̃ = 0 when T (z) fails to exist and will generally ignore the case k = 0, k̃ 6= 0 which may

well be of interest. We note however that when k = 0 and k̃ 6= 0, the rescaling

Ñr −→
1

k̃
Ñr, Ẽr −→

1

k̃
Ẽr, ψ̃r −→

1

k̃
ψ̃r (4.7)

will set k̃ to 1. While it would be very convenient, we shall not assume in what follows that k and k̃ have

been rescaled as above. However, a consequence of this potential for rescaling is that the natural units

for measuring the eigenvalues of E, Ñ and Ẽ are k, k̃/k and k̃, respectively. This is nicely illustrated in

Equation (4.5) and we find it convenient to use these units as indicators that the algebra which follows is

correct.

4.2. Representations and Characters. One immediate consequence of the formula (4.5) is that when

ẽ = 0, every singular vector of V
n,e
ñ,0 occurs at the zeroth grade. This follows from the fact that singular

vectors are highest weight, so their conformal dimensions are given by

∆n′,e
ñ,0 =

ñe

k̃
, (4.8)

and the fact that the weight of such a singular vector can only differ from that of the (generating) highest

weight state in its N0-eigenvalue (moreover, n′−n ∈ Z). In fact, we may now conclude from Section 3.1

that the maximal submodule of V
n,e
ñ,0 will be generated by the unique non-trivial singular vector (up

to scalar multiples) whose grade is 0 and N0-eigenvalue is n, provided that e 6= 0. In particular, the
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irreducible quotient will have two independent zero-grade states, one of N0-eigenvalue n+1 and one of

N0-eigenvalue n. We shall therefore refer to it as semitypical and denote it by S
n+1/2,e
ñ,0 . In the case e = 0,

the maximal submodule will be generated by a generalised singular vector of grade 0 and N0-eigenvalue n

and the irreducible quotient, denoted by A
n+1,0
ñ,0 , will have a one-dimensional zero-grade subspace where

the N0-eigenvalue is n+1. This irreducible will be said to be atypical.

Consider therefore a Verma module V
n,e
ñ,ẽ with ẽ 6= 0. From the result of Proposition 2, there are no

non-trivial singular vectors among the zero-grade states. Suppose then that there exists another singular

vector in V
n,e
ñ,ẽ with weight

(
n+ν ,e, ñ, ẽ

)
and conformal dimension ∆n+ν ,e

ñ,ẽ = ∆n,e
ñ,ẽ +m, where ν ∈ Z and

m is a positive integer. It follows that

m = ∆n+ν ,e
ñ,ẽ −∆n,e

ñ,ẽ = ν
ẽ

k̃
. (4.9)

However, a quick look at the Poincaré-Birkhoff-Witt basis indicates that the quantities ν and m are also

restricted to satisfy |ν |6 m+1, hence

m = |m|= |ν |
∣∣∣∣
ẽ

k̃

∣∣∣∣ 6 (m+1)

∣∣∣∣
ẽ

k̃

∣∣∣∣ . (4.10)

If we restrict ẽ so that 0 <
∣∣ẽ/k̃

∣∣ 6 1
2
, then the only positive integer m satisfying (4.10) will be m = 1,

which requires that ẽ/k̃ = ± 1
2

and ν = ±2. But, such a singular vector must have the form
(
αψ±

−1 +

βψ̃±
−1

)∣∣v
〉
, where

∣∣v
〉

is either the highest weight state (if the fermions both have “+” labels) or its

ψ−
0 ψ̃−

0 -descendant (if the labels are both “−”), and it is easy to show that such a vector is not singular

for ẽ/k̃ = ± 1
2
. This then proves that the Verma modules V

n,e
ñ,ẽ with 0 <

∣∣ẽ/k̃
∣∣ 6 1

2
have no non-trivial

singular vectors and so are irreducible. We therefore regard them as typical and denote them by T
n,e
ñ,ẽ . To

summarise:

Lemma 4. The Verma modules V
n,e
ñ,ẽ of g̃l(1|1) are irreducible when 0 <

∣∣ẽ/k̃
∣∣ 6 1

2
. Contrarily, the

Verma module V
n,e
ñ,0 is reducible and its maximal submodule is generated by the ψ̃−

0 -descendant of the

(generating) highest weight state if e 6= 0, and by the ψ−
0 -descendant of the (generating) highest weight

state if e = 0.

The characters of the irreducible g̃l(1|1)-modules with
∣∣ẽ/k̃

∣∣ 6 1
2

are now easy to write down. We

will, for now, define characters so as to keep track of the N0-eigenvalues and conformal dimensions of

the states of the representations, the eigenvalues of E0, Ñ0 and Ẽ0 being constant for any given indecom-

posable:

ch
[
M
](

z;q
)
= tr

M
zN0qL0−c/24. (4.11)

This definition of character will be generalised when we consider modular properties in Section 4.3.

Remembering that c = 0, the characters of the typical, semitypical and atypical irreducibles with
∣∣ẽ/k̃

∣∣6
1
2

are therefore given by

ch
[
T

n,e
ñ,ẽ

]
= zn+1q

∆
n,e
ñ,ẽ

∞

∏
i=1

(
1+ zqi

)2 (
1+ z−1qi−1

)2

(1−qi)4
(0 <

∣∣ẽ/k̃
∣∣ 6 1

2
),

ch
[
S

n,e
ñ,0

]
= zn+1/2qñe/k̃

∞

∏
i=1

(
1+ zqi

)2 (
1+ z−1qi

)(
1+ z−1qi−1

)

(1−qi)4
(e 6= 0),

ch
[
A

n,0
ñ,0

]
= zn

∞

∏
i=1

(
1+ zqi

)2 (
1+ z−1qi

)2

(1−qi)4
.

(4.12)

Here, we remark that (4.8) gives ∆n,e
ñ,0 = ñe/k̃ and ∆n,0

ñ,0 = 0.
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To extend these character formulae beyond
∣∣ẽ/k̃

∣∣6 1
2
, we employ spectral flow automorphisms. These

are defined to be automorphisms which do not preserve the grading operator L0 and usually arise through

an appropriate shifting of the mode indices. The spectral flow automorphisms that are useful here are

those generated by σ̃ , where

σ̃
(
ψ±

r

)
= ψ±

r∓1,

σ̃
(
ψ̃±

r

)
= ψ̃±

r∓1,

σ̃
(
Nr

)
= Nr,

σ̃
(
Ñr

)
= Ñr,

σ̃
(
Er

)
= Er −δr,0k,

σ̃
(
Ẽr

)
= Ẽr −δr,0k̃.

(4.13)

It is easy to check that σ̃ preserves k and k̃, but a little tedious to check from Equation (4.3) that

σ̃
(
L0

)
= L0 −N0. (4.14)

Automorphisms may be used to twist the action of an algebra, giving rise to new modules. In particular,

if
∣∣v
〉

is a state of a g̃l(1|1)-module M, then we may define σ̃
∣∣v
〉

to be a state of a module σ̃
(
M
)
, the

spectral flow image of M, upon which g̃l(1|1) acts through

J · σ̃
∣∣v
〉
= σ̃

(
σ̃−1

(
J
)∣∣v
〉)

(J ∈ g̃l(1|1)). (4.15)

It is a good exercise to check that taking
∣∣v
〉

to have weight
(
n,e, ñ, ẽ

)
and conformal dimension ∆ leads

to σ̃
∣∣v
〉

having weight
(
n,e+ k, ñ, ẽ+ k̃

)
and conformal dimension ∆+ n. This leads quickly to the

character relations

ch
[
σ̃
(
M
)](

z;q
)
= ch

[
M
](

zq;q
)
. (4.16)

Being an automorphism, spectral flow preserves module structure. In particular, it maps irreducibles

to irreducibles. Consider the spectral flow of a typical module T
n,e
ñ,ẽ with 0 <

∣∣ẽ/k̃
∣∣ 6 1

2
. By (4.12) and

(4.16), the character of the result is given by

ch
[
σ̃
(
T

n,e
ñ,ẽ

)](
z;q
)
= zn+1qn+1q

∆
n,e
ñ,ẽ

∞

∏
i=1

(
1+ zqi+1

)2 (
1+ z−1qi−2

)2

(1−qi)4

= zn+1q
∆

n,e
ñ,ẽ+n+1

(
1+ z−1q−1

1+ zq

)2 ∞

∏
i=1

(
1+ zqi

)2 (
1+ z−1qi−1

)2

(1−qi)4

= zn−1q
∆

n−2,e+k

ñ,ẽ+k̃

∞

∏
i=1

(
1+ zqi

)2 (
1+ z−1qi−1

)2

(1−qi)4
= ch

[
V

n−2,e+k

ñ,ẽ+k̃

](
z;q
)
. (4.17)

The module σ̃
(
T

n,e
ñ,ẽ

)
is therefore an irreducible with the same character as V

n−2,e+k

ñ,ẽ+k̃
. To verify this

identification, we only need to ascertain that the spectral flow module possesses a highest weight state.

But, if
∣∣v
〉

is the highest weight state of T
n,e
ñ,ẽ , it is easy to check that

ψ̃−
1 ψ−

1 σ̃
∣∣v
〉
= σ̃

(
ψ̃−

0 ψ−
0

∣∣v
〉)

(4.18)

is a highest weight state of σ̃
(
T

n,e
ñ,ẽ

)
. It follows, by irreducibility, that this is the highest weight state

of σ̃
(
T

n,e
ñ,ẽ

)
, that σ̃

(
T

n,e
ñ,ẽ

)
is isomorphic to V

n−2,e+k

ñ,ẽ+k̃
, and that V

n−2,e+k

ñ,ẽ+k̃
is an irreducible Verma module.

Iterating these conclusions appropriately, we arrive at the following result:

Proposition 5. The Verma modules V
n,e
ñ,ẽ of g̃l(1|1) with ẽ/k̃ /∈ Z are irreducible. We therefore refer to

them as typical and denote them by T
n,e
ñ,ẽ . Their characters are given by

ch
[
T

n,e
ñ,ẽ

]
= zn+1q

∆
n,e
ñ,ẽ

∞

∏
i=1

(
1+ zqi

)2 (
1+ z−1qi−1

)2

(1−qi)4
(ẽ/k̃ /∈ Z) (4.19)
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V
n,0
ñ,0

1 12 39 56 39 12 1

2 8 12 8 2

1 2 1

σ̃
(
V

n,0
ñ,0

)

1 12 39 56 39 12 1

2 8 12 8 2

1 2 1

σ̃−1
(
V

n,0
ñ,0

)

1 12 39 56 39 12 1

2 8 12 8 2

1 2 1

σ̃σ̃−1

FIGURE 1. How spectral flow acts on (atypical) Verma modules: The numbers denote

the multiplicities of the weight spaces of the Verma module (only the first few grades are

shown) and the multiplicities are arranged so that the N0-eigenvalue decreases from left

to right and the L0-eigenvalue increases from bottom to top. The arrows, as in a → b,

indicate that the algebra action can map the states in the weight space labelled by a to

those labelled by b, but not vice-versa. For V
n,0
ñ,0, the top-left 1 corresponds to the highest

weight state whereas the top-right 1 corresponds to the singular vector generating the

irreducible submodule.

and they are related under spectral flow by

σ̃ ℓ
(
T

n,e
ñ,ẽ

) ∼= T
n−2ℓ,e+ℓk

ñ,ẽ+ℓk̃
. (4.20)

To generalise this to the non-typical régimes which will presumably correspond to ẽ/k̃ ∈ Z, we take

a closer look at the spectral flow images of the Verma modules with ẽ = 0. A slight refinement of

the argument used in the typical case leads us to the following conclusion: When ℓ = −1,−2,−3, . . .,

the spectral flow image σ̃ ℓ
(
V

n,e
ñ,0

)
has four (independent) zero-grade states whose projections are linearly

independent in the irreducible quotient. When ℓ= 1,2,3, . . . however, σ̃ ℓ
(
V

n,e
ñ,0

)
likewise has four linearly

independent zero-grade states, but they generate an irreducible submodule. This is best understood by

referring to Figure 1 which illustrates the action of spectral flow on the multiplicities of the weight spaces

of an atypical Verma module (the illustration for semitypical Verma modules is practically identical).

For e 6= 0, the maximal submodule of V
n,e
ñ,0 is irreducible and it is isomorphic to the semitypical

S
n−1/2,e
ñ,0 . Moreover, the quotient by this is isomorphic to the irreducible S

n+1/2,e
ñ,0 . As spectral flow

respects module structure, we conclude that the four zero-grade states of σ̃ ℓ
(
V

n,e
ñ,0

)
generate σ̃ ℓ

(
S

n−1/2,e
ñ,0

)

for ℓ > 0 and σ̃ ℓ
(
S

n+1/2,e
ñ,0

)
for ℓ < 0. As the average N0-eigenvalue of the four zero-grade states is n−2ℓ,

we may extend the definition of semitypical irreducibles to ẽ/k̃ ∈ Z via

S
n,e

ñ,ℓk̃
=





σ̃ ℓ
(
S

n+1/2+2ℓ,e−ℓk
ñ,0

)
if e 6= ℓk and ℓ=−1,−2,−3, . . .

σ̃ ℓ
(
S

n−1/2+2ℓ,e−ℓk
ñ,0

)
if e 6= ℓk and ℓ=+1,+2,+3, . . .

(4.21)

The condition for semitypical g̃l(1|1)-modules is thus ẽ/k̃ ∈ Z and e/k 6= ẽ/k̃.

Finally, the definition of atypical irreducibles follows a similar pattern. There is a unique irreducible

submodule of V
n,0
ñ,0 and it is isomorphic to the atypical A

n−1,0
ñ,0 . Furthermore, the quotient by the maximal
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submodule is isomorphic to A
n+1,0
ñ,0 . We therefore define

A
n,ℓk

ñ,ℓk̃
=





σ̃ ℓ
(
A

n+1+2ℓ,0
ñ,0

)
if ℓ=−1,−2,−3, . . .

σ̃ ℓ
(
A

n−1+2ℓ,0
ñ,0

)
if ℓ=+1,+2,+3, . . .

(4.22)

Atypical g̃l(1|1)-modules thus require e/k = ẽ/k̃ ∈ Z. We can now compute character formulae for the

semitypical and atypical irreducibles in principle. However, we shall not need these formulae in what

follows. Instead, we shall derive character formulae in which the characters are expressed as (infinite)

linear combinations of typical characters.

4.3. Modular Transformations. To investigate the modular transformation properties of the g̃l(1|1)
characters, we redefine them to depend on a much larger set of variables:

ch
[
M
](

x,y,z; x̃, ỹ, z̃;q
)
= tr

M
xkx̃k̃yE0 ỹẼ0zN0 z̃Ñ0qL0−c/24. (4.23)

In fact, we will instead consider the supercharacters sch
[
M
]

in which the trace is replaced by the super-

trace. With the parametrisation one should expect for these variables,

x = e2πit , x̃ = e2π ĩt , y = e2πiµ , ỹ = e2πiµ̃ , z = e2πiν , z̃ = e2πiν̃ , q = e2πiτ , (4.24)

the SL(2;Z) generators S and T may be taken to act on the set of character variables as follows:

S : ( t |µ |ν ‖ t̃ | µ̃ | ν̃ ‖ τ ) 7−→
(

t − µν

τ

∣∣∣∣
µ

τ

∣∣∣∣
ν

τ

∥∥∥∥ t̃ − µ̃ν

τ
− µν̃

τ

∣∣∣∣
µ̃

τ

∣∣∣∣
ν̃

τ

∥∥∥∥−
1

τ

)
,

T : ( t |µ |ν ‖ t̃ | µ̃ | ν̃ ‖ τ ) 7−→ ( t |µ |ν ‖ t̃ | µ̃ | ν̃ ‖ τ +1 ) .

(4.25)

One can easily check that these transformations satisfy S4 = (ST)6 = id. A justification of the (perhaps

unusual) transformations of t and t̃ will have to wait until the S-transformations of the supercharacters

have been derived.

We begin with the typical supercharacters. Assuming that the highest weight state is taken to be even

(an odd highest weight state would just change the result by an overall sign), the supercharacter of T
n,e
ñ,ẽ is

obtained from Proposition 5 by replacing z by −z in the infinite product and multiplying by the variables

neglected there. Thus,

sch
[
T

n,e
ñ,ẽ

]
= xkx̃k̃yeỹẽzn+1z̃ñq

∆
n,e
ñ,ẽ

∞

∏
i=1

(
1− zqi

)2 (
1− z−1qi−1

)2

(1−qi)4

= ixkyeznx̃k̃ỹẽz̃ñq(nẽ+ñe)/k̃+(ẽ2−kñẽ)/k̃2 ϑ1

(
z;q
)2

η (q)6
. (4.26)

The reason for considering supercharacters rather than characters is now clear. The theta function ϑ1 is

transformed into itself under modular transformations, whereas the other theta functions transform into

one another. It follows that if we had taken characters rather than supercharacters, then we would have

had to also consider twisted characters and supercharacters which are related to ordinary characters and

supercharacters by half-integer spectral flows. We do not need this level of complexity for the application

at hand (the Verlinde formula), but the methodology employed here works just as well for characters and

twisted (super)characters.

Substituting (4.24) into (4.26), we arrive at the following form for the typical supercharacters:

sch
[
T

n,e
ñ,ẽ

]
= ie2πi(kt+k̃t̃)e2πi(eµ+nν+ẽµ̃+ñν̃)

e
2πi[(nẽ+ñe)/k̃+(ẽ2−kñẽ)/k̃2]τ ϑ1

(
ν |τ
)2

η (τ)6
. (4.27)
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The T-transformation is now immediate, giving

T

{
sch
[
T

n,e
ñ,ẽ

]}
= e

2πi∆n,e
ñ,ẽsch

[
T

n,e
ñ,ẽ

]
, (4.28)

as one expects. The key to deriving the S-transformation is to try to write it as a Fourier transform (with

an unknown bilinear form). The result is as follows:

Theorem 6. The S-transformations of the typical g̃l(1|1)-supercharacters are given by

S

{
sch
[
T

n,e
ñ,ẽ

]}
=
∫∫∫∫

R4

S

[
n,e
ñ,ẽ

;
n′,e′

ñ′,ẽ′

]
sch
[
T

n′,e′

ñ′,ẽ′
]

dn′ d
(
e′/k

)
d
(

kñ′/k̃
)

d
(

ẽ′/k̃
)
, (4.29a)

where the S-matrix “entries” are given by

S

[
n,e
ñ,ẽ

;
n′,e′

ñ′,ẽ′

]
= e

−2πi[(nẽ′+n′ẽ+ñe′+ñ′e)/k̃+(2ẽẽ′−kñẽ′−kñ′ẽ)/k̃2]. (4.29b)

The proof is a straight-forward, though rather tedious, verification. One should evaluate the integrals in

the order given (so the integral over ẽ′ should be performed first) using the analytic continuation of

∫

R
e−ax2+bx dx =

√
π

a
e

b2/4a (Rea > 0) (4.30)

to all a ∈ C. In the course of this verification, the transformations of the variables t and t̃ are explained

— they must be chosen to transform in this manner so as to “sop up” unwanted phases arising from the

transformations of the other variables. This behaviour is, of course, identical to that of the analogue of t

and t̃ used when considering ordinary affine Lie algebra characters.

We need to generalise this to the semitypical and atypical characters. We will do this by deriving res-

olutions for the corresponding modules from which we will obtain the non-typical characters as infinite

linear combinations of reducible Verma module characters. These Verma module characters have the

same form as those of the typical irreducibles, so Theorem 6 applies to them. In this way, we construct

the non-typical irreducible characters and deduce their S-matrix entries. More precisely, this amounts

to taking a (topological) basis of characters consisting of the typical characters and the reducible Verma

module characters (which have the same form as the typical characters). The S-matrix entries which we

deduce for the non-typical modules will then describe the decomposition of an S-transformed non-typical

character into this basis of typical and Verma module characters.

To begin, recall that when e 6= 0, the maximal submodule of the Verma module V
n,e
ñ,0 is isomorphic to

the semitypical S
n−1/2,e
ñ,0 and that the corresponding quotient is isomorphic to the semitypical S

n+1/2,e
ñ,0 .

This is conveniently summarised in the short exact sequence

0 −→ S
n−1,e
ñ,0 −→ V

n−1/2,e
ñ,0 −→ S

n,e
ñ,0 −→ 0 (4.31)

(in which we have shifted indices slightly for convenience). The sequence with n replaced by n−1 will

then have quotient (rightmost entry) matching the submodule (leftmost entry) of the original sequence. It

is easy to check that we can therefore splice the two short exact sequences together and obtain a four-term

exact sequence:

0 −→ S
n−2,e
ñ,0 −→ V

n−3/2,e
ñ,0 −→ V

n−1/2,e
ñ,0 −→ S

n,e
ñ,0 −→ 0. (4.32)

Iterating this splicing, we arrive at a resolution of the semitypical module S
n,e
ñ,0 in terms of Verma modules:

· · · −→ V
n−7/2,e
ñ,0 −→ V

n−5/2,e
ñ,0 −→ V

n−3/2,e
ñ,0 −→ V

n−1/2,e
ñ,0 −→ S

n,e
ñ,0 −→ 0. (4.33)
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This is a (long) exact sequence, so we immediately obtain the character formula

sch
[
S

n,e
ñ,0

]
=

∞

∑
m=0

(−1)m
sch
[
V

n−1/2−m,e
ñ,0

]
. (4.34)

Because spectral flow preserves module structure, it preserves exact sequences. The generalisation of

this result to the other semitypical irreducibles defined in (4.21) is therefore just

sch
[
σ̃ ℓ
(
S

n,e
ñ,0

)]
=

∞

∑
m=0

(−1)m
sch
[
σ̃ ℓ
(
V

n−1/2−m,e
ñ,0

)]
=

∞

∑
m=0

(−1)m
sch
[
V

n−1/2−2ℓ−m,e+ℓk

ñ,ℓk̃

]
. (4.35)

Note that this sum converges in the sense that only finitely many terms in the sum will contribute to the

multiplicity of any given weight space (where “weight” refers to the N0- and L0-eigenvalues).

It remains to analyse the atypical irreducibles in the same manner. For this purpose, it is convenient

to consider the submodule of V
n−1,0
ñ,0 generated by the ψ̃−

0 -descendant of the (generating) highest weight

state. This submodule is indecomposable, but reducible, and its character has the same form as that of the

semitypical irreducibles, except that e is set to 0. We may therefore denote it by S
n−3/2,0
ñ,0 . The quotient

of the Verma module by this submodule is also indecomposable and reducible. Indeed, it is isomorphic

to S
n−1/2,0
ñ,0 according to the above discussion. The relevance to the atypical irreducibles is that we now

have the short exact sequence

0 −→A
n−1,0
ñ,0 −→ S

n−1/2,0
ñ,0 −→A

n,0
ñ,0 −→ 0. (4.36)

Splicing iteratively, we deduce resolutions for the atypical irreducibles, this time in terms of the semityp-

ical indecomposables S
n,0
ñ,0. The corresponding character formulae, generalised to all the atypicals defined

by (4.22), is

sch
[
σ̃ ℓ
(
A

n,0
ñ,0

)]
=

∞

∑
m1=0

(−1)m1 sch
[
σ̃ ℓ
(
S

n−1/2−m1,0
ñ,0

)]
=

∞

∑
m1,m2=0

(−1)m1+m2 sch
[
σ̃ ℓ
(
V

n−1−m1−m2,0
ñ,0

)]

=
∞

∑
m=0

(−1)m (m+1)sch
[
σ̃ ℓ
(
V

n−1−m,0
ñ,0

)]
=

∞

∑
m=0

(−1)m (m+1)sch
[
V

n−1−2ℓ−m,ℓk

ñ,ℓk̃

]
.

(4.37)

It is now a simple matter to derive the S-transformations of the semitypical and atypical characters.

Since Theorem 6 applies to the indecomposable Verma module characters, we obtain

S

{
sch
[
σ̃ ℓ
(
S

n,e
ñ,0

)]}
=

∞

∑
m=0

(−1)m
∫∫∫∫

R4

S

[
n−1/2−2ℓ−m,e+ℓk

ñ,ℓk̃
;

n′,e′

ñ′,ẽ′

]
sch
[
T

n′,e′

ñ′,ẽ′
] dn′ de′ dñ′ dẽ′

k̃2
,

S

{
sch
[
σ̃ ℓ
(
A

n,0
ñ,0

)]}
=

∞

∑
m=0

(−1)m (m+1)
∫∫∫∫

R4

S

[
n−1−2ℓ−m,ℓk

ñ,ℓk̃
;

n′,e′

ñ′,ẽ′

]
sch
[
T

n′,e′

ñ′,ẽ′
] dn′ de′ dñ′ dẽ′

k̃2
.

(4.38)

Substituting (4.29b) and evaluating these sums, we arrive at the following result:

Proposition 7. The S-transformations of the semitypical g̃l(1|1)-supercharacters are given by

S

{
sch
[
σ̃ ℓ
(
S

n,e
ñ,0

)]}
=
∫∫∫∫

R4

S

[
ℓ

n,e,ñ
;

n′,e′

ñ′,ẽ′

]
sch
[
T

n′,e′

ñ′,ẽ′
]

dn′ d
(
e′/k

)
d
(

kñ′/k̃
)

d
(

ẽ′/k̃
)
, (4.39a)

where the coefficients are given by

S

[
ℓ

n,e,ñ
;

n′,e′

ñ′,ẽ′

]
= e

−2πi[(nẽ′+ñe′+ñ′e)/k̃−kñẽ′/k̃2] e−2πin′ℓ

2cos
(

π ẽ′/k̃
) . (4.39b)
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Similarly, the S-transformations of the atypical g̃l(1|1)-supercharacters are given by

S

{
sch
[
σ̃ ℓ
(
A

n,0
ñ,0

)]}
=

∫∫∫∫

R4

S

[
ℓ

n,ñ
;

n′,e′

ñ′,ẽ′

]
sch
[
T

n′,e′

ñ′,ẽ′
]

dn′ d
(
e′/k

)
d
(

kñ′/k̃
)

d
(

ẽ′/k̃
)
, (4.40a)

with coefficients

S

[
ℓ

n,ñ
;

n′,e′

ñ′,ẽ′

]
= e

−2πi[(nẽ′+ñe′)/k̃−kñẽ′/k̃2] e−2πin′ℓ

4cos2
(

π ẽ′/k̃
) . (4.40b)

The overlines on the first entries of the S-matrix coefficients serve to remind us that the entry corresponds

to a semitypical or atypical module.

Corollary 8. The S-transformation of the vacuum g̃l(1|1)-supercharacter is given by

S

{
sch
[
A

0,0
0,0

]}
=
∫∫∫∫

R4

S

[
0

0,0
;

n′,e′

ñ′,ẽ′

]
sch
[
T

n′,e′

ñ′,ẽ′
]

dn′ d
(
e′/k

)
d
(

kñ′/k̃
)

d
(

ẽ′/k̃
)
, (4.41a)

with coefficients

S

[
0

0,0
;

n′,e′

ñ′,ẽ′

]
=

1

4cos2
(

π ẽ′/k̃
) . (4.41b)

Finally, we briefly consider the implications of these results for the modular invariance of the partition

function. In particular, Theorem 6 gives us the S-matrix with respect to a basis of g̃l(1|1)-supercharacters

consisting of those of the typical and non-typical Verma modules. It is easy to check that this S-matrix

is symmetric and unitary:

∫∫∫∫

R4

S

[
n,e
ñ,ẽ

;
n′,e′

ñ′,ẽ′

]∗
S

[
n,e
ñ,ẽ

;
n′′,e′′

ñ′′,ẽ′′

]
dn d(e/k) d

(
kñ/k̃

)
d
(

ẽ/k̃
)

= δ
(
n′ = n′′

)
δ

(
e′

k
=

e′′

k

)
δ

(
kñ′

k̃
=

kñ′′

k̃

)
δ

(
ẽ′

k̃
=

ẽ′′

k̃

)
. (4.42)

It follows immediately that the diagonal partition function

Zdiag. =

∫∫∫∫

R4

∣∣∣sch
[
T

n,e
ñ,ẽ

]∣∣∣
2

dn d(e/k) d
(

kñ/k̃
)

d
(

ẽ/k̃
)

is modular invariant. Similarly, unitarity and the symmetry of the S-matrix entries under conjugation

(n,e, ñ, ẽ)→ (−n,−e,−ñ,−ẽ) guarantee that the charge conjugation partition function is likewise invari-

ant. We remark that the supercharacters of the non-typical Verma modules should be further decomposed

into those of their irreducible composition factors. In particular, this is how the vacuum module appears

in these partition functions.

4.4. The Verlinde Formula. Given the S-transformation formulae derived in Section 4.3, we can now

apply a version of the Verlinde formula to derive the fusion coefficients. Actually, because we are dealing

with a logarithmic conformal field theory, meaning in particular that we expect the spectrum to include

reducible but indecomposable modules, the Verlinde formula can only be expected to give the structure

constants of the Grothendieck fusion ring. This is the quotient of the true fusion ring in which one

identifies each indecomposable module with the direct sum of its composition factors. Alternatively,

one identifies modules with the same character. In this section, we assume that the Grothendieck ring is

well-defined (that is, that fusion defines an exact functor from the spectrum to itself) and that its structure
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constants are given by the following continuum version of the Verlinde formula:

N
C

AB =
∫

D

SA,DSB,D

(
S†
)

C,D

S0,D
dD. (4.43)

Here, 0 refers to the vacuum module A
0,0
0,0 and D runs over a basis of the Grothendieck ring which we

will take to consist of the (equivalence classes containing the) typical irreducible modules T
n,e
ñ,ẽ with

ẽ 6= 0 and the reducible Verma modules V
n,e
ñ,0 ≡ T

n,e
ñ,0. Because we want to interpret the coefficient N C

AB

as describing the decomposition of the (Grothendieck) fusion of A and B, we will always assume that C

is a basis element. It then follows from the symmetry of the S-matrix in this basis (see Theorem 6) that(
S†
)

C,D
= S∗C,D.

The easiest Verlinde coefficient to compute is that describing the Grothendieck fusion of an atypical

and a typical. Taking A = σ̃ ℓ
(
A

n1,0
ñ2,0

)
and B = T

n2,e2

ñ2,ẽ2
, the Verlinde formula becomes

N
T

n3,e3
ñ3 ,ẽ3

σ̃ ℓ
(
A

n1 ,0

ñ1 ,0

)
T

n2,e2
ñ2,ẽ2

=
∫∫∫∫

R4

S

[
ℓ

n1,ñ1
;

n,e
ñ,ẽ

]
S
[ n2,e2

ñ2,ẽ2
;

n,e
ñ,ẽ

]
S
[ n3,e3

ñ3,ẽ3
;

n,e
ñ,ẽ

]∗

S

[
0

0,0 ;
n,e
ñ,ẽ

] dn de dñ dẽ

k̃2
. (4.44)

Here, we should remark that the measure

dn de dñ dẽ

k̃2
= dn d(e/k) d

(
kñ/k̃

)
d
(

ẽ/k̃
)

(4.45)

is the natural choice, given the rescaling properties (4.6) of the algebra. Substituting (4.29b), (4.40b) and

(4.41b) into (4.44), we see that the denominator of the atypical S-matrix entry cancels that of the vacuum

entry and the integrand becomes a pure phase. In fact, the integral over R4 separates into four integrals

over R:
∫

R
e
−2πi[(ẽ2−ẽ3)/k̃+ℓ]n dn,

∫

R
e
−2πi[(e2−e3)/k−(ẽ2−ẽ3)/k̃]kñ/k̃ d

(
kñ/k̃

)
,

∫

R
e
−2πik(ñ1+ñ2−ñ3)/k̃·e/k d(e/k) ,

∫

R
e
−2πi[n1+n2−n3+2(ẽ2−ẽ3)/k̃−k(ñ1+ñ2−ñ3)/k̃]ẽ/k̃ d

(
ẽ/k̃
)
.

(4.46)

These are easily evaluated and one arrives at

N
T

n3,e3
ñ3,ẽ3

σ̃ ℓ
(
A

n1 ,0

ñ1 ,0

)
T

n2,e2
ñ2,ẽ2

= δ (n3 = n1 +n2 −2ℓ)δ

(
e3

k
=

e2 + ℓk

k

)
δ

(
kñ3

k̃
=

k (ñ1 + ñ2)

k̃

)
δ

(
ẽ3

k̃
=

ẽ2 + ℓk̃

k̃

)
. (4.47)

The corresponding Grothendieck fusion rule is therefore

[
σ̃ ℓ
(
A

n1,0
ñ1,0

)]
×f

[
T

n2,e2

ñ2,ẽ2

]
=
∫∫∫∫

R4

N
T

n3,e3
ñ3 ,ẽ3

σ̃ ℓ
(
A

n1 ,0

ñ1 ,0

)
T

n2,e2
ñ2,ẽ2

[
T

n3,e3

ñ3,ẽ3

] dn3 de3 dñ3 dẽ3

k̃2

=
[
T

n1+n2−2ℓ,e2+ℓk

ñ1+ñ2,ẽ2+ℓk̃

]
, (4.48)

where the square brackets around a module indicate the equivalence class of the module in the Grothendieck

ring.

The computations for (Grothendieck) fusing semitypicals with typicals, or typicals with typicals, are

similar, using (4.39b) in the appropriate place instead of (4.40b). The main difference is that the de-

nominators appearing in the semitypical and vacuum S-matrix entries no longer cancel. Instead, one

obtains a pure phase multiplied by 2cos
(
π ẽ′/k̃

)
, or its square, hence the integrand may be written as a
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sum of two, or four, pure phases, respectively. The actual integration proceeds as before. We therefore

turn to the Grothendieck fusion rules for non-typicals with non-typicals. When fusing two semitypicals,

the S-matrix entries’ denominators cancel that coming from the vacuum in the Verlinde formula and the

computations proceed as in the atypical by typical computation. In contrast, the semitypical by atypical

and atypical by atypical computations involve an integrand which is a pure phase divided by a non-trivial

denominator. Evaluation proceeds after re-expanding the denominator as follows:

1

2cos
(

π ẽ/k̃
) =

∞

∑
m=0

(−1)m
e
iπ(2m+1)ẽ/k̃,

1

4cos2
(

π ẽ/k̃
) =

∞

∑
m=0

(−1)m (m+1)e2πi(m+1)ẽ/k̃. (4.49)

The Verlinde formula therefore gives the Grothendieck fusion coefficients as infinite sums of delta func-

tions in these cases. The corresponding Grothendieck fusion rules therefore decompose into infinite

sums of typicals (actually, reducible Verma modules). However, these infinite sums can be recognised as

corresponding to semitypicals and atypicals using the resolution formulae (4.35) and (4.37).

We summarise the results of these computations:

Proposition 9. Assuming that the Verlinde formula correctly gives the coefficients of the Grothendieck

fusion ring, the product induced by the fusion product on the associated Grothendieck ring of g̃l(1|1) is

given, on the basis of (equivalence classes of) irreducibles by
[
σ̃ ℓ
(
A

n1,0
ñ1,0

)]
×f

[
T

n2,e2

ñ2,ẽ2

]
=
[
T

n1+n2−2ℓ,e2+ℓk

ñ1+ñ2,ẽ2+ℓk̃

]
,

[
σ̃ ℓ
(
S

n1,e1

ñ1,0

)]
×f

[
T

n2,e2

ñ2,ẽ2

]
=
[
T

n1+n2−2ℓ+1/2,e1+e2+ℓk

ñ1+ñ2,ẽ2+ℓk̃

]
⊕
[
T

n1+n2−2ℓ−1/2,e1+e2+ℓk

ñ1+ñ2,ẽ2+ℓk̃

]
,

[
T

n1,e1

ñ1,ẽ1

]
×f

[
T

n2,e2

ñ2,ẽ2

]
=
[
T

n1+n2+1,e1+e2

ñ1+ñ2,ẽ1+ẽ2

]
⊕2
[
T

n1+n2,e1+e2

ñ1+ñ2,ẽ1+ẽ2

]
⊕
[
T

n1+n2−1,e1+e2

ñ1+ñ2,ẽ1+ẽ2

]
,

[
σ̃ ℓ1
(
S

n1,e1

ñ1,0

)]
×f

[
σ̃ ℓ2
(
S

n2,e2

ñ2,0

)]
=
[
T

n1+n2−2(ℓ1+ℓ2),e1+e2+(ℓ1+ℓ2)k

ñ1+ñ2,(ℓ1+ℓ2)k̃

]
,

[
σ̃ ℓ1
(
A

n1,0
ñ1,0

)]
×f

[
σ̃ ℓ2
(
S

n2,e2

ñ2,0

)]
=

∞⊕

m=0

(−1)m
[
T

n1+n2−2(ℓ1+ℓ2)−m−1/2,e2+(ℓ1+ℓ2)k

ñ1+ñ2,(ℓ1+ℓ2)k̃

]

=
[
σ̃ ℓ1+ℓ2

(
S

n1+n2,e2

ñ1+ñ2,0

)]
,

[
σ̃ ℓ1
(
A

n1,0
ñ1,0

)]
×f

[
σ̃ ℓ2
(
A

n2,0
ñ2,0

)]
=

∞⊕

m=0

(−1)m (m+1)
[
T

n1+n2−2(ℓ1+ℓ2)−m−1,(ℓ1+ℓ2)k

ñ1+ñ2,(ℓ1+ℓ2)k̃

]

=
[
σ̃ ℓ1+ℓ2

(
A

n1+n2,0
ñ1+ñ2,0

)]
.

(4.50)

As with Proposition 3, we have not fully decomposed these Grothendieck fusion rules into equivalence

classes of irreducibles. The typical fuse typical result will decompose into semitypicals or atypicals if

(ẽ1 + ẽ2)/k̃ ∈ Z and the semitypical fuse semitypical result always decomposes in the same way. As

before, it is easy but cumbersome to write down the full decompositions given the above results.

4.5. Fusion. Because we assume that the Verlinde formula correctly gives the structure constants of

the Grothendieck fusion ring, we consequently obtain a huge amount of information about the genuine

fusion ring. For example, when a Grothendieck fusion rule decomposes into a single equivalence class

of an irreducible, then we may lift this decomposition to the corresponding fusion rule. Similarly, if a

Grothendieck decomposition turns out to be a direct sum of irreducible equivalence classes and no two

of the corresponding irreducibles can be glued together to form an indecomposable, then we can be sure

that the fusion rule also decomposes as a direct sum of irreducibles. One easy test for deciding that two

modules cannot be glued together indecomposably is to consider the conformal dimensions of their states
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modulo Z — if the conformal dimensions have different fractional parts, then no gluing is possible. With

this in mind, Proposition 9 immediately gives:

Theorem 10. Assuming that the Verlinde formula correctly gives the coefficients of the Grothendieck

fusion ring, we may deduce the following (genuine) fusion rules involving irreducibles:

A
n1,0
ñ1,0

×f A
n2,0
ñ2,0

=A
n1+n2,0
ñ1+ñ2,0

, A
n1,0
ñ1,0

×f S
n2,e2

ñ2,0
= S

n1+n2,e2

ñ1+ñ2,0
, A

n1,0
ñ1,0

×f T
n2,e2

ñ2,ẽ2
= T

n1+n2,e2

ñ1+ñ2,ẽ2
.

S
n1+n2,e2

ñ1+ñ2,0
×f T

n2,e2

ñ2,ẽ2
= T

n1+n2+1/2,e1+e2

ñ1+ñ2,ẽ2
⊕T

n1+n2−1/2,e1+e2

ñ1+ñ2,ẽ2
.

(4.51)

Moreover, these fusion rules respect spectral flow in the sense that

σ̃ ℓ1
(
M1

)
×f σ̃ ℓ2

(
M2

)
= σ̃ ℓ1+ℓ2

(
M1 ×f M2

)
. (4.52)

We remark that the semitypical by typical fusion follows because (4.5) gives

∆
n1+n2+1/2,e1+e2

ñ1+ñ2,ẽ2
−∆

n1+n2−1/2,e1+e2

ñ1+ñ2,ẽ2
=

ẽ2

k̃
, (4.53)

which, by the typicality condition of Proposition 5, is not an integer.

These fusion rules should be compared with the tensor product rules computed for g̃l(1|1) in Equa-

tions (3.6) and (3.10) — they are essentially the same. To make this precise, recall from Section 4.2 that

when the Ẽ0-eigenvalue is restricted to −1 < ẽ/k̃ < 1, the non-trivial singular vectors may only occur at

grade 0 and then only when ẽ = 0. For this range of ẽ, one therefore has a rather natural bijective cor-

respondence between g̃l(1|1)-modules and the g̃l(1|1)-modules formed by their zero-grade subspaces.

To put it differently, the induced module construction gives a bijection between g̃l(1|1)-modules and

g̃l(1|1)-modules when ẽ/k is so restricted. With this correspondence, we can formulate a plausible

conjecture:

When − 1
2
6 ẽ1/k̃ < 1

2
and − 1

2
< ẽ2/k̃ 6

1
2
, the fusion product of two g̃l(1|1)-modules

with (respective) Ẽ0-eigenvalues ẽ1 and ẽ2 is induced from the g̃l(1|1)-module obtained

from the tensor product of the g̃l(1|1)-modules whose inductions are those being fused.

Fusion products involving modules with ẽ1 and ẽ2 outside the specified ranges may be

computed from the above correspondence using spectral flow and Equation (4.52).

Of course, (4.52) is itself conjectural. We have only verified that this relation holds for the fusion rules

in Theorem 10 up to the assumption that the Verlinde formula is valid.

The first part of this conjecture, dealing with the fusion of modules with restricted Ẽ0-eigenvalues, can

actually be proven. The argument is not difficult, but it relies on a reasonably detailed understanding of

the celebrated Nahm-Gaberdiel-Kausch algorithm for fusion [28, 29]. We will not repeat the argument

here for the Takiff superalgebra g̃l(1|1) — it is practically identical to that given for the non-Takiff

algebra ĝl(1|1) in [19, Sec. 3.3]. Accepting this allows us to extend the fusion rules of (4.51) to include

S
n1,e1

ñ1,0
×f S

n2,e2

ñ2,0
= S

n1+n2+1/2,e1+e2

ñ1+ñ2,0
⊕S

n1+n2−1/2,e1+e2

ñ1+ñ2,0
, (4.54)

when e1 + e2 6= 0. This follows now from Equation (3.8), as does the fact that the result of this fusion

when e1 + e2 = 0 is an indecomposable P
n1+n2,0
ñ1+ñ2,0

induced from the g̃l(1|1)-module P
n1+n2,0
ñ1+ñ2,0. We can also

now include the typical fusion rule

T
n1,e1

ñ1,ẽ1
×f T

n2,e2

ñ2,ẽ2
= T

n1+n2+1,e1+e2

ñ1+ñ2,ẽ1+ẽ2
⊕ (2)

T
n1+n2,e1+e2

ñ1+ñ2,ẽ1+ẽ2
⊕T

n1+n2−1,e1+e2

ñ1+ñ2,ẽ1+ẽ2
(4.55)

which follows from Equation (3.13) when − 1
2
6 ẽ1/k̃ < 1

2
, − 1

2
< ẽ2/k̃ 6 1

2
and ẽ1 + ẽ2 6= 0. The module

(2)T
n,e
ñ,ẽ is that induced from the g̃l(1|1)-module (2)T

n,e
ñ,ẽ, as usual. We will not say anything more detailed

about this fusion rule when ẽ1 + ẽ2 = 0 because we did not detail the result of the corresponding (rather
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complicated) tensor product decomposition in Section 3.2. It is also worth noting that the fusion rules

(4.54) and (4.55) may be extended to other ẽ1 and ẽ2 if we assume that (4.52) holds.

Finally, we note that an obvious corollary of Theorem 10 is that the atypicals σ̃ ℓ
(
A

n,0
ñ,0

)
are all sim-

ple currents (invertible elements) of the fusion ring. They can therefore be used to construct extended

algebras, some of which may be of interest. The extended algebras of ĝl(1|1) are known to include [30]:

• The direct sum of a free complex fermion and a set of βγ ghosts.

• The affine superalgebra ŝl(2|1) at levels 1 and − 1
2
.

• The Bershadsky-Polyakov algebra W
(2)
3 at levels 0 and − 5

3
.

• The N = 2 superconformal algebra of central charges 1 and −1.

• The Feigin-Semikhatov algebras W
(2)
n at various levels.

It therefore seems likely that the extended algebras of g̃l(1|1) will include Takiff versions of these.

Moreover, if we choose the simple current so that its states have integer conformal dimensions, then

one expects to be able to construct non-diagonal modular invariant partition functions that correspond to

the diagonal partition function of the extended algebra. We shall not consider extended algebras here,

leaving their study for the future.

5. CONCLUSIONS

In this paper, we have considered a class of non-semisimple Lie algebras that we have referred to as

Takiff algebras, from the point of view of representation theory and, in the affine case, conformal field

theories generated by a Sugawara-type construction (Theorem 1). The construction is universal for any

affine Kac-Moody algebra or superalgebra. We then concentrated on the Takiff superalgebra of gl(1|1)
and its affinisation as the simplest non-trivial examples; these are expected to demonstrate some of the

basic features and structures typical for Takiff algebras of higher rank. The classification of irreducible

highest weight modules of the non-affine Takiff superalgebra g̃l(1|1) revealed many similarities to that

of the non-Takiff superalgebra gl(1|1), resulting in three classes of modules: In addition to typical and

atypical classes, we have an intermediate class that we called semitypical.

By considering tensor products of the irreducible highest weight g̃l(1|1)-modules, we were able to

generate an infinite set of non-isomorphic indecomposable modules whose structures were partially un-

ravelled. In contrast to the non-Takiff case, in which the indecomposables can be completely classified

and projectives/injectives identified, the zoo of indecomposables in the Takiff case seems to be too rich to

be classified. Nevertheless, we succeeded in computing (Proposition 3) the product on the Grothendieck

ring of g̃l(1|1)-modules.

The main thrust of this paper was, however, related to the conformal field theory structures associated

with the affine Takiff algebra g̃l(1|1). The submodule structure of the Verma modules was completely

elucidated using a spectral flow automorphism, leading to a complete classification of irreducible highest

weight modules. As with g̃l(1|1), these fell into three classes: Typical, semitypical and atypical. Charac-

ter formulae followed immediately. Our main result (Theorem 6) is then the determination of the modular

transformation properties of the supercharacters. Here, we were able to generalise the usual affine S- and

T-transformations so as to prove that the typical module supercharacters carry a representation of the

modular group, albeit one of uncountably-infinite dimension. The known structures of the semitypical

and atypical Verma modules then allowed us to deduce the S-transformations of the supercharacters of

their irreducible quotients.

Having at hand the explicit form of these S-transformations, we applied them to a formal calculation of

fusion coefficients using a continuum version of the famous Verlinde formula. This yielded non-negative
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integers (when properly interpreted) which gives strong evidence for the consistency of our results and,

in particular, our thesis that these Takiff (super)algebras give rise to conformal field theories. We then

interpreted these Verlinde coefficients as the structure constants of the Grothendieck fusion ring and

determined this ring explicitly (Proposition 9). We concluded by discussing the possibilities for lifting

these results on the Grothendieck fusion ring to the genuine fusion ring of g̃l(1|1) and the consistency of

the fusion results with our tensor product computations for g̃l(1|1).
Summarizing, we see most of the typical features of logarithmic conformal field theory implemented

in the Takiff superalgebra theory considered here. In particular, we have noted that there are modules

on which the zero modes Ñ0 and L0 act non-semisimply and that fusion generates examples of inde-

composable modules from irreducible ones. One interesting feature of this theory is the non-semisimple

action of the affine Cartan element Ñ0 on the typical irreducibles T
n,e
ñ,ẽ and their indecomposable cousins

(m)T
n,e
ñ,ẽ . Aside from the (logarithmic) free boson, we are not aware of any other theory exhibiting this.

The effect on correlation functions seems, however, to be minimal: As usual, the eigenvectors in any

non-trivial Jordan cell for Ñ0 end up being null and the non-trivial coupling of the two-point function

occurs between the eigenvectors and their Jordan partners. However, no logarithms are encountered in

the corresponding correlators. We mention that logarithms will be present in the four-point functions of

fields in typical modules when the Ẽ0-eigenvalues are tuned appropriately.

Of course, we have only considered here the simplest example of an affine Takiff (super)algebra. The

next obvious candidate for detailed study is affine Takiff sl(2), which we might denote by s̃l(2). The

situation here is significantly more complicated, because we expect that the full spectrum of irreducibles

will involve modules which are not highest weight with respect to any choice of triangular decomposition.

Unfortunately, the mathematical properties of such modules seem to be completely unknown for Takiff

superalgebras and we hope to report on this and conformal field theories based on s̃l(2) in the future [24].

The explicit relation between the Takiff extensions that we have considered here and the algebraic

description of principal chiral models on Lie supergroups with vanishing Killing form is not clear to

us at present, but we hope that further investigation of examples of these new (super)algebra conformal

field theories will clarify this relation. In particular, once the case of p̃sl(2|2), the simplest example

of a Lie superalgebra with vanishing Killing form, has become available, it will be very interesting to

compare the partitions functions obtained as modular invariants of affine Takiff (super)characters with

those proposed in [7, 8].
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