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Motivation

The biggest buzzword in theoretical physics at the moment is:

Duality.

This refers to a collection of non-perturbative phenomena which
describe (some sector of) a strongly-coupled quantum field theory
in terms of some other (sector of a) weakly-coupled quantum field
theory, and vice-versa.

ie. one can try to answer inaccessible questions about the former in
the latter theory, and vice-versa.

An example of this is the famous AdS/CFT correspondence
wherein the planar N = 4 super Yang-Mills theory and free IIB
superstring theory on AdS5 × S5 are claimed to be dual.
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Establishing such dualities requires substantial control over the
relevant theories. Such control may be furnished by eg.
quantum-integrability.

A quantum-integrable system admits an infinite number of
commuting conserved charges. In favourable cases, this symmetry
allows one to compute many important features of the theory, in
particular, the spectrum.

Unfortunately, it is usually very hard to establish
quantum-integrability. One of the main difficulties is the need for
regularisation of ultraviolet divergences.

One is therefore led to ask for a regularised theory over which we
still have substantial control, ie. we want an integrable
regularisation.



Motivation Quantum Affine Superalgebras Quantum Integrability Lattice Discretisations Conclusions/Outlook

One successful regularisation scheme involves discretisation.

eg. spin chains are often stated to provide integrable lattice
regularisations of QFTs. However, the question of how to choose a
spin chain to regularise a given QFT remains obscure.

We believe that we should prefer a lattice regularisation for which:

1. The local degrees of freedom may be related to those of the
continuum theory.

2. The quantum groups underlying the integrability of the
continuum and regularised theories coincide.

The latter point also facilitates the eventual solution of the theory
(eg. in deriving TQ-relations, etc... ).
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A Proposal

We have therefore proposed a framework for studying the
integrability of a certain class of non-linear sigma models and
constructing integrable lattice discretisations for them.

This involves:

1. Identifying the relevant quantum group from the quantisation
of the chiral halves of the interaction terms.

2. Constructing R- and L-matrices from the quantum group for
the continuum and lattice theories (following the quantum
inverse scattering method).

The models we consider involve bosons (compact, non-compact)
and fermions. The interaction terms are restricted to being
exponential. eg. affine Toda theories.
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Quantum Affine Superalgebras

Integrability usually arises from the action of a quasitriangular
Hopf (super)algebra, eg. a quantum affine superalgebra Uq

(
ĝ
)
.

When all the real roots of ĝ have the same length, Uq

(
ĝ
)
is a Hopf

algebra generated by Ei , Fi , Ki = qHi , and qD . The relations are

KiEj = qAijEjKi , KiFj = q−AijFjKi , KiKj = KjKi ,

qDEi = qδi0Eiq
D , qDFi = q−δi0Fiq

D , qDKi = Kiq
D ,

EiFj − FjEi = δij
Ki − K−1

i

q − q−1
,

and the Serre relations. Here, A is the Cartan matrix of ĝ.



Motivation Quantum Affine Superalgebras Quantum Integrability Lattice Discretisations Conclusions/Outlook

The Serre relations for Lie algebras take the form

1−Aij∑

n=0

(−1)n
[
1− Aij

n

]

q

En
i EjE

1−Aij−n

i = 0,

and similarly for Ei → Fi .

For Lie superalgebras, the Serre relations are far less regular. They
also depend upon the choice of Dynkin diagram.

eg. for ĝ = ŝl (2|1), , the Serre relations are

E 2
0 = E 2

2 = 0,[[
E0,E1

]
q−1 ,E1

]
q
=
[
E1,
[
E1,E2

]
q−1

]
q
= 0,

[
E0,
[
E2,
[
E0,
[
E2,E1

]
q−1

]]]
q
=
[
E2,
[
E0,
[
E2,
[
E0,E1

]
q−1

]]]
q
,

and the same with Ei → Fi . Here,
[
A,B

]
q
= AB ∓ q BA.
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Quantum affine superalgebras also come with a coproduct:

∆ (Ei )= Ei ⊗ Ki + 1⊗ Ei , ∆(Ki )= Ki ⊗ Ki ,

∆(Fi )= Fi ⊗ 1+ K−1
i ⊗ Fi , ∆

(
qD
)
= qD ⊗ qD .

The unit, counit and antipode are not useful for us here.

The coproduct allows us to define the tensor product of two
Uq

(
ĝ
)
-modules V and W :

x · (v ⊗ w) = ∆ (x) (v ⊗ w), (x ∈ Uq

(
ĝ
)
, v ∈ V , w ∈ W ).

Such tensor products are graded by the parity p (·) ∈ Z2 in the
super case:

(x1 ⊗ y1) (x2 ⊗ y2) = (−1)p(y1)p(x2) (x1x2 ⊗ y1y2).
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R-matrices

Quantum affine superalgebras have a universal R-matrix R+ in
(some completion of) Uq

(
ĝ
)
⊗ Uq

(
ĝ
)
. R+ is (formally) invertible

and satisfies the intertwining axiom

R+∆(x) = σ (∆ (x))R+ ∀x ∈ Uq

(
ĝ
)
,

where σ (x ⊗ y) = (−1)p(x)p(y) y ⊗ x .

R+ also satisfies the abstract Yang-Baxter equation:

R+
12R

+
13R

+
23 = R+

23R
+
13R

+
12.

Note that one can define a second universal R-matrix

R− = σ
(
R+
)−1

which also satisfies these relations!
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Identifying the Quantum Group

In conformal field theory, there is a hidden quantum group
symmetry that controls, eg. fusing and braiding relations. This
symmetry can be made explicit in a free field realisation by
computing the algebra generated by the screening charges.

We propose that this generalises to our integrable models: The
screening charges are derived from the vertex operators
representing the exponential interaction terms.

The screening charge algebra is deduced from the braiding of the
vertex operators. The relations of this algebra are interpreted as
Serre relations for some quantum affine superalgebra.

Unlike in CFT, this only extends to a Borel subalgebra B+ of the
quantum group (using the zero modes). Note that superalgebras
may have inequivalent Borel subalgebras.
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Example: Sinh-Gordon

The sinh-Gordon model has classical action

S =

∫ [
1

4π
∂µφ∂

µφ+ ν+e
+2bφ + ν−e

−2bφ

]
d2z ,

so the interaction terms give the chiral vertex operators

V+
0 = : e+2bφ+ : and V+

1 = : e−2bφ+ : .

From the usual vertex operator locality relation

: eaφ(z) : : ebφ(w) : = eiπab : ebφ(w) : : eaφ(z) : ,

we obtain the braiding relations

V+
i V−

j = qAijV−

j V+
i , A =

(
2 −2

−2 2

)
,

where q = e2πib
2
and A is the Cartan matrix of Uq

(
ŝl (2)

)
.
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The screening charges are now defined by

Q+
i =

1

q − q−1

∮
V+
i (z)

dz

2πi
.

Using the braiding relations for the V+
i and with due consideration

of the contours of integration, one can search for independent
relations. We find two which hold for all q:

(
Q+

i

)3
Q+

j − [3]q
(
Q+

i

)2
Q+

j Q+
i

+ [3]q Q
+
i Q+

j

(
Q+

i

)2
− Q+

j

(
Q+

i

)3
= 0,

These are the quantum Serre relations of Uq

(
ŝl (2)

)
.

With H0 = +p/b and H1 = −p/b, where p is the momentum
mode of φ+, we conclude that the quantum symmetry algebra
underlying the integrability of sinh-Gordon is the Borel subalgebra
of Uq

(
ŝl (2)0

)
(at level 0).
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Example: N = 2 Super Sine-Gordon

The N = 2 super sine-Gordon model has action

S ′=
∫

[
1
4π

(∂µφ1∂
µφ1+∂µφ2∂

µφ2)+
1
2π

(

ψ̄+∂−ψ++ψ̄−∂+ψ−

)

−bν+e+bφ1(ψ̄+ψ̄−e+ibφ2+ψ+ψ−e−ibφ2)−bν−e−bφ1(ψ+ψ−e+ibφ2+ψ̄+ψ̄−e−ibφ2)

+4πν2
−
e+2bφ1−8πν−ν+ cos(2bφ2)+4πν2+e

−2bφ1

]
d2z.

Treating the terms on the second line as interactions and those on
the third line as counterterms generated by renormalisation as
b → 0, we obtain four chiral vertex operators:

V+
0 = ψ̄+ : e−b(φ+1 −iφ+2 ) : , V+

1 = ψ+ : e+b(φ+1 +iφ+2 ) : ,

V+
2 = ψ̄+ : e+b(φ+1 −iφ+2 ) : , V+

3 = ψ+ : e−b(φ+1 +iφ+2 ) : .
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The screening charges Q+
i =

∮
V+
i (z) dz satisfy

(Q+
i )

2
=0, Q+

i
Q+

i+2+Q+
i+2Q

+
i
=0,

Q+
i−1Q

+
i
Q+

i+1Q
+
i
−Q+

i+1Q
+
i
Q+

i−1Q
+
i

+[2]qQ
+
i
Q+

i−1Q
+
i+1Q

+
i
−Q+

i
Q+

i+1Q
+
i
Q+

i−1+Q+
i
Q+

i−1Q
+
i
Q+

i+1=0,

where q = e2πib
2
and i is taken mod 4. These are (some of) the

quantum Serre relations of Uq

(
ŝl (2|2)

)
(there are others with

degrees in 4Z+ + 2) with the Dynkin diagram

.

ie. the quantum symmetry algebra underlying the integrability of
N = 2 super sine-Gordon is a Borel subalgebra of Uq

(
ŝl (2|2)0

)
.
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Classical Considerations

To analyse a classical integrable system, one first looks for a
zero-curvature condition

[
∂t − Ut (λ) , ∂x − Ux (λ)

]
= 0,

which implies the equations of motion. This gives rise to a
monodromy matrix M (λ) as a path-ordered integral around the
cylinder:

M (λ) = P exp

∫ R

0
Ux (λ) dx .

The transfer matrix is then

T (λ) = trM (λ),

and the infinitely many integrals of motion are now obtained
through asymptotic expansion in the spectral parameter λ.
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It is useful to pass to light-cone coordinates where we have

[
∂+ − U+ (λ) , ∂− − U− (λ)

]
= 0.

We deform the contour around the cylinder:

C
−

i−1

C
+
i

C
−

i

C
+
i+1

The monodromy matrix then becomes

M (λ) = L−N (λ) L+N (λ) · · · L−1 (λ) L+1 (λ),

L±i (λ) = P exp

∫

C
±

i

U± (λ) dx±.

In the continuum, we typically take N = 1. N > 1 is useful to
understand the idea behind discretisation!
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Quantisation
If one can fix a gauge so that the U± (λ) contain only the
exponential interaction terms, we may quantise naturally by
replacing these terms by their normally-ordered equivalents.

If one knows the quantum group responsible for the integrability,
quantum inverse scattering lets us construct the Lax matrices
L± (λ) directly from the universal R-matrices:

L± (λ) =
(
π±q ⊗ πλa

) (
R±
)

(N = 1, say).

Here, πλa is a finite-dimensional evaluation rep of the quantum
affine superalgebra and the π±q are certain infinite-dimensional reps
of the Borel subalgebras B±.

The R-matrix itself is given (up to normalisation) by

R (λ, µ) =
(
πλa ⊗ πµa

) (
R±
)
.
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Example: Sinh-Gordon

If we choose the Uq

(
ŝl (2)0

)
-representation

πλa (E0)=
(

0 0
λ−1 0

)
, πλa (F0)=

(
0 λ
0 0

)
, πλa (H0)=

(
−1 0
0 1

)
,

πλa (E1)=
(
0 λ−1

0 0

)
, πλa (F1)=

(
0 0
λ 0

)
, πλa (H1)=

(
1 0
0 −1

)

and the B±-representations

π±q (H0) = ±p±/b, π±q (H1) = ∓p±/b

with either

π+
q (E0)=Q+

0 , π+
q (E1)=Q+

1 , or π−
q (F0)=Q−

0 , π−
q (F1)=Q−

1 ,

Q±

0 =±
1

q−q−1

∮

:e+2bφ±(z): dz
2πi
, Q±

1 =±
1

q−q−1

∮

:e−2bφ±(z): dz
2πi
,

then...



Motivation Quantum Affine Superalgebras Quantum Integrability Lattice Discretisations Conclusions/Outlook

... we reproduce the monodromy matrix of BLZ,

L+ (λ+)=

(
e−πbp

+
0

0 e+πbp
+

)(
1 λ+Q

+
0

λ+Q
+
1 1

)
,

L− (λ−)=

(
1 λ−1

− Q−

1

λ−1
− Q−

0 1

)(
e−πbp

−

0

0 e+πbp
−

)
,

though in a different “gauge”.

This is, of course, formal and when b ∈ R, there are ultraviolet
divergence issues. For b = iβ, β ∈ R (sine-Gordon), these may be
controllable.

The representation-theoretic approach is not needed in this case,
but it generalises readily. More importantly, regularisation will be
needed for sinh-Gordon and our approach can be readily adapted
for when we discretise on a lattice.
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Example: N = 2 Super Sine-Gordon

For Uq

(
ŝl (2|2)0

)
, let πλa be the “defining” evaluation

representation and π+q be again given by the screening charges,
supplemented by

π+
q (H0)=+(p+1 −ip+2 )/2b, π+

q (H1)=−(p+1 +ip+2 )/2b,

π+
q (H2)=−(p+1 −ip+2 )/2b, π+

q (H3)=+(p+1 +ip+2 )/2b.

The resulting monodromy matrix is

L+ (λ+) = e2πb
2ρ+Ze iπb(p

+H+p̄+H̄) P exp

(
λ+

∮
U+ (z) dz

)
,

where ρ+ is the fermion number operator, H = πλa (H2 − H0),
H̄ = πλa (H1 − H3), Z = πλa (H2 + H0), p

+ = p+1 + ip+2 and

U+ (z) =
3∑

i=0

V+
i (z)π1a (Fi ).

L− (λ−) may be computed similarly.



Motivation Quantum Affine Superalgebras Quantum Integrability Lattice Discretisations Conclusions/Outlook

Sinh-Gordon on the Lattice

There is a well-known lattice discretisation of the sinh-Gordon
model. One introduces a minimal distance (ultraviolet cutoff) Λ
and convert fields to operators by averaging over intervals of
length Λ.

For this to be a lattice discretisation, we need a Lax matrix
Ln (λ; Λ) for which:

1. The continuum matrix Ux (λ) is recovered as Λ → 0:

Ln (λ; Λ) = 1+ Λ Ux (λ) +O
(
Λ2
)
.

2. Ln (λ; Λ) satisfies the Yang-Baxter equation:

R12 (λ/µ) L13n (λ; Λ) L23n (µ; Λ) = L23n (µ; Λ) L13n (λ; Λ)R12 (λ/µ).

Such a Ln (λ; Λ) is known!
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We can easily recover this known lattice discretisation, up to gauge
choices, using our representation-theoretic method. The procedure
is as follows:

1. Keep the auxiliary rep πλa from the continuum.

2. Modify the momenta p appearing in π±q (Hi ) by affixing a
lattice site label n.

3. Replace the vertex operators appearing in π+q (Ei ) or π
−
q (Fi )

by their position modes q, affixing a lattice label n, and
removing the contour integral.

For Uq

(
ŝl (2)0

)
, the discretised quantum reps become

π+q,n (H0)=
+p+n
b

, π+q,n (E0)=
e+2bq+n

q − q−1
,

π+q,n (H1)=
−p+n
b

, π+q,n (E1)=
e−2bq+n

q − q−1
,

and similarly for π−q,n.



Motivation Quantum Affine Superalgebras Quantum Integrability Lattice Discretisations Conclusions/Outlook

This procedure guarantees that the π±q,n (Hi ) will all commute and
that the commutation relations of π±q,n (Hi ) with π

+
q,n (Ei ) or

π−q,n (Fi ) will be correct.

For Uq

(
ŝl (2)0

)
, π+q,n (E0) commutes with π+q,n (E1), hence the

Serre relations are satisfied. π+q,n then defines a rep (and the same
is true for π−q,n). The π

±
q,n are the lattice-discretised quantum reps.

In general, this procedure will not give operators satisfying the
Serre relations. One must then modify “by hand” the definition of
the π+q,n (Ei ) or π

−
q,n (Fi ) by exponentials of the momenta —

discretisation is not “algorithmic”!
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Once the discretised reps are known, the lattice Lax matrix L±n (λ)
can be computed recursively using the intertwining axiom

R±∆(x) = σ (∆ (x))R±, ∀x ∈ Uq

(
ĝ
)
,

and the expansions

R+= qT

[
1⊗ 1+

(
q − q−1

)∑

i

(−1)p(i) Ei ⊗ Fi + . . .

]
,

R−=

[
1⊗ 1−

(
q − q−1

)∑

i

Fi ⊗ Ei + . . .

]
q−T ,

where T is a (known) tensor bilinear in the Hi .
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For Uq

(
ŝl (2)0

)
, applying πλa to F0, F1, F0F1 and F1F0 gives a

basis of the 2× 2 matrices. So, only π+q,n (E0), π
+
q,n (E1) and

π+q,n (E0E1) = π+q,n (E1E0) =
(
q − q−1

)−2
appear by weight

considerations.

We may therefore truncate the expansion of R+ to first order
when applying πλa ⊗ π+q,n (and similarly for R− and πλa ⊗ π−q,n).

Thus,

L+n (λ+)=

(
e−2πibp+n λ+e

−2πibp+n e2bq
+
n

λ+e
2πibp+n e−2bq+n e2πibp

+
n

)
,

L−n (λ−)=

(
e−2πibp+n λ−1

− e2bq
+
n e2πibp

+
n

λ−1
− e−2bq+n e−2πibp+n e2πibp

+
n

)
,

which indeed agrees with the known lattice discretisation. Note
that the Yang-Baxter equation is satisfied by construction.
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N = 2 Super Sine-Gordon on the Lattice

Repeating the above procedure for super sine-Gordon and
Uq

(
ŝl (2|2)0

)
is now straight-forward, if a little more involved.

We construct π±q,n as before, modifying the discretised screening

charges by a factor of e2πb
2ρ±n (recall that ρ is the fermion number)

in order to satisfy the quantum Serre relations.

Since π
µ±
a is four-dimensional, we only need the expansions of R±

to third order. In fact, we can determine these expansions at the
level of the Lax matrices, deriving recursion relations for the
unknown coefficients.

The result is an integrable lattice discretisation which regularises
the N = 2 super sine-Gordon model. The actual formulae for
L±n (λ) are not particularly exciting — see Sec. 7.5 of
arXiv:1102.5716 for the gory detail.
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Conclusions and Outlook

We have specified an approach to deducing the integrable
structure for a class of non-linear sigma models. Quantum
integrability may then be proven à la Feigin and Frenkel.

We have shown how to construct integrable lattice versions of
these theories, thereby regularising ultraviolet divergences.

This has been tested on four distinct models with agreement
between the classical, quantum-continuum and quantum-lattice
results. One may now try to solve these models.

What other models can we analyse this way?

Our methods work for integrable perturbations of free field
theories. Can one characterise the sigma models which have dual
descriptions of this type? Is there a “free field” description of
integrable sigma models generalising the conformal case?
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Thankyou!

−−→

[Now we can discretise anything!1]

1Subject to ethics approval...
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