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A method is described which permits the derivation of the van der Waals interaction free energy between two spa-
tially dispersive media separated by a vacuum. A result which agrees with that of Lushnikov and Malov is obtained.
We demonstrate that subject to certain assumptions about the dielectric permittivity (which are reasonable for a ma-
croscopic system) the results is equivalent to that given by applying the method of surface modes.

In recent years, considerable effort has been devoted to the experimental verification as well as theorgtical ex-
tensions of Lifshitz theory [1 . Of particular interest is the problem of deriving an expression for the van der
Waals interaction energy between media with non-local dielectric permittivities (e.g. conducting or strongly polar
media). In this note we wish to outline a simple semi-classical method of deriving the bulk, surface and interaction
free energy for two dissimilar planar half spaces of spatially dispersive media separated by a vacuum gap of width
21. The results are expressed in terms of the bulk dielectric permittivities of each medium.

The approach here follows closely the formalism developed by Mitchell and Richmond [3] to study inhomoge-
neous systems involving local dielectrics and electrolytes. Briefly, for our system, the interaction Hamiltonian may
be written as

V=—%fdrP(r)-E(r). (1

Where P(r) is the macroscopic polarisation density and E'(r) the electric field. From standard statistical mechanics
the change in free energy due to the interaction Hamiltonian V is [3]
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In the regime of linear response G, (r;i&,; A) can be interpreted as the ath component of the polarisation density
at r induced by the a:th component of a unit test dipole located at the same position. This quantity may now be
calculated classically in terms of the bulk dielectric permittivity e(g, w) which depends on wave number ¢ and
frequency w.

In order to use the bulk permittivity to characterise a finite medium, it is necessary to specify physical boundary
conditions at the interface. For a vacuum-medium interface, it is reasonable to assume specular reflection of all
currents at the boundary. With this boundary condition, Flores [4] has shown that the response within a non-local
half space to a point charge situated in the spatially dispersive medium, can be replaced by the response of the bulk
medium to the same point charge plus an identical point charge situated at the image position (with respect to what
would have been the vacuum-medium interface) and an unknown surface charge located at the position of the
interface. This procedure would ensure specular reflection of currents at the boundary. Using this prescription we
can proceed to evaluate the quantity G, needed in eq. (2) using classical electrodynamics. The unknown surface
charges are determined by applying the usual boundary conditions on the field quantities E, D, H and B.
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At this point we note that the dependence of (g, w) on the coupling constant A is obtained by the substitution
(g, w) = 1+4nx(g,w) > e(g, wIN) =1+47Ax(¢,w), (3)

where x(¢, w) is independent of A. This method of introducing the coupling constant is dictated by the assumption
of linear response needed to interpret physically the meaning of the quantity G, (r; w:).

In the non-retarded limit (velocity of light >) we obtain for the bulk energy per unit volume of each medium,
the well known result:
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Similarly the surface energy per unit area of each surface is
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For the interaction energy per unit area, we obtain
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where
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and the subscripts / = 1, 3 refer to the two semi-infinite media. For two identical media interacting across a vacuum,
eq. (7) reduces to the result given by Lushnikov and Malov {5] (apart from a factor of 2, due probably to a typo-
graphical error in their paper). We note also that after carrying out the coupling constant integration, the result for
the interactiomrenergy, eq. (8), coincides with that which would have been obtained from the surface mode method
[6] adapted for spatially dispersive media. Furthermore for interacting non-spatially dispersive media or for inter-
acting half spaces of Debey—Huckel electrolyte we recover well known resuits [3].

Full details of this work will be published elsewhere [7].

{1] E.M. Lifshitz, Sov. Phys., JETP 2 (1956) 73.

[2] A number of references to recent work may be found in B.W. Ninham and P. Richmond JCS Far. Trans. 11 69 (1973) 658.
[3] D.J. Mitchell and P. Richmond, J. Coll. Int. Sci. 46 (1974) 118.

[4] F. Flores, Nuovo Cimento 14 (1973) 1.

[5] A.A. Lushnikov and V.V. Malov, Phys. Lett. 39A (1974) 317.

[6] N.G. van Kampen, B.R.A. Nijboer and K. Schram, Phys. Letters 25A (1968) 307.

[7] D. Chan and P. Richmond, J. Phys. C: Solid State Phys., submitted for publication.

324



