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Pair Interactions between Heterogeneous Spheres
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Surface heterogeneities on colloidal particles may cause nonuniform charge distributions, which result
in electrostatic potential profiles differing from those seen when charge is distributed uniformly. This,
in turn, can give rise to attractive interactions between pairs of such surfaces which may be of greater
magnitude and range than van der Waals attractions. We extend previous work on interactions between
pairs of heterogeneous plates to pairs of spheres, with nonuniform constant potential or constant charge
boundary conditions. As in the planar case, large attractive free energies can be obtained which are not
present in the equivalent uniform surfaces. Additionally, large restraining torques can be found, affecting
the rotational motion. These torques are not present in uniform charge models and may go some way
toward explaining restraining torques found in some experimental systems.

1. Introduction

Pair interactions between colloidal particles are gener-
ally modeled by the work of Deryaguin, Landau, Verwey,
and Overbeek, the DLVO theory, which considers the
combined effect of electrostatic and van der Waals
forces.!=3 Experimental results for macroscopic surfaces
have demonstrated the validity of this theory in many
systems.* Other more recent studies, though, have shown
the existence of forces other than those included in the
DLVO theory.>~7 Typically, these forces tend to be of
shorter range than traditional electrostatic forces but of
longer range than van der Waals forces. Some studies
have proposed that these forces are caused by the
hydrophobic nature of the surfaces,®®-1! and this goes some
way toward explaining the phenomenon; but there are
other systems for which this explanation does not seem
feasible; for example, these forces have been observed in
nonaqueous solvents and with nonhydrophobic adsorbed
surfactants.”!?

One of the major simplifying assumptions of traditional
DLVO theory is that the particle surfaces are assumed to
be uniform. In practice, there are many cases in which
such an assumption may not be valid. Surfaces previously
regarded as uniform are shown to have a highly hetero-
geneous nature when examined closely by surface scan-
ning techniques. For instance, cationic monolayers on
mica are seen to be adsorbed in a “patchy” manner.3
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There have been a number of papers'4—2! addressing
the theory of nonuniform surfaces. Thework in this paper
builds on the work of Miklavic et al.,’® which examined
the interaction between two flat parallel plates, each
divided into periodic rectangular cells with uniform
rectangular “patches” within each cell. The boundary
conditions specified on the patches and on the background
differed. Caseswere considered inwhich the patcheswere
held at constant potential and the background held at a
different constant potential which, when averaged over
each cell, gave a net neutral system. Similar constant
charge cases were also investigated, again for net neutral
systems. It was found that attractions of much longer
range than van der Waals forces occur between systems
in which the surfaces were out of alignment.'®

One would expect similar behavior if the two plates
were replaced by a pair of spheres. In this paper we look
at non-net neutral systems in both planar and spherical
geometries, with periodic rectangular lattices on each
surface. A periodic system such as this may also experi-
ence forces parallel (or, in the spherical system, tangent)
to the surfaces, due to the energy differences between the
system in different alignments. If the two surfaces are
identical and aligned, for example, there will be a larger
free energy than if the same surfaces are misaligned. A
system in an energy minimum, therefore, will offer
resistance to being shifted into an alignment of higher
free energy.

Velegol et al.?? have observed pairs of particles, while
unattached, seeming to rotate as a rigid doublet, sug-
gesting a great resistance to torques on individual
particles. This is observed even when the particles are
located in the secondary DLVO minimum. They propose
that the restraining torque may be provided by having
the system being in a local potential well due to hetero-
geneous charge distributions on the surface and that
rotating the particles would force the system out of that
state. In other words, the spheres are arranged so that
they are (as close as possible, given the probable non-
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periodicity of the surfaces) out of alignment. They also
point out that even relatively shallow wells could result
in large rigidity torques.

This paper investigates the potential, pressure and free
energy between pairs of plates made up of patched cells
with different values for the charge or potential on the
patches and the background. Furthermore, we use the
Deryaguin approximation to extend this work to pairs of
spheres, allowing us to investigate restraining torques of
couplets such as those studied by Velegol et al.?

2. Electrostatic Interaction for Heterogeneous
Plates

There are four possible choices of electrostatic boundary
conditions for this problem. We can consider cases in
which the background surface is held at either constant
potential or constant charge while the surfaces are brought
together. The surfaces of the patches can be held at either
constant potential or constant charge. The easier cases
are the ones in which the background and patch areas
have the same type of boundary condition: either both
are constant potential or both are constant charge. These
are the cases we shall consider here; the mixed boundary
value cases shall be left for a future paper.

We follow the technique used by Miklavic et al.*® for
planar surfaces held at either constant potential or
constant charge. We allow the values of the surface
potential or surface charge to take on two possible values:
one for the boundary condition on the patch, and one for
the boundary condition on the remainder of the surface.
In essence, this is equivalent to superimposing a periodic
distribution of sources over a uniform surface. Due to
this periodicity, the sources can be represented as Fourier
series.

The electrostatic interaction is considered under the
linearized Poisson—Boltzmann (or Debye—Huickel) model.
A perturbation treatment of nonlinear effects has recently
been proposed.?® Using the linear thermodynamic charg-
ing integration, Miklavic et al.*° obtained expressions for
the free energy per unit area on each surface. The
interaction free energy per unit area for two constant
potential surfaces is then given by

Vy(h) =
L
€s
—— e ™) — S yRCa(ky k
.~ Zsmh(th)[(w K€ ) Zwk r(KL Kr)] +
I g kel
ZRsinh(th) Yok ZLU)k LKL Kg

Here, ¢, is the dielectric constant of the medium of
thickness h that separates the two plates; wk are the
(known) Fourier coefficients for the specified surface
potential distributions, y(x,y) on the left surface; k. is a
reciprocal lattice vector (or wave number) that depends
on the precise form of the two-dimensional distribution
of the specified surface potential on the planes. q_ is a
modified inverse screening length, given by

q. = V& + K )

where « is the usual inverse Debye length of an electrolyte
with number density n; and valence z; of species i, given
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Hereeisthe protonic charge, kg is the Boltzmann constant,
and T is the absolute temperature. Analogous definitions
exist for the variables with the subscript L — R corre-
sponding to the right-hand surface.

Finally, we have the definition

Cull k) =5 [y, e %as @)

and an analogous definition for Cr(k,,kRg) ; note that these
guantities reduce to Kronecker delta functions in the case
of identical lattices.

Similarly, Miklavic et al.’® treated the case of constant
charge surfaces. The corresponding expression for the
interaction free energy per unit area is

V (h) =27 x

ore " [N A5 + Af)e " + (1 +A23)Z 0RCr(ky, Kg)]

Z +
o N (€20, + ekp)
oRe RN [oR AR (1 + AR)e 9N 4 (1 + Aﬂ)z o-CL (K., kg)]
(5)
ZR Nr(€e0r + €3Kg)
where
N;=1- A ALe™"  j=L,R (6)
and
60 — gk .
J_ = —J Lo = =
%= 0+ ek j=LR; 1=13 (7

Again, the oy represent Fourier coefficients for the specified
surface charge distributions. ¢; and ¢; are the dielectric
constants for the left and right hand half-spaces, respec-
tively. Note also that k; = |k;|.

If we assume that the two interacting surfaces are
identical, so that the lattices are identical (C_ and Cg
become Kronecker delta functions and ¢; = €3 ), these
expressions simplify considerably. For constant potential
surfaces we have

€ QY WPk —ah
Vy(h, d) = Z ——[cos(k:d) —e 9" (8)
47 4 sinh(gh)
while for two plates held at constant charge we get

ge " o_,0, [cos(k-d) + Ae ™
V,(h, d) = 8, Z . ( o 9)
€0+ €

In these two eqs we have dropped all unneccessary
subscripts and superscripts, so that k, = kg =k, q. = 0r
=g, N.=Ng =N, and A5F = ALF = A

Note the presence of a phase factor cos(k-d), which
arises from the lateral displacement, d = (d,dy) of the
two lattices. Naturally, this results in periodic variations
or peaks and troughs in the free energy, as we slide the
plates over each other at constant separation.

Thedisjoining pressure between the two platesis given
by the negative derivative of the interaction free energy
with respect to separation h, and the result for constant
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potential is

o oy = 28 Vi [oostied) cosh(ah) — 1]
z,p( ' )_4.7'EZ

sinh?(gh
(ah) (10)
and for constant charge is
€,0\?
P,.(h, d) = 87 Z ~ e Mo_, 0,
(1 + A% 29 cos(k-d) + Ae ™"
(11)

(e,0 + Elk)z

We consider the simplest two-dimensional model, in
which rectangular patches of dimensions 2b, x 2b, are
placed in the center of periodic rectangular cells of
dimensions 2a, x 2ay, covering each surface. A reciprocal
lattice vector k for this geometry is

_ _ (7 A
k=, k)= (T 7) 12)
and summation over such vectors becomes a summation
over integer values of i and j, withi,j =0, 1, 2, .... Also
id jd
k-d = n{—x + J—y} (13)
a, a,

For the chosen rectangular geometry, the Fourier
coefficients in eq 1 can now be determined. If we let yx
represent either y for constant potential surfaces or ok
for constant charge surfaces, then the Fourier decomposi-
tion for square patches on square cells is given by

_ (nibx) _ (njby)
sin Sin|——
a, a,

L R 7j

+ O 0¥ (14)

We use the limit limy—o ((sin x)/x) = 1 to evaluate the
components when either i or j are equal to zero. y, and
¥p represent the values of the background and patch
boundary conditions, respectively. J, o is the Kronecker
delta function; the value of the background boundary
condition only contributes to the first of the Fourier
components, the k = 0 term. The k = 0 terms for the
interaction free energy and disjoining pressure correspond
to the familiar result for a uniformly charged surface
having the area averaged net charge or potential of the
heterogeneous patchy surface considered here. So the
effect of the surface heterogeneities can be isolated by
retaining only the k = 0 terms.

In addition, we can determine the shear stress between
the two plates or the force per unit area parallel to the
plate surfaces. The shear stress will be zero both when
the two surface lattices are exactly out of register with
each other and when the two surfaces are exactly in
register. Theformercase, i.e.,d=a=(a,, ay), corresponds
to a local energy minimum; the latter, when d = 0O, is
when the system isin a local energy maximum. For other
values of the displacement vector d, there will be a
transverse force driving the surface toward the nearest
local minimum.
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Figure 1. Geometry of the Deryaguin approximation for

spheres, where interactions are approximated by an integral
of plate—plate interactions at separation z.

The shear stress can be found by taking the negative
gradient of the interaction free energy in the x and y
directions. This gives for the constant potential case

€ qy_y

Ptrp(hv d)=— Z

“ sin(k-d)k  (15)
Vil 4

sinh(gh)
and for the constant charge case

ge 9" 0,0, sin(k-d)
Ptrc(hi d) = 47’:'52 Z N

k (16)
(6,9 + €;,k)?

Note that these stresses are vectors in the x — y plane and
are made up of sums of components with directions
determined by the wave vectors k. This also means that
the shear stresses have an inverse relationship to the cell
sizes a.

From eqg 13 we can also see that if the two components
of d are integer multiples of their respective a components,
then the shear stress will be zero, since sin(k-d) = 0. This
corresponds to the plates being exactly in or exactly out
of register, or in register in one dimension and out of
register in the other.

3. Interactions between Heterogeneous Spheres

We now use the Deryaguin method to deduce the
interaction between two spheres of radius R with het-
erogeneous surface charges or potentials. This method is
valid in the limit k<R > 1 and h/R < 1, where h is the
distance of closest approach between the spheres.

We use the geometry of Figure 1 and consider the
interaction between an area element dS; on the surface
of sphere 1 and a planar half-space located a distance z
away, which approximates sphere 2. If we take the free
energy per unit area between two planes to be V(z), then

dv*® ~ V(z) dS; 17)
is the interaction energy between element dS; and sphere
2. This expression becomes increasingly accurate as the
radii of the spheres approach infinity. We can obtain the

total interaction free energy between the spheres by
integrating over the surface of sphere 1

VP(h) = [ V(2) dS, (18)
From Figure 1, it can clearly be seen that

2R+h=z+2VR?—r? (19)

and within the limit of the Deryaguin method we have
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dz=—20dr 20y, (20)

RZ — 12 R
and
dS; ~ 2ar dr (21)
This gives the final result
VP(h) = 2R [ V(z) dz (22)
If we apply this to the general interaction free energy
between two constant potential plates, via eq 1, we can

obtain an expression for the general interaction free energy
between two spheres held at constant potential

—€,R
Vy(h) = Zwk
q.h

In‘

Y- kIn‘l—e2th +

KCr(KL, k)| +

Zwﬁ w?kln‘l — e 2N 4
R

agh

KCL(KL, Kg)

] (23)

As before, C. and Cg are defined by eq 4. If we assume
the lattices are identical, this again simplifies.

In ‘tan

VSP(h d)=
Bk Y_ @ {In‘tanh %‘ cos(k-d) + In(1 — e—2qh)}
4 Z k¥ 2

(24)

Similarly, we can use eq 5 to obtain the general
interaction free energy between two spheres at constant
charge

ok [ otdnov)

Z +
(€0, + &K |_)|.(52Q|_ k)
TRk KL of [ of kln(NR)
Z(QQR_"ES R)l(quR €3 R)

CL(kL’ Kr)R

VP(h) = —27°¢,R

= (0.t €5Kk)

(25)
(620r T+ €1KR)
where for j =L or R
n = ’
1 1 — AL Abe " ‘
——In - for A121A23l 0
AL A, 1+ 4/A21A23] i
g Ui for Ab,AL, =0

——=——arctan(y/|A},; AL, le"%") for AL,AL, <0
|A21A23|

i (26)

and for identical lattices on identical spheres (i.e. having
the same dielectric constant, €; = €3 ) the energy becomes

Holt and Chan

O0_0xk
VP(h, d) = 47 GZRZ— X
('Elk) - (62Q)

1—Ae

In cos(k-d) + In(N)| (27)

1+ Ae

where we have dropped all unneccessary subscripts and
superscripts in the same manner as in the two plate
calculation. Again, the results depend on the phase factor
(k-d), and the interaction free energy will depend upon
the alignment of the two surfaces. As in the two-plate
system, there will be a transverse force and resultant
torques on the particles in addition to the normal force
acting along the line of centers. This additional force will
act to drive the orientation of the spheres toward a local
free energy minimum at constant separation.

Once again we consider rectangular patches on rec-
tangular cells, so that the sum over K is actually a double
sum over integer values of i and j, with k being defined
by eq 12.

Fromeqgs 24 and 27 for the free energy, we can determine
the transverse forces, and hence the rotational torques.
The transverse force is found by taking the negative
gradient of the energy with respect to the two transverse
directions, x and y (which define the plane in which the
relative displacement vector lies). We are interested in
the force at the point of closest approach of the spheres,
i.e., at separation h. The transverse forces can also be
obtained by applying the Deryaguin technique to egs 15
and 16, as the transverse force in a two sphere interaction
can be found from the shear stress in the corresponding
two plate case. The results are identical.

This results in the following expressions for the
transverse force vector for the constant potential case

R
Fap(h, d) = — —Zw i In Jtanh ?| sin(k-d)k

(28)

and the constant charge case

Fir(h, d) =
o_,0, sin(k-d)

(€0 = (e0)*

The torque can be obtained from the transverse force vector
by the usual expression T = RZ x F, where the vector Rz
is the radius vector from the center of sphere 1 toward the
center of sphere 2. This vector defines the z direction,
and the torque will therefore lie at right angles to the
transverse force at x =y = 0 (the point of closest approach
of the spheres, where their surfaces are locally parallel).
The expression for the torque for two identical constant
potential spheres is

1—Ae "

k (29)

—4n2REZZ In
1+ Ae™

TP(h, d) =

2
—€,R

Zw Wk In [tanh —| sin(k-d)(k,% — k¥) (30)

and for the equivalent constant charge spheres

T, d) =

(€K)® = (e,0)°

1— Ae

—4(nR)zeZZIn (kX — k. ¥)

Yy

1+ Ae™
(31)
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From these results we make two observations. The first
is that the magnitudes of the torques are amplified by a
factor R/awhen compared to the interaction free energies,
since the wave vector components, ky and ky are propor-
tional to 1/a. Since by construction the radii of the spheres
are assumed to be far greater than the cell size a, large
torque values are obtainable with relatively small values
for the free energies. Additionally, we note that the k =
0 terms in egs 30 and 31 equal zero because the k = 0
terms correspond to contributions from the homogeneous
surface charge or potential, and we do not expect a
contribution to the torque from such terms. This means
that the leading order terms in the torque calculation are
the (i, j) = (1, 0) or (0, 1) terms. The appearance of
sin(k-d) rather than cos(k-d) means that the maximaand
minima will not be found when the surfaces are exactly
in and out of alignment, as with the free energy and
pressure. On the contrary, at these orientations, the
torque will be zero; the largest torque magnitudes will
occur at some place between these extremes, depending
upon the values of a and b. Physically, the value of the
torque at these points represents the maximum amount
of torque required to twist the spheres freely; this is the
maximum “restraining torque”. Note that less torque is
required to twist the spheres from an out-of-alignment
state along one of its axes than along a diagonal. This is
a result of the nature of the rectangular surface lattice
chosen in our model.

4. Results and Analysis

We present results for a variety of different boundary
conditions. The bulk of the results shall be given for square
patches on regular square lattice cells, but we also
investigate the effect of modifying the patch shape while
retaining the same overall area.

As discussed earlier, the k = 0 term in the interaction
energy or force is due to the area averaged surface charge
or potential distribution. Thiscontribution, together with
van der Waals interactions, forms the basis of the familiar
classical DLVO theory of colloidal interactions. In the
present model, effects of surface heterogeneities are all
contained in the k = 0 terms, and we shall concentrate
our discussion on this latter contribution.

The two plate problem, as analyzed in section 2, has
previously had a significant numerical treatment.’®* We
therefore present results concentrating upon the two
identical sphere setup derived in section 3. We also note
that substantial simulation of both planar and spherical
systems has produced results with similar essential
characteristics in corresponding systems. Most of the
comments made below concerning the two sphere systems
(excepting, naturally, those specifically referring to the
spherical geometry) apply equally to the corresponding
two plate cases.

Initially we will look at the dependence of the free energy
on separation, and we keep d = a, so that the attraction
between the two surfaces is at a maximum. In Figure 2
we show the effects of altering the patch size (b) and the
cell size (a) while keeping other parameters fixed. For
comparison, we choose the nonretarded Hamaker formula
for the van der Waals interaction: —A/(12h), with a
Hamaker constant A=10"2°J. Thisvalue of the Hamaker
constant will be used in all results given herein.

Figure 2a shows the k = 0 terms for three systems with
square patches on square cells, held at constant potentials.
Here b is held fixed, with b, = b, = 50 A square, and the
cell size is a square with a, = a, given in the legend (60,
100, and 200 A). The net surface potential is the same
for all cases (25 mV) and this means that the value of the
patch potential at infinite separation will be greater for
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a larger cell size, since the patch area/background area
ratiowill be lower. InFigure 2b we show the same results
for constant charge systems which have the same proper-
ties at infinite separation as for the constant potential
case. Inother words, at infinite separation the system is
identical to the system in Figure 2a with potentials
distributed on square patches to give a net potential of 25
mV, except that the charge density on each surface is
then held fixed as the surfaces are brought together. The
results clearly show that the decay length varies with cell
size: thelarger the cell size, the greater the heterogeneous
contribution to the free energy, and the longer the decay
length. This is in line with the definition of g in eq 2 as
amodified decay length. Asa— b, the surface will appear
more homogeneous, and the k = 0 terms should vanish.
The constant potential and charge curves converge as the
separation increases, but at close approach the constant
potential curves dip sharply where the constant charge
curves flatten off (in fact, for large cell size and small
separation, the heterogeneous free energy begins to
increase). The dot—dash line shows the van der Waals
interaction. Clearly for sufficiently large cell sizes the
hetergeneous electrostatic component displays both greater
magnitude and greater range than the van der Waals
interaction.

In these and most other cases, the modified decay length,
g%, varies linearly with cell size. Thisarisesdirectly from
eg 2. This will hold so long as the « term in the equation
remains relatively small. When ¢~ a/2 or smaller, the
modified decay length will also depend on the value of «.

In parts c and d of Figure 2 we show the heterogeneous
free energy curves for three systems in which the cell size,
a, is kept fixed, a, = a, = 100 A, but the patch size b is
modified. Figure 2c is for constant potential; Figure 2d
is for constant charge. Note that for large separation h,
the curves all have the same decay length. This confirms
that the effective decay length depends on cell size as well
as salt concentration. Again, the magnitude of the
heterogeneous energy is greatest when the patch size is
smallest and least as the surfaces approach homogeneity.
Also note again that when we have small patch sizes
relative to the size of the cell (Figure 2d), the heterogeneous
free energy becomes repulsive.

In parts e and f of Figure 2 we show (for constant
potential and constant charge, respectively) the effects of
modifying the shape of the patch. In all three curves ay
= ay, = 100 A, and the overall area of the patch, 4b, by
remains fixed at 10 000 A2. The solid line is the result
pertinent to a square patch; the short dashed line
represents the results for a surface comprised of striped
heterogeneities, with the long dashed line showing the
results for an intermediate case. As can be seen in both
figures, the change in the free energy curve is minimal;
interestingly, though, the magnitude of the heterogeneous
energy is lowest for the square patch and increases as one
deviates further from a square shape. In this sense
studying square patches on square cells (in the case d =
a ) should give us a lower bound on the heterogeneous
contribution, at least for rectangular symmetries.

Similar trends to those seen in Figure 2 are also seen
in the variation of pressure against separation for different
cell and patch sizes; namely that the slope of the
log(pressure) vs separation curve is a sensitive function
of the cell size but is insensitive to the patch shape.

In Figure 3 we show contributions to the interaction
free energy between spheres from (i) the k = 0 homoge-
neous electrostatic term, (ii) the van der Waals interaction,
and (iii) the electrostatic interaction for charge or potential
heterogeneities (the k = 0 term). The last contribution
will depend on the relative lateral displacement of the
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—Free Energy (kT)

—Free Energy (kT)

—Free Energy (KT)

Figure 2. Heterogeneous (k = 0) interaction free energy against separation for the two-sphere system, with the spheres out of
register with each other (d = a). (a) and (b) show the effect of modifying the (square) cell size (i.e., the periodicity), keeping the
patch size constant (b = by, = 50 A), for constant potential and constant charge boundary conditions, respectively. (c) and (d) show
the effect of modifying the (square) patch size, keeping the cell size fixed (ax = ay, = 100 A). (e) and (f) show the effect of modifying
the shape of the patch, keeping its overall area fixed, again with ax = a, = 100 A. All systems are in 102 M electrolyte, with a
net potential of 25 mV. The radius of the spheres, R, is taken to be 2 um. van der Waals energies are included on each graph for
comparison, with a Hamaker constant chosen to be 1072° J. Note that the ordinate is the negative of the interaction free energy,
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so that these figures show attractive interactions.
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Figure 3. Free energy per unit area versus separation curves, shown broken down into homogeneous electrostatic (k = 0),
heterogeneous electrostatic (k = 0) and van der Waals (vdW) components. (a) and (b) show the case d = a (out of register) for constant
potential and constant charge, respectively. (c) and (d) show the corresponding results for d = a/2, and (e) and (f) show the results
for an in register case (d = 0). All results shown are for concentrations of 10-2 M, square patches on square cells, with by = by =
50 A and a, = a, = 100 A. Again, ynet = 25 mV, and R = 2 um.

two surfaces. Constant potential and constant charge
results are given for three different lateral displace-
ments: exactly out of register, d = a; exactly in register,
d = 0; intermediate, d = a/2.

Clearly in the out-of-register systems, the heterogeneous
term contributes a substantial attraction. The effective
range can also be greater than the van der Waals
interactions. As noted above, the effect of the heteroge-
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Figure 4. Heterogeneous interaction free energy and torque as
a function of plate displacement, d, at a spacing of 150 A. (a)
shows 3D representations of the variation in free energy as we
shift the spheres over a single lattice spacing relative to each
other (for either constant potential or constant charge boundary
conditions). (b) shows various cross sections of this curve. (c)
shows a torque vector field plot over one quarter of a lattice cell
from d = (=100 A, —100 A) in the bottom left corner to d = (0,0)
in the top right corner. The force is at right angles to the torque
and is directed toward the energy minima. Scaling for Figure 4c:
The center top arrow (at d = (=50 A, 0)) is of magnitude 919KkT.
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neity is more pronounced in the constant potential case
than in the constant charge examples. The intermediate
(d=a/2) case, as expected, differs little from the classical
DLVO result, although in the constant potential case, a
noticable attraction is evident. In the in-register config-
uration (d = 0) there is an additional repulsive contribu-
tion from the heterogeneous term which is of similar
magnitude to the attraction in the out-of-register systems;
this results in a far greater repulsion than a purely
homogeneous surface would exhibit.

These results are all as one would expect. When patches
on one surface face the patches on the other, the repulsion
ought to be greater than if those patches were “spread
out”. If the patches are misaligned, so that the patches
on one surface see predominantly background material
on the other, an additional attraction would be expected.
The interaction free energy of a two sphere system with
square lattice patches is a minimum when d = a and a
maximum when d = 0.

Thevariation of the interaction free energy as a function
of displacement d is shown in Figures 4 and 5. Again,
these curves represent only the heterogeneous (k = 0)
components of the energy; the DLVO terms will be a
constant value for any graph, since these are evaluated
at fixed values of the separation h. In Figure 4 we show
results for h = 150 A, where the spheres are separated by
a distance roughly corresponding to the location of the
secondary DLVO minimum. Atthis large separation, the
results for constant potential and constant charge bound-
ary conditions are indistinguishable. Given that the
results approach each other as the separation increases,
at this separation they are identical to within our
resolution. In Figure 5 we give results at a small plate
separation of 20 A. Figures 4a, 5a, and 5b are three-
dimensional plots showing the heterogeneous free energy
per unit area as a function of dy and d,, the displacement
components (for constant potential and constant charge,
respectively), while Figures 4b, 5c, and 5d show two-
dimensional cross sections of these plots.

In Figure 4 we see the expected free energy surface
which exhibits a maximum at d = 0 and minima at the
four corners, where |d| =|a|. Thedisplacementgridshown
corresponds to a twisting of the spheres by one lattice
spacing relative to each other. The section curves for
constant potential and constant charge are practically
indistinguishable. At this separation, h=150A, the free
energy when averaged out over all displacements is very
close to zero. Figure 4c shows actual torque lines as a
function of displacement, running over one quarter of a
single lattice cell; the remainder of the cell can be obtained
by symmetry. The torquesshown correspond, as expected,
in a force toward the free energy minimum; the out of
register alignment with |d| = |a|. The torque reaches a
maximum when the lattices are half-aligned (i.e., |[d| =
|a/2]). This is effectively the “restraining torque” on the
pair, as it is the torque required to enable the spheres to
rotate freely. The magnitude of this torque can easily be
of the order of thousands of kT, even at separations
comparable to the secondary DLVO minimum.

With the spheres held at a smaller separation, h = 20
A (Figure 5), the constant potential case averages out to
a net attraction, while the constant charge case averages
to a net repulsion. Although the extreme cases (exactly
in or out of register) still resultin repulsion and attraction
respectively for either boundary condition, the intermedi-
ate alignments can give differing behavior for the two
boundary conditions. The corresponding torques are
shown in parts e and f of Figure 5. Naturally, at this
lower separation, these torques will have far higher values,
reaching hundreds of thousands of KT. Note also that the
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Figure 5. As for Figure 4, but at 20 A separation. Here the constant potential and constant charge boundary conditions give
distinctly different results. (a) and (b) show 3D plots of the free energy against displacement; (c) and (d) show cross sections of these
curves; (e) and (f) are torque vector field plots. Scaling for Figure 5e: The center top arrow has magnitude 4.62 x 10°kT. Scaling

for Figure 5f. The center top arrow has magnitude 7.77 x 10°kT.

sharper peak for the constant charge free energy results
in higher values of the torque than in the corresponding
constant potential case. Also note that in both cases, it
takes far more work to twist the system through the
maximum than to misalign the system in just one
dimension, twisting along one of the axes.

The results lead to some interesting conclusions. While
the model appears artificial in its square, periodic
geometry, it does appear that the square patch configu-
ration gives alower bound for rectangular periodic patches.
And if the spheres arranged themselves so as to minimize
the free energy, attractions of longer range than van der
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Waals attractions are likely. The range of these hetero-
geneous attractions is determined by the cell size; in other
words the periodic length scale of the surfaces controls
the decay length of the extra heterogeneous contribution.
Additionally, restraining torques of extremely large
magnitudes can be found, even at separations which are
of at least the order of the cell size.

5. Conclusion

Recent experimental evidence suggest the existence of
unexplained forces and restraining torques upon colloidal
surfaces. Using a periodic patchy model of charge
heterogeneity, we have been able to obtain substantial
additional attractive free energies between pairs of
identical spheres, of a similar nature to that obtained
between pairs of heterogeneous plates, if the lattices are
arranged to be out of alignment. These attractions have
a modified decay length which varies with the period of
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heterogeneity and can therefore have a far greater range
of significant effect than van der Waals attractions.
Furthermore, very large restraining torques are found,
even at relatively low free energies and significant
separations, for example, at the secondary DLVO mini-
mum. This is a phenomenon completely absent from
DLVO theory and suggests that heterogeneous systems
may lie at the heart of restraining torques found experi-
mentally.
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