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Abstract. A general formalism is developed to calculate free energies of inhomogeneous 
spatially dispersive media in terms of bulk dielectric properties. To illustrate the application 
we consider two semi-infinite half spaces separated by a vacuum. All previously known 
results for surface energies and interaction energies for dielectrics and electrolytes derived 
using continuum theories emerge as special cases. 

We show that our result for the interaction free energy of two like media across a vacuum 
reduces to a form which is identical to that obtained by Lushnikov and Malov using diagram- 
matic methods. In addition we demonstrate that, subject to certain reasonable assumptions 
about the dielectric permittivity, it is equivalent to the results obtained using the method of 
surface modes. 

1. Introduction 

In the last few years much emphasis has been placed on extending and generalizing the 
Lifshitz theory of intermolecular forces to many systems of interest in areas ranging 
from solid state physics, surface physics, colloid chemistry to biology. It has been 
demonstrated that these energies can now be computed with a high degree of accuracy 
and good agreement with experiment can be obtained (Sabisky and Anderson 1973, 
Richmond and Ninham 1971a, b, Richmond et a1 1973, Parsegian and Ninham 1970, 
Parsegian and Gingell 1972, Parsegian 1973). It is two decades since Lifshitz (1956) 
first formulated a theory of van der Waals interaction between macroscopic bodies 
separated by a vacuum. This was generalized to include the effects of an intervening 
medium by Dzyaloshinskii et a1 (1961). However, this subsequent approach based on 
quantum field theory was complex and a simpler approach which involved summing 
surface modes was evolved by van Kampen et a1 (1968). This approach was recently 
generalized to include effects due to added electrolyte (Davies and Ninham 1972). 
A more rigorous derivation of this latter result based on quantum statistical mechanics 
(but avoiding diagrammatic theory) which also yields bulk and surface energies as well 

t After submitting this work for publication we received details of work in related areas from Wikborg and 
Inglesfield (1975a, b). 
$ CSIRO post doctoral research fellow. 
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as the interaction energies across an inhomogenous dielectric and electrolyte system 
has been given by Gorelkin and Smilga (1973) and Mitchell and Richmond (1974a). 
A number of very recent reviews on all these recent developments are now available 
(see for example Israelachvili and Tabor 1973, Langbein 1974, Mahanty and Ninham 
1975, Richmond 1975). 

The introduction of electrolyte injects a new qualitative feature commonly referred 
to as spatial dispersion. The response of the system differs from that of a simple dielectric 
in that it is non-local. Now for bulk conducting systems, such as electrolytes or metals, 
this phenomenon has been studied and understood for a long time. In particular, the 
electrical free energy of such a system may be formulated in terms of a generalized 
dielectric permittivity which depends on wavenumber q as well as frequency o (Nozieres 
and Pines 1958). This result is of importance because it is independent of any model which 
may be used later to calculate the dielectric permittivity. Now the Lifshitz-van der Waals 
interaction energy across an inhomogeneous dielectric system may be formulated solely 
in terms of bulk permittivities and an obvious question is: can these results be generalized 
to cover spatially dispersive media without introducing models for the dielectric constant 
as is implicit in treatments based on Debye-Huckel theory or hydrodynamics (Rich- 
mond et a1 1972, Chang et all971, Heinrichs 1973)? The question has been considered by 
Craig (1972) who appears to replace E by E ( q ,  o) in the Lifshitz formulations. It is not 
at all obvious that this is a valid procedure. More recently Lushnikov and Malov (1974) 
have used diagrammatic methods to obtain an expression for the interaction free energy 
in terms of a coupling constant integration which unfortunately they did not evaluate. 
Furthermore they state that at short separations their result differs from any which 
would be obtained using the method of surface modes. This is due, they claim, to the 
existence of short-wave electron-hole pair excitations which are not true boson(s). 

Using a general method developed by one of us (Mitchell and Richmond 1974a) 
to study dielectric and electrolytic systems we have demonstrated how a similar coupling 
constant integral may be evaluated to recover the surface mode result. In this paper we 
shall generalize the latter work to cover spatially dispersive media. We shall recover the 
result of Lushnikov and Malov as a special limit. Furthermore we demonstrate how 
the coupling constant integral may be evaluated to yield a result identical to that given 
by the method of surface modes. The paper is set out as follows. After a brief review 
of the theoretical formulation in Q 2, we discuss in Q 3 the response of a semi-infinite 
spatially dispersive medium and illustrate how the appropriate boundary conditions for 
the currents at the interface are taken into account. In Q 4 we consider the main problem 
of interest and derive expressions for the surface free energy of a single half space and 
interaction free energy for a pair of half spaces. Well established expressions for bulk 
free energies also emerge at this stage. In Q 5 we establish that our results satisfy a general 
formula which relates surface energies and interaction free energies. The paper ends 
with a brief discussion. 

2. Theoretical formulation 

Most of the details of the formulation we shall use have been given elsewhere (Mitchell 
and Richmond 1974a, Richmond 1974) and here we merely summarize the essential 
results. For our system the interaction Hamiltonian may be written as follows : 

r 
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where P ( r )  is the local polarization density and E ( r )  is the local electric field. The 
corresponding free energy is : 

ffi 

F = F o  - (1/B) 1’ {: $ j d 3 r  G,(r; is,; A), cf = x, y, z (2.2) 
n = O  

where F ,  is the free energy in the absence of electrical interactions mediated by the inter- 
action term (2.1). Now using linear response theory, the analytic continuation of G, for 
real frequencies, ie G,(r; 0; A), can be shown to be the clth component of the polari/ation 
at Y induced by the ath component of a unit test dipole located at v. This function may 
now be calculated semi-classically in terms of a macroscopic bulk dielectric permittivity 
e(q, 0) which in general depends on wavenumber (I as well as frequency 0. Again within 
the framework of linear response theory, the coupling constant A may be introduced by 
making the substitution 

(2.3) 
where x(q, 0) is the macroscopic susceptibility which is independent of the coupling 
constant A, At this point we comment that A for a condensed medium need not necessarily 
be proportional to e’ where e is the elementary electric charge. The choice given by 
equations (2.3) is determined by our initial interaction Hamiltonian (2.1) and the assump- 
tion that the macroscopic polarization responds linearly with the electric field. This 
point has also been discussed by Davies (1974). 

The essential problem in formulating a macroscopic theory of van der Waals inter- 
actions across an inhomogeneous, spatially dispersive system is the characterization 
of the response of a finite or semi-infinite medium. In principle this involves solving a 
many-body problem which incorporates the effects of boundaries. Within the spirit of 
our macroscopic approach we shall formulate the response of our finite media in terms 
of the bulk dielectric response function E ( q ,  0). For such a theory to be meaningful it is 
now necessary to impose an addition boundary condition relevant to the physical 
system under consideration. In our view, theories which purport to use only Maxwell’s 
equations plus a certain constitutive relation involving the bulk permittivity have 
already specified a particular boundary condition (Agarwal et al 1971, Sein 1970). One 
must then ask the question: is this the appropriate boundary condition for the physical 
system under consideration? In the next section we shall discuss these points in some 
detail with reference to a semi-infinite half space. 

E ( q ,  0) = 1 + 4nx(q, OJ) -b E ( 4 ,  oln) = 1 + 4nAx(q, 0) 

3. The response of a semi-infinite half space 

We shall consider a semi-infinite spatially dispersive medium which has a planar inter- 
face in contact with vacuum. (For convenience we choose a Cartesian coordinate system 
and the medium occupies the half-space z > 0.) To proceed it is necessary to make 
certain assumptions about the nature of the interface. 

First, within the spirit of our macroscopic approach we shall assume the medium 
is uniform up to the interface and, although charge fluctuations occur, charges and 
dipoles from the dispersive medium may not penetrate the interface into the vacuum 
or neighbouring medium. Furthermore, charges and dipoles may not accumulate at the 
interface. Thus the  equilibrium charge density is zero everywhere. Secondly, we suppose 
that specular reflection of electric currents occurs at the intertace and any quantum 
interference with phonons or other currents does not occur. These assumptions are not 
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essential but we maintain them for simplicity. We shall discuss the consequences of 
relaxing them in the final section. 

We may now proceed to obtain the response function for such an inhomogeneous 
medium using a method proposed by Flores (1973). Let us introduce into the semi- 
infinite medium an oscillating external unit test charge at r ,  = (xl, y, ,  z,). Polarization 
currents set up by this charge are reflected specularly at the interface. The solution we 
require may be constructed from the solutions to two auxiliary homogeneous systems. 
In system 1 the whole space is occupied with the spatially dispersive phase which has 
bulk dielectric constant E 1 ( q ,  w). (Henceforth we suppress the dependence of E on w.) 
In the plane z = 0 we place a sheet of oscillating surface charge with strength c?,(s)d[z), 
(s = (x, y)). The oscillating unit test charge located at r ,  now induces currents which of 
course travel into the half space z e 0. We now place another similar unit test charge at 
the image point F, = (xl, y,, - zl). This produces currents such that an observer situated 
in the half-space z > 0 would, if he were unaware of the test charge at the image point, 
imagine that currents from the test charge at r ,  were being specularly reflected at the 
plane z = 0. The potential response q ( v )  and electric displacement D(r) for this system 
are readily obtained in terms of the certain Green functions. Thus if we introduce the 
two-dimensional Fourier transforms with respect to s 

and 

6(s) = - exp (iK . s)o(K), J;: 
we have 

q(z) = 4r~[G,(z;z,)exp(-iK .sl) + G,(z; -z,)exp(-iK.s,)  + o,(K)G,(z;O)] 

and 

D(z) = 4n[GD(z; z,) exp (-iK . s,) + GD(z; -z,) exp (-iK . s,) + o,(K)GD(z; O)]. (3.4) 

The Green functions G and GD (which are also functions of the transverse wavevector 
K) are potential and electric displacement response functions to a single test charge of 
strength (1/4r~) for an isotropic bulk medium. If we Fourier transform with respect to 
the z coordinates 

(3.3) 

-_ ~- 

then in the non-retarded limit we have 

Note that G D  does not depend on the dielectric properties. 
The second auxiliary homogeneous system we require for this case is a vacuum with 

dielectric permittivity equal to unity. We introduce another sheet of oscillating charge 
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in the plane z = 0 with strength 6&). The appropriate potential and electric displace- 
ment are now 

p(z) = 471o,(K)G,(z, 0) (3.7) 

D(z) = 4 m 2 (  K)GD(z, 0) (3.8) 

G,(4) = l/& (3.9) 

where the Fourier transform with respect to z of G, is 

The essential step now is to assume that for the inhomogeneous system we may use 
the solutions (3.3), (3.4) in the domain z > 0 and solutions (3.7) and (3.8) in the domain 
z < 0. This construction as we have noted contains automatically the boundary condi- 
tion on the currents, namely specular reflection at the interface, due to our particular 
choice of image test charge. Other choices conform to other boundary conditions. The 
surface charges now play the r61e of unknown constants to be determined by imposing 
the usual boundary conditions which are continuity of cp and D” at the interface. Con- 
tmuity of D“ from (3.4) and (3.8) yields immediately 

o , (K)  = -az(K). (3.10) 

Imposing continuity of cp, we now obtain from equations (3.3), (3.7) and (3.10) that 

(3.11) 

and hence for our inhomogeneous system the potential response to a test charge located 
at z1 is 

Gl(z; zl) + G,(z; -zl) 

(3.12) 

Similarly, the electric displacement response is 

GD(z; -zl) 
_ _  I 

1 D(z; zl) = 

(3.13) 
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In passing we note that these response functions contain singularities which yield the 
frequencies of both bulk and surface plasmon modes. The former are of course trivially 
obtained from the zeros of the appropriate bulk dielectric constants. The latter are given 
by the equation 

1 
Gl(O; 0) + G,(O; 0) = j - , % ( K z  * dk 1 + k2) [-+1]=0 E(K,k) (3.14) 

which has been obtained by others (for example, Kliewer and Fuchs 1971, Ritchie and 
Marusak 1966). 

It is now a simple matter to obtain the appropriate dipole response function neces- 
sary to evaluate the free energy according to equation (2.2). In fact from equations (3.12) 
and (3.13) we have 

and 

(3.15) 

(3.16) 

We shall not evaluate the surface energy explicitly in this section. We shall see it emerge 
as a limiting case in the next section when we consider two spatially dispersive half 
spaces separated by a vacuum and the associated interaction free energy. 

4, Free energy for the semi-infinite half spaces separated by a vacuum 

Let us consider now two semi-infinite half spaces of spatially dispersive media separated 
bya vacuum. The bulk dielectric permittivities are E l ( q ,  CO) and c3(q, CO). The vacuumlayer 
has width 21 and we shall choose the z axis of a Cartesian coordinate system perpendicular 
to the interfaces which coincide with the planes z = )1. Following the prescription 
outlined in the previous section we can immediately write down the potentials and 
displacement vectors for the case when a unit test charge is at r1 (zl =- 1). Thus 

47c[G3(z;1)04 + G,(z;z,)exp(-iK.sl) + G,(z;21 - z,)exp(-iK.s,)] 
z > l  

47c[G2(z; - 0 oz + G,(z, 4 g3] 

471 G,(z; -0 o1 
IZI < 1 (4.1) 
z <  -1 

and 

47~[G~(z ;1 )6~  + GD(z;z,)exp(-iK.s,) + GD(z;21 - z,)exp(-iK.sl)] 
z > r -  - 

(471 GD(z; - 1) ol 

where 

z <  -1 

(4.3) 
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It is now a simple matter to impose the boundary conditions. Thus, continuity of the 
potential at z = I 1 gives 

o,G1(-1-: - I )  = o,G,(-l+: - I )  + 03G,(- 1 ' ; l )  

o,G,(I- ; - 1) + o3GZ(1- ; 1 )  

= 04G3(1+; I )  + [G3(1+; z,) + G3(1+; 21 - z,)] exp ( -  iK.s,). 

Similarly, continuity of D" at z = 1 gives 

o lG2( -1 - ;  - 1 )  = o,GL(-1+; - I )  + 0 3 G Z ( - l + ; I )  

o2G2( l - ;  -1 )  + 03G"(1-;1) 
= 04G'(1+; I )  + [G'(l+; z,) + G'(I+; 21 - z,)] exp ( -  iK.s,). 

If we introduce the notation 

(o! = 1,2) 
" d k  1 

and note that l/C2 = 1 then equations (4.4) may be rewritten to read 

ol/Zl= gZ + 03exp(-2Kl)  

o2 exp (- 2KO + o3 = 04/e3 + g(z , )  

-ol = o2 - o3 exp ( -  2K1) 

oz exp ( -  2K1) - o3 = o4 

where 
exp [ik(1 - z,)] + exp [ik(z, - 1)]  

- m  4 26 3 ( 4 )  

After some simple algebra we obtain 

[l + AI exp ( -  4Kl)l  C3 
9 1 + C 3  

cr4 = - exp (- iK .sl) g(z,) 
- 

where 

9 = 1 - A,A3exp(-4KI) 

and 

2 - 1  
An = Ca + 1 01 = 1, 3. 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.1 1) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

This is sufficient since we only require the response function e the point Y = r l .  We may 
now apply the prescription according to equation (3.1 6) to obtain 

where 

(4.17) 
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C3 [l + AI exp(- 4Kl)] G ( K ~ ~ )  = 2 ~ ~ - - - - ; -  
1 + E 3  9 

~ 

x {exp [i(k + k’) (z - 1)] + exp [i(k - k‘) (z - l ) ] }  

e3 [l + AI exp(-4Kl)] 
9 

- 2 K 7  
1 + E 3  - 

x {exp [i(k - k’) (z - l ) ]  - exp [i(k + k’) (z - l)}} 

(4.18) 

To evaluate the complete free energy we also require G(K1z) in the region z 
may be readily obtained by symmetry and we finally obtain 

- 1. This 

2 G 3  [l + AI exp(- 4kl)I - $  I---.-- ( E3(:0)) +(-) 9 

(4.19) 

In evaluating the z intergral, we have used the following identities: 

J m  
J m  Z’l: dz exp [i(k - k’) z] f(k, k‘) = i 

- m  - m  

forf(k, k’) = f (  - k, - k’) (4.20) 

and 

E jomdzeikz f(k)  = i f ( 0 )  if f(k) is even. (4.21) 

We have also made the assumption that E ( q , c o )  is only a function of the magnitude 
q = 1q 1 of the wavevector. This is valid provided the bulk response is only a function of 
1 r - r’I where r and r’ refer respectively to the field and source point. 

Separating out the 1 dependent terms we may write the total free energy as a sum of 
bulk, surface and interaction free energies. Thus the bulk free energy is 

where V ,  is the volume of medium a. Expressions of this type were first obtained by 
Nozieres and Pines (1958). 
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The surface free energy per unit area is 

R &(I -&)-($)j:&)(l-&)I 

and, finally, the interaction free energy per unit area is 

A , ( l  + A,)exp(-4KI) 
n = O  9 1 + E 3  2x 

- 
A3(l  + Al)exp(-4KI) 

- 9 (&) 

(4.23) 

(4.24) 

At this point we note that for two identical media (cl = e3 = E) equation (4.24) may be 
recast to read: 

(4.25) 

where 

M ,  = (4K/m)[</(E* - 1)12 dk [l - l / ~ ( q ) ] ~  q-’ - 1 (4.26) 

which is formally identical to the result obtained by Lushnikov and Malov (1974). (The 
difference of a factor of two between our results and theirs is due probably to a typo- 
graphical error in their paper.) 

At this stage we use equation (2.3) to introduce the explicit dependence of E on the 
coupling constant A. It then follows that 

jom 

and 

From equations (4.22) and (4.27) we then obtain the bulk free energy 

(4.27) 

(4.28) 

(4.29) 

Similar results for the bulk electron gas within the random phase approximation have 
been obtained by Wentzel(l957). 

The surface free energy may be evaluated in a similar manner. Thus, from equations 
(4.23), (4.27) and (4.28) we have 
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x {i(lncl(K,O) + lnE3(K,0) + In rl2; ~ ') + l n ( F ) ) .  (4.30) 

Finally the interaction free energy may be similarly integrated. We have from equations 
(4.24), (4.27) and (4.28) 

(4.3 1) 

Now we note that 9 ( k ,  CO) is the secular determinant whose zeros yield the surface modes 
and equation (4.31) is precisely that result which one would obtain by applying the well 
known methods of surface modes to this system (van Kampen et al1968, Richmond and 
Ninham 1971~). Thus within the limits of our approximation for the dielectric permittivities 
we see that the comments of Lushnikov and Malov about bosons etc are not valid. 

It is a trivial matter to see that our expression (4.31) for the interaction free energy 
reduces to the limiting cases valid for pure dielectrics and Debye-Huckel electrolytes 
respectively. In the former case we simply have in ( K ,  CO) + E,(CO) and clearly we obtain the 
conventional Lifshitz energy. In the latter case we use the fact that the bulk dielectric 
permittivity for an electrolyte is c(q) = 1 + K 2 / q 2  where K is the conventional inverse 
Debye screening length. (We assume there is no backgorund dielectric.) A simple 
integral using equation (4.8) then yields Zg = 2 = s/K where s = ( K 2  + K ~ ) ~ ~ ~ .  The 
appropriate result for the interaction of electrolytes across a vacuum then follows 
immediately (Davies and Ninham 1972, Mitchell and Richmond 1974a, Richmond 1974.) 

5. Cohesion-surface and interaction energies 

Consider two identical semi-infinite media separated by a distance 21. As we have seen in 
the previous section, the total free energy may be expressed as a sum of bulk, surface and 
interaction free energies. The bulk energy is independent of 1. When 1 is infinite, the 
interaction free energy per unit area, F,(co), is zero. The total surface free energy per unit 
area is 2y, y being the surface energy per unit area. Now let us bring the two surfaces into 
contact so that the interface heals to give one piece of bulk material, filling the whole 
space. Clearly the decrease of surface energy has been achieved at the expense of a reduc- 
tion of interaction energy and we have therefore 

2y = - F,(O). (5.1) 
Relations of this type have been known for a long time (Young 1855). It is easy to see that 
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the Liftshitz interaction free energy (for a non-spatially dispersive media) satisfies this 
relation. In this case we have 

and therefore 

This is clearly seen to be equal to 2y (Craig 1972, Mitchell and Richmond 1974a.) NOW 
it is clearly of interest to check that our theory for spatially dispersive media satisfies the 
general relation, equation (5.1). If now we consider two identical media then we see imme- 
diately from equations (4.15) and (4.31) that the interaction free energy at zero separation 
is 

However, from equation (4.30) we have the surface free energy and it is apparent that for 
two identical media, this expression may be written 

Clearly equations (5.3) and (5.4) are not equal. After a little though it becomes clear why. 
In bringing the surfaces together to obtain equation (5.3) we have not completely healed 
the interface to obtain a uniform block of bulk material. The currents at the ‘interface’ are 
still specularly reflected. We must therefore evaluate the energy involved in effectively 
removing the barrier which maintains this boundary effect, thereby completely healing 
the interface. Using the methods of previous sections this is easy. We consider two identi- 
cal spacially dispersive media with bulk dielectric permittivity E ( q ,  CO) separated by a 
barrier at z = 0 which ensures the currents are specularly reflected. The derivation of the 
response function necessary to evaluate the free energy follows that given in $3. We obtain 

cp(z,z,) = 4nexp(-iK.s,)  G , ( z ; z , )  + G , ( z ;  - z , )  [ 

D ( z , z , )  = 4.nexp(-iK.s,) C D ( z ; z , )  + G D ( z ;  - z , )  i 
where 
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Applying the prescription (3.16) to equations (5.5)-(5.7) and inserting the result into 
equation (2.2) we obtain (after dropping bulk energies proportional to the volume) the 
healing free energy 

Now using the relations (4.27) and (4.28) we do the coupling constant integration to obtain 

Now we see that if we bring two surfaces together from infinite separation and also heal 
the join completely, then the appropriate free energy to be used on the right-hand side of 
equation (5.1) is 

- F,(O) + F ,  = (1/p) 5' *[In [(C + 1)2/42] + 5 In E(K,O) - In C , 
n = O  (2Zl2 1 (5.10) 

which is identical to equation (5.4). Thus we see that providing we account correctly for 
the boundary effects, our theory is self-consistent and satisfies the general relation, 
equation (5.1). 

6. Discussion 

In this paper we have developed a general theory of free energies of inhomogeneous 
spatially dispersive media. Our theory yields the free energy components. Although we 
have considered two different spatially dispersive media separated by a vacuum it is 
trivial to include a simple dielectric in the gap. It is more difficult to include a spatially 
dispersive medium. However, it can be done and in a later paper we shall consider the 
case of a spatially dispersive medium between two dielectrics. This system is of particular 
interest in colloidal and biological systems where particles are separated by electrolytes. 
The general case of three spatially dispersive media could be done but in this case it is not 
clear what the boundary condition on the currents at the surface should be without more 
details of the nature of the interacting media. Of course, even in the case we have considered 
here, the currents may not always be reflected specularly due to coupling with phonons or 
other excitations. Other types of systems which our results derived here do not cover are 
those where, as a result of establishing a surface, large structural changes occur or, alter- 
natively, surface charges or dipoles are formed. Omission of the former effect implies that 
our expressions probably do not hold close to critical points. The latter effects occur in 
the electrolyte systems referred to above and we hope to study systems of this type in 
future publications (see also Mitchell aqd Richmond 1974b, Barnes and Davies 1975.) 

Finally we comment on the feature discussed in 5 5, namely the boundary effect which 
occurs as one brings two media together. This arises in our semi-macroscopic formulation 
because of our neglect of tunnelling of charges which may occur between interfaces as 
they come into contact. To handle this effect properly, a more complete microscopic 
treatment is necessary. However, it may be possible to build into our method a boundary 
condition which tabes into account in a phenomenological way this tunnelling pheno- 
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menon and thereby obtain an interaction free energy which models better the behaviour 
in the final few Angstroms before contact. 
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