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Abstract. Using a general formalism developed in earlier papers we calculate an expression 
for the free energy of interaction across a film or slab of spatially dispersive medium in contact 
on either side with dielectric. The result is expressed in terms of bulk dielectric properties. 
The Lifshitz or DebyeHuckel results are recovered in appropriate limits. 

1. Introduction 

In a previous paper we have developed a general method which yields free energies for 
inhomogeneous media which contain spatially dispersive components (Chan and Rich- 
mond 1975a, b-henceforth referred to as I). We considered in I the relatively simple 
case of two spatially dispersive semi-infinite half spaces separated by a vacuum, and 
derived expressions for the interaction and surface free energies in terms of the dielectric 
response functions ~ ( q ,  CO) which characterize the bulk media. Similar expressions have 
also recently been deduced by Wikborg and Inglesfield (1 975a, b). Now of considerable 
interest in many areas is a knowledge of the interaction energy for the inverse problem, 
for example, wetting of dielectrics by liquid metals or electrolytes or the interaction of 
colloidal particles across electrolytes. In both of these important applications it is 
necessary to know the interaction free energy between two dielectrics interacting via a 
spatially dispersive medium. The former case involving metals has only been studied 
using a hydrodynamic model (Chang et a1 1971, Davies and Ninham 1972, Heinrichs 
1973). However, this model, when combined with the normal mode method, contains 
some inconsistencies connected with the zero frequency contribution or classical limit 
of the interaction free energy. The classical limit appropriate to electrolytes was first 
considered by V A Parsegian (1972) (remark in a seminar at the Research School of 
Physical Sciences, Australian National University), and has been studied within the 
Debye-Hiickel approximation (v A Parsegian and B W Ninham 1972 unpublished, 
and outlined in Mahanty and Ninham 1975, Mitchell and Richmond 1974, Richmond 
1974, Barnes and Davies 1975). 

The aim of this paper is to obtain a general expression for the interaction free energy 
for situations involving spatially dispersive media without introducing a specific form 
for the dielectric permittivity. We shall see that, to handle the case where the spatially 
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dispersive medium is sandwiched between dielectrics, it is necessary to generalize the 
procedure used in I in a non-trivial manner. The paper is set out as follows. In the next 
section we review briefly the theoretical groundwork and discuss in a qualitative manner 
the generalizations referred to above. In $ 3  we then derive the response function and 
associated free energy of interaction. In $ 4  we demonstrate how our result reduces to 
well known limiting cases; $ 5 contains a brief summary. 

2. Formulation 

For our system, the interaction Hamiltonian may be written as 

where P ( r )  is the local polarizgtion density and E(Y) is the local electric field. The cor- 
responding free energy is 

[ " jol ( d ' ~  1 Ga(r;  it,; A) 
z 1 ct = x, y, z. (2.2) F = F o - -  1 

P n = O  

The imaginary frequency it,, = i2nnn/Ph where P = l/k,T; k, is Boltzmann's constant 
and T the absolute temperature. F ,  is the free energy of our system in the absence of 
electrical interactions. The Green function, G, is the analytic continuation onto the 
imaginary axis of G,(v; CO; A) which may, using linear response theory, be shown to be 
the ccth component of the induced polarization at Y due to the ccth component of a unit 
test dipole at Y. 

This function may be calculated classically in terms of macroscopic bulk permittivi- 
ties e(q, w). The coupling constant, A, may be introduced by making the substitution 

e(q,CO) = 1 + 4nx(q, CO) + E ( q ,  CO 12) = 1 + 4nAx(q, w). (2.3) 
This particular approximation gives results equivalent to a Random Phase Approxi- 
mation. For further details of this approach we refer the reader to the literature (for 
example, see Mitchell and Richmond 1974, Richmond 1974, Pines 1962). 

Now we saw in I that the essential step was to specify the response of the semi- 
infinite media. Within the spirit of our classical approximation, this took the form of 
an additional boundary condition which ensured that polarization currents at the 
interface induced in our spatially dispersive medium were specularly reflected. For 

Figure 1. (a) A semi-infinite spatially dispersive medium in contact with vacuum. A real test 
charge is at zl. The line indicates how a current is reflected specularly at the interface. 
( b )  An auxiliary system of spatially dispersive medium. The supplementary test charge at 
-zl produces a current on the XHS such that to an observer in the RH half space it would 
appear that the currents are reflected specularly at the interface. ( e )  The second auxiliary 
system. 
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example, consider a single semi-infinite half space which contains a single oscillating 
test charge at z1 as shown in figure l(a). Currents emanating from the test charge are 
reflected as shown. The solution to this problem was constructed from two auxiliary 
homogeneous systems. In system 1 (figure l b )  the whole space is occupied with the 
spatially dispersive phase with bulk dielectric constant E ( q ,  0). The test charge at z1 
is supplemented with an additional charge at -zl. This produces a current shown by 
the broken line. Clearly the total current on the RHS is equivalent to the required specular 
current in figure l(a). In addition we have a surface charge o1 at the interface. The second 
auxiliary system is a vacuum with a surface charge oz in the plane z = 0 (figure IC). The 
potential response for the homogeneous system is readily obtained. The solution to the 
inhomogeneous system is then determined by matching across the plane z = 0 the 
potential +(v) and normal component of the electric displacement D(v) using the RH 
solution of system l(b) and the LH solution of system l(c). 

We require to solve the system shown in figure 2(a). The test charge now induces 
currents which are multiply reflected as shown. Clearly we can simulate these specularly 
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Figure2. (a) A thin slab of spatially dispersive medium. The arrows indicate how the currents 
are reflected specularly at the boundaries. ( h )  An auxiliary system of spatially dispersive 
medium, including supplementary point charges which produce currents in the slab such 
that to an observer in the slab it appears that currents from the test charge in the slab are 
reflected specularly. (c)  This shows how the surface charges must also be imaged in order 
that currents from the induced surface charges at the interfaces z = + 1  are also effectively 
reflected specularly. 

reflected currents by introducing charges at the appropriate image points as shown in 
figure 2(b). However, the potential corresponding to this system within the region 
- 1 < z < I will not yield the correct answer. The reason becomes clear when we realize 
that the currents due to the induced surface charges must also be specularly reflected. 
That is, currents from o1 at z = -1 must be reflected at z = 1; similarly, currents from 
oZ at z = 1 must be reflected at z = - I. This is arranged by introducing surface charges 
at image planes as illustrated in figure 2(c). The potential in the range - 1  < z < 1 for a 
system with image test charges and image surface planes is the appropriate solution we 
require. 
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3. Response function and free energy 

We shall now derive the free energy of interaction for a system consisting of a slab of 
spatially dispersive media of width 21 and bulk dielectric permittivity E ( q ,  CO) in contact 
with vacuum. (The introduction of dielectric is a trivial extension.) Following the 
qualitative discussion of the previous section and the method pursued in I we may write 
the potentials and displacement vectors for the case when a unit test charge is at v 1  
( I  z1 I < 1). Thus to ensure specular reflection in the slab of currents from the test charge 
we introduce into our auxiliary homogeneous system the (test and auxiliary) charge 
density 

00 m 

P(Z) = 6(z - z l )  + 1 6(z - [2(2n + 1)1 - z,]) + 1 6(z + [2(2n)1 - z,]) 
n = O  n =  1 

m W 

+ 1 6(z + [2(2n + 1)1 + zl]) + 2 6(z - [2(2n)1 + z,]) 

+ U, 1 6(z - [4n - 111) + U3 6(z + [4n - 131). (3.1) 

n = O  n =  1 

W 00 

n =  - m  n = - m  

The electrical potential in the region I z I < 1 for our inhomogeneous system is then 
W 

4 = 4, = 471G,(z; z l )  + {G,(z; 2(2n + 1 ) ~  - z,) + G,(z; - [2(2n + 111 + z,])} 
n=O 

m 

+ 1 (G2(z;2(2n)l + zl) + Gz(z; - [2(2n)l - z,])} 
n = l  

a, m + 0, 1 G,(z; (4n - 1)1) + c3 1 G,(z; - (4n - 1)1) 
n = - m  n = - m  

where 

is the potential response at  z to a test charge of strength i n  at z’. 
The electric displacement is 

m 

D = D ,  = 471[G(z; zl)  + {G(z; 2(2n + 1)1 - zl) + G(z; - [2(2n + I)/ + z,])) 
n = O  

m 

+ 1 {G(z;2(2n)l + z l )  + C(z; - [2(2n)l - z,])} 
n = l  

m m + c2 C G(z;(4n - 1)1) + o3 G(z; - (4n - 1)1)] 
n =  - m  n = - m  

where 

exp[ik(z - z’)] = ( - - Lsign(z - z’) 
-2 

x exp(-Klz - z’l) 
is the electric displacement response at z to a test charge of strength i n  at z‘ 

(3.4) 

(3.5) 
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In the vacuum domains we have 

4,  = 4nG(z; -l)o1 

9, = 4nG(z; l ) ~ ,  z > l  

z <  -1 
m = ,  

where 

dk exp[ik(z - z')] 1 
= - exp(-Klz - z'l) 

4 ,  2K 

and 

D ,  = 4nG(~ ;  - 1 ) ~ ~  z <  -1 
D = [  z > 1. 

D ,  = 4zG(z; l)o, 

(3.6) 

(3.7) 

It is now a straightforward matter to impose the usual boundary conditions, namely 
that 4 and D' are continuous across the planes z = kl. Consider for example the dis- 
placement vector at z = - 1. From equations (3.4) and (3.9) we obtain 

m 
G'( - 1-  ;- l ) ~ ,  = G"( - 1' ; zl)  + (G"( - 1' ; 2(2n + 1)1 - zl) 

n = O  

m 
+ G"( - 1' ; - [2(2n + 1)l + z,])} + {G"( - 1 ' ;  [2(2n)l + z,]) 

n =  1 

m 

+ G'(-l+; - [2(2n)l - z,])} + c2 G2(-l+;(4n - 1)l) 
n = - m  

m 

+ 03 C G'(-lf; - (4n - 1)l). 
n =  -m 

(3.10) 

Using equation (3.5) we see that the z component of the first five terms on the RHS of 
equation (3.4) may be written as follows: 

+{  sign(z - z,)exp(-Klz - zl1) - 1 exp[-K12(2n + l)l]exp[K(z + z,)] 

exp[ -Kl2(2n + l)] exp[ -K(z + z,)] 

30 

n = O  

CC 

+ 

+ 1 exp[ -K14n] exp[ -K(z - z,)] 

- C exp[-K14n] exp[K(z - z,)] 

n = O  

m 

n =  1 
m 

n = l  

)exp[K(z + Z,) l  exp( - 2K1) 
= {isign(z - z,)exp[-Klz - z , ~ ]  - ( 1 - exp(-4Kl) 

exp( - 4K1) 
1 - exp( -4K1) 

exp[ -K(z + z,)] + 
exp( - 4Kl) 

1 - exp( -4Kl) 

exp( - 2Kl) 
1 - exp(-4Kl) 

x exp[-K(z - z,)] - 
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If we now substitute z = - I  (equation 3.11), this expression reduces identically to 
zero. We also have 

m m 

G"(-l+;(4n - 1)l) = C sign(-4n)exp(-KI4nIl) = $ (3.12) 
n =  -CO n =  -cc 

and 
cx z. 

G"(-l+; -(4n - 1)l) = sign(4n - 2)exp(-K14n - 214 = 0. 
n = - m  n -  -*  

Substituting expressions (3.12)-(3.13) into equation (3.10) readily yields 

2 '  0 = - 0  1 

Similarly we obtain, by matching D", at z = E :  

3 '  0 = - 0  4 

The potential 4 may be matched in a similar manner. Thus we obtain 

c 2 f ( l )  + 0 3 k ( l )  = h(l; zl) 

a 2 k ( l )  + o, f ( l )  = h(l; -zl) 

z = 1  

and 

z =  - 2  

where 

1 exp [ik(l + z ) ]  + exp [ik(l + z ) ]  
exp (2ikl) - exp(- 2ikl) 

~~ 

1 + exp(4ikl) 1 g ( l )  = - - ____ 1;: q 2 i ( q )  [ 1 - exp(4ikl) + E] 
and 

1 exp(2i k l )  f ( l )  = 2 -- - ~ ~ 1;: q21(q) [ 1 - exp(4ikl) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

in order to evaluate the sums in equations (3.2) and (3.4) to obtain these results, it is 
necessary to take the contour of the k integral to be just above the real axis in the complex 
k plane to ensure convergence i.e. Im(k) > 0. 

Solving equations (3.16) and (3.17) yields 

0 2  = [hU; z , ) f ( l )  - h(l; -z1)s(OI, Cf 2 ( 4  - s2(l)l (3.21) 
and 

0 3  = - z , ) f ( U  - h(l; z l ) s ( l l l l r f 2 ( o  - s2(l)]. (3.22) 
It is now a straightforward matter to obtain the appropriate dipole response function 

necessary to evaluate the free energy according to equation (2.2). In fact 

where 

(3.23) 

(3.24) 
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Applying this prescription we obtain 

(3.25) 

where 
IC. 

G(K(z) = j-(- dk 1 - 1) + {s-((K2 dk 1 - k2) 1 {exp(-4nikl) exp[2ik(z-l)] 
2n E ( d  n = O  

cc 

+ exp(4nikl)exp[2ik(z+ l ) ] }  + q 2  1 (exp( -4nikl) exp(4inkl))) 
n =  1 

m dk 1 1 + K 2  I- -( - - 1) exp[ik(z + l)] 1 exp( - 4n ikl)a,(z) 
2n: q2  44 n =  - m  

ao&) exp[ik(z+ l)] 1 exp(-4nikl)- 
m 

dZ n =  -cc 

m + K 2  j$ -$(& - 1) exp[ik(z - l)] 1 exp(4n ikl)o,(z) 
n = - x  

ao,(z) 
az 

m 

+ $ (& - 1) exp[ik(z - I)] 1 exp(4nikl) - 
n =  - m  

We now require to integrate the response function G(KIz) with respect to z. Using 
the relation 03(z) = 02( -z), we obtain (after some algebra and an integration by parts): 

dzG(K1z) = 2 l j - ( -  dk 1 - 1) + (2 - 1) + 4lj-(- dk 1 - 1) 1 

271 E M  4 K ,  0) 2n il 
W 

x ( 1 - exp(4ikl) ) + 2 j E ( &  - l)exp(ikl) n =  - i o  exp( -4nikl) 
I m 

x jTl dzexp(ikz)a,(z) + 2 

Using the relation 
m z 0 

exp(-4nikl) = 2 exp(-4nikl) + 1 exp(-4nikl) 
n = - m  n = l  n =  - m  

- exp( -4 ikl) 1 - 
1 - exp( -4ikl) + 1 - exp(4ikl) 

(3.27) 

L19 
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the fifth term on the XHS of equation (3.27) becomes 

[a$) exp(2ikl) - c2( - l)]  = 0. (3.28) 
dk ik 1 

+ 2  - - - - - 1  
2.n q2 (r:q) ) 1 - exp(4 ikl) 

In the first integral, the poles of the integrand are avoided in the lower complex k plane; 
in the second integral, the poles of the integrand are avoided in the upper complex k 
plane. Changing the first integral into one in the upper half k plane by letting k + - k 
the equality follows. The fourth term on the XHS of equation (3.25) can, after some algebra, 
be shown to equal: 

2 - - - 1  l d k (  1 )/dk'  
1 [4P{ 

exp(2ikl) 
271 q'2c(q') i 1 - exp(4ikl) 271 4 q )  

4P exp(2ik'l) 

where 

9 and Q = ____ PE---- f 
f 2  - g 2 .  f 2  - g2 

(3.29) 

(3.30) 

Both the k and k' integrals are taken above the real axis and we now specify that Im(k') > 
Im(k). Thus consider the integral 

dk' k 
- f ( k ;  k')- k'2 - k2 

m + i s  

where f ( k ;  k') = f ( k ;  - k'). 

It is readily shown that this may be written as follows: 

dk' f(k;  k') 

where the contour c encircles the real axis in the negative sense. Providing f(k;  k') has 
no singularities within this contour, this integral equals 

-$if (k; k). 

On the other hand we have 

Equation (3.27) becomes therefore 

dk 1 exp(2 ikl) 1 + exp(4ikl)lj 
- 1% (a - ') & { "[ 1 - exp(4ikl)l - 2Q [ 1 - exp(4ikl) ' 

(3.31) 

From equations (2.2), (3.25), (3.26) and (3.29) we have the free energy per unit area 
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1 exp(4 i kl) 
1 - exp(4ikl) 

II 3229 

(3.32) 

and it is understood in equation (3.32) that we have introduced the dependence of E ( q )  
on the coupling constant into the integrand. When this dependence is given by the simple 
relation (2.3) then the coupling constant integral may be done when we note that 

af 2 dk 1 1 exp(2ikl) 
a1 1 2n E q2 1 - exp(4ikl) 

and 

1- 
Thus we have from equations (3.30H3.33) 

11. + in[g ( I  1 1 = 0)  - f 2 ( l p .  = 0)  
g2(1/1 = 1) - f 2 ( l 1 1  = 1) 

(3.33) 

(3.34) 

(3.35) 

The first term corresponds to a bulk energy and has been studied at length elsewhere (see 
for example, Pines 1962). The remaining terms comprise surface and interaction energies. 

To obtain the surface energy, AFs, we take the limit I + CO. Noting that all the k 
integrals are taken in the upper half complex plane we obtain from equations (3.19), 
(3.20) and (3.34) 

where 

(3.37) 

Noting that our slab has two surfaces we see that this result agrees with that obtained 
in I and also by Wikborg and Inglesfield (1975a, b). The free energy interaction is now 
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obviously given by 

exp (4ikl) 
1 - exp(4ikl) dF(1) = .!- P n = o  2 242 i F { 4 l j % 1 ~ ( q )  2n 

exp (4ikl) 
= P , = o  2 j ’ s { 4 l s g l n ~ ( q )  (2nI2 1 - exp(4ikl) 

1 2J(dk/2n) [1/q2e(q)] [exp (2ikl)/l + exp (2ikl)J 
+ ln{[l- (1/2K)[1 + (1/t)] 

11 2J(dk/2n) [ 1/q26(q)] [exp (2ikl)ll - exp (2ikl)I 
(1/2K)[1 + (W)l x [1 + 

+ ln[1 - exp(-4kl)]. (3.39) 

This result is clearly somewhat more complicated in form than those given by the 
Lifshitz expression for dielectrics or the Debye-Hiickel approximation for electrolytes. 
It is clearly necessary to establish that our expression reduces to these forms in the 
appropriate limits. 

4. Special limits 

(i) Consider first the case where the permittivity is independent of q. If we recall now that 
the k integrals are taken above the real axis we now see immediately that the first term 
on the RHS of equation (3.39) is zero since the integral has no poles in the upper half of 
the complex k plane. The k integrals in the second term are readily evaluated. Thus: 

1 exp(-2Kl) =-  dk 1 exp(2ikl) s-- 2n q2 1 k exp (2ikl) 2K 1 & exp (- 2Kl) 

and after some simple algebra we obtain the Lifshitz result (Dzyaloshinskii et al 1961): 

(ii) In the Debye-Hiickel approximation we have the static dielectric permittivity 

E ( q )  = 1 + K 2/q2 (4.3) 
where IC is the usual Debye-Hiickel screening parameter. Now recalling that we require 
only the zero frequency term, the first term on the RHS of equation (3.38) becomes 

L l d ’ K  -441 {fcl -1n ( k 2  + s’) exp(4ikl) 
2P (W2 K 2  + k Z  1 - exp(4ikl) 

where 

S’ = KZ + IC’ 

(4.4) 

(4.5) 

To evaluate the k integral, the contour is closed in the upper half-plane and must be 
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indented to avoid the branch line arising from the logarithm. (Split the logarithm as 
follows: ln[(k2 + s2)/(K2 + k2)] = In (k + is) + In (k - is) - In (k + iK) - In (k - iK).) 
The integral can then be shown to equal 

L j - I n [  d2K 1 - exp(-4sl) 
2p ( 2 ~ ) ~  1 - exp(-4Kl) 

The remaining k integrals are readily evaluated. Thus 

dk 1 exp(2ikI) 1 exp(-2sl) = -  
1 t- exp(2ikl) 2s 1 t- exp(-2sl) 

and using the relation e = s/K we readily obtain 

(4.7) 

This is the well known Debye-Hiickel limiting form which has been studied by workers 
in colloid science (Mitchell and Richmond 1974, Gorelkin and Smilga 1973). 

5. Summary 

In the paper we have obtained a general expression for the free energy of interaction 
across a slab of spatially dispersive material. The result (equation 3.38) is expressed in 
terms of the bulk dielectric permittivities for the component media. The result reduces 
subject to appropriate approximations to all the well known limits derived elsewhere. 
However, it does not appear to be equal to that given by application of the normal mode 
method (van Kampen et a1 1968). This result now enables a study to be made of the 
stability and associated disjoining pressures for thin liquid metal films. Alternatively 
one can study the interaction between voids which have been observed in metals (Lucas 

We conclude by noting that our method will also yield information relating to sur- 
face plasmons. In fact the imaginary part of the charge response function C,G,(Klo) 
is essentially the spectral density function for such excitations. 

1973). 
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