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There has been much speculation about the origin of long-range electrostatic attractions between identical
colloidal particles in confined geometries. Recently, we proved that such attractive interactions are not
to be found in the well-established Poisson-Boltzmann theory, when the particles are immersed in a 1:1
electrolyte whose average ion concentrations are equal. A subsequent approximate analytical investigation
(Europhys. Lett. 1999, 46, 407-413) has suggested that such attractive interactions result from a combination
of the effects of confinement, imbalance of the average ionic concentrations, and polarization effects in the
confining surface. Consequently, we extend our previous proof to encompass the general case of an electrolyte
possessing any number of ionic species, where there is no restriction on their average concentrations. In
so doing, we rigorously prove that within the framework of the Poisson-Boltzmann theory the interaction
between identical colloidal particles is never attractive, irrespective of whether the particles are isolated
or confined. Furthermore, we establish a necessary condition for the existence of attractive interactions,
which indicates the possibility that an osmotically driven process is behind the observed attractive
interactions.

1. Introduction

Recently, a great deal of effort has focused on under-
standing the mechanism behind the phenomenon of long-
range electrostatic attraction between identically charged
colloidal particles that are immersed in an electrolyte and
confined by a third charged body.1-13 It has been noted
that this surprising phenomenon is at odds with the well-
established theory of Derjaguin-Landau-Verwey-Over-
beek (DLVO),14,15,16 for the pairwise interaction of two
isolated identically charged particles, which predicts a
purely repulsive interaction. A significant clue to the
mechanisms involved, however, lies in the experimental
observation that the interaction returns to a purely
repulsive one, when the particles are isolated from the
confining surface.3,6 Consequently, many workers have
suggested that such attractive interactions are to be found
naturally within the framework of the well-known Pois-
son-Boltzmann theory, upon which DLVO theory is
founded, provided the effects of the confining charged body

are rigorously taken into account. Indeed, this was the
contention of a recent numerical study,10 which examined
the behavior of two colloidal spheres confined in a
cylindrical tube. In particular, the study in ref 10
considered the special case where the particles are
immersed in a 1:1 electrolyte and all surfaces are of the
constant potential type. The governing equation for the
electric potential ψ in the electrolye used in ref 10 is the
usual Poisson-Boltzmann equation

where κ is the Debye screening parameter, e0 is the proton
charge, kB is the Boltzmann constant, and T is the absolute
temperature. We emphasize that within eq 1 is the implicit
assumption that the system is connected to a reservoir of
electrolyte, for which the average concentrations of co-
ions and counterions are equal.

In ref 13 we proved that eq 1 cannot lead to an attractive
interaction, irrespective of whether the particles are
confined or isolated. This finding is independent of the
shape and charge of the colloidal particles and is valid for
all boundary conditions on the particles and confining
surfaces. We emphasize that the only restriction on the
confining surface is that its sides must be parallel to the
line joining the centers of the particles. At this stage, we
note that Neu12 gave a proof similar to ours13 but only
considered the case where the confining surface is of the
constant potential type. However, Neu12 made no restric-
tion on the composition and average concentrations of
ionic species in the electrolyte and again found that the
interaction is purely repulsive. Note that an imbalance in
the average concentrations of ionic species can be induced
in a closed system that is not connected to a reservoir of
electrolyte.

Approximate theoretical work on the Poisson-Boltz-
mann theory,11 however, has suggested that attractive
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interactions can arise from the combination of three
effects:
(a) geometrical confinement by a charged surface,
(b) imbalance in the average ionic concentrations of the
electrolyte, and
(c) polarization effects in the confining surface resulting
from its finite permittivity.

Such cases are not completely covered by either proof
in refs 12 and 13. In particular, ref 12 considers cases a
and b, but not c, whereas ref 13 considers cases a and c
but not b. Consequently, in this paper we extend our proof
in ref 13 and relax any restrictions on the ionic composition
of the electrolyte, such as those implicit in eq 1. In
particular, we allow for any number and type of ionic
species in the electrolyte and make no restriction on the
average concentration of ionic species. In so doing, we
give a complete and general rigorous proof that the full
Poisson-Boltzmann theory cannot account for the ob-
served attractive interactions discussed above; i.e., within
the framework of the Poisson-Boltzmann theory the
interaction between identically charged particles is never
attractive. We emphasize that this proof is valid for all
boundary conditions on the surface and particles and is
independent of the average concentration of ionic species.
The only restriction is that the sides of the confining
surface must be parallel to the line joining the centers of
the particles. Consequently, our results prove that the
experimentally observed attractive interactions1-6 are not
to be found within the theoretical framework of the
Poisson-Boltzmann theory and suggest either (a) the need
for revision of the existing and established colloidal
theories or (b) a reassessment of the experimental
techniques and the corresponding interpretation of ex-
perimental observations.

In addition to proving that the Poisson-Boltzmann
theory cannot account for the observed attractive interac-
tions, we also give a necessary condition for the existence
of an attractive interaction between identically charged
particles, which until now has remained elusive. This
condition provides insight into the relevant mechanisms
involved by indicating the possibility that an osmotically
driven process underlies the phenomenon. Such a mech-
anism supports the observation that attractive interac-
tions between confined identical particles are only ob-
served when the particles are many Debye lengths
apart,1-6 where the electrical component of the force is
expected to be negligible. It remains to be seen whether
higher-order corrections to the Poisson-Boltzmann theory,
such as the inclusion of ion-ion correlation and finite ion
size effects, can induce such necessary osmotic effects.

We commence by defining the problem under consid-
eration in section 2. This will be followed in section 3 with
a derivation of the governing equations for the electric
potential and osmotic pressure, within the framework of
the Poisson-Boltzmann theory. In section 4, we will derive
an exact and explicit expression for the force between the
particles that is valid for any electrolyte model. In section
5, the implications of the results presented in sections 3
and 4 will be examined. In particular, an examination of
the predictions of the Poisson-Boltzmann model will be
given in section 5a, whereas in section 5b we will present
a necessary condition for an attractive interaction that is
valid for any electrolyte model. A listing of all variables
and symbols is given in the Glossary.

2. Problem Statement

We consider the problem of two identically charged
particles that are immersed in an electrolyte and confined

to or in the vicinity of an arbitrary charged surface Ω
which is parallel to the line connecting the centers of mass
of the two particles. The particles need not be spherical
and may have arbitrary charge properties. The only
requirement is that the electric potential possesses mirror
symmetry about the midplane between the particles. The
electrolyte may have any number of ionic species and we
make no restriction on the average concentrations of each
ionic species, but only require the entire system be charge
neutral; i.e., the total charge due to the colloidal particles,
the confining surface, and the ionic species sum to zero.
Consequently, the following analysis is applicable to
systems that are connected to a “reservoir” of electrolyte
and to systems which are in themselves closed. In the
latter case, the average ionic concentrations are deter-
mined by requiring the closed system to be charge neutral,
whereas in the former case charge neutrality in the
reservoir is invoked. The electrolyte is confined to the
interior of the surface Ω where the particles lie, and the
region exterior to the electrolyte has constant permittivity.
The surface Ω maintains either constant potential or
constant charge density or is charge regulating.17-19

We emphasize that the above specifications encompass
many cases of practical interest including that of two
particles in the vicinity of a single planar wall,6 particles
confined between two walls,1-5 or particles confined in a
cylindrical pore10 (see Figure 1). In the following sections
we derive completely general and exact expressions for
the force of interaction between the particles, for each of
the boundary conditions on the confining surface Ω.

3. Poisson-Boltzmann Model
To begin, we derive the governing equations for the

electric potential ψ and osmotic pressure Π in the
electrolyte, within the framework of the Poisson-Boltz-
mann theory, and give the governing equation for the
electrostatic potential φ in the region exterior to the
electrolyte. For clarity, all results derived within the
framework of the Poisson-Boltzmann theory shall hence-
forth be indicated using the symbol PB.

The electric potential ψ in the electrolyte is determined
by the Poisson equation

where ε is the permittivity of the electrolyte and F is the
local volume density of charge in the electrolyte which is

(17) Russel, W. B.; Saville, D. A.; Schowalter, W. R. Colloidal
Dispersions; Cambridge University Press: Cambridge, U.K., 1989.
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86, 3901-3912.

(19) Reiner, E. S.; Radke, C. J. Adv. Colloid Interface Sci. 1993, 47,
59-147.

Figure 1. Schematic diagram of two identically charged
particles (filled spheres) confined in a charged cylindrical pore
Ω. The particles are immersed in an electrolyte which is bounded
by the surface Ω. The region exterior to the electrolyte has
constant permittivity. The integration surface S used in the
evaluation of the force encloses one of the particles, and its
subsurfaces S1, S2, and S3 are indicated. Also indicated are the
unit vectors k and n.

∇2ψ ) - F/ε (2)
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given by

The summation in eq 3 is over all ionic species, whereas
zi is the valency of ionic species i, and ni is the local ion
number density of species i. To calculate the local ion
number density ni, we use the Boltzmann equation,
neglecting all ion-ion correlation and finite ion size effects.
This results in the following approximate mean-field
expression for the ith ionic species

where ni
(0) is the average ion number density of the ith

species of the electrolyte, whose value is specified by the
charge neutrality condition for the system. Because we
are considering a completely general system, which may
or may not be in contact with a reservoir of electrolyte,
we make no restrictions on ni

(0) but simply note that they
are nonnegative numbers; i.e., ni

(0) g 0.
The governing equation for the scaled electric potential

y ) e0ψ/(kBT) in the electrolyte is then obtained by
substituting eqs 3 and 4 into eq 2, which gives the required
result

where

In the region outside the confining surface Ω (i.e.,
exterior to the electrolyte), whose permittivity is constant,
the electric potential φ is determined by the Laplace
equation

Next we turn our attention to the osmotic pressure Π
in the electrolyte, which is calculated by considering only
the “ideal gas” contribution

This approach implicitly neglects all ion-ion correlation
and finite ion size effects and is chosen to ensure
consistency with the approximate Boltzmann distribution
for the ion densities in the electrolyte (eq 4). Substituting
eq 4 into eq 8 and defining a scaled osmotic pressure G
) Π/(kBT), we then obtained the required result

Equations 5, 7, and 9 are the governing equations we
seek for (a) the electric potential in the electrolyte, (b) the
electric potential in the dielectric medium exterior to the
electrolyte, and (c) the osmotic pressure in the electrolyte,
which have been obtained within the framework of the
Poisson-Boltzmann theory. To determine the general
nature of the force between the particles, however, we do
not need to solve eqs 5 and 7, as we shall discuss below.

4. Exact Expression for the Force
In this section we derive an exact expression for the

force between the two particles that is valid for any
electrolyte model and any boundary conditions on the
particles and confining surface Ω. We emphasize that the
Poisson-Boltzmann or any other approximation is not
used at any stage in this general derivation.

To begin, we note that a formally exact expression for
the electrostatic force f between the particles, acting along
their line of centers, is obtained by integrating the Maxwell
stress tensor17 over an appropriate surface S enclosing
one of the particles within the electrolyte

where Π is the osmotic pressure in the electrolyte and E
) -∇ψ is the electric field in the electrolyte, n is the unit
normal vector directed toward the enclosed particle from
the surface S, and k is the unit normal vector pointing
away from the unenclosed particle, that is in the line
joining the centers of the particles. A repulsive force
between the particles corresponds to f being positive.

The choice of the surface S is completely arbitrary and
will give the same result provided it completely encloses
one of the particles. For convenience we choose the surface
S to be a cylinder of arbitrary cross section with the
following:

(a) One face of S coincides with the midplane between
the particles, denoted S1.

(b) The sides of cylinder S, denoted S2, are parallel to
the line of centers of the particles and are either lying on
the charged surface Ω or at an infinite distance from the
particles (e.g., in the case Ω is a single flat wall).

(c) The remaining face of S, denoted S3, is identical and
parallel to the face at the midplane S1 but located at an
infinite distance along the cylinder axis from S1 and the
interacting particles.

A graphical example of this surface for two particles
confined in a cylindrical pore is given in Figure 1.

To calculate the force f, we first note that the electric
potential is symmetric about the midplane S1 and does
not vary in the k direction at S3. It then follows that the
components of the electric field in the k direction at S1
and S3 are zero. Using these properties, we then separate
eq 10 into three integrals over S1, S2, and S3, giving

where fi is the component of the surface integral in eq 10
over surface Si and is given by

where z is the spatial coordinate that is parallel to and
increasing in thek direction and∇t is the gradient operator
in directions transverse to the k direction, i.e., directions
parallel to the midplane between the particles.

To obtain insight into the nature of the force between
the particles, we first express the scaled electric potential
y as the sum of the potential y3 in the electrolyte due to

F ) ∑
i

ni zi e0 (3)

ni ) ni
(0) exp(-

zie0

kBT
ψ) (4)

∇2yPB ) -λ∑
i

ni
(0) zi exp(-zi yPB) (5)

λ ) e0
2/(ε kBT) (6)

∇2
φ ) 0 (7)

Π ) kBT∑
i

ni (8)

GPB ) ∑
i

ni
(0) exp(-zi yPB) (9)

f ) ∫S
n‚[(Π + 1

2
εE2)I - εEE]‚k dS (10)

f ) f1 + f2 + f3 (11)

f1 ) ε (kBT
e0

)2∫S1
λG + 1

2
|∇t y|2 dS1 (12a)

f2 ) -ε (kBT
e0

)2∫S2
n‚(∂y

∂z
∇y) dS2 (12b)

f3 ) -ε (kBT
e0

)2∫S3
λG + 1

2
|∇t y|2 dS3 (12c)
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the charged surface Ω in isolation (i.e., with the particles
removed), and a correction potential ŷ that accounts for
the presence of the particles, i.e.

We emphasize that this decomposition of the potential y
is completely general and is exact. Furthermore, we note
that y3 is independent of z and is identical to the potential
at the surface S3. Substituting eq 13 into eq 12, we then
obtain

We now expand the integrands of eqs 14 to eliminate any
repeated terms. To begin, we expand the second term in
the integrand of eq 14a using the vector identity for the
dot product

Then we note that the surface integral over S1 of the third
term on the right-hand side of eq 15 can be reduced to a
line integral over the perimeter of S1 using Green’s
theorem,20 from which we obtain

where l1 is the perimeter of surface S1. Using eqs 15 and
16, the expression for f1 in eq 14a becomes

where ŷ1 is the scaled correction potential evaluated at
the surface S1.

Next, we turn our attention to the integrand for f2 in
eq 14b. To begin, we express the surface integral over S2
as a double integral whose components are over the length
and perimeter of S2, i.e., dS2 ) dz dl2, where l2 is the
perimeter of S2. At this stage we note that the perimeter
(or path) l1 is identical with l2, because the sides of S2 are
parallel to the line of centers of the particles. Using this
property and noting that y3 is independent of the spatial
coordinate z, it then follows that eq 14b can be rewritten
as

Substituting eqs 14c, 17, and 18 into eq 11 and noting
that S1 and S3 are identical surfaces which have been

shifted in z, it then follows that the line integrals in eqs
17 and 18 cancel and we obtain the following expression
for the force

where G1 and G3 are the scaled osmotic pressures
evaluated at the surfaces S1 and S3, respectively.

We now turn our attention to the surface integral over
S2, henceforth denoted I,

and examine the nature of its behavior for various
boundary conditions on the surface Ω (because S2 is a
subsurface of Ω). In particular, we consider the boundary
conditions of (a) constant surface potential, (b) constant
surface charge density, and (c) charge regulation. We
emphasize that these boundary conditions encompass all
possible cases that are encountered in practice.

4a. Constant Potential Surface Ω. To begin, we
examine the case where Ω is held at constant surface
potential. Here the electric potential at the surface Ω is
unchanged by the presence of the particles, i.e., ŷ ) 0 at
Ω. Because S2 is a subsurface of Ω, it also follows that ŷ
) 0 at S2. Substituting ŷ ) 0 into eq 20, we then obtain
the trivial result

Therefore, for constant potential boundary conditions on
the surface Ω, the integral I does not contribute to the
force.

4b. Constant Charge Surface Ω. Next we consider
the case where Ω is held at a constant charge density σ.
This corresponds to requiring that (a) the tangential
components of the electric field interior and exterior to
the electrolyte be continuous across Ω, and (b) the
difference in the interior and exterior components of the
dielectric displacement, which are normal to the surface
Ω, be equal to the charge density at Ω. Expressed in terms
of the electric potential, these conditions become

where p ) e0φ/(kBT), σs ) e0σ/(kBT), and εext is the
permittivity of the region exterior to the electrolyte.
Because Ω is held at a constant surface charge density,
it follows that the isolated electric potentials (in the
absence of the particles) interior and exterior to the
electrolyte also satisfy eqs 22, i.e.,

where p3 ) p - p̂ is the isolated electric potential exterior
to the electrolyte and p̂ is the correction potential that
accounts for the presence of the particles. Subtracting eqs
23 from eqs 22, it then follows that the required boundary

(20) Jeffreys, H.; Jeffreys, B. Methods of Mathematical Physics;
Cambridge University Press: Cambridge, U.K., 1992.

y ≡ y3 + ŷ (13)

f1 ) ε(kBT
e0

)2∫S1
λG + 1

2
|∇t(y3 + ŷ)|2 dS1 (14a)

f2 ) -ε(kBT
e0

)2∫S2
n‚(∂ŷ

∂z
∇(y3 + ŷ)) dS2 (14b)

f3 ) -ε(kBT
e0

)2∫S3
λG + 1

2
|∇t y3|2 dS3 (14c)

1
2
|∇t(y3 + ŷ)|2 ) 1

2
|∇t ŷ|2 + 1

2
|∇t y3|2 + ∇t‚(ŷ∇t y3) -

ŷ∇t
2y3 (15)

∫S1
∇t‚(ŷ∇t y3) dS1 ) -Il1

n‚ŷ∇t y3 dl1 (16)

f1 ) ε(kBT
e0

)2[∫S1(λG + 1
2|∇t ŷ1|2 +

1
2|∇t y3|2 - ŷ1∇t

2y3) dS1 - Il1
ŷ1n‚∇t y3 dl1] (17)

f2 ) ε(kBT
e0

)2[- ∫S2
n‚(∂ŷ

∂z
∇ŷ) dS2 + Il1

ŷ1n‚∇t y3 dl1]
(18)

f ) ε(kBT
e0

)2[∫S1(λ[G1 - G3] - ŷ1∇t
2y3 + 1

2|∇t ŷ1|2) dS1 -

∫S2
n‚(∂ŷ

∂z
∇ŷ) dS2] (19)

I ) -∫S2
n‚(∂ŷ

∂z
∇ŷ) dS2 (20)

I ) 0 (21)

∂y
∂z

) ∂p
∂z

at Ω (22a)

εextn‚∇p - εn‚∇y ) σs at Ω (22b)

∂y3

∂z
)

∂p3

∂z
at Ω (23a)

εextn‚∇p3 - εn‚∇y3 ) σs at Ω (23b)
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conditions for the correction potentials ŷ and p̂ at the
surface Ω are

We now define q̂ to be the correction potential exterior
to the region enclosed by S, so that q̂ ) ŷ in the electrolyte
and q̂ ) p̂ in regions exterior to the electrolyte. Using this
definition and the boundary conditions in eqs 24, we are
now able to simplify the expression for I in eq 20. First,
we express the surface integral I in terms of the correction
potential q̂ exterior to the region enclosed by S

Note that, in arriving at eq 25, we have used the property
that q̂ ) ŷ ) 0 on any section of S2 that does not lie on Ω
because these sections must be an infinite distance from
the particles (see the definition for S2 above).

Because the electric potential is symmetric about the
midplane between the particles, it follows that the
component of the electric field in the k direction at the
midplane is identically zero

Using eq 26 and the property that q̂ ) 0 at an infinite
distance from the particles, the integral over S2 in eq 25
can be transformed into an integral over a closed surface
Sc, which has the following topology: Sc is composed of
four subsurfaces, with
(a) one subsurface of Sc being S2
(b) another subsurface coinciding with the midplane
between the particles that is exterior to the domain
enclosed by S, henceforth denoted A,
(c) a third subsurface being the extension of S3 exterior
to the domain enclosed by S, and consequently is parallel
to A, and
(d) an arbitrary surface running along the length of S2,
at an infinite distance from S2, that connects the outer
perimeters of the subsurfaces in b and c.

In simple terms: The surface Sc encloses the domain
exterior to that enclosed by S, that is, on the same side of
the midplane as S. A schematic illustration of this closed
surface for the case of two particles confined to a cylindrical
pore is given in Figure 2. Consequently, eq 25 becomes

where n1 is the outward unit normal vector to Sc, and is
identical to n at the subsurface S2. Note that the only
subsurface of Sc which gives a nonzero contribution in eq
27 is S2. However, by expressing I as an integral over a
closed surface, we can now invoke Gauss’s theorem20 and
replace the surface integral over Sc by a volume integral
over the region V enclosed by the surface Sc

Expanding the integrand of eq 28 using the product rule
for the divergence operator and noting that (a) q̂ ) ŷ ) 0
in regions of V that lie in the electrolyte and (b) ∇2q̂ ) ∇2p̂
) 0 in regions of V exterior to the electrolyte (which is

exact for such regions, see eq 7), it is then very easy to
show that

Finally, we evaluate the volume integral in eq 29 by
separating it into a line integral over the length of S2 (i.e.,
with respect to the z coordinate) and a surface integral
over the surface that is parallel to A. The integral with
respect to z in eq 29 is then explicitly evaluated, and upon
imposing the condition q̂ ) 0 at an infinite distance from
the particles, we obtain the required result

Note that the integral in eq 30 is performed over the
midplane A that is exterior to the domain enclosed by S.
Because the integrand of eq 30 is always nonnegative, it
follows that I is also always nonnegative. We shall discuss
the implications of this finding below.

4c.ChargeRegulatingSurface Ω.The finalboundary
condition to be considered is that where the surface Ω is
charge regulating; i.e., the charge density on the surface
Ω is a function of the surface potential. In terms of the
electric potential, this boundary condition becomes

where σs is as defined in the preceding section but is now
allowed to be a function of the potential y at the surface
Ω. We remind the reader that constant potential and
constant charge density boundary conditions are limiting
cases of this very general boundary condition.17-19

The isolated potentials y3 and p3 also must satisfy eqs
31, i.e.,

∂ŷ
∂z

) ∂p̂
∂z

at Ω (24a)

εextn‚∇p̂ ) εn‚∇ŷ at Ω (24b)

I ) -
εext

ε
∫S2

n‚(∂q̂
∂z

∇q̂) dS2 (25)

∂q̂/∂z ) 0 (26)

I ) -
εext

ε
ISc

n1‚(∂q̂
∂z

∇q̂) dS2 (27)

I ) -
εext

ε
∫

V
∇‚(∂q̂

∂z
∇q̂) dV (28)

Figure 2. Schematic diagram showing the closed surface Sc
in the region exterior to that enclosed by S, which is on the
same side of the midplane as S. Also shown is the midplane S1
and the midplane A exterior to the region enclosed by S.

I ) -
εext

ε
∫

V

1
2

∂

∂z
|∇q̂|2 dV (29)

I )
εext

ε
∫A

1
2
|∇q̂|2 dA (30)

∂y
∂z

) ∂p
∂z

at Ω (31a)

εextn‚∇p - εn‚∇y ) σs(y) at Ω (31b)

∂y3

∂z
)

∂p3

∂z
at Ω (32a)

εextn‚∇p3 - εn‚∇y3 ) σs(y3) at Ω (32b)
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However, unlike the previous case, note that the right-
hand sides of eqs 31b and 32b are unequal in general.
Subtractingeqs32 from eqs 31,wethen obtain therequired
boundary conditions for the correction potentials ŷ and p̂

which will now be used to simplify the expression for I in
eq 20. Substituting eqs 33 into eq 20 and noting that ŷ )
p̂ and y3 ) p3 at the surface Ω then gives the following
result for I:

where q̂ is the correction potential exterior to the region
enclosed by S, as defined above, and we have again used
the property that q̂ ) 0 on any section of S2 that does not
lie on Ω.

The first integral in eq 34 is simplified in a manner
identical to that performed in the previous section,
resulting in

Then the surface integral over S2 in eq 35 is expressed as
a double integral over the perimeter and length of S2, i.e.,
dS2 ) dz dl2. This enables the variables of integration to
be changed, from which we obtain

where q̂1 and q̂3 are the correction potentials at the
perimeters of subsurfaces S1 and S3, respectively. In eq
36 we have used the property that the perimeters of
subsurface S1 and S3 form the boundaries of subsurface
S2 (see Figure 1). Noting that σs(p3) is independent of q̂
and q̂3 ) 0, as discussed above, we then obtain the required
result for I

where we have used the property that l1 and l2 are identical
paths.

The nature of I in eq 37 can be examined by noting that
if σs satisfies

then the following inequality always holds:

We emphasize that this result is independent of the values
of p3 and q̂1. Because the inequalities in eqs 38 are always

satisfied, as we shall discuss below, it then follows that
I is always nonnegative for a charge regulating surface
Ω.

4d. Complete Expression for the Force. Combining
eq 19 with the above results for the confining surface Ω
held at (a) constant potential (eq 21) (b) constant charge
density (eq 30), and (c) charge regulation (eq 37), we obtain
the complete expression for the force between the two
particles

where

We emphasize that eqs 39 and 40 are exact results that
are valid for any electrolyte model.

5. Theoretical Implications

An exact and explicit expression for the force of
interaction f, which is valid for any electrolyte model and
all boundary conditions of practical interest on the surface
Ω, was evaluated in the previous section. In this section,
we examine the implications of this result to the nature
of the force between the particles.

5a. Poisson-Boltzmann Theory. To begin, we imple-
ment eqs 39 and 40 in examining the predictions of the
Poisson-Boltzmann electrolyte model. Because y3 is
independent of the spatial coordinate z, it follows from eq
5 that

Substituting eq 41 and the expression for the osmotic
pressure that is consistent with the Poisson-Boltzmann
approximation (eq 9) into eq 39 then gives the required
result for the force

where I remains unchanged from eq 40.

f ) ε(kBT
e0

)2[∫S1(λ[G1 - G3] - ŷ1∇t
2y3 +

1
2|∇t ŷ1|2) dS1 + I] (39)

I )
εext

ε
×

{0 constant potential Ω

∫A

1
2
|∇q̂|2 dA constant charge Ω

∫A

1
2
|∇q̂|2 dA + 1

εext
Il1

[q̂1σs(p3) -

∫0

q̂1σs(p3 + q̂) dq̂] dl1 charge regulating Ω

(40)

(PB) ∇t
2y3 ) ∇2y3 ) - λ ∑

i

ni
(0) zi exp(-zi y3) (41)

fPB ) ε(kBT

e0
)2[∫S1(λ∑

i

ni
(0) exp(-zi y3)(exp(-zi ŷ1) +

zi ŷ1 - 1) +
1

2|∇t ŷ1|2) dS1 + I] (42)

∂ŷ
∂z

) ∂p̂
∂z

at Ω (33a)

εextn‚∇p̂ - εn‚∇ŷ ) σs(y3 + ŷ) - σs(y3) at Ω (33b)

I ) -
εext

ε
∫S2

n‚(∂q̂
∂z

∇q̂) dS2 + 1
ε
∫S2

∂q̂
∂z

(σs(p3 + q̂) -

σs(p3)) dS2 (34)

I )
εext

ε
∫A

1
2
|∇q̂|2 dA + 1

ε
∫S2

∂q̂
∂z

(σs(p3 + q̂) - σs(p3)) dS2

(35)

I )
εext

ε
∫A

1
2
|∇q̂|2 dA + 1

ε
Il2∫q̂1

q̂3(σs(p3 + q̂) -

σs(p3)) dq̂ dl2 (36)

I )
εext

ε
∫A

1
2
|∇q̂|2 dA + 1

ε
Il1

[q̂1σs(p3) -

∫0

q̂1σs(p3 + q̂) dq̂] dl1 (37)

∂σs(y)/∂y e 0 (38a)

q̂1σs(p3) g ∫0

q̂1σs(p3 + q̂) dq̂ (38b)
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Next, we note that all known mechanisms and models
for ionizable or charge regulating surfaces21-24 satisfy

Indeed, within the framework of the Poisson-Boltzmann
theory, a unique solution to the electric potential exists
only if this constraint is satisfied.18,19 Consequently, upon
returning to eqs 38, we find that I g 0, irrespective of
whether the confining surface Ω is held at constant
potential or constant charge density or is charge regulat-
ing. Furthermore, because (a) λ > 0, (b) ni

(0) g 0, and (c)
exp(-zi ŷ1) + zi ŷ1 - 1 g 0 for all values of zi and ŷ1, it is
then clear that all of the integrands in eq 42 are
nonnegative. The implications of this finding are truly
significant, because they prove that within the framework
of the Poisson-Boltzmann theory fPB is always nonne-
gative, indicating that the force between the particles is
never attractive. We emphasize that this conclusion is
independent of the boundary conditions on the confining
surface Ω and on the particles and is valid for any particle
shape and charge.

5b. Condition for Attraction. By examining the
general expression for the force in eqs 39 and 40, we now
establish a necessary condition for an attractive interac-
tion. We remind the reader that eqs 39 and 40 are exact
expressions that are valid for any electrolyte model.
Consequently, from eqs 39 and 40, it then follows that a
negative value for f (i.e., an attractive interaction) is only
possible if either or both of the following conditions are
satisfied:

The second condition appears unlikely, because all known
mechanisms and models for charge regulation satisfy the
opposite condition, as discussed above. This leaves the
inequality in eq 44a as the only plausible condition for an
attractive interaction. We emphasize that the satisfaction
of eq 44a does not guarantee an attractive interaction but
indicates that the possibility exists. If the condition in eq
44a is not satisfied, however, then an attractive interaction
is impossible.

Using the Poisson equation (eq 2), eq 44a can be written
in terms of the volume charge density F3 in the electrolyte
due to the confining surface Ω in the absence of the
particles,

where ∆Π ) Π1 - Π3 is the difference in the osmotic
pressure in the electrolyte at the midplane S1 and an
infinite distance from the midplane at S3, whereas ∆ψ )
ψ1 - ψ3 is the difference in the electric potential in the
electrolyte at the midplane S1 and an infinite distance
from the midplane at S3. Equation 45 is the result we seek
and is a necessary condition for an attractive interaction.
We emphasize that eq 45 is valid, irrespective of whether
the particles are confined or isolated, and indicates the

possibility that the osmotic pressure is primarily respon-
sible for attractive interactions between identically charged
particles.

6. Conclusions

We have given a complete and general proof that, within
the framework of the Poisson-Boltzmann theory, the
interaction between two identically charged particles is
never attractive. This finding is independent of (a) the
charge and shape of the particles, (b) the boundary
conditions on the particles and confining surface, (c) the
composition of the electrolyte, and (d) the average ion
concentrations and (e) is valid whether the particles are
confined or isolated. The only restriction is that the sides
of the confining surface must be parallel to the line of
centers of the particles. Consequently, the observed long-
range electrostatic attraction between like-charged par-
ticles cannot be accounted for using this well-established
theory, contrary to previous suggestions and theoretical
calculations.1,3,5,6,10,11,13 An alternative theory7-9 has been
proposed to explain this phenomenon, but its predictions
are also inconsistent with experimental observations.3,6

We also established a necessary condition for the
existence of an attractive interaction, which is valid for
any electrolyte model. This condition indicates the pos-
sibility that an osmotically driven process is behind the
observed attractive interactions between like-charged
particles. It remains to be seen whether (a) the inclusion
of ion-ion correlation and finite ion size effects, which
are absent from the Poisson-Boltzmann theory, can
produce such osmotic effects and result in an attractive
interaction between like-charged particles or (b) the origin
of such attractive interactions lies in experimental phe-
nomena that have not been interpreted correctly.
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Glossary

A midplane between the particles, exterior to the
region enclosed by S

e0 proton charge
E electric field vector
E magnitude of electric field vector
f force between the particles, acting along their

line of centers
fi component of surface integral eq 10, over

surface Si

G scaled osmotic pressure, G ) Π/(kBT)
Gi scaled osmotic pressure at subsurface Si

I integral defined in eq 20
I unit tensor
k unit vector pointing away from the unenclosed

particle in eq 2, which is in the line joining
the centers of the particles

kB Boltzmann constant
li perimeter of subsurface Si

ni local ion number density of species i
ni

(0) average ion number density of species i
n unit normal vector directed toward the enclosed

particle from the surface S
n1 outward unit normal vector to surface Sc
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193-197.
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∂σs(y)/∂y e 0 (43)

∫S1
(λ[G1 - G3] - ŷ1∇t

2y3) dS1 < 0 (44a)

∂σs(y)/∂y > 0 (44b)

∫S1
(∆Π + F3∆ψ) dS1 < 0 (45)
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p scaled electric potential exterior to electrolyte,
p ) e0φ/(kBT)

p3 scaled electric potential exterior to electrolyte
in the absence of the particles

p̂ difference between the scaled potential exterior
to the electrolyte and that due to the surface
Ω in isolation, p̂ ) p - p3

PB use of the approximate Poisson-Boltzmann
electrolyte model

q̂ correction potential exterior to the region en-
closed by S; q̂ ) ŷ in the electrolyte and q̂ )
p̂ in regions exterior to the electrolyte

q̂i q̂ evaluated at the perimeter of subsurface Si

S integration surface
S1, S2, S3 subsurfaces of integration surface S
Sc surface enclosing domain exterior to that en-

closed by S, which is on the same side of the
midplane as S

T absolute temperature
V region enclosed by the surface Sc

y scaled electric potential in electrolyte, y ) e0ψ/
(kBT)

yi scaled electric potential in electrolyte at the
surface Si

ŷ difference between the scaled potential in the
electrolyte and that due to the surface Ω in
isolation, ŷ ) y - y3

ŷi ŷ evaluated at surface Si

z spatial coordinate parallel to and increasing in
the direction k

zi valency of ionic species i
ε permittivity of electrolyte

εext permittivity of region exterior to the electrolyte
κ Debye screening parameter
λ parameter that is proportional to the Bjerrum

length, λ ) e0
2/(εkBT)

φ electric potential exterior to electrolyte
ψ electric potential in electrolyte
ψi electric potential in electrolyte at subsurface Si

∆ψ difference in electric potential at the midplane
S1 and subsurface S3, ∆ψ ) ψ1 - ψ3

F local volume charge density in the electrolyte
F3 local volume charge density in the electrolyte

at subsurface S3

σ surface charge density at surface Ω
σs scaled surface charge density at surface Ω, σs

) e0σ/(kBT)
σs(y) scaled surface charge density at surface Ω,

which is a function of the surface potential
Ω confining surface
Π osmotic pressure
Πi osmotic pressure at subsurface Si

∆Π difference in osmotic pressures at the midplane
S1 and subsurface S3, ∆Π ) Π1 - Π3

∇ three-dimensional gradient operator
∇t transverse gradient operator parallel to the

midplane between the particles
∇2 three-dimensional Laplacian operator
∇t

2 transverse Laplacian operator parallel to the
midplane between the particles
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