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Forces between a Rigid Probe Particle and a Liquid Interface

I. The Repulsive Case
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The effect of disjoining pressure between a rigid spherical probe
particle (attached to an AFM cantilever) and a liquid interface (e.g.,
oil/water or air/water) is treated in an analytic manner to describe
the total force F exerted on the probe as a function of the distance
X of the probe from the rigid substrate (AFM stage) on which the
liquid interface resides. Two cases (i) a flat interface under grav-
ity and (ii) a drop whose size is sufficiently small that gravity can
be neglected have been examined. A simple numerical algorithm
is given for computing F(X) (the AFM observable) from a given
form for the disjoining pressure. Numerical results are displayed
for electrostatic probe/interface interactions which reveal the linear
compliance regime experimentally observed in AFM experiments
on these systems. The slope of the linear compliance regime is shown
to be a function of the properties of the interface (capillary length,
particle radius, drop size, contact angle of drop on rigid substrate
etc.). © 2001 Academic Press

Key Words: liquid interface; deformable interface; AFM; colloidal
probe; constant compliance; oil drop; flat interface.

1. INTRODUCTION

has been via a procedure introduced by Duekel. (1) which
we describe below.

Itshould be appreciated that the display of force versus cent
separation distanc®,, between probe particle surface and the
surface of the liquid fixed to the movable stage can be achiev
only by observing a “linear compliance” regime in the measure
ment. By this we mean that cantilever deflectibfas measured
by a light reflection technique) is observed to asymptote to
linear behavior when plotted against stage displacemngis-
termined by piezo voltage). For a rigid substrate and probe, tf
linear regime is interpreted as the stage (i.e., substrate) and ¢
tilever tip (i.e., probe particle) moving together. From Fig. 1 we
observe that the separation distance between rigid particles ¢
substrate is given by

D0:d+|0_| [1.1]

where

lo =L —2a-—z,. [1.2]

The interaction of solid colloidal particles with deformablén generall, is not a constant since the substrate is deforme

liquid interfaces is of fundamental interest in technologicallgy the force,F, exerted by the probe on the substrate. If the
important areas such as flotation, deinking of paper, and waseibstrate is a linearly elastic body then we may write
purification. The measurement of these forces by atomic force
microscope (AFM) is becoming commonplace. Ducisal. (1)
measured forces across water between a silica particle attached
to the AFM cantilever and an air bubble anchored to the pieZ\@herezgo is the height of the undistorted substrate from th
driven stage. A similar experiment was reported by Fieletenl.  rigid stage so thak, — z° is the central deformation of the
(2), Butt (3), and Preuss and Butt (4). Measurements of forcesbstrate. The elastic properties of the substrate are contair
between probe particle and sessile oil drops in water have fi¢the effective “spring constan 4 for the substrate. We also
cently been reported by Mulvan&y al. (5), Snyderet al. (6), have that

and Hartleyet al. (7). The interpretation of these measurements

F=—Ka(zo—2), [1.3]

F = Kcd, [1.4]

1Current address: Centre for Particulate Fluid Processing, DepartmgphereK. is the spring constant of the AFM cantilever. Substi-
of Mathematics and Statistics, University of Melbourne, Parkville 305%uting [1_4]7 [1_3], into [1_2] we have
Melbourne, Australia.

2To whom all correspondence should be addressed at Department of Chem-
ical Engineering, Carnegie Mellon University, Doherty Hall, 5000 Forbes
Avenue, Pittsburgh, PA 15213-3890.

K
lo=13° + —=d, [1.5]
Ky
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FIG.1. Geometry of the AFM measurement.
where

=L —2a-—1z27, [1.6]
and [1.1] may be written as
Kc ~
Do= (14— |d—-1+I. [1.7]
Kd
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horizontal distance between the experimedtak | curve and
the extrapolated linear compliance line.

When AFM is employed to measure the surface forces «
bubble/drop substrates with a rigid probe particle in situation
where the colloidal forces are predominately repulsive, an a
parent linear region (with a slope significantly less than one) i
thed vsl curve is observed and the use of the above analysis
extractD, values is immediately suggested. This is, in essenc
the Ducker analysis (1) of bubble/drop systems. By assumir
() that the drop behaves like a Hookean spring with an effectiv
spring constany < K. and (ii) that linearity is due t®, ~ D,,
(constant), Ducker and later researchers were able to back ¢
F(D,) curves (assumin®,, « colloidal force range and could
therefore be neglected).

The aim of the present paper is to elucidate the validity ©
otherwise of these assumptions. We analyze the action of inte
surface disjoining pressure on a deformable liquid interface ar
the consequences for AFM measurement of such forces. We w
examine two limiting cases where the problem can be treated &
alytically in the most part. We consider a rigid spherical prob
particle (radius a) interacting with

(a) aflatliquid interface wherB, « a, A
(b) adrop (bubble) interface (radi&s) such thaD, « a <

R, <« A

Experimentally, we observe at close separation of the surfaces

an apparent “linear compliance” region wheré observed to

Here D, is a separation distance at which disjoining pressure

vary linearly withl. Conventionally, this region is explained bymanifest themselves andis the capillary length under gravity
invoking the onset of a short-range repulsive force (hard sphég of the interface, viz.

overlap) with a very small decay length. At these separations,
small separation decrease results in a large increase in the force

F. Thus in this region, while the forcé is accommodated by
the substrateD, is effectively constant, = D,,) and we see
from [1.7], that

1

i+ %) [1.8]

(=0

The slope of the linear compliance region is thus(K¢/Kg)
and the intercept on tHeaxis is|$° — D,,. Having determined

these quantities from the linear compliance region, we may cal-

culateD, outside this region using [1.7] in the form

1
Do =D, + d(—) — | + intercept [1.9]

slope

[1.10]

_ ( % )1/2
Apg)
wherey is the interfacial tension andp is the density dif-
ference between substrate and bathing medium. Sihcés
typically 10;°, a ~ 10,8, and » ~ 102 the above cases are

For rigid interfacesKy > K¢, and hence the linear compliance
region of ad vs| plot will have slope 1. Indeed the calibration
factor for the conversion of split diode voltage to cantilever de-
flection may be calculated by requiring the slope to be unity in
the linear compliance regime.

SinceD,, ~ 0.2 nm for the onset of “hard sphere” overlap
forces,D,, is usually neglected with respect to the typi€a

values lcorresf)onding tO.COHO_idal forc_es. Graph.ical.ly, fO.I’ agiVeNF|G.2. The extraction of separation distarg from the linear compliance
deflectiond, the separation distan@, is shown in Fig. 2 is the region.

Hard Sphere
Colloidal Force Overlap force
&
2
3
=
Q
©
¥ d
intercept + slope / \
slope = 1
i 1+ KJ/K,
/I Do-Dw
intercept 1, piezo movment
Iow- Dw
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not unnecessarily restrictive. Clearly for case (b) we should udere we use the Derjaguin approximation (10) for the interac
drops (bubbles) witlR < 104 (i.e., atenth of a millimeter). We tion energy between the surfaces so t&@D) is the interaction
note that a similar treatment has been given earlier by Miklava@oergy per unit area between parallel flat half spaces of pro
and co-workers (8, 9) using a perturbation theory approach. and substrate material across a distaDoef bathing medium.
Minimizing the free energy with respect to drop shape (11), w
2. DEFORMATION OF THE LIQUID INTERFACE obtain the augmented Young-Laplace equation

We consider first the case of the infinite flat liquid surface. The d Zr
interface here is flat due to the large volume of the substrate drop ¥ 5, [

(or bubble) and the action of gravity. The geometry is shown in

Fig. 3. We choose as a fundamental variable the vertical distance

X between the origin fixed to the stage and the lowest point on N
the probe sphere as shown in Fig. 3. This quantity (or at least ff& the boundary condition
change inA X from some reference point) is obtainable directly

m] —r1(D(r)) +rApg(z° —2) =0

(O<r <o00) [2.6]

from AFM d versud measurements since from Eq. [1.1], Z(0)=0. [2.7]
X =2z, + Do [2.1] Inderiving [2.6] we use the constraint that
= Xo+d—1, [2.2] 2o0) = 7 2.8
where

together with the approximation that

Xo=L —2a. [2.3] 4D(.7) z-X-a
Our aim is to calculate the forde exerted on the probe by the 9z a+D
disjoining pressure from the liquid interface as a function of ~ —1+ O(Do/a) [2.9]
X. At radial distance from the axis (see Fig. 3) the surface
separation iD(r) given by and the definition of disjoining pressure as
D(r)=[r*+ (X +a)® —2(X +a)z(r) + Z2(r)]¥* —a, [2.4] (D) = _aifaD)' 2.10]

where the surface profile is given by the functifn) as shown o .
in Fig. 3. For a general surface profile the free endfgyan be Hence we have limited ourselves to the regibg < a from
written as the outset. The fact thakD/dz is not —1 forr ~ a is not of

consequence since, in the derivation, it occurs multiplied &
o 1 I1(D(r)) which will be vanishingly small by the timeachieves
F = Zn/dr r[y(1-|— 792 4 E(D(r, 2)) + —Apg(zgo — 2)2] any small fraction of the sphere radiasin the region where
5 2 I1(D) is not negligible, [2.9] is accurate ©8(Dy/a). That this is
so is easily seen from the fact that we are interesté}imalues
of order the decay length of the disjoining presduf®). Hence
we expect that

+ shape-independent terms [2.5]

\ z(r) — zo ~ O(Do) (2.11]
4 D(r) P2 | g in the deformed region and we see from (2.1) and (2.4) that
i | flat P1 l Dq
substrate r?2=2a[D(r) — Do+ z — 2] <1+ O(—)). [2.12]
z(r) a
Z,
L Thus the radial extent of the deformed regio®i€a Do)*/?) «
N a. It follows that Fig. 3 is not shown strictly to scale, the de-

=4 ricid sta formation being over a very small section of the interface we
g1 stage insider ~ a. The analysis below is therefore limited to lateral

FIG.3. Geometry of the rigid spherical probe ataﬂatliquidin'[erfaceinth@unface deformations which are small compared to the pI’_Ol
presence of gravity. (The deformation is not shown to scale.) radius. In the case of “wrapping” (see Section 5) deformatio
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of the interface may become comparable to probe radius anthage ofl1(D) but well inside the sphere radius)
more complicated treatment is necessary here.

Equation [2.6] is simply the Young-Laplace equation for a
liquid interface under gravity in the presence of a disjoining
pressure. Physically it is a statement that the local pressure dif-
ference across the interface (the Laplace (curvature) componghtre
plus the disjoining pressure) is equal to the pressure difference
due tothe gravitational heaf — z. Itis convenienttorearrange G(Do) = abo /°° dttr(Do(L + t2/2 — &)
the equation as follows

sarvgﬁewwmt—Ha%n [2.22]

[2.23]
1 no) 1 H(Do) = 222 [T dttintr(Do(1+ 22— £))
7'+ FZ/ _ (1+ Z/2)3/2 + ﬁ(l + 212)3/2(280 _ Z) o 0 o .
14
+ 313 =0, [2.13] Inunscaled variables the outer behavior of the inner solution
r
where we introduce the capillary length [1.10]. We solve this Z(r) = zo — H(Do) + G(Dy) In(ﬁ). [2.24]
equation by matching inner ¢~ (Doa)Y/?) and outer I ~ a) (@Do)
solutions. To obtain the inner solution we write _ : . o
We note in passing that the total force on the interface is (in tr
r = (aDo)" [2.14] Derjaguin approximation)
Z— 7o = D&(t 2.15 o0
20 = Dot (1) [2.15] F(Do)=27t/ dr r1I(D(r)) [2.25]
0
so that — 27y G(Dy). [2.26]
t2
D(t) = Do(l —Et St O(Do/a)) [2.16]  The outer solution is scaled as
Substituting these scalings into [2.13] we obtain [ = AS [2.27]
1 all(Dy(1 — & + t2/2 z2—-22 = aX(S). [228]
£ 4T - (Co =8 +1/2) _ 6, o(Dy/a) [2.17] °
4 HerelI(D) is negligible and Eq. [2.13] reduces to
subject to
1 a\’
0)=0 2.19
£(0) [2.19] with
which follows directly from [2.7] and [2.15]. The inner DE is not
analytically solvable for agenerHl(D) but its large asymptotic x.x' — 0. [2.30]
form is readily extracted. ST
Afirstintegral of [2.17] is A suitable solution is
! a !
te'=2 [Cauneoq) [2.20] £(8) = — AKq(S). 2.31]
where [2.18] is used to eliminate the constant of integration. whereK, is the modified Bessel function of the second kind (12)
second integral is then In unscaled variables the outer solution can be written
t 2(r) = z3° — aAKy(r/A). [2.32]

.
£(t) = ;/ Ol—fO/dt”t”n(D(t”)) [2.21]

0 For small values of its argument (12)

where we make use of [2.19]. For largd1(D(t)) restricts the K (Z) ~ —InE —C+ O(2Inz 233
integration range by vanishing. Thus fop> 1 (i.e., outside the o(2) 2 +0( ) [2.:33]
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where C= 0.57721566 is Euler's constant. Thus the innewhere B is a constant depending on the properties of the isolat

asymptote of the outer solution is

z(r) = 22 + aAln(r/2x) + C] + - --

=z + aAln (r/(Doa)"?) — aAln (Dfﬁ +aAC.
[2.34]
Comparison of [2.34] and [2.24] show that
aA= G(D,) [2.35]
and
Zo— H(Do) = 2 — aA|n<W> +aAC. [2.36]
Hence

Zo = 22° + H(Dy) — G(D@(In(ﬁ) - c). [2.37]

In terms of the AFM observable
21
X(Do) = Xoo + Do + H(Do) 4+ G(Dg)| C —In (Do) |
[2.38]
where

Xoo = 2. [2.39]

interface, viz.

als2
B =C+Inl —
w=Ct (ZA)

[2.43]

al/?
Br, = P@c) + |n(ﬁ)

while X, (= z5°) is the height of the undistorted interface at the
center.

The theoretical calculation of(X), the observable re-
sult of an AFM experiment, is performed as follows. For ¢
given functionI1(D), we solve [2.40] (or [2.41]) front =0
whereD(0) = D, andD’(0) = 0 toward infinity evaluating the
integrals

G = 2D /tdttH(D(t))
° [2.44]
H= aD°/ dttintr(D(t))
Y Jo

as we solve, untic andH have converged tG(D,) andH (D)

to within a specified accuracy. The forEéD,) is given by [2.26]
and the distanc&(D,) is given by [2.42]. Thus aB, is varied
systematically, we may plét(X) parametric irD,. We show the
results of those calculations for some model probe/drop systel
in Section 3.

3. MODEL CALCULATIONS

We have chosentoillustrate th€X) behavior of a drop/probe
system by using the electrostatic disjoining pressure alone. \
have not included an attractive term as the treatment of syste

For computational convenience, we use [2.16] to rewrite thgherer(D) has an attractive component will be discussed in

inner differential equation [2.17] as

1 (D
D”+YD’—<2—a ( )>DO=O.
Y

[2.40]

subsequent paper where the interfacial instability will be treate
The disjoining pressure is calculated from the numerical solutic
of the full Poisson-Boltzmann equation between flats for 1:

electrolyte with constant charge boundary conditions. The prol
particle radius was set atign and the drop radiuR, at 0.5 mm.

For the spherical d_rop/bubble case with a finite ragles,and The calculation ofF(D,) and X(D,) was performed by the
contactanglef., a similar analysis is employed and is presenteglgorithm discussed above for various values of the drop conte
in the appendix. The differential equation for the inner profilgngleq., the interfacial tensiofy, surface potentials at infinite

of the drop/bubble case is expressed in termP () is (from
[A.3] and [2.12])

s, 1, a all(D) .
D +¥D—<2(1+§>— v )DO_O [2.41]

so that it reduces to the planar case whgR, « 1. Indeed, we

separation/g’, ¥ of probe and drop interfaces and double
layer decay lengthg 2.

In Figs. 4a and b we pldE(Dy)/a, AX(D,) (i.e., X(Do) —
Xx) as functions of central separatidd, for Ve, = Yo, =
50 mV, 6, = 30, y = 30 dyn/cm. We note that both functions
are strongly varying functions d,. Remarkably wheftk /a is
plotted againsth X (parametric inDy) in Fig. 4c to produce the

note on comparison of the flat interface result [2.37] with théimulated AFM measurement, we observe the apparent on

drop case [A.58] that, in both cases,

X(Do) = Xoo + Do + H (Do) + G(Do)(1/2In Do + B), [2.42]

of a linear compliance regime oneeX(D,) becomes negative
(i.e., the bottom of the probe sphere is closer to the stage be
than the top of the undistorted drop). In Fig. 5, we [H¢A X) /a
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5 1.50
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S| %
= ~ 0.50 |
1
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Do (hg) AX (Ang)
1000 | FIG.5. F(AX)/aas afunction ofA X showing the effect of changing sur-
| face potential with system parametégs= 30°, y = 50 dyn/cmy 1 = 100 A
ol l anda =2 um.
|
B 000t | curves showing the effect of changing surface potential for inte
< } acting similar surfaces. Clearly the linear regime is afeature at ¢
a | surface potentials. The slope of the linear compliance region
g 20001y independent ofs,. The curves exhibit the asymptotic saturatior
} behavior at large surface potentials that is a feature of electr
3000 | | staticI1(D)’s calculated from the full nonlinear P-B equation.
{ In Fig. 6, we plotF (A X)/a for similar interacting surfaces
4000 ) ) with ¥6° = ¢5° = 50 mV, y = 50 dyn/cm, and). = 30" for
0 100 200 300 400 500 600 various values of the Debye screening lengti. We note the
D, (Ang) slope of the linear compliance region depends weakk/dnlin
Fig. 7, we plotF (A X)/a curves foryg> = ¢’ = 50 mV and
3.0 y = 50 dyn/cm for various values of the drop contact arsgle
Again we note the linear compliance region and a moderate
25
e 20
)
g 125} K-“ (Ang)
T 15
ﬁ o
> g 100¢ -
o)
= 10 % (3) -50
-30
5 075} @
0.5 < (&-10
%
0.0 : . - - . < 050}
' 43
-2500 -2000 -1500 -1000 -500 0 500 1000
AX(D,) (Ang) 0.25
FIG. 4. F(Dy)/a as a function of central separation distan&, for 0.00 ©

ve, = V5, =50mV,6 =30°, y =30 dyn/cmy~! = 100 A anda = 2 um. -600 -400 -200 0 200 400 600 800 1000
The dashed vertical line denotes the wrapping distabge,(b) AX(Dy) (i.e.,

X(Do) — X&) as afunction of central separation distariag, for xpgf = wg; = AX (Ang)

50 mV, 6. = 30°, y = 30 dyn/cmx ! = 100 A anda = 2 um. The dashed

vertical line denotes the wrapping distané®,. (c) F(D,)/a and AX(Do) FIG. 6. F(AX)/a as a function ofA X for various values of the Debye
plotted parametrically as a function of central separation distaBge,for  screening lengtk —1 with system parametenﬁgf = 1//320 =50 mV, 0. = 30°,

V&S = Y5 =50mV,6c = 30°, y = 30 dyniemyt = 100 A anda=2pm. y = 50 dyn/cm, anch = 2 um.
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FIG. 7. F(AX)/a as a function ofAX for various values of the drop  FIG.9. F(AX)/2ryaas afunctionfﬁXforyarious values of with sys-
contact angl@. with system parametensgf — ¢820 =50mV,«1 =100 A tem parameter$gf = 10820 =50mV,k~* =100 A 6. = 30°, anda = 2 um.
y =50 dyn/cm, and = 2 um. . L
surface tension over and above the explicit linear depender

strong dependence of the compliance (slope) on contact angj\fQ!Ch we removed by plotting /(2I1y a).

In Fig. 8, we plotF (A X)/a curves for dissimilar interacting sur-
faces with surface potentialg;” andy,g as shown fog, = 30°

andy = 50 dyn/cm. The disjoining prt_assul’é(p).for dissimi- We test here the assumption that the distorted drop/bubble
lar surfaces has more structure than in the similar surfaces CAsCes mechanically as a Hookean spring. We see from [1.7] a

a_nd cannot be yvell approximated at smaller separ.ations b)(h@ definition [2.1] ofX(D,) that we wish to test the hypothesis
single exponential decay as it can at larger separations. NeygL,

theless, the linear compliance region still manifests itself as a

weak function of surface potentials. Clearly linear compliance is F(Do) = —K(AX(Do) — Do), [4.1]

not associated just with approximately exponential force laws.

Finally in Fig. 9 we plotF(AX)/2rya as a function ofAX WhereK is a constant for alD, values. We note that the point

for y5° = ¥, = 50 mV,6; = 307, and various values of and AX — Do = 0 corresponds to infinite separation of drop anc

we note a very weak residual dependence of the compliancefsgbe. At large separation the disjoining pressure (along wi
G(D,) andH (D)) vanishesand X ~ D,. InFig. 10, we replot

4. THE DROP AS A HOOKEAN SPRING

20
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16} W01 /‘u02 o . oo
' a (a) - 80/20 mV I Voo =V o
1.25 Y
g 147} (b) - 60/20 mV (2)-80m
% 12l ¢ (©) - 40/20 mV = e a (b)-jg m\\;
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B 10} (@) - 10120 mV g Ed))'fg m\‘;
3 B 075 ¢-om
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0.0 —
-1000 -800 -600 -400 -200 O 200 400 600 800 0.00 . . .
-800 -400 -200 0
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AX(®D,) - D, (Ang)
FIG. 8. F(AX)/a as a function ofa X for dissimilar interacting surfaces
with surface potential$gf andl/fg; for k1 = 100,6, = 30°, y = 50 dyn/cm, FIG.10. Replotthe curves of Fig. 5 showing the effect of changing surfac
anda = 2 um. potential as-/a versusA X — Do.
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FIG. 11. Replot the curves of Fig. 6 for various ! values asF/a versus FIG.13. Replotthe curves of Fig. 8 for dissimilar surface potentialk gs
AX — Do. versusA X — Do.

the curves of Fig. 5 af/a versusAX — D,. The curves for . e
lower surface potentials show a weak dependence on surf ggl_note the r_narkgngi |£§(en_5|t:\:/_lty tgo(tjhe valu;g]_/l(;ii[ven thgught
potential while curves for higher surface potentials collapse in € linear region of(AX) in Fig. oes exhibit a moderate

a single curve over most of their length. Again this behavior ependence. . .
We note from these plots that a Hookean force law is valit

indicative of the asymptotic saturation at higher surface pote]‘n—I N derate distorti ith perh lioht st th
tials for electrostatic force laws as discussed in Section 3. [ 'OW to moderate distortions with perhaps a stignt strengthet

Fig. 11, we replot the curves of Fig. 6 for various! values ing of the spring constant as distortion becomes large. As stat

againstA X — D, The moderate dependence of the complian&?ove the present theory is restricted to lateral deformation

onk~* should be noted. In Fig. 12 we replot the curves of Fig.t‘;'te (:rder (iD‘t’)l/tz' we note(’;hti depend%rlcef(iLthz_spr_in_g con
for various contact angles as a function oA X — D,. There stant on contact anglé; an € range - of the disjoining

is again the strong dependence of compliancé.otn Fig. 13 pressure, and the linear dependence on interfacial tension

we replot the curves of Fig. 8 for dissimilar surface potentiaighe spring constant appears to be insensitive to the magnitu

as functions ofA X — D, and we note a similar behavior as inof the disjoining pressure for higher surface potentials. In th

Fig. 10. In Fig. 14, we replot thE (A X) /27y a curves of Fig. 9 next section, we develop a tentative theory for the Hookean r

(wherey was varied) as functions of the distortianX — D, sponse Pf a drop, which goes some way toward explaining ar
guantifying these features.

0.0150
a A
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FIG. 12. Replot the curves of Fig. 7 for various contact angleasF/a FIG. 14. Replot theF (A X)/2rya curves of Fig. 9 for various values of
versusA X — Do. asF/aversusAX — Do.
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5. THE DISJOINING PRESSURE ORIGIN Since the second and third terms in [5.7] are already insen:
OF LINEAR COMPLIANCE tive to the magnitude dfi(D,) the observation of insensitivity of
the effective spring constant of the drop to the surface potential
Useful light may be shed on origins of the linear compliangnmediately explained. The second term varies logarithmical
by a rescaling of the inner profile equation [2.41]. We introduGgith the range of the disjoining pressure and may well explai

the variable the observed weak dependencecoh. Itis clear from [5.7] that
12 the contact angle dependence is contained solely and explici
12| 9InId inthe B term since the second and third terms are independent
x =D, |:_8—D o ] t Bl the particulars of the outer solution. We note that the third tert

retains a dependence on surface tension sib¢ satisfies a
— r 5.21 differential equation ([2.40] or [2.41]) which explicitly contains
172 [52] | .
(a[— BEI’HDH 5 ]—1) y but fro'm the numerical results of Section 4, thdependence
° of the third term must be very weak.
eIt is clear from the inner equation for the drop profiles,
g. [2.41], that wherD, = D,, where the wrapping distance

which amounts to using the true range of the disjoining pl’eSSLE
instead ofD, in the scaling of the radial distance With this

scaling is defined by
X 1 1
S — N(D,) =2y| -+ —) [5.8]
G(Do) = : dx XIT(D(x)) [5.3]
V(_azl)non DO)/O (a R,
1 1 | the solutionD(t) is
H(Do)zG(Do)|:——InDo——In(—a ni )
2 2 9D o D(t)= D, (0 <t < o0) [5.9]
I (ix xIn xH(D(x))} 5.4] and
Jo dx XIT(D(x))
G(Dw) = H(Dw) = Q. [510]

so that from [2.42]

For constant charge interactions wheD) divergesa® — 0

9InTI ) a wrapping distanc®,, will always exist. For low potentials
D

aD

and high surface tensions, th#, value for constant charge
« interaction will be small. If the disjoining pressure scales a
Jo dx xInXTI(D(x)) [5.5] y/Do (>2y/a) (as is the case for dispersion forces), then th
fox dx xI(D(x)) | ' wrapping distance could be at a considerable separation distal
just as the disjoining pressure begins to rise. For dissimilar st

X(Do) = Xoo + Do + G(D0)|:B - %In(—

We may therefore write (using [2.26]) faces under constant potential, there is a maximum repulsi
electrostatic pressure and ultimate attraction. This sdmi(&f)

F(Do) = —K(Do)[X(Do) — Xs — Do], [5.6] curve canalso be achieved by adding an attractive interaction

in classical DLVO theory) which ultimately dominates the tota

where interaction. The present analysis is applicable to these syste

only up to theD,, values of the maximum repulsive pressure (se

2y 1 aInTI fo" dx xIn xI1(D(x)) Fig. 8). For smalleD, values, these sorts of disjoining pressure:
K (Do) =—-B+ > In{— 9D - [ dx xI1(D(x)) require a an additional treatment to monitor for the cantileve
° D 0 and interfacial instabilities, which are inherent. Such cases w

[5.7]1 be discussed in detail in a subsequent publication.

We note in passing that the addition of ionic surfactant to th
This is an exact result, which suggests (but does not prove) thadbe/oil drop system has a twofold mechanism for encouragit
a linear compliance region exists providaX(D,) > D, and wrapping to occur. It enhances both interfacial surface potentic
that the system is Hookean. To prove this we must be ableand tends to make them equal (i.B(D) for similar surfaces
argue thaK (D,) is sensibly a constant. We know from the nu=T1(D) for dissimilar surfaces) and it lowers the surface tensio
merical results of the previous section that such an argumefithe drop.
must be able to be made in view of the linearity of the Hookean We see thatD,, is a parameter that can range widely de:
plots under a fairly broad range of conditions for small to mogbending on the nature of the disjoining pressure funcii¢b).
erate deformations. Physically the wrapping distance is such that the repulsiv
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10 5 moderate central deformations of the drop so that Eq. [1.7] fc
og‘:‘“g) D, is valid in this regime. As we have demonstrafglis not
i constant in the apparent linear compliance region but, expel
50

mentallyl andl, are substantially greater th&x in this regime
so thatD, can be neglected in Eq. [1.7] to produce the linea
compliance equation.

Drop Profiles

d= <1+ E—(j)_l(l — ). [6.1]

The intercept,, determined from the linear compliance region
will be systematically inaccurate by an amount of orderEhe
values pertaining to that region. Having obtained a value-pf 1
K¢/Kg andl,, we could use [1.7] to obtaid, values outside
r/(aD,)"” the constant compliance regime but they would be too small t
the amount thalt,, is in error.

FIG. 15. Drop profiles, D(t) — Do)/Do, as a function of dimensionless 1t 5na examines thé= (A X) curves calculated in Section 4
radial distance,/+/a Dy, for the calculations pertaining to Fig. 4 for varioDg L . . .
values.D(t) was calculated by solving the ordinary differential equation giveﬁlboye' it will be nOted_that the “r_‘e_ar compllan_ce region doe
in Eq. [3.54]. The dots denote the point at whiBK(Eq. [2.44]) is equal to 90% NOt intercept theA X axis at the origin but at a distance on the
of its limiting valueG(D,) for eachD, value. positive side comparable to tiiy values pertaining to the linear
compliance region. This is precisely the systematic error we ca

disjoining pressure is large enough to cancel the Laplace pr&st avoid in attempting to renormalize the AFM measurement
sure difference 2/ R, of the undistorted drop and then to bendo obtain absolut®, values. Equation [1.7] is not useful except
the interface in the opposite direction with an additional pressiitvery largeD, values where the error would be relatively small.
afVD 5 = %V(lJr O(D,,/a)) so that the liquid interface con- The Ducker equation [1.9] exhibits a similar problem in tbat
formeto the shape of the probe particle. In Figs. 4a and b igenot knowna priori and it is not negligible. Of course, [1.9]
mark the wrapping distand®,, that pertains to that disjoining Should not be used to obtali, since we have demonstrated that
pressure, surface tension, and sphere radius. Clearly the linRaican be substantially larger thdh, and is varying over the
compliance region has set in B, values much larger thab,,.  linear compliance region.
This is a feature common to all cases examined. So the onset df is our opinion that the best that can be done is to measu
wrapping is not the origin of the linearity assumed in the cor=(X). Any attempt to obtairD, values must be made in the
ventional renormalization of AFM measurements and discuss@@nner outlined in this paper, viz. assume a parametefi¢ey
in Section 1 above.inear compliance does not imply constanform and calculate a theoretice(X) curve which can be fitted
compliancg Do = D,,). to the measured curve to obtain the best fit parameter valu
Nevertheless, the concept thatsdecreases, the drop pro.The D, values are obtained in the course of that calculation. W
file flattens and then inverts (witB(t) becoming flatter and Will examine such a fitting procedure in a future publication.
the flattened region extending further from the center) is the
root cause of the linearity. In Fig. 15 we show drop profiles, APPENDIX
(D(t) — Do)/ Do, for the calculations pertaining to Fig. 4 for
yariousDO .valut_as_, yvhich clearly illustrates the effect for atyp- The geometry of the probe/drop case is shown in Fig. A.]
ical repulsive d|qu|n|qg pressure. It follows that, as the profilgere we assume the drop (bubble) in isolation has a spheric
flattens, the contributions to tHe(Do), H(D,) integrals from - shape with radius of curvatuf, and a radial extent on the stage
the flattened regior> ~ D, are becoming dominant. This isy, we assuma < R, < A so that gravity may be neglected.
illustrated in Fig. 15 where we mark the position along eagks the probe is pressed into the drop, the drop will bulge b
curve at whichG (Eq. [2.44]) is equal to 90% of its limiting 3 very small amount. We assume that the contact line does r
value G(Do). This observation suggests a variety of approXinove during this displacement so thais fixed. The existence

mate methods for evaluating the third term of Eq. [5.7] for thg finite contact angle hysteresis for experimental systems wi
drop “spring constant.” We will not pursue this matter furthegnsure this. The free energy is now

here.

r
6. IMPLICATIONS FOR THE AFM MEASUREMENT F=2r / drr [y(l + Z/2)1/2 + E(D(r, Z))]
0

We have demonstrated numerically and analytically that the
drop/probe system behaves as a Hookean spring for small and + shape-independent terms. [A.1]
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using [A.4] is
zZr r?
+— = —— 4 1(r), A.6
T = g0 [A.6]
where
1 r
rer)= —/ dr rI1(D(r)). [A.7]
v Jo
Rearranging [1.10] we obtain
A
o/ r]
,___EHCTRAT(E) "
FIG. Al. The geometry of the probe/drop experiment. The drop has an z= {r2 — (—r2/R +I(r ))2}1/2‘ [A-8]
undistorted radius of curvatur®,, such thah « R, < A so that gravitational
distortion can be neglected. (The deformation is not shown to scale.) Equation [A.8] is the start of the process of generating inne

and outer solutions for matching purposes. With the usual inn

to z(r) as previously, but we must now constrain the variatigR®comes
with the constancy of the drop volume

/ a I'( Do
g=——t+ + O(—), [A.9]
R, R, R Dot R
V =2n /drrz—/dr rz|, [A.2] where we regarll/ D, as, atleast, a®(1) quantity. To see why,
0 I we write [A.7] as
where R, is the maximum radial extent of the drop [A.32]. re) a (aDo)"*t
Introducing the undetermined multipliek and minimizing D. = / dt tri(D(t)). [A.10]
F — AV we obtain (11) o ¥
d zr The disjoining pressure scales as
+y———== ) —rI(D) = —Ar A.3
ydr((1+z’2)1/2) () [A-3] v
(D) ~ b f(D/Dy) [A.11]
and the trivial boundary condition °
so that
Z(0)=0. [A.4]
(aDo)™2t
r'(t) a
The upper sign in [A.3] pertains for a drop which makes an acute D. ~ D, dttf(D(t)/Do). [A12]
contact angle with the substrate. For obtuse contact angles the 0

upper sign pertains to the upper part of the drop and the lower ]

sign to the lower part between the contact poist r1 and the 1hus how largéd’(t)/ D, can be will depend on the value 6(1)
maximum radius = R, (see [A.32]). Again we have made the/Vhich for someD, values will be small. .
approximations Do/a < 1) discussed in the previous section_ A second integral of [2.7] using the boundary condition [2.19
in deriving [A.2]. Physically, [A.3] asserts that the local pressupdelds

difference (Laplace pressuedisjoining pressure) should be a

t
constant everywhere on the interface—the constant, of course, g(t) = _it2 + 1 / gr‘(t)
being the difference ininternal and external liquid pressures. For 2R Do Jo t
convenience we write the parameteias a., a !
=——t"+— / dt't'TI(D(t))(Int — Int) [A.13]
2R Y Jo
A [A.5]
T R’ ' with the aid of [2.15] and a change of order of integration. Thu

we have, for large,
where the constarR is very close to the undistorted radiis
but the difference is important as discussed belRwloes not () = — 42— H (Do) n G(Do)
have a geometric interpretation on Fig. 4. Afirstintegral of [A.3] 2R Do Do

Int+..-4, [A.14]
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where H(D,) and G(D,) have been defined in Section 2. In

. . C ds
unscaled variables, the outer form of the inner solution is =
F(K.q) = s¢ / & g _D)e [A.25]
r? r
=2z ———H(D G(Dy)l cee
(r)=12 °R (Do) + G(Do) n<(aDo)1/2>+ + ) / ds € .
[A15] ’ q - S+ (S-ZF _ 52)1/2(52 _ 53)1/2 '
S
For the outer solution we adopt the scalings To match this solution to the inner solution, we consiglén
ranges. € s« s; (i.e.,G <« r <« R).From[A.18]and[A.19]
r=(GR"Y?s r)=(GR"*«(9) [A-16] it follows that
and recognize thE(r), in this distance regime, can be replaced s; = (R/G)Y?(1+G/R+--) [A.27]
by I'(c0) which from [A.10] is simplyG(D,) which we restrict 12
here to positive values (predominately repulsive potentials). The s-=(G/R7(1-R/G+--). [A.28]
profile equation becomes, for the outer region,
Hence
+(1—-s?) 2 2
"= =1-0((G/R A.29
* (2 — )2(s? — s2)1/2’ [A.17] g G(( /R [A.29]
SinK(s) = 1 - —=s?(1+ O(G/R)) [A.30]
where 2R
Sin K1) = (1 - (r1/Ry)A)Y2(1+ O(G/R)), [A31]
S [A.18]
R where
S+ = S +2 [A.19]
R, =(RGY?s, =R+ G+---. [A.32]
ith soluti
with solution Note that forg® ~ 1 (12),
Sy Sy
_ / ds(s® — 1) f ds(s® — 1) E(K,q) = SinK+--- [A.33]
(2 — VY —2)2 T [ (2 — A)V2(s? — $2)V/2 1 (1+SinK
St F(K.a) =3 |n<1+7!nK> [A.34]
[A.20] —Sin
Substitution of these limiting forms in the exact equation [A.22
where :
yields
_ 1/2
st =r/(GR)Y“(>1). [A.21] R\ 12 Gs? ri \2\Y
x(s) = G 1- SR T 1- R,
In [A.20] the upper sign refers to acute drop profiles and the
lower sign refers to obtuse drop profiles. Fortunately the inte- G\ V2 Ge?
gral [A.20] can be evaluated exactly in terms of the incomplete <ﬁ> [——I <4R2>

elliptic integrals (12) E and F. We have that

_| <1+(1—(r1/R+)2)1/2>]+ y [A.35]

x(s) = s+ E(K(s). q) - éF(K(S)» a) — (1= (/R )A)V?

1 which in unscaled variables can be written as
- (S+E<K(sl), )~ - FK(s). q)) [A.22]

20r) = R<1=F (1_ <r_1)2>1/2_ f_z)
where R, 2R,
2 _ 2\ 1/2 1 r2 1 (14— (/R.)?)Y2
K(s) = Sin_l(jr ;) [A.23] + G|:§ ln(ﬁ) + 2 In(]_ — -/ R+)2)1/2)

>
Q*=1- ( +> [A.24] +1F (1 — (%)2)1/2} T [A.36]
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Comparison of this form with the inner solution [A.15] yields so that

2o = R(LF (1~ (r1/R:))"?) + H(Do) + G(Do)
aDo

1 1 [1+(1— (/R
. {E'”( )i"”[l—(l—m/R)Z)l/z
+1F (1— ( £

2
) 2) 1/2 }
We now write

R,
R, =R, +8R+G

and use the fact thaR/ R, is O(G/R) to rewrite [A.37] as

Zo = Ro(1F (1= (r1/Ro)?)"?)

1
(1 (r/Ro)?)™?

1 aD,

} + H(Do) + G(Do)

+8R[1:F
1, (14— (r/R)HY?
'”( >i"”<1—(1—(r1/Ro)2)1/2
1

2
¥ A= tyryp) }

X{E 4R?

+

Vi

nfdrr(—;JrF(r))er
0

ro/(aDo)"/?

a
dtt<—ﬁt2+r/Do>

)

= —naD;
[A.37]

0

_v( 2 2
_ V<RO)O«DO/RO) ) [A.44]

[A.38] where the drop volum¥ is O(R®). To calculates R, the drop

volume must be calculated ©(D,/R,). It follows thatV, can
be neglected to this order and hence (using the outer scali

[A.16])
_ 3/2
V = 7(RG) { S/ <

7 ds €(s? — 1)
+
(s%

ds &(s® — 1)
— $2)L/2(s2 — §2)1/2

)

[A.39]

}L--., [A.45]

where we use the outer form [A.17] for the scal&d
Performing the integrations we obtain

V = 7(RG)*?[I(so) T I(s1)],

where we have neglecteé@((G/R)?) terms. In deriving [A.39]
we have assumed that-1(r1/R,)? > G/R,. This will not be
valid for contact angles very close ty/2 (i.e.,r; = R,) and
a separate analysis for this case would need to be made. SWﬁ%re
the result which we will derive for contact angles such that 1
(r1/Ro)? > G/R, will be valid for |9 — /2| > (G/R) and
since this result does not diverge &s— 7 /2 from above or
below we do not examine this limit here.

[A.46]

39 = 3 — S~ £V L FK(). 0

2R
The last three terms on the RHS of [A.36] @D,) terms. + (E + 1) %E(K(S), ) [A.47]
Clearly we need to calculatR to complete the solution. The
undetermined multiplier 2/R is determinedh postioriby the Using the limiting forms [A.29] to [A.34] we obtain
volume constraint. By integration by parts [A.2] may be written
as R\*?/2 G
2
I(s0) = (6) (5 + 5 +O(G/R) )) [A.48]
V =V +V,, [A40]
and
where 3/2 2 2
R\¥?/2 1/n G 1/,
: CRUNGEOR )
Vi =/ drr2z [A.41] G/ \3 3\RJ ~RLU 3\R
0 r 2\ 1/2
and + O((G/R)2)> (1 — (E) > . [A.49]
R, R,
Vo = —n/ drr22/+7r/ drr?zZ, [A.42] Hence
Fo E 2 2\ 1/2
2 1 Il r G
wherer, is a value ofr in the matching regionG <« r, < R). V=R’ |:§ + §<2+ (E) ><1 - (E) ) + R
In the region O< r < ro Z is given by (from [A.9])
o) 1/ 14 2 r 2\ 1/2
, r r 1 1+ - — I A.50
et e (@) (R)) )] me
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using [A.37] and [A.38] we obtain

2 1
nR§|:§ — cost; + 5cos°’9C

CHAN, DAGASTINE, AND WHITE

Substituting in [A.39] yields

2= 7+ H(D) + (00 5 n( 53¢ ) + P00 155)

V = 4R2
+5R —2+4 2c0s0; + 3 coS O — 3 cost O, where
Ro CoSH, 2" = Ry(1 — cosb,) [A.56]
G [ =2+ cosh. + 4 co26, — L cod 6, is the central height of the undistorted drop and
~ 3 3
R, |: COSH, ] 1 1+ Cosf. 1 - Cost,
P@:) = =In .
) =3I T —Coss. ) t 2= 1/3c0%6, - 1/3c090]
+0(G /RO)Z] [A.51] [A.57]
Substituting this result in [2.1] we obtain
using the result 1 aD
X(Do) =2y + Do+ H(Do) + G(Do){ - In<—2> + P(ec)}.
o\ 2\ 1/2 2 4RS
COSH, = :i:(l - <é> ) , [A.52] [A.58]

where 6, is the contact angle of the undistorted drop on the
substrate.
Since the drop volume must also equal the undistorted volumé,

viz, 2.
3
L 4.
V=nu R§(2/3 — cosf, + 3 cos 9c>, [A53] °
6.
7.
we see that
8.
SR s [—2+ cost. + 3 cos 6 — 2 cos O]
N [-2+ 2cost; + £ co 6 — £ cos' 6] 1?)'.
cOSH, 11.
=-G|1- . [A.B4] 12
[ —2+1/3cog6, + 1/300§<9J [ |

REFERENCES

Ducker, W. A., Xu, Z., and Israelachvili, J. Nangmuir10, 3279 (1994).
Fielden, M. L., Hayes, R. A., and Ralston,Lngmuir12,3721 (1996).

. Butt, H.-J.J. Colloid Interface Scil66,109 (1994).

Preuss, M., and Butt, H.-Langmuir14,3164 (1998).

. Mulvaney, P., Perera, J. M., Biggs, S., Grieser, F., and Stevens, G. V

J. Colloid Interface Scil83,614 (1996).

Snyder, B. A., Aston, D. E., and Berg, J. Cangmuirl3,590 (1997).
Hartley, P. G., Grieser, F., Mulvaney, P., and Stevens, GLawgmuirl5,
7282 (1999).

Miklavcic, S. J., Horn, R. G., and Bachmann, D.J.Phys. Chem99,
16357 (1995).

Bachmann, D. J., and Miklavcic, S. langmuir12,4197 (1996).
White, L. R.J. Colloid Interface Sci95, 286 (1983).

Solomentsey, Y., and White, L. R.,Colloid Interface Sci218,122 (1999).
Abramowitz, M., and Stegun, I. A., “Handbook of Mathematical Func-
tions.” Dover Pub., New York, 1965.



	1. INTRODUCTION
	FIG. 1.
	FIG. 2.

	2. DEFORMATION OF THE LIQUID INTERFACE
	FIG. 3.

	3. MODEL CALCULATIONS
	FIG. 4.
	FIG. 5.
	FIG. 6.
	FIG. 7.
	FIG. 8.
	FIG. 9.

	4. THE DROP AS A HOOKEAN SPRING
	FIG. 10.
	FIG. 11.
	FIG. 12.
	FIG. 13.
	FIG. 14.

	5. THE DISJOINING PRESSURE ORIGIN OF LINEAR COMPLIANCE
	FIG. 15.

	6. IMPLICATIONS FOR THE AFM MEASUREMENT
	APPENDIX
	FIG. A1.

	REFERENCES

