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Abstract: We present a method of parallelizing flat histogram Monte Carlo simulations, which give the free energy
of a molecular system as an output. In the serial version, a constant probability distribution, as a function of any system
parameter, is calculated by updating an external potential that is added to the system Hamiltonian. This external potential
is related to the free energy. In the parallel implementation, the simulation is distributed on to different processors. With
regular intervals the modifying potential is summed over all processors and distributed back to every processor, thus
spreading the information of which parts of parameter space have been explored. This implementation is shown to
decrease the execution time linearly with added number of processors.
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Introduction

Since its conception, the Monte Carlo (MC) algorithm'~ has been
a major numerical tool for solving problems in the physical sci-
ences.” The trends in hardware for high-performance computing is
towards parallel commodity processors, either in loosely con-
nected cluster architectures or more integrated shared memory
processors, because the performance to cost ratio favors such
architectures to purpose-built supercomputers. In this work we
introduce a method to effectively deploy MC on parallel comput-
ers.

A simple way of utilizing parallel machines is to replace a
simulation running for N, iterations on a single processor by
spreading the simulation over N, processors, each running for
N;/N,,- This type of trivial parallelism always invokes a cost for
conventional Metropolis MC because there is a equilibration time
involved with every simulation, during which no statistics can be
collected.® A rule of thumb is that the equilibration time is about
30% of the total simulation time.” Because equilibration needs to
be run for every independent process, this overhead cannot be
eliminated by this trivial method of parallelization.

Parameter or data parallelism, in which different sets of param-
eters are run on different processors, is another form of trivial
parallelism. It suffers from the obvious drawback that N, differ-
ent parameter sets are needed. Many problems will only involve on
the order of 10 such value sets, thus rendering it impossible to
effectively perform a parameter parallel calculation with a large

amount of CPUs. Also, for large systems, there can be a consid-
erable period of waiting time before good statistics can be accu-
mulated, rendering the project cumbersome.

Domain decomposition is a common parallel method, in which
particles are divided on different processors according to their
geometrical positions.> This approach is not suitable for systems
with long-range interactions, for example, Coulomb interactions,
because no cutoffs can be employed. Parallel expanded ensembles
is often used for problems where the energy dominates the entropy.
An example is parallel tempering, in which simulations are per-
formed at different temperatures to speed up the convergence of
the lowest temperature system.®’

In this report we present a general way to effectively parallelize
a Monte Carlo algorithm that also gives the free energy of the
system as a direct output of the simulation. Traditional Metropolis
MC samples phase space weighted by the Boltzman probability
distribution p ~ exp(— U/kT), where k is the Boltzmann constant,
T is the temperature, and U is the Hamiltonian of the system. In the
canonical ensemble, conventional simulations do not give the free
energy (or the underlying partition function) directly, but rather
derivatives of the free energy. The most straightforward way to
obtain the free energy is to perform several simulations while
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varying one parameter (e.g., the temperature) and then integrate
over that parameter, a method commonly referred to as thermo-
dynamic integration. More elegant simulation schemes used to
obtain the free energy include thermodynamic perturbation,® um-
brella sampling® and expanded ensembles.'®

Recently, so-called flat histogram techniques have evolved as a
technique to calculate the free energy directly in a MC simula-
tion."'~'® Flat histogram techniques resemble umbrella sampling
in that an external potential is added to the system energy. In
contrast to umbrella sampling the external potential is not given as
an input to the simulation but is modified throughout the simula-
tion to achieve an equal probability (flat histogram) of visiting all
values of any chosen parameters. At the end of the simulation the
external potential is directly related to the free energy. As with
umbrella sampling this method is most useful for systems that have
a complex free energy landscape, that is, for systems where tradi-
tional Boltzmann guided sampling would lead to extremely long
convergence time.

One proposed method of parallelizing simulations utilizing the
free energy method is to impose artificial constraints and manually
allocate the required parameter space onto different processors.'?
Although this could be effective in some cases, it would put
restraints on the use of effective global moves, which is known to
be able to speed up simulations considerably. One example of a
global move is the pivot rotation commonly used in polymer
simulations.'®*® Also, the different regions of parameter space
need a certain degree of overlap to fit the simulations together, and
this may induce a substantial overhead when many processors are
used.

The concept introduced in this report is to let every processor
perform calculations in any region of parameter space. With reg-
ular intervals the processors communicate and the algorithm de-
cides where more calculations need to be performed. This is
propagated out to the processors. A weight function (histogram)
directs the calculations towards the areas of parameter space that
need to be explored. Fixed parameter boundaries are not given in
which every processor performs its calculations; rather, the calcu-
lation of a global (over all the processors) weight function ensures
that the parallelization is done effectively.

To illustrate the method we have chosen to calculate the free
energy as a function of the end-to-end distance of charged poly-
mers. After a description of the model and method, we report
results of parallel simulations scaling up above 32 processors.

Simulation Method

The polymer model is a simple bead-and-stick model with N, .,
hard sphere monomers, with a diameter of 4 A connected by fixed
length bonds (6 A). To test the model on a complex system,
charges are added to the polymer. For the charged polymer, known
as a polyelectrolyte, every monomer has a charge of +1, and N,
hard sphere counterions of the same size as the monomers, with a
charge —3 are included to keep the system electroneutral. Triva-
lent counterions interact strongly with the charged polymer back-
bone and will collapse the polymer. This feature makes the sim-
ulation converge slowly when conventional MC is used. All
particles are enclosed in a spherical cell and the electrostatic

interactions are calculated with Coulomb’s law. The total electro-
static energy is given by
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where |r; — r;| is the distance between particles i and j, g, is the
charge of particle i, g, is the dielectric permittivity of vacuum and
¢ is the relative dielectric constant of the solvent. In this so-called
primitive model the solvent only enters by screening the electro-
static interaction by e. Here we use the value for water, ¢ = 78.

The polymer is moved with a pivot move'®?° and the small
ions by simple translation. The simulations are carried out in the
canonical ensemble, and all moves are accepted according to the
normal Metropolis MC rules.' Here we define one MC iteration
as 10 X N, .(1 pivot + N_../2 translations). As a measure of the
polymer conformation, the end-to-end distance R,,, defined as the
distance between the first and last monomer on the chain, is used.

A straightforward way of calculating the free energy or poten-
tial of mean force (PMF), w(R,,), in a normal simulation, is to
simply calculate the probability of finding the system at a certain
end-to-end distance p(R,,.), because the PMF is related to this
probability by

mon'

w(R,) = —kT'In p(R,,). (@)

But because the probability of visiting high energy states is low,
configurations far from the average R,,, that is, the extended or
compressed configurations, will be sampled infrequently if at all
during a simulation. However, by adding an appropriate penalty
function U* to the normal, undisturbed Hamiltonian U it is pos-
sible to sample all states of interest with equal probability.'"'?
Generating a uniform probability results in''-'>'#

where C is a physically unimportant constant setting the zero level
of the free energy. More details of the model and the serial
algorithm can be found in earlier work concerning polyelectrolyte
behavior.'®

To construct a U* that will give rise to an uniform distribution
of end-to-end distances the function U*(R,,) is discretized over
R, into equal size intervals. The number of bins used is between
100 and 1000. At the start of the simulation the penalty function
U* is taken to be uniform. Every time the end-to-end distance falls
within a particular interval of R, the corresponding U* is in-
creased by a certain value SU*. This ensures that the distribution
function p* ~ exp[—B(U + U*)] will approach a con-
Stant.l 1,12,18

A technical problem is that keeping 8U* constant during the
full extent of the simulation will lead to poor statistics. The
difference in energy before and after a MC move will be calculated
as AU + AU*. When the distribution function becomes uniform,
U* will start to be updated equally over all R,,, and the fluctua-
tions in AU* will dominate and obscure the information in AU.
This problem is circumvented by decreasing the penalty as the



74 Khan et al. « Vol. 26, No. 1 « Journal of Computational Chemistry

simulation progresses.''"'* In this article the choice for SU* is
0.1kT to 0.001kT at the beginning of the simulation. Following
the prescription of Wang and Landau'? the simulation is run until
p*(R,,) is “flat,” when dU* is updated according to SU*., =
6U*/2. “Flat” is defined by all values of p*(R,,) being within 6p
from the mean {p*(R,,)), where dp is between 0.1 to 0.35 de-
pending on the complexity of the system. When 8U* is updated
the histogram containing p*(R,,) is reset to zero and a new
histogram is collected for the new value of 6U*. The simulation
goes on until 6p reaches a predecided number, normally between
107> and 1073

In the parallel version of the free energy algorithm, N,
processors run identical versions of the program but with different
initial configurations (actually only the initial random number
seeds are different). Every process runs independently except that
at certain intervals the processor summed PMF, XY v (R, ,), is
distributed to all processors. Each process then continues indepen-
dently, but with the global PMF. The idea is that every process
does not have to explore the full PMF as a function of R,,, but
together they will, because every now and then the processes tell
each other which R_, they have visited.

In the same manner the processor averaged distribution func-
tion

<I7* (Ree)>ng“ = Ni z p?(Ree) (4)
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is gathered and this average is checked against the flatness criteria.

The interval between interprocessor communication is an input
to the simulation. If the interval is of the same size as the time it
takes to run the total simulation, the different processors will not
be connected, resulting in N, independent simulations. Obvi-
ously, communicating too often will slow down the simulation. In
this work we report on results where communication is performed
every MC iteration (as defined above). The choice is motivated
from the structure of the original serial program used, for which it
is suitable to communicate at any multiple of an MC iteration.
Initial testing of the system used here showed that the execution
time did not vary with this multiple down to one MC iteration. Of
course, for smaller problems, where less time is spent in every MC
iteration, the interval between communication may have to be
increased, which can effect the resulting efficiency of the algo-
rithm. In any case, the method is envisaged to be used for large
systems where a single CPU cannot meet the computational de-
mand in reasonable time.

Results and Discussion

First, the results using the parallel PMF method is compared with
conventional MC for the case of an uncharged polymer. In Figure
la the distribution of end-to-end distances, p(R,,) is calculated
from the PMF using eq. (2) and compared with results from the
same simulation without adding a penalty, where p(R,,) is calcu-
lated directly, in the standard way. The two methods lead to
distribution functions with the same shape. The PMF method is
very effective in comparison with conventional MC methods near
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Figure 1. (a) The probability distribution function of the end-to-end
distance R,, of an uncharged polymer with N = 240. The thick
solid curves are from free energy simulations (via the PMF) run on
Npu = 16 processors, and the thin fluctuating curves are from con-
ventional MC. The curves that are on top of each other are run for the
same number of iterations (i.e., every processor runs 1/16 of the
iterations in the parallel algorithm). From top to bottom the number of
iterations are 8, 4, and 1 X 10°. The probability curves for the first two
cases have been displaced vertically for visual clarity. (b) The potential
of mean force as a function of R,, for a polyelectrolyte with N = 63
and trivalent counterions. The different curves are the PMFs when the
end-to-end distribution is deemed flat with a certain U*. The original
update is 8U% = 0.001kT and the simulation is run until SU* =
2718U% = 6 X 107 *kT. This simulation was run on N, = 16
processors. Only the last eight updates are shown.

phase separation, because conventional MC cannot sample over
phase space with high free energy barriers, but even for the simple
case of an uncharged hard sphere polymer, the PMF method is
found to be useful.

To clarify how the PMF evolves in the simulation, the PMF of
a polyelectrolyte is plotted in Figure 1b at updates of 8U*. At the
early stages of the simulation, for large 6U*, the PMF takes on the
correct form on a large length scale but depicts some fluctuations.
For decreasing 6U* the curve becomes progressively smoother
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Figure 2. (a) The number of iterations per CPU before an update of
dU* is made. For each N, Eleven simulations have been performed
and the mean is shown. The error bars show the standard deviation. It
should be noted that the lines are just a guide to the eye, because U*
is actually constant between the points. (b) Same as (a) except that the
y-axis now shows the total number of iterations before an update of
dU* is made. The curves for different N, have not been labeled,
because they all are on top of each other within the statistical errors.
The system simulated is the same as accounted for in Figure 1b.

because the crude form of the PMF created by using a large 6U*
is filled in by using smaller 8U*. The distance between the curves
in Figure 1b, corresponding to 8U* = 277 X 0.001k7T and SU*
= 278 X 0.001kT, is around 2kT. This means that about 200
iterations/bin are performed before the update. The number of
iterations needed before the flatness criteria is reached and 6U* is
updated is shown in Figure 2, and it is evident that the smaller the
dU*, the longer time it takes to reach the flatness criteria.

The update of 6U* is a measure of how fast the simulation
converges because the update only occurs when U*(R,,) has
evolved enough to give a flat p*(R,,). To illustrate the efficiency
of the parallel algorithm, Figure 2 shows the updates as a function
of number of MC iterations for simulations with different number
of processors. To collect statistical material, simulations have been
run 11 times for every N,

In Figure 2a the number of iterations on every processor needed
before p*(R,,) is flat enough to allow for an update is depicted. It

is clear that when more processors are used, the faster this criteria
is reached. In Figure 2b the total number of iterations needed
before an update of p*(R,,) is shown to be the same for 2 =
N py = 32, thus running the problem on 32 processors completes
the simulation with 16 times less iterations/processor than running
the simulation on two processors.

In the original serial algorithm, every bin has to be visited an
equal amount of times, within the flatness criteria, and the single
processor has to cover the full available parameter space. In the
parallel algorithm only the total, processor averaged, distribution
function has to be flat. When examining the distribution functions
calculated by the individual processors, these are far from flat as
displayed in Figure 3.

During the simulation, information is passed on between the
processors of which values of the parameter space needs to be
further explored, via the processor summed U*(R,,). When only
a few processors are employed, (Fig. 3a), all processors cover a
large part of the parameter space, while for many processors (Fig.
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Figure 3. The distribution functions from individual processors in a
parallel simulation (thin solid lines) and the average over all proces-
sors (thick dashed line). (a) Nepw = 4 and the different lines are
labeled. (b) N, = 32, here the multitude of different lines prohibit
labelling. The system simulated is the same as accounted for in Figure

1b.
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Figure 4. (a) The PMF, with error bars corresponding to the standard
deviation calculated from 11 independent simulations, for N, = 2
(solid line with thin error bars) and N, = 32 (dashed line with thick
error bars). (b) The standard deviation, calculated from 11 independent
simulations, for different N,,. The system simulated is the same as

accounted for in Figure 1b.

3b) the processors can be more specialized only covering a small
part of the parameter space, still resulting in a flat processor
averaged (p*(R,,))y_ .

Although the convergence criteria is meet with the same
number of total iterations, independent of N, the question
remains if the different simulations produce results of the same
quality. For conventional MC it is possible to estimate statis-
tical errors by collecting independent values of the sought after
parameter during the simulation. For flat histogram techniques
this it not applicable because it is only the end product that
gives the wanted solution. The flatness criteria is a guide to how
the simulation progresses, but not a measure of the quality of
the result.

To quantify the errors of the parallel simulations, we have run
simulations 11 times for each value of N, each of the 11
simulations having different initial configurations. Using this ex-
perimental approach it is possible to calculate standard deviations
for the PMF as shown in Figure 4. Because there always is
ambiguity concerning the zero-level of the PMF, the PMF has first

Table 1. The Standard Deviations of the PMF, as Defined in Figure 4a,
for Certain End-to-End Distances R,,.

R,(A 10 20 30 40 50 60 70 8 90

o, (kT) 036 022 0.14 0.10 0.04 0.10 022 034 051
o3, (kT) 021 0.17 0.11 0.08 0.07 0.08 0.19 025 0.29

o, is the standard deviation calculated when two processors are used and
05, is the corresponding standard deviation for 32 processors.

been converted to the distribution function p(R,,), which is then
normalised, 2z p(R,,) = 1, and converted back to a potential.

In Figure 4a the PMF is shown for the two cases of N_,, =
2 and N_,, = 32. Within the standard deviation the two results
are equal. Also, the figure shows that the standard deviation for
the two cases are of equivalent size. A few of the standard
deviations are also shown in Table 1. To further compare the
standard deviations, these are shown as a function of the end-
to-end distance in Figure 4b. From this data we conclude that
independent of the number of processors, the simulations pro-
duce results of equal quality.

Even though the number of iterations/processor needed to
complete the simulations decrease linearly with added proces-
sors, it does not necessarily mean that the simulations runs
equally fast. It is obvious that for every problem there is a
number of processors that eventually will make the parallelisa-
tion inefficient due to communication overhead. The relatively
small problem of a 63 monomer polyelectrolyte with 21 triva-
lent counterions, scales up to about 32 processors on a cluster
type machine as seen in Figure 5. In the implementation used,
communication is performed after every iteration. This is often
enough to maintain the N, independent convergence shown in
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Figure 5. The speed-up, in comparison with the N, = 2 case, found
by using the parallel method. The curve is normalized to 2 for N, =
2. The system simulated is the same as accounted for in Figure 1b and
the machine is the Victorian Partnership of Advanced Computing 97
node, 194 CPU Linux Cluster based on Xeon 2.8 GHz CPUs with a

Myrinet interconnect.
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Figure 2, but infrequent enough to not slow down the simula-
tion. Further trials may show that communication can be made
less frequently, which would be important when using a large
amount of processors. In any case, for larger and more complex
problems, we anticipate that this method will scale to far more
processors, because more calculations are performed in between
processor communication.

Conclusion

We have shown how the newly introduced flat histogram MC
method,""*'? which is used to directly obtain the free energy of
a system, can be efficiently parallelized by distributing the
calculation of the modifying potential U* on to multiple pro-
cessors. By doing this, every processor only explores a part of
parameter space, while all processors combined visit the full
parameter space with equal probability (see Fig. 3). The method
converges with the same number of iterations (Fig. 2), and gives
results with the same error (Fig. 4), independent of N_,,. The
overhead for adding extra processors to the calculation is small,
(see Fig. 5), thus leading to a linear decrease of the execution
time with added processors.
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