
A Scalable Parallel Monte Carlo Method for Free Energy
Simulations of Molecular Systems

MALEK O. KHAN, GARETH KENNEDY, DEREK Y. C. CHAN
Particulate Fluids Processing Centre, Department of Mathematics & Statistics,

The University of Melbourne, Parkville, Victoria 3010, Australia

Received 12 May 2004; Accepted 21 July 2004
DOI 10.1002/jcc.20143

Published online in Wiley InterScience (www.interscience.wiley.com).

Abstract: We present a method of parallelizing flat histogram Monte Carlo simulations, which give the free energy
of a molecular system as an output. In the serial version, a constant probability distribution, as a function of any system
parameter, is calculated by updating an external potential that is added to the system Hamiltonian. This external potential
is related to the free energy. In the parallel implementation, the simulation is distributed on to different processors. With
regular intervals the modifying potential is summed over all processors and distributed back to every processor, thus
spreading the information of which parts of parameter space have been explored. This implementation is shown to
decrease the execution time linearly with added number of processors.

© 2004 Wiley Periodicals, Inc. J Comput Chem 26: 72–77, 2005

Key words: parallel computing; high performance computing; Monte Carlo; free energy; molecular simulations

Introduction

Since its conception, the Monte Carlo (MC) algorithm1–3 has been
a major numerical tool for solving problems in the physical sci-
ences.4 The trends in hardware for high-performance computing is
towards parallel commodity processors, either in loosely con-
nected cluster architectures or more integrated shared memory
processors, because the performance to cost ratio favors such
architectures to purpose-built supercomputers. In this work we
introduce a method to effectively deploy MC on parallel comput-
ers.

A simple way of utilizing parallel machines is to replace a
simulation running for Nit iterations on a single processor by
spreading the simulation over Ncpu processors, each running for
Nit/Ncpu. This type of trivial parallelism always invokes a cost for
conventional Metropolis MC because there is a equilibration time
involved with every simulation, during which no statistics can be
collected.5 A rule of thumb is that the equilibration time is about
30% of the total simulation time.2 Because equilibration needs to
be run for every independent process, this overhead cannot be
eliminated by this trivial method of parallelization.

Parameter or data parallelism, in which different sets of param-
eters are run on different processors, is another form of trivial
parallelism. It suffers from the obvious drawback that Ncpu differ-
ent parameter sets are needed. Many problems will only involve on
the order of 10 such value sets, thus rendering it impossible to
effectively perform a parameter parallel calculation with a large

amount of CPUs. Also, for large systems, there can be a consid-
erable period of waiting time before good statistics can be accu-
mulated, rendering the project cumbersome.

Domain decomposition is a common parallel method, in which
particles are divided on different processors according to their
geometrical positions.5 This approach is not suitable for systems
with long-range interactions, for example, Coulomb interactions,
because no cutoffs can be employed. Parallel expanded ensembles
is often used for problems where the energy dominates the entropy.
An example is parallel tempering, in which simulations are per-
formed at different temperatures to speed up the convergence of
the lowest temperature system.6,7

In this report we present a general way to effectively parallelize
a Monte Carlo algorithm that also gives the free energy of the
system as a direct output of the simulation. Traditional Metropolis
MC samples phase space weighted by the Boltzman probability
distribution p � exp(�U/kT), where k is the Boltzmann constant,
T is the temperature, and U is the Hamiltonian of the system. In the
canonical ensemble, conventional simulations do not give the free
energy (or the underlying partition function) directly, but rather
derivatives of the free energy. The most straightforward way to
obtain the free energy is to perform several simulations while

Correspondence to: M. O. Khan; e-mail: m.khan@unimelb.edu.au

Contract/grant sponsors: Australian Research Council, the Particulate
Fluids Processing Centre at the University of Melbourne, The Victorian
Partnership for Advanced Computing and the Wenner–Gren Foundation

© 2004 Wiley Periodicals, Inc.



varying one parameter (e.g., the temperature) and then integrate
over that parameter, a method commonly referred to as thermo-
dynamic integration. More elegant simulation schemes used to
obtain the free energy include thermodynamic perturbation,8 um-
brella sampling9 and expanded ensembles.10

Recently, so-called flat histogram techniques have evolved as a
technique to calculate the free energy directly in a MC simula-
tion.11–18 Flat histogram techniques resemble umbrella sampling
in that an external potential is added to the system energy. In
contrast to umbrella sampling the external potential is not given as
an input to the simulation but is modified throughout the simula-
tion to achieve an equal probability (flat histogram) of visiting all
values of any chosen parameters. At the end of the simulation the
external potential is directly related to the free energy. As with
umbrella sampling this method is most useful for systems that have
a complex free energy landscape, that is, for systems where tradi-
tional Boltzmann guided sampling would lead to extremely long
convergence time.

One proposed method of parallelizing simulations utilizing the
free energy method is to impose artificial constraints and manually
allocate the required parameter space onto different processors.13

Although this could be effective in some cases, it would put
restraints on the use of effective global moves, which is known to
be able to speed up simulations considerably. One example of a
global move is the pivot rotation commonly used in polymer
simulations.19,20 Also, the different regions of parameter space
need a certain degree of overlap to fit the simulations together, and
this may induce a substantial overhead when many processors are
used.

The concept introduced in this report is to let every processor
perform calculations in any region of parameter space. With reg-
ular intervals the processors communicate and the algorithm de-
cides where more calculations need to be performed. This is
propagated out to the processors. A weight function (histogram)
directs the calculations towards the areas of parameter space that
need to be explored. Fixed parameter boundaries are not given in
which every processor performs its calculations; rather, the calcu-
lation of a global (over all the processors) weight function ensures
that the parallelization is done effectively.

To illustrate the method we have chosen to calculate the free
energy as a function of the end-to-end distance of charged poly-
mers. After a description of the model and method, we report
results of parallel simulations scaling up above 32 processors.

Simulation Method

The polymer model is a simple bead-and-stick model with Nmon

hard sphere monomers, with a diameter of 4 Å connected by fixed
length bonds (6 Å). To test the model on a complex system,
charges are added to the polymer. For the charged polymer, known
as a polyelectrolyte, every monomer has a charge of �1, and Nc

hard sphere counterions of the same size as the monomers, with a
charge �3 are included to keep the system electroneutral. Triva-
lent counterions interact strongly with the charged polymer back-
bone and will collapse the polymer. This feature makes the sim-
ulation converge slowly when conventional MC is used. All
particles are enclosed in a spherical cell and the electrostatic

interactions are calculated with Coulomb’s law. The total electro-
static energy is given by

U � �
i�j

Nmon�Nc qiqj

4��0��ri � rj�
(1)

where �ri � rj� is the distance between particles i and j, qi is the
charge of particle i, �0 is the dielectric permittivity of vacuum and
� is the relative dielectric constant of the solvent. In this so-called
primitive model the solvent only enters by screening the electro-
static interaction by �. Here we use the value for water, � � 78.

The polymer is moved with a pivot move19,20 and the small
ions by simple translation. The simulations are carried out in the
canonical ensemble, and all moves are accepted according to the
normal Metropolis MC rules.1–3 Here we define one MC iteration
as 10 � Nmon(1 pivot � Nmon/2 translations). As a measure of the
polymer conformation, the end-to-end distance Ree, defined as the
distance between the first and last monomer on the chain, is used.

A straightforward way of calculating the free energy or poten-
tial of mean force (PMF), w(Ree), in a normal simulation, is to
simply calculate the probability of finding the system at a certain
end-to-end distance p(Ree), because the PMF is related to this
probability by

w�Ree� � �kT ln p�Ree�. (2)

But because the probability of visiting high energy states is low,
configurations far from the average Ree, that is, the extended or
compressed configurations, will be sampled infrequently if at all
during a simulation. However, by adding an appropriate penalty
function U* to the normal, undisturbed Hamiltonian U it is pos-
sible to sample all states of interest with equal probability.11,12

Generating a uniform probability results in11,12,18

w�Ree� � �U*�Ree� � C (3)

where C is a physically unimportant constant setting the zero level
of the free energy. More details of the model and the serial
algorithm can be found in earlier work concerning polyelectrolyte
behavior.18

To construct a U* that will give rise to an uniform distribution
of end-to-end distances the function U*(Ree) is discretized over
Ree into equal size intervals. The number of bins used is between
100 and 1000. At the start of the simulation the penalty function
U* is taken to be uniform. Every time the end-to-end distance falls
within a particular interval of Ree the corresponding U* is in-
creased by a certain value �U*. This ensures that the distribution
function p* � exp[��(U � U*)] will approach a con-
stant.11,12,18

A technical problem is that keeping �U* constant during the
full extent of the simulation will lead to poor statistics. The
difference in energy before and after a MC move will be calculated
as 	U � 	U*. When the distribution function becomes uniform,
U* will start to be updated equally over all Ree, and the fluctua-
tions in 	U* will dominate and obscure the information in 	U.
This problem is circumvented by decreasing the penalty as the

Method for Free Energy Simulations of Molecular Systems 73



simulation progresses.11,13 In this article the choice for �U* is
0.1kT to 0.001kT at the beginning of the simulation. Following
the prescription of Wang and Landau13 the simulation is run until
p*(Ree) is “flat,” when �U* is updated according to �U*new �
�U*/ 2. “Flat” is defined by all values of p*(Ree) being within �p
from the mean 
p*(Ree)�, where �p is between 0.1 to 0.35 de-
pending on the complexity of the system. When �U* is updated
the histogram containing p*(Ree) is reset to zero and a new
histogram is collected for the new value of �U*. The simulation
goes on until �p reaches a predecided number, normally between
10�5 and 10�8.

In the parallel version of the free energy algorithm, Ncpu

processors run identical versions of the program but with different
initial configurations (actually only the initial random number
seeds are different). Every process runs independently except that
at certain intervals the processor summed PMF, ¥i�1

Ncpu wi(Ree), is
distributed to all processors. Each process then continues indepen-
dently, but with the global PMF. The idea is that every process
does not have to explore the full PMF as a function of Ree, but
together they will, because every now and then the processes tell
each other which Ree they have visited.

In the same manner the processor averaged distribution func-
tion


p*�Ree��Ncpu �
1

Ncpu
�
i�1

Ncpu

p*i�Ree� (4)

is gathered and this average is checked against the flatness criteria.
The interval between interprocessor communication is an input

to the simulation. If the interval is of the same size as the time it
takes to run the total simulation, the different processors will not
be connected, resulting in Ncpu independent simulations. Obvi-
ously, communicating too often will slow down the simulation. In
this work we report on results where communication is performed
every MC iteration (as defined above). The choice is motivated
from the structure of the original serial program used, for which it
is suitable to communicate at any multiple of an MC iteration.
Initial testing of the system used here showed that the execution
time did not vary with this multiple down to one MC iteration. Of
course, for smaller problems, where less time is spent in every MC
iteration, the interval between communication may have to be
increased, which can effect the resulting efficiency of the algo-
rithm. In any case, the method is envisaged to be used for large
systems where a single CPU cannot meet the computational de-
mand in reasonable time.

Results and Discussion

First, the results using the parallel PMF method is compared with
conventional MC for the case of an uncharged polymer. In Figure
1a the distribution of end-to-end distances, p(Ree) is calculated
from the PMF using eq. (2) and compared with results from the
same simulation without adding a penalty, where p(Ree) is calcu-
lated directly, in the standard way. The two methods lead to
distribution functions with the same shape. The PMF method is
very effective in comparison with conventional MC methods near

phase separation, because conventional MC cannot sample over
phase space with high free energy barriers, but even for the simple
case of an uncharged hard sphere polymer, the PMF method is
found to be useful.

To clarify how the PMF evolves in the simulation, the PMF of
a polyelectrolyte is plotted in Figure 1b at updates of �U*. At the
early stages of the simulation, for large �U*, the PMF takes on the
correct form on a large length scale but depicts some fluctuations.
For decreasing �U* the curve becomes progressively smoother

Figure 1. (a) The probability distribution function of the end-to-end
distance Ree of an uncharged polymer with Nmon � 240. The thick
solid curves are from free energy simulations (via the PMF) run on
Ncpu � 16 processors, and the thin fluctuating curves are from con-
ventional MC. The curves that are on top of each other are run for the
same number of iterations (i.e., every processor runs 1/16 of the
iterations in the parallel algorithm). From top to bottom the number of
iterations are 8, 4, and 1 � 106. The probability curves for the first two
cases have been displaced vertically for visual clarity. (b) The potential
of mean force as a function of Ree for a polyelectrolyte with N � 63
and trivalent counterions. The different curves are the PMFs when the
end-to-end distribution is deemed flat with a certain �U*. The original
update is �U*0 � 0.001kT and the simulation is run until �U* �
2�14�U*0 � 6 � 10�8kT. This simulation was run on Ncpu � 16
processors. Only the last eight updates are shown.

74 Khan et al. • Vol. 26, No. 1 • Journal of Computational Chemistry



because the crude form of the PMF created by using a large �U*
is filled in by using smaller �U*. The distance between the curves
in Figure 1b, corresponding to �U* � 2�7 � 0.001kT and �U*
� 2�8 � 0.001kT, is around 2kT. This means that about 200
iterations/bin are performed before the update. The number of
iterations needed before the flatness criteria is reached and �U* is
updated is shown in Figure 2, and it is evident that the smaller the
�U*, the longer time it takes to reach the flatness criteria.

The update of �U* is a measure of how fast the simulation
converges because the update only occurs when U*(Ree) has
evolved enough to give a flat p*(Ree). To illustrate the efficiency
of the parallel algorithm, Figure 2 shows the updates as a function
of number of MC iterations for simulations with different number
of processors. To collect statistical material, simulations have been
run 11 times for every Ncpu.

In Figure 2a the number of iterations on every processor needed
before p*(Ree) is flat enough to allow for an update is depicted. It

is clear that when more processors are used, the faster this criteria
is reached. In Figure 2b the total number of iterations needed
before an update of p*(Ree) is shown to be the same for 2 �
Ncpu � 32, thus running the problem on 32 processors completes
the simulation with 16 times less iterations/processor than running
the simulation on two processors.

In the original serial algorithm, every bin has to be visited an
equal amount of times, within the flatness criteria, and the single
processor has to cover the full available parameter space. In the
parallel algorithm only the total, processor averaged, distribution
function has to be flat. When examining the distribution functions
calculated by the individual processors, these are far from flat as
displayed in Figure 3.

During the simulation, information is passed on between the
processors of which values of the parameter space needs to be
further explored, via the processor summed U*(Ree). When only
a few processors are employed, (Fig. 3a), all processors cover a
large part of the parameter space, while for many processors (Fig.

Figure 2. (a) The number of iterations per CPU before an update of
�U* is made. For each Ncpu, Eleven simulations have been performed
and the mean is shown. The error bars show the standard deviation. It
should be noted that the lines are just a guide to the eye, because �U*
is actually constant between the points. (b) Same as (a) except that the
y-axis now shows the total number of iterations before an update of
�U* is made. The curves for different Ncpu have not been labeled,
because they all are on top of each other within the statistical errors.
The system simulated is the same as accounted for in Figure 1b.

Figure 3. The distribution functions from individual processors in a
parallel simulation (thin solid lines) and the average over all proces-
sors (thick dashed line). (a) Ncpu � 4 and the different lines are
labeled. (b) Ncpu � 32, here the multitude of different lines prohibit
labelling. The system simulated is the same as accounted for in Figure
1b.

Method for Free Energy Simulations of Molecular Systems 75



3b) the processors can be more specialized only covering a small
part of the parameter space, still resulting in a flat processor
averaged 
p*(Ree)�Ncpu

.
Although the convergence criteria is meet with the same

number of total iterations, independent of Ncpu, the question
remains if the different simulations produce results of the same
quality. For conventional MC it is possible to estimate statis-
tical errors by collecting independent values of the sought after
parameter during the simulation. For flat histogram techniques
this it not applicable because it is only the end product that
gives the wanted solution. The flatness criteria is a guide to how
the simulation progresses, but not a measure of the quality of
the result.

To quantify the errors of the parallel simulations, we have run
simulations 11 times for each value of Ncpu, each of the 11
simulations having different initial configurations. Using this ex-
perimental approach it is possible to calculate standard deviations
for the PMF as shown in Figure 4. Because there always is
ambiguity concerning the zero-level of the PMF, the PMF has first

been converted to the distribution function p(Ree), which is then
normalised, ¥Ree

p(Ree) � 1, and converted back to a potential.
In Figure 4a the PMF is shown for the two cases of Ncpu �

2 and Ncpu � 32. Within the standard deviation the two results
are equal. Also, the figure shows that the standard deviation for
the two cases are of equivalent size. A few of the standard
deviations are also shown in Table 1. To further compare the
standard deviations, these are shown as a function of the end-
to-end distance in Figure 4b. From this data we conclude that
independent of the number of processors, the simulations pro-
duce results of equal quality.

Even though the number of iterations/processor needed to
complete the simulations decrease linearly with added proces-
sors, it does not necessarily mean that the simulations runs
equally fast. It is obvious that for every problem there is a
number of processors that eventually will make the parallelisa-
tion inefficient due to communication overhead. The relatively
small problem of a 63 monomer polyelectrolyte with 21 triva-
lent counterions, scales up to about 32 processors on a cluster
type machine as seen in Figure 5. In the implementation used,
communication is performed after every iteration. This is often
enough to maintain the Ncpu independent convergence shown in

Figure 4. (a) The PMF, with error bars corresponding to the standard
deviation calculated from 11 independent simulations, for Ncpu � 2
(solid line with thin error bars) and Ncpu � 32 (dashed line with thick
error bars). (b) The standard deviation, calculated from 11 independent
simulations, for different Ncpu. The system simulated is the same as
accounted for in Figure 1b.

Table 1. The Standard Deviations of the PMF, as Defined in Figure 4a,
for Certain End-to-End Distances Ree.

Ree (Å) 10 20 30 40 50 60 70 80 90

	2 (kT) 0.36 0.22 0.14 0.10 0.04 0.10 0.22 0.34 0.51
	32 (kT) 0.21 0.17 0.11 0.08 0.07 0.08 0.19 0.25 0.29

	2 is the standard deviation calculated when two processors are used and
	32 is the corresponding standard deviation for 32 processors.

Figure 5. The speed-up, in comparison with the Ncpu � 2 case, found
by using the parallel method. The curve is normalized to 2 for Ncpu �
2. The system simulated is the same as accounted for in Figure 1b and
the machine is the Victorian Partnership of Advanced Computing 97
node, 194 CPU Linux Cluster based on Xeon 2.8 GHz CPUs with a
Myrinet interconnect.

76 Khan et al. • Vol. 26, No. 1 • Journal of Computational Chemistry



Figure 2, but infrequent enough to not slow down the simula-
tion. Further trials may show that communication can be made
less frequently, which would be important when using a large
amount of processors. In any case, for larger and more complex
problems, we anticipate that this method will scale to far more
processors, because more calculations are performed in between
processor communication.

Conclusion

We have shown how the newly introduced flat histogram MC
method,11,12 which is used to directly obtain the free energy of
a system, can be efficiently parallelized by distributing the
calculation of the modifying potential U* on to multiple pro-
cessors. By doing this, every processor only explores a part of
parameter space, while all processors combined visit the full
parameter space with equal probability (see Fig. 3). The method
converges with the same number of iterations (Fig. 2), and gives
results with the same error (Fig. 4), independent of Ncpu. The
overhead for adding extra processors to the calculation is small,
(see Fig. 5), thus leading to a linear decrease of the execution
time with added processors.

References

1. Metropolis, N. A.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A.;
Teller, E. J Chem Phys 1953, 21, 1087.

2. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford
University Press: Oxford, 1989.

3. Frenkel, D.; Smit, B. Understanding Molecular Simulation; Academic
Press: San Diego, 1996.

4. Dongarra, J.; Sullivan, F. Comput Sci Eng 2000, 2, 22.
5. Heffelfinger, G. S.; Lewitt, M. E. J Comput Chem 1996, 17, 250.
6. Hansmann, U. H. Chem Phys Lett 1997, 281, 140.
7. Irbäck, A.; Sandelin, E. J Chem Phys 1999, 110, 12256.
8. Zwanzig, R. W. J Chem Phys 1954, 22.
9. Torrie, G. M.; Valleau, J. P. J Comp Phys 1977, 23, 187.

10. Lyubartsev, A.; Martsinovski, A. A.; Shevkunov, S. V.; Vorontsov–
Velyaminov, P. N. J Chem Phys 1992, 96, 1776.

11. Engkvist, O.; Karlström, G. Chem Phys 1996, 213, 63.
12. Wang, F.; Landau, D. P. Phys Rev Lett 2001, 86, 2050.
13. Wang, F.; Landau, D. P. Phys Rev E 2001, 64, 056101.
14. Kim, E. B.; Faller, R.; Yan, Q.; Abbott, N. L.; de Pablo, J. J. J Chem

Phys 2002, 117, 7781.
15. Yan, Q.; Faller, R.; de Pablo, J. J. J Chem Phys 2002, 116, 8745.
16. Hansmann, U. H.; Wille, L. T. Phys Rev Lett 2002, 88, 068105.
17. Shell, M. S.; Debenedetti, P. G.; Panagiotopoulos, A. Z Phys Rev E

2002, 66, 056703.
18. Khan, M. O.; Chan, D. Y. C. J Phys Chem B 2003, 107, 8131.
19. Lal, M. Mol Phys 1969, 17, 57.
20. Madras, N.; Sokal, A. D. J Stat Phys 1988, 50, 109.

Method for Free Energy Simulations of Molecular Systems 77


