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Recent experimental developments have enabled the measurement of dynamical forces between two
moving liquid drops in solution using an atomic force microscope (AFM). The drop sizes, interfacial tension,
and approach velocities used in the experiments are in a regime where surface forces, hydrodynamics, and
drop deformation are all significant. A detailed theoretical model of the experimental setup which accounts
for surface forces, hydrodynamic interactions, droplet deformation, and AFM cantilever deflection has
been developed. In agreement with experimental observations, the calculated force curves show pseudo-
constant compliance regions due to drop flattening, as well as attractive pull-off forces due mainly to
hydrodynamic lubrication forces.

1. Introduction

The atomic force microscope (AFM) has long been used
to make direct measurements of the forces acting between
rigid particles of colloidal dimensions. Attention has since
turned to the interaction between deformable surfaces,
such as the interaction between rigid probe particles and
oil drops1-4 or between a particle and a bubble.5 The
hydrodynamic interaction of a rigid colloid probe with a
solidsurface6,7 andwith a liquiddrop8 has alsobeenstudied
using the AFM.

Recently Dagastine et al.9 made the first direct AFM
measurements of the force between two approaching
droplets of decane (≈40 µm radius) in an aqueous solution
of SDS. The observed forces show systematic variations
with relative velocities in a range comparable to that due
to thermal motion of such droplets in suspension.

In this paper, we model the AFM force measurement
experiment between two drops in the experimental
configuration of Dagastine et al.9 In this experimental
setup, one drop is attached to the AFM cantilever with
known spring constant K. The other drop is attached to
a piezoelectric stage that is moved according to a pro-
grammed velocity schedule. For example, the stage is
moved toward the cantilever with constant velocity V over
a displacement Xmax and is then reversed over the same

distance. That is, the piezo displacement follows a
triangular sweep.

During the programmed velocity schedule, the deflection
of the spring is recorded and converted to a force F using
the spring constant of the cantilever. Therefore, the
experimental data consist of pairs of values (Xi, Fi), the
piezoelectric stage position and the corresponding force.
Note that the separation between the piezoelectric stage
and the cantilever, much less the minimum separation
between the drops, is unknown, even initially. Hence, there
is the need to relate experimental data to a force-
separation law.

A characteristic feature seen in the measured forces
between decane drops9 is the dependence on the approach
velocity V, which is also observed in similar experiments
between a solid colloid probe and a liquid drop.8 At low
velocities, the force versus piezo displacement data are
reversible. That is, the data are the same on approach
and retract, with an approximately constant compliance
region that has a slope that is much less than that for
rigid-rigid surface contact because of drop deformation.
At higher velocities that are comparable to velocities due
to thermal motion of drops in a suspension, the force curves
show hysteresis. Attractive forces of significant magnitude
are observed when the drops are at the retract phase of
the programmed velocity schedule. These results suggest
the importance of the combined effects of electrical double
layer repulsion between oil drops charged by adsorbed
surfactant, hydrodynamic repulsion, and attraction aris-
ing from drainage of the aqueous film between the drops
and drop deformation under the effects of surface forces,
hydrodynamic forces, and surface tension.

The aim of this paper is to construct the simplest model
that contains the above features to enable a quantitative
assessment of their relative importance in determining
the interaction between moving deformable drops.

2. Governing Equations

In previous studies of the interaction of a small rigid
colloid probe and a large decane drop,10 the interaction
wasobservedtobe independentofvelocitywithin therange
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of the AFM. This allowed the result to be interpreted in
terms of an equilibrium model. The force-stage position
relationship F(X) can be calculated from minimization of
the total free energy of interaction, subject to a constant
drop volume constraint.3 In the present case, to account
for the relative speed of approach of the drops, the
hydrodynamics of the thin liquid film between the two
drops must be incorporated into the model.

In the two decane drop AFM experiments, the drop radii
are about 40 µm,9 which set the upper length scale for the
problem. The drops are moved by about 1 µm at a speed
of the order of 1 µm/s, leading to an experimental time of
around 1 s. By comparison, the drop deformation time is

where µD is the drop viscosity, R0 is the undeformed drop
radius, and σ is the surface tension of the drops. The
experiments are conducted in 8 mM sodium dodecyl sulfate
(SDS)surfactantsolution,which impartsanegativecharge
to the oil/water interface. The surface tension σ of the
oil-water interface populated by adsorbed SDS is about
8 mN/m. These typical parameter values produce τdef ≈
5 µs which is much less than the typical experimental
time of around 1 s. Consequently, the deformation of the
drop can be treated as a quasi-equilibrium phenomenon.
For a similar argument in the context of the surface force
apparatus, see ref 11.

The mean square velocity due to Brownian motion of
a neutrally buoyant drop is related to thermal energy by

For an oil drop of radius 40 µm at room temperature, this
leads to a root-mean square velocity ≈ 7 µm/s. In the two
decane drop AFM experiments velocities up to 13 µm/s
are used.9

The major contribution to the force between the drops
comes from a small interaction zone, of radial extent rc,
where the drops interact through a thin liquid film of
thickness h. From geometry,

and typically, in thin film drainage problems, h ≈ 0.1-1
µm so we expect an interaction zone of width rc ≈ 2-5 µm.
This separation of scales naturally divides the problem
into an inner region that corresponds to the interaction
zone with typical length scale rc and an outer region that
describes the drops as a whole with typical length scale
of the undeformed drop radius R0.

The other length scale in the problem is set by the range
of any surface forces, here taken to be electrical double
layer forces. At the salt concentrations used in the
experiments, the Debye length is around 4 nm. Once the
two drop surfaces approach to within 10-15 Debye
lengths, surface forces will begin to contribute to drop
deformation.

Film thinning due to a radial drainage flow occurs in
the inner region for which the usual lubrication ap-
proximations will hold and will lead to the standard thin
film drainage equations first solved numerically in ref 12.

Because one drop is moving with velocity ≈ V, there is
hydrodynamic drag on the bulk of the drop. The ratio of
hydrodynamic drag to surface tension forces can be
estimated by the capillary number

which in these experiments is in the range 10-8-10-6.
Therefore, hydrodynamic drag can safely be ignored in
the outer region and deformations of the drop in the outer
region will be determined by (equilibrium) surface tension
effects described by the Young-Laplace equation. This
outer region is, thus, treated in the same way as previous
equilibrium analyses of deformable interfaces.3,13 How-
ever, unlike previous treatments, we find it necessary to
account for the effects of the deformation produced in the
outer region in a boundary condition for the interfacial
velocity.

2.1. Film Drainage. A considerable amount of litera-
ture exists on modeling the drainage of a thin film between
two drops. Two special cases have been studied in detail:
drops interacting at constant force (appropriate for
collisions driven by buoyancy forces)14 or at constant
(relative) velocity (modeling inertial collisions).15 The
former case has been studied in great depth as a singular
perturbation problem that requires matching across inner
and outer regions.16 This has been generalized to drops
of different sizes17 and to include the effect of attractive
surface forces that cause drop coalescence.18

The relative importance of hydrodynamics, surface
forces, and deformation depends on the drop size. The
thin film equations have been tested experimentally on
drops of millimeter size19,20 where dimpling of the thin
film region typically occurs, with formation of a barrier
ring that in turn restricts film drainage. In this regime,
hydrodynamics is dominant, while repulsive surface forces
determine the final film thickness at the barrier ring as
well as the equilibrium film thickness.

For drops of micrometer size or smaller, the surface
tension is so strong, that is, the capillary number so small,
that under typical conditions the drops remain spherical
and deformation can be neglected. However, in the
intermediate size range of 10-100 µm described here,
hydrodynamics, surface forces, and deformation are all
significant and must be included in the model.

One important modeling step is to decide whether
tangential stresses are transmitted across the surfaces of
the drops. If they are, which is generally the case for clean
liquid-liquid interfaces, such surfaces are called partially
mobile. The film velocity then has a slip velocity at the
drop surface and the velocity field inside the drops must
be accounted for in the governing equations. This model
was carefully studied for nondeforming drops in ref 21
and with deformation in refs 14 and 16. In general, the
film drainage then depends on the viscosity ratio of the
drop and film.22

If the interface contains significant amounts of adsorbed
surfactant, there is much evidence to suggest that the
interface is immobile and no tangential stress is trans-
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mitted into the drop.10,20 This means that the film velocity
at the drop surface is the same as that of the drop interface
and a no-slip boundary condition applies. In this case, the
thin film dynamics can be determined without the need
to know the velocity inside the drops. Because the
experimental system of interest here has adsorbed sur-
factant, we consider the drop surface to be immobile.
Consequently, a no-slip boundary condition is applied at
the drop surfaces and there is no need to consider velocity
fields inside the drops.

While recent work has considered surfactant transport
effects both between the bulk and the interface and within
the interface due to Marangoni effects,23,24 at surfactant
concentrations at or above the critical micelle concentra-
tion, the oil/water interfaces will be populated by a close-
packed surfactant layer. In this situation surfactant
transport effects may be less important. In keeping with
the objective to develop the simplest model to study the
interplay of hydrodynamic interactions, drop deformation,
surface forces, and approach velocities, we defer the
consideration of surfactant transport effects to a future
paper.

Under the above assumptions, together with axial
symmetry and the usual thin lubricating film assump-
tions,12 the governing equation in the inner region r ≈ rc
for the time evolution of the thickness of the liquid film
between two liquid drops in the absence of surface forces
is

where h(r, t) is the film thickness as a function of radial
coordinate r and time t, p(r, t) is the excess hydrodynamic
pressure in the film relative to the bulk liquid, and µ is
the film viscosity (assumed Newtonian). This equation
links the thinning rate of the film and the radial velocity
due to a radial Poiseuille flow driven by a radial pressure
gradientssee, for example, refs 12 and 20 for derivations.

In the inner region, the separation between undeformed
surfaces, at an initial minimum separation h0, is

where R0 is the undeformed radius of the two identical
drops.

We also need boundary conditions, suitable for constant
approach velocity V. Due to axial symmetry, we have

and at large radial distances the surfaces are so far apart
that the film pressure approaches the bulk pressure

2.2. Drop Shape. During the course of an experiment,
the drop surfaces deform under the combined influence
of hydrodynamic pressure p(r, t) due to the drainage of
the thin film between the drops and disjoining pressure
Π[h(r, t)] due to colloidal forces between the surfaces. From

the consideration of relative time scales of the approach
between the drops and drop deformation time, we can
treat drop deformations in a quasi-static manner whereby
drop deformation can be described by the equilibrium
Young-Laplace equation in the presence of equilibrium
pressures p(r, t) and Π[h(r, t)].

The derivation of the Young-Laplace equation follows
from a minimization of the drop surface energy in the
presence of external forces, subject to a constant volume
(incompressibility) constraint. In a quasi-static treatment
of hydrodynamic and disjoining pressures, the Young-
Laplace equation for the surface shape z(r, t) has the
form3,13

where 2σ/R is the Lagrange multiplier associated with
the constant drop volume constraint with R ≈ R0.

The interaction between the drops is confined to within
an interaction zonesthe inner regionscharacterized by
the radial scale r ∼ rc ) (hR0)1/2. Within this zone, we have
∂z/∂r , 1, so eq 6 may be approximated by

This equation can be integrated to give the limiting
form valid in the outer limit (r . rc) of the interaction zone

where z0(t) ≡ z(0, t) and

The integrands for H(t) and G(t) are only nonzero within
the interaction zone r ∼ rc and vanish rapidly when r .
rc. The integral G(t) is related to the force F between the
two drops by

In the present small deformation treatment, we seek
solutions expanded in G/R0. In the AFM measurement,
the magnitude of G is of the order of 40 nm, so G/R0 ∼ 10-3

is a genuinely small parameter.
If we assume for the time being that the cantilever does

not deflect as the two identical drops approach each other,
we have the following geometric relation between the drop
profile z(r, t), the film thickness h(r, t), and displacement
of the piezo stage X(t) ) (Vt

thus, eq 7 can be written as

Once a form for the disjoining pressure Π(h) is specified,
eqs 1 and 13 are to be solved numerically in the inner
region until the solution matches the outer asymptotic
form given by eqs 8 and 12. This will then give the
functional form of the film thickness and the drop profiles.
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Note that in eq 13 the deformed radius R has been replaced
by the undeformed drop radius R0. Making this replace-
ment in the thin film equations produces a negligibly small
O(Ca1/2) correction to the boundary condition.

2.3. Matching the Inner and Outer Regions. In the
numerical solution of the thin film equations, an asymp-
totic condition for the time derivative ḣ(r, t) for r . rc is
required. This can be obtained by differentiating eq 12 to
give

We will apply eq 14 at the outer part of the inner region
at some large distance rmax on the inner scale, where eq
8 would be valid:

To find z̆0 - Ḣ, we have to match with the outer region.
In the outer region, the Young-Laplace equation can

be written in the same cylindrical coordinates (z, r), solved
in terms of elliptic integrals and expanded for small r to
give (see eq 36 of ref 13)

where r1 is the radial extent of the drop where it touches
the solid base, R+ is the maximum radial width of the
drop, and the + (-) sign refers to drops with an acute
(obtuse) contact angle at the base (see Figure 1).

Now we take a small deformation expansion, using eqs
39 and 40 of ref 13, together with the definitions

to get

By comparing eq 16 with eq 8, we see that the terms
in r2 and ln r match, while equating the constants gives

At this stage, we must specify the behavior of the three-
phase contact line at the base of each drop. In ref 3, the
contact line was considered pinned at some fixed radial
position r1 during interaction. In ref 13, the contact line
was also allowed to slip while keeping a constant contact
angle θp.

Considering the pinned case (constant r1) first, we
differentiate eq 16 with respect to time to get

where we have evaluated the result at some suitably large
value of r ) rc ) rmax.

At constant r1, the change in mean curvature δR and
force G are related by (eq 6 of ref 13)

where θ is the contact angle of the undeformed drop at the
piezo stage. We can then simplify eq 18 by using the
geometric result (eq 45 of ref 13)

to give

which from eq 14 provides the required boundary condition
for ḣ for the pinned contact line case:

For the case of constant angle θ ) θp, we use the relation
(eq 50 of ref 13)

Figure 1. Schematic diagram of the AFM geometry of two
interacting drops. X measures the distance between the piezo
stage and some fixed platform, ∆s is the cantilever deflection,
z(r, t) is the drop height, and h(r, t) is the film thickness.
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and the connection between deformation and force (eq 9
of ref 13)

to get

Equation 22 or 25 is the requisite large r boundary
conditions for the numerical solution of the inner film
drainage equation if the cantilever does not deflect.

2.4. Incorporating the Cantilever Motion. The
results in the preceding section have been derived on the
assumption that the cantilever does not deflect. In fact as
the bottom drop approaches the top drop, repulsive
interaction will cause the cantilever to deflect which in
turn increases the separation between the drops. This
coupled motion of the cantilever and the drops must be
incorporated into the formulation.

We model the cantilever as a plane attached to a fixed
platform by a spring of stiffness K (see Figure 1). Then eq
12 will be replaced by

where ∆s is the deflection of the cantilever. Assuming the
cantilever behaves as a linear spring with spring constant
K, ∆s is related to the force F by

where we use the convention that a positive force produces
a positive (upward) deflection of the spring. Differentiating
eq 26, we have

which shows that the motion of the cantilever can be
included through an extra term in the asymptotic bound-
ary conditions, which in final form are

for the pinned contact line case and

for the constant contact angle case. These boundary

conditions are needed to completely determine the nu-
merical solution of the thin film drainage equations.

The two boundary conditions in eqs 29 and 30 have the
following physical interpretation. If the coefficient of Ġ is
negative, then on approach, when Ġ is positive, the
separation will decrease at a slower rate than the drive
velocity V, and on withdrawal, when Ġ is negative, the
separation will increase at a slower rate than the drive
velocity V. In considering the sign of the coefficient of Ġ
in eq 29 or 30, we observe that the contribution due to
deflections of the cantilever is always negative. This is
because cantilever deflection will allow the top drop to
back away as the bottom drop approaches and to follow
the bottom drop as the latter withdraws. The extra term
in eq 30 is always negative, because this reflects the extra
degree of freedom in the system which allows the drops
to slip at the contact line rather than bulge. The
logarithmic term can be of either sign and vanishes for
hemispherical drops (θ ) π/2). The dominant factors that
are proportional to Ġ are the first two terms

which are negative provided rmax < 2e-1R0, which is always
valid for sensible choices of rmax. For typical values of rmax,
these two terms have a combined numerical value between
-3 and -4. Thus, the dominant contributions come from
the singular logarithmic terms which describe how the
drop deforms under the increasing load G and thereby
increases the separation on approach over what would be
expected otherwise. In the appendix, we demonstrate the
importance of the correct boundary conditions derived here
in providing accurate numerical results.

3. Force between Drops in an AFM

The force between the drops can now be obtained by
solving eqs 1 and 13 with the initial condition eq 2 and
boundary conditions eqs 3-5 with either eq 29 or eq 30.
Details of the method of numerical solution are described
in the appendix.

Let us review the various parameters that describe the
experiment. In this paper, we concentrate on understand-
ing the interplay between hydrodynamics, drop deforma-
tion, and surface forces that produce the observed force
curves. To this end, we will keep some parameters that
specify the particular experimental system fixed but vary
others where this helps to isolate the dominant influence
of surface forces. A list of system parameters is given in
Table 1.

3.1. Parameter Values. In the experiments of ref 9,
a layer of adsorbed negatively charged surfactant on the
drops produces a repulsive double layer disjoining pressure
of the form

(x1 -
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Table 1. Various Parameters Required To Describe
Drop-Drop Interactions in an AFM

type physical parameter value

surface force drop surface potential, ψ0 -50 mV
electrolyte concentration, n 8 mM

fluid viscosity (water), µ 0.89 mPa‚s
drop surface tension, σ 8 mN/m
undeformed drop radius, R0 40 µm
drop contact angle, θ 45-120°

AFM cantilever spring constant, K 28 mN/m
maximum piezo travel, ∆Xmax 0.9 µm
piezo drive velocity, V 0.1-13 µm/s
initial separation, h0 0.7 µm

2 + ln(rmax
2

4R0
2)
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where w ) 64nkT tanh2(eψ0/4kT) > 0 depends on the
surface potential ψ0 on the drops and κ ) (2ne2/εkT)1/2 is
the usual Debye-Hückel parameter that depends on the
salt concentration n. As we shall see, the superposition
approximation in eq 31 for the electrical double layer
interaction is sufficiently accurate for the typical range
of distances of closest approach between the charged drop
surfaces.

The surface potential ψ0 is a property of the charged
adsorbed species, the solution pH, and possibly the salt
concentration n. Here we use a typical value for such
charged interfaces.

For the salt concentration, we use the experimental
value of 8 mM set by the critical micelle concentration of
SDS. This in turn determines the range of the double
layer forces, through κ-1. Experiments can be done with
different SDS concentrations which not only affects the
Debye paramater κ but also the surface tension σ. Here
we keep σ fixed at 8 mN/m, the measured value for the
decane-SDS solution interface at 8 mM. The viscosity is
kept fixed at the value of water (0.89 mPa‚s).

In ref 9, two drops of radius 35 and 50 µm were used.
Here we simplify the equations slightly by considering
two equal drops of radius 40 µm. The contact angles on
the piezo stage and the cantilever are unknown, but values
in the range 45-120° would seem to cover the reasonable
range. The special case of hemispherical drops (θ ) 90°
or θp ) 90°) is particularly simple.

The remaining parameters are characteristic of an AFM
experiment. The cantilever spring constant K can be
measured for a particular cantilever in various ways. Here
we use the value given in recent experiments.9

The piezo stage is moved over a known distance ∆Xmax
of about 1 µm.9 Similarly, the velocity V of approach/retract
is easily varied from run to run. Values of V in ref 9 are
in the range 0.16-13.2 µm/s (the reported values of V in
ref 9 were too low by a factor of 2). As mentioned earlier
this encompasses the range of Brownian velocities for
particles of this size.

The calculation requires as input an initial separation
h0 between the drops. This is not known a priori in AFM
experiments on deformable particles. A highly desirable
outcome would be the use of computed force curves to
determine the initial separation for a series of AFM runs.

The choices of other computational parameters are
explained in the appendix.

3.2. Computed Quantities. Direct comparison with
experiment can be carried out through F(∆X) curves, for
both the approach and the retract branches, for various
choices of V, ∆Xmax, and h0. We show the ratio F/R0 because,
for equilibrium surface forces, the ratio F/R0 between
curved surfaces is proportional to the interaction energy
per unit area between flat surfaces.25 However, the same
is not necessarily true for hydrodynamic interactions. It
is also instructive to plot the force (or F/R0), the central
separation h(0, t), and the velocity of the drop surface as
functions of the time course of the experiment. Finally,
the force F versus central separation h(0, t) will be useful
for visualizing the interaction between the two drops.

4. Results and Discussion
To illustrate the main features and capabilities of our

model of the AFM experiment, we present results in the
parameter range of the preliminary measurements of

Dagastine et al.9 as summarized in Table 1. Our model
provides insight into the dynamical behavior of the drop
surface during interaction and can also quantify the
interplay between surface forces, hydrodynamic interac-
tions, and surface deformations during drop-drop inter-
action. Specifically, the two drops are positioned initially
at the distance of closest approach of h0 ) 0.7 µm. The
piezo displacement schedule is a single triangular sweep
in which the surfaces are driven together at velocity V
between 0.16 and 13.2 µm/s for ∆Xmax ) 0.9 µm before the
velocity is reversed. The three-phase contact line at the
base of the drop is assumed to be fixed at r1 and the
unperturbed contact angle θ ) 90°.

In Figure 2 we show the force scaled by the undistorted
drop radius (F/R0) as a function of the piezo stage
displacement ∆X at low, intermediate, and high speeds
of approach and retract. At the lowest speed (0.16 µm/s)
the approach and retract traces coincide and there is an
apparent constant compliance region. On closer investi-
gation, the slope of the apparent constant compliance
region actually varies significantly with the maximum
piezo displacement ∆Xmax. Therefore, it is quantitatively
incorrect to characterize the behavior of a deforming drop
by an effective spring constant.15

At the intermediate speed (2.4 µm/s), the force is more
repulsive along the approach trace and a small attractive
force minimum can be observed in the retract trace. At
high speed (13.2 µm/s), the force is even more repulsive
along the approach trace and a strong attractive minimum
is observed in the retract trace. The depth of this minimum
is about half of the repulsive maximum at closest approach.

A convenient way to visualize the behavior of the system
is to plot both F/R0 and the distance of closest approach
h(0, t) between the two drops as a function of time as has
been done in Figure 3. It is evident that a low speed 0.16
µm/s (Figure 3a) h(0, t) tracks the piezo stage displacement
initially until the undeformed drops are about to come
into contact (point labeled A). Then h(0, t) stops decreasing
relatively abruptly at h(0, t) ) hmin ∼ 0.026 µm between
t∼4-7 s. During this time interval the forceF/R0 increases
and then decreases almost linearly with time. Salient
points along the force curve are labeled A-D, and the
corresponding drop profiles and pressure profiles are given
as a function of radial position in Figure 4.

Turning first to the drop profiles (Figure 4a), we see
that there is significant flattening of the drop surfaces at
points B and C. At the point of maximum force, point B,
the radial extent of the flattened regions is ∼1 µm or about
5% of the undistorted radius. Outside this flattened region,
for instance at points A and D, the drop profile is very
close to parabolic. At low velocities, the general behavior

(25) Hunter, R. J. Foundations of Colloid Science; Clarendon Press:
Oxford, 1986; Vol. 1.

Π(h) ) w exp[-κh(r, t)] (31)

Figure 2. Force between two drops according to our model.
The upper curves are on approach; the lower curves are on
withdrawal. Approach speeds are 0.16 (solid), 2.4 (broken), and
13.2 (dashed-dotted) µm/s. Compare this figure to Figure 3 of
ref 9.
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of the drop surface during interaction is clear: the drops
approach each other as almost undeformed surfaces until
the separation hmin when disjoining pressure due to surface
forces Π(hmin) is equal to the Laplace pressure 2σ/R0. The
distance of closest approach then remains approximately
constant, and the drop surfaces flatten to increase the
effective area of interaction. It is this flattened area of
interaction that contributes to the observed repulsive force.

Thus, force measurements in this regime sample colloidal
forces at relatively large separations (see Figure 7).

The total pressure profile as well as the separate
contributions to the pressure from electrical double layer
and hydrodynamic interactions is detailed in Figure 4b-
d. In this low velocity case, the pressure is due almost
entirely to surface forces that arise from electrical double
layer interactions and this is in accord with that observa-
tion that there is little hysteresis in the approach and
retract traces. The hydrodynamic pressure profile has a
larger range in the radial direction than the disjoining
pressure profile, but the magnitude is smaller by a factor
of 100. Also the magnitudes of the hydrodynamic pressures
at points B and C are smaller than those at points A and
D (Figure 4d) because the velocities of the drop surfaces
at B and C are lower.

At high speed (13.2 µm/s) as shown in Figure 3b, the
drop separation h(0, t) no longer tracks the displacement
of the piezo stage closely. At the point labeled A when the
undeformed drops are about to come into contact, the
repulsive force is almost 40% of the maximum value. There
is also considerable asymmetry in the function h(0, t) about
the point of velocity reversal. However, between the force
maximum (point B) and minimum (point D), h(0, t) is
nearly constant with a value of around 0.026 µm which
is very close to that in the low speed result. At the force
maximum, point B, the values of h(0, t) at low (0.16 µm/s)
and high (13.2 µm/s) speeds are similar and the radial
extent of flattening of the drop surface is also comparable
between the two cases; see Figures 4a and 5a.

For the high-speed case, the relative contributions of
electrical double layer forces and hydrodynamic effects to
the pressure profile vary at different times during the
interaction. At point B, the hydrodynamic contribution is
dominant, while at point C, where the net force is 0, the
shorter-ranged (in radial extent) repulsive contribution
to the pressure profile from surface forces is balanced by
the attractive contribution from hydrodynamic interac-

Figure 3. Force (solid curve), piezo stage position (broken
curve), and central film thickness (b) as a function of time, on
approach and withdrawal. Approach speeds are (a) 0.16 and (b)
13.2 µm/s.

Figure 4. Film profiles (top left), film pressure profiles (top right), disjoining pressure profiles (bottom left), and hydrodynamic
pressure profiles (bottom right) at four selected stages of approach followed by withdrawal. Pressure values are scaled by σ/R0.
Approach speed is 0.16 µm/s.
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tions which has a smaller magnitude but a longer range
(r-4 decay in the radial extent).

Also, at point C the portion of the interface for which
r < ∼1 µm is closer together than that at the force maxi-
mum (point B). However, the portion of the interface for
which r > ∼2 µm is further apart at point C than at point
B. This implies that during the initial part of the retract
phase the velocity of the drop interface must change sign
along the interface; see results in Figure 8 for details.

At point D, where the force between the drops is at the
attractive minimum, the drop surfaces are at a separation
(∼0.1 µm) where surface forces are negligible compared
to the hydrodynamic attraction (Figure 5c,d). It is
interesting to observe that the drop surfaces at point D
are pulled toward each other in the region around the
point of closest approach (r < ∼2 µm) by the attractive
hydrodynamic interaction while the drop profiles at larger
r (>2 µm) are similar to that at point A (Figure 5a).

In Figure 6, we quantify the deviations of the drop
surface fromanapparentparabolicprofilealongtheretract
branch, at a velocity of 13.2 µm/s. It is clear that the
magnitudes of the deformations are small compared to
the drop size and are consistent with the small deformation
treatment we have used in this model to separate the

inner and outer solutions. Between the force maximum
(point A) and the force minimum (point D) the drop
surfaces change from being in compression to being in
extension.

In Figure 7, the results in Figure 2 are presented in
terms of the force scaled by the drop radius (F/R0) as a
function of the distance of closest approach h(0, t) for the
three velocities considered. We see that the attractive
hydrodynamic minima extend to larger separations as
the speed increases. In all three cases, the force curves
rise sharply at h(0, t) ) hmin ∼ 0.026 µm, the separation
at which the disjoining pressure from surface forces is
balanced by the Laplace pressure of the drop. Because
the drop surfaces do not come closer than 0.026 µm, the
use of the simple exponential superposition form for the
double layer interaction and the omission of weak van der
Waals attraction that exists in an oil/water system are
justified.

Insight about the dynamics of deformation of the drop
surfaces can also be obtained from this model. In Figure
8, we show the velocity profile of the drop surface at various
points in the inner region of the drop surface along the
approach and retract traces of the force curves at 13.2
µm/s.

Figure 5. Film profiles (top left), film pressure profiles (top right), disjoining pressure profiles (bottom left), and hydrodynamic
pressure profiles (bottom right) at four selected stages of approach followed by withdrawal. Approach speed is 13.2 µm/s.

Figure 6. Profiles (solid) with parabolic approximation
(dashed; left) and deviation of the profiles compared to a
parabolic approximation (right) for V ) 13.2 µm/s.

Figure 7. Force between two drops as a function of closest
approach h(0, t). Approach speeds are 0.16 (solid), 2.4 (broken),
and 13.2 (dashed-dotted) µm/s.
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(1) Along the approach branch, when the interaction
between the drops becomes significant, the region of the
drop surface near the point of closest approach (r ∼ 0)
becomes nearly stationary (curves C and D in Figure 8).

(2) During the early part of the retract trace, the central
parts of the drop surfaces at small r are still approaching
each other while the parts at large r are retracting (curve
E in Figure 8). When the net force is 0 between the two
drops (point F) the central portion of the drop surface
remains almost stationary.

(3) However, at the force minimum (point H) the velocity
of the surfaces near r ) 0 begins to exceed, in magnitude,
the retracting speed of the piezo stage. Indeed, shortly
after the force minimum (point I) the entire inner part of
the drop surface develops a velocity overshoot and retracts
faster than the speed of the piezo stage.

(4) Eventually, the whole drop surface does attain the
velocity of the piezo stage as expected (points J to L).

We should note that the observed velocity overshoot of
the drop surface described above cannot occur without a
proper matching of the inner solution of the drop profile
to the outer solution that gave the proper boundary
conditions for ∂h/∂t as given in eqs 29 or 30.

As we have remarked in the introduction, in the regime
of drop sizes and velocities used in AFM experiments,
surface tension forces are sufficiently strong (very small
capillary number) to prevent the occurrence of a dimple
in the drop surface during interaction. However, when
the drop size in increased by 1-2 orders of magnitude,
this model will predict dimpling due to hydrodynamic
interactions.

If similar approach and retract calculations were carried
out with a rigid surface (or infinite surface tension) where
there is no deformation, the approach branch of the force
curve would rise steeper and reach a higher magnitude.
Upon the reversal of the piezo stage velocity, the retract
branch of the force curve would be a mirror image of the
approach branch about the F ) 0 axis. Thus, as the surface
tension of the drop decreases, the attractive minimum in
the retract branch would be shallower and will be located
nearer the point ∆X ) 0. Although the attractive minimum
is due to hydrodynamic effects (see Figure 5d), the nature
of the disjoining pressure Π can also affect the depth of
this minimum in the range of drop sizes and velocity ranges
we have studied. Within the current range of parameters,
the distance of closest approach is controlled by the
magnitude of the repulsive disjoining pressure. If this is
reduced say by decreasing the Debye length, this will allow
the two drop surfaces to come closer together on approach.
On retraction, the hydrodynamic drainage flow associated
with a thinner film will result in a deeper attractive
minimum in the retraction branch of the force curve.

In this paper we have modeled the oil/water interface
populated with surfactants simply as a deformable surface
with a specified surface tension. Effects related to sur-
factant transport within the interface and between the
interface and the bulk solution are omitted. Having
obtained numerical results with our simple model we can
return to examine the validity of omitting surfactant
transport effects. We can estimate the magnitude of
hydrodynamic shear forces at the oil/water interface in
the thin drainage film (the inner region) as follows. In the
lubrication approximation, the shear stress at the fluid
interface τf is given by20

because vr has the usual parabolic dependence on z. We
can estimate the magnitude of the radial pressure gradient
dp/dr from Figure 5d, for example, and taking h ≈ 30 nm,
which is the minimum thickness in the inner region (see
Figure 7), we obtain a shear stress of the order τf ≈ 2 N
m-2, the same order of magnitude as found in ref 20 for
much larger drops.

For an inner region of radius 1 µm the hydrodynamic
shear stress exerts a shear force of around 6 × 10-12 N.
This shear force is small compared to the interfacial
tension force acting on the perimeter of the inner region
which is estimated to be 5 × 10-8 N from an interfacial
tension of 8 mN m-1. Therefore, surfactant transport as
a result of hydrodynamic shear is likely to be insignificant.

Alternatively, following ref 20 we can estimate the radial
change in surface tension required to balance τf and
immobilize the surface, leading to an estimate ∆σ/σ ≈ 2
× 10-4. Again, small changes in surface tension are
sufficient to counteract the tangential stresses generated
on approach.

Finally we observe that we employed the traditional
stick boundary for the velocity field at the drop surface.
We do not need to invoke the existence of a slip length or
slip boundary condition that appears to be required to fit
similar AFM measurements conducted between interact-
ing solid surfaces. One possible explanation for this is
that, at small separations, surface roughness that is
present at solid surfaces renders the treatment of the film
drainage by a lubrication approximation inappropriate
and, therefore, a slip boundary condition has to be invoked
as a heuristic correction. For fluid interfaces such surface
roughness effects may not be an important issue.

More extensive AFM measurements of interacting drops
are now available, and a detailed comparison of this theory
with experimental data will be undertaken in a forthcom-
ing publication.

5. Conclusions
We have developed a simple model for the force between

drops mounted in an AFM that takes into account surface
forces, hydrodynamics, drop deformation, and cantilever
deflection; for the range of drop sizes 10 - 100 µm, these
effects are equally significant. The development of a new
boundary condition for the thinning equation, using
matched asymptotic expansions, is the key feature that
allows reliable numerical computation of the force between
drops. This model already gives insight into the detailed
dynamics of the deformation of the drop surface, such as
the velocity overshoot, that are not readily evident in the
AFM measurements.

The predicted force-displacement curves will allow
detailed quantitative comparison with experiments that
will be the subject of a forthcoming publication.

Figure 8. Velocity profiles of the drop surface along the
approach and retract traces of the force curve for V ) 13.2 µm/s.

τf ) - h
2

∂p
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Appendix: Scaling and Numerical Solution
Before attempting a numerical solution, we first scale

the governing equations using the scales suggested by
Klaseboer et al.20 The time scale is set by the approach
velocity tc ) hc/V, the Laplace pressure sets the pressure
scale, the radial scale is set by the region of significant
deformation rc

2 ) R0hc, and hc is chosen to nondimen-
sionalize the equations. Different scales are typically used
for approach at constant force.14,18 With this choice, the
various physical quantities are

where Ca ) µV/σ is the capillary numbersthe ratio of
viscous forces to surface tension forces.

Then the nondimensional forms of the equation become

with initial and boundary conditions

where

in the case in which the three-phase contact line of the
drop is fixed at r ) r1 by eq 20). For the constant contact
angle boundary condition θ ) θp (fixed)

A detailed numerical study of two large drops (radius
∼ 1500 µm) has been carried out by Klaseboer et al.20

They considered film drainage and dimple formation at
a film thickness of the order of 1 µm, where surface forces
can be omitted. For the range of drop sizes considered in
the present work (radius 40 µm), the drainage films have
a thickness at which surface forces cannot be neglected.

Our new boundary condition eq 39, which involves the
derivative of a functional of the dependent variable h,
changes the mathematical nature of the problemswe no
longer have a simple set of partial differential equations.
However, on discretization in r as in the method of lines,
we get a system of equations with a more standard form.

We use central differencing in r in eqs 32 and 33 to
obtain a system of differential equations for hj(t) ≡ h(j∆r,
t), j ) 0, ..., N where N ) rmax/∆r. We use a uniform grid
in r ) [0, rmax] with ∆r ) 0.02 and rmax ) 10 which produces
a system of 500 equations. The boundary conditions at r
) 0 are used to produce the equation for ḣ0, and eq 39
provides the equation for ḣN. The functional G is obtained
by evaluating the following integral using Simpson’s rule

which relates G to all the other variables hj as an algebraic
constraint.

In summary, the final system of equations has the form

where F is the coefficient of Ġ in eq 39 and fj represent
the discretized contributions of the thinning equation and
normal stress balance.

This system has a singular mass matrix and is a
differential-algebraic equation of index 1. It can be solved
by standard software, in our case Matlab’s ode15s.

In previous work, Klaseboer et al.20 used the boundary
condition for the thinning rate

which neglects the deformation of the drop by the force
G. In their work, they compared the film profile h(r, t)
and, in particular, the central film thickness h(0, t) with
experiments. We shall see that the central film thickness

hc ) R0Ca1/2

rc ) R0Ca1/4

pc ) σ/R0

tc ) µCa-1/2/pc

∂h
∂t

) 1
12r

∂

∂r(rh3∂p
∂r) (32)

p + Π ) 2 - 1
2r

∂

∂r(r∂h
∂r) (33)

G ) ∫0

∞
r[p(r, t) + Π] dr (34)

h(r, 0) ) h0 + r2 (35)

∂h
∂r

) 0 at r ) 0 (36)

∂p
∂r

) 0 at r ) 0 (37)

p ) 0 at r ) rmax (38)

∂h
∂t
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F ) (1 at r ) rmax (39)

F ) 2 + ln(rmax
2Ca1/2
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2πσ
K

- 2
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Figure 9. Scaled force F/R0 and central film thickness at the
end of the 1 µm approach of two drops initially 0.7 µm apart,
as a function of rmax, the size of the computational domain. The
broken curves denote results using the simple boundary
condition eq 43, and the solid curves are results obtained with
the new boundary condition eq 39.
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is not sensitive to the thinning rate boundary condition,
which explains why their results appeared reasonably
independent of the choice of rmax. The force, which is of
central interest in our problem, is sensitive to the thinning
rate boundary condition.

To see why the new boundary condition is necessary in
our calculations, consider the central film thickness h(0,
t) and force F calculated for different choices of rmax. To
have confidence in the numerical results, the results need
to be independent of rmax once it is large enough to be
outside the interaction zone. In Figure 9, we show results
for the central film thickness for a range of rmax values.
The other parameters are that the initial central film

thickness (surface separation) is 0.7 µm, the piezo is driven
in 1 µm at a velocity V ) 13.2 µm/s, the undeformed contact
angle θ ) π/3, and the cantilever stiffness is K ) 28 mN/
m. Also shown are results using the simple boundary
condition eq 43. For the film thickness, we see in Figure
9 that the choice of boundary condition is not crucial,
although the new boundary condition does give results
noticeably less dependent on rmax. By contrast, a similar
plot for the force divided by R0 shows that no sensible
choice of rmax can be made using eq 43 but that the results
are stable for rmax g 6 with our new boundary condition.
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