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Modelling drop-drop interactions in an atomic
force microscope
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Abstract

Recent experimental developments enabled dynamical measure-
ment of the force between two moving oil drops in solution using an
Atomic Force Microscope. The drop sizes (about 40 microns) and
velocities (up to 15 microns/s) of the experiments produce a regime
where surface forces, hydrodynamics and drop deformation are all sig-
nificant. A detailed model of the experiments developed by Carnie,
Chan, Dagastine, Lewis and Manica (2004) produces calculated force
curves with attractive forces due mainly to hydrodynamic lubrication
forces, in agreement with experiment. Details of the evolution of the
drop surface deformations and surface velocity profiles are included in
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movies accompanying this paper. A feature of the model is the use of
a new boundary condition, obtained by matched asymptotic expan-
sions, to incorporate the weak deformation at the drop scale into the
thin film scale. This boundary condition is necessary to obtain results
independent of the computational domain size. It also requires mod-
eling assumptions about the three-phase contact line where the drops
meet the solid surfaces of the Atomic Force Microscope. We determine
the sensitivity of calculated force curves to two simple models for the
three-phase contact line motion, and to the assumed values for the
drop/solid contact angle.
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1 Introduction

The Atomic Force Microscope (afm) has recently been used to make direct
measurements of the forces involving deformable surfaces such as the inter-
action between a rigid probe particle and a deformable oil drop across an
aqueous electrolyte solution [3, 4]. Dagastine et al. [5] measured the force
between two approaching droplets of decane (≈ 40µm radius) in an aque-
ous solution of sodium dodecyl sulphate (sds) in which one drop is attached
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Figure 1: Schematic diagram of the afm geometry of two interacting drops.
X measures the distance between the piezo stage and some fixed platform,
∆s is the cantilever deflection, z(r, t) the drop height and h(r, t) the film
thickness.

to the afm cantilever with known spring constant K. The other drop is
attached to a piezoelectric stage that is moved according to a programmed
velocity schedule. The stage is moved towards the cantilever with constant
velocity V over a displacement ∆Xmax and is then reversed over the same
distance while the deflection of the spring is recorded and converted to a
force F using the spring constant of the cantilever. Therefore, the experi-
mental data consist of values of the piezoelectric stage position X and the
corresponding force F .

A characteristic feature in the measured forces between decane drops [5]
is the dependence on the approach velocity V . At low velocities, the force law
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is reversible, being the same on approach and retract, with an approximately
constant compliance region. At higher velocities that are comparable to
velocities due to thermal motion of drops in a suspension, the force curves
show hysteresis. Attractive forces of significant magnitude are observed in
the retract phase of the programmed velocity schedule.

Carnie et al. [2] modelled the afm force measurement experiment between
two drops in the experimental configuration of Dagastine et al. [5]. The
results demonstrated the combined effects of electrical double layer repulsion
between oil drops charged by adsorbed surfactant, hydrodynamic repulsion
and attraction arising from drainage of the aqueous film between the drops
and drop deformation due to surface forces, hydrodynamic forces and surface
tension.

Here we undertake a systematic analysis of the consequences of the new
boundary condition — the quantitative differences between two plausible
boundary conditions of the three-phase contact line at the base of the drop:

1. having the three-phase contact line being held fixed while the contact
angle changes to accommodate drop deformation, or

2. having the contact angle at the base of the drop being fixed with the
position of the three-phase contact line changing during drop-drop in-
teraction;

and the effect of the contact angle value in each case.

2 The governing equations

The problem divides naturally into two regions: the inner region where the
drops interact, in which forces of interaction are important and the outer
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region, where the solution is obtained analytically. The equations are solved
numerically in the inner region and the analytic solution in the outer region
was used to develop a new boundary condition for the inner region.

If the interface contains significant amounts of adsorbed surfactant, there
is much evidence to suggest that the interface is immobile and no tangential
stress is transmitted into the drop [6, 7]. This means that the film velocity
at the drop surface is the same as that of the drop interface and a no-slip
boundary condition applies. Under these assumptions, together with axial
symmetry and the usual thin lubricating film assumptions, the governing
equation for the time evolution of the thickness of liquid film between two
liquid drops is

∂h

∂t
=

1

12µr

∂

∂r

(
rh3∂p

∂r

)
, (1)

where h(r, t) is the film thickness as a function of radial coordinate r and
time t, p(r, t) is the excess hydrodynamic pressure in the film relative to
the bulk liquid, µ is the film viscosity (assumed Newtonian). This equation
links the thinning rate of the film and the radial velocity due to a radial
Poiseuille flow driven by a radial pressure gradient — for example, see [6] for
derivations.

For the pressure, we use the Young-Laplace equation, which comes from
a minimisation of the drop surface energy in the presence of external forces,
subject to a constant volume (incompressibility) constraint:

p+ Π =
2σ

R0

− σ

2r

∂

∂r

(
r
∂h

∂r

)
, (2)

where σ is the interfacial tension of the drop-film surface, R0 is the har-
monic mean (R−1

0 = R−1
1 + R−1

2 ) of the unperturbed radii of the two drops.
(2σ/R0) is the Lagrange multiplier associated with the constant drop vol-
ume constraint and Π is the disjoining pressure. In the experiments of [5], a
layer of adsorbed negatively charged surfactant on the drops produces a re-
pulsive double layer disjoining pressure of the form Π(h) = w exp(−κh(r, t))
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where w = 64nkT tanh2(eψ0/4kT ) > 0 depends on the surface potential ψ0

of the drops and κ =
√

2ne2/εkT is the usual Debye–Hückel parameter that
depends on salt concentration n.

In the inner region, the separation between undeformed surfaces, at an
initial minimum separation h0, is h(r, 0) = h0 + r2/R0 . We assume the
initial minimum separation h0 is sufficiently large that surface forces are not
important. Due to axial symmetry, we have the boundary conditions ∂h

∂r
= 0

and ∂p
∂r

= 0 at r = 0 and at large radial distances the surfaces are so far apart
that the film pressure approaches the bulk pressure, p→ 0 as r →∞ .

In previous work [6] which modelled the approach of two spherical drops
at constant velocity V along the line of centres, the boundary condition
ḣrmax = ∓V was imposed at r = rmax , the size of the computational domain.
We show this boundary condition is inappropriate for the afm experiment
and produces a computed force sensitive to the choice of rmax. Following
previous work [1, 3], Carnie et al. [2] derived the following new boundary
conditions suitable for the situation of a drop sitting on a piezo stage which
is moved at a set velocity V . The new boundary condition, which takes into
account drop deformation during approach, has two forms:

ḣrmax + Ġ

[
2 + ln

(
r2
max

4R2
0

)
+ ln

(
1 + cos θ

1− cos θ

)
− 2πσ

K

]
= ∓V , (3)

for the fixed (or stick) contact line case where θ is the contact angle of an
undeformed drop at the piezo stage; and

ḣrmax + Ġ

[
2 + ln

(
r2
max

4R2
0

)
+ ln

(
1 + cos θp

1− cos θp

)
− 2

2 + cos θp

− 2πσ

K

]
= ∓V ,

(4)
for the case where the contact angle is fixed at θp while the three-phase
contact line can slip during interaction. The quantity G is related to the
force F between the drops by

G =
F

2πσ
=

1

σ

∫ ∞

0

r [p(r, t) + Π(h(r, t))] dr . (5)
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We use the following scales [6]

hc = R0 Ca1/2 , rc = R0 Ca1/4 , pc = σ/R0 , tc = µCa−1/2 /pc , (6)

where Ca = µV /σ is the capillary number (the ratio of viscous forces to
surface tension forces) to produce the non-dimensional form of the equations,
leading for example to the boundary conditions

p = 0 and
∂h

∂t
+
dG

dt
F = ∓1 at r = rmax , (7)

where

F =

[
2 + ln

(
r2
max Ca1/2

4

)
+ ln

(
1 + cos θ

1− cos θ

)
− 2πσ

K

]
, (8)

if the position of the three-phase contact line of the drop is fixed. For the
constant contact angle boundary condition θ = θp (fixed)

F =

[
2 + ln

(
r2
max Ca1/2

4

)
+ ln

(
1 + cos θp

1− cos θp

)
− 2πσ

K
− 2

2 + cos θp

]
. (9)

We use central differencing in r to obtain a system of differential equations
for hj(t) ≡ h(j∆r, t), j = 0, . . . , N where N = rmax/∆r . We use a uniform
grid in r = [0, rmax] with ∆r = 0.05 and rmax = 15 producing a system
of 300 equations. The boundary conditions at r = 0 produce the equation
for ḣ0 and Eq. (7) provides the equation for ḣN . This requires G as an extra
variable to solve for. The functional G is obtained by evaluating the following
integral using Simpson’s rule:

G =

∫ rmax

0

r[p(r, t) + Π] dr ,

which relates G to all the other variables hj as an algebraic constraint.
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In summary, the final system of equations has the form
1 0 · · · 0 0
0 1 0 · · · 0

. . .

0 0 · · · 1 F
0 0 · · · 0 0




ḣ0

ḣ1
...

ḣN

Ġ

 =


f0

f1
...
∓1

G−
∑

j wjg(hj)

 , (10)

where F is the coefficient of Ġ in Eq. (7) and fj represent the discretized con-
tributions of the thinning equation and normal stress balance. This system
has a singular mass matrix and is a differential-algebraic equation (dae) of
index 1. It can be solved by standard software, in our case Matlab’s ode15s.

3 Results and discussion

We present two movies to illustrate the deformation of the drop surface dur-
ing approach and retract and the velocity of the drop surface. We also
examine in detail: the sensitivity of the force between drops to the boundary
condition; the effects of the behaviour at the three-phase contact line during
interaction; and the influence of the contact angle at the three-phase con-
tact line. The following parameters were used: identical drops with radius
R0 = 40µm , initial separation h0 = 0.7µm, maximum piezo displacement
∆Xmax = 0.9µm, cantilever spring constant K = 0.028N/m , concentration
9mM sds, that gives a Debye length κ−1 of 3.2 nm and a surface tension of
about 8mN/m [5]. These values are representative of those in the experi-
ments [5].

In Figure 3(a) we show a movie of the surfaces of the two drops during the
approach and retract phases at piezo stage velocities V = 13.2µm/s (≈ twice
the mean thermal velocity) and initial contact angle θ = 90◦ , with a fixed
contact line. As the drops approach they repel each other because they are
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Figure 2: (a) Movie of interacting drops at piezo stage velocity V =
13.2µm/s with initial contact angle θ = 90◦ and the fixed contact line
(Eq. (3)) boundary condition. The blue curves are the surfaces of the drops,
the black line shows the motion of the piezo, the red line represents the
movement of the cantilever and the green reference line indicates the initial
position of the cantilever. The inset curve represents variations of the force
with time, with the red dot showing the force for that time. (b) Movie of
the relative velocity of the drop surfaces ḣ or V = 13.2µm/s , θ = 90◦ . The
velocity is shown in red when the surfaces are approaching and in blue when
they are separating. Reference lines for the initial and final velocities are
shown in green.

equally charged and deform to create a thin film that increases in size in the
radial direction. Regions of the surface in compression are indicated in red.
During the retraction phase, regions of the surface that are in extension are
shown in green.

In Figure 3(b) we show a movie of the relative velocity of the drop sur-
faces ḣ(r, t). As the drops approach each other they feel the repulsive hy-
drodynamic and surface forces and the velocity decreases in the interaction
region. At some point the central part of the film stops draining having
reached its equilibrium position, while in the rest of the film the drops con-

http://anziamj.austms.org.au/V46/CTAC2004/Carn/2_drops_hrt.mov
http://anziamj.austms.org.au/V46/CTAC2004/Carn/vel132.mov
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Figure 3: F/R0 for θ = 60◦ , V = 13.2µm/s and various rmax (a) bound-
ary condition Eq. (3) : rmax = 8 (blue), 12 (green), 20 and 30 (black)
(b) boundary condition ḣrmax = ∓V : rmax = 8 (blue), 12 (green), 20 (red)
and 30 (pink).

tinue their approach at a slowing rate. When retraction starts, the outer
parts of each surface separate so the relative velocity suddenly becomes pos-
itive (indicated in blue) — however, the central part continues to approach.
This central zone stays at constant thickness over the entire time when the
force is attractive, a reflection of the attractive lubrication forces preventing
drop separation. Eventually, the drops are pulled apart against lubrication
forces and the central part separates faster to catch up with the outer region
— this is depicted as a velocity overshoot in the movie. After that, the drops
separate uniformly with velocity V = 13.2µm/s as expected.

The results in Figure 3 show why our new boundary condition is neces-
sary. Using the boundary condition ḣrmax = ∓V (this condition is not correct
for the afm experiment), the force is sensitive to rmax, the size of the compu-
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tational domain, see Figure 3(b). On the other hand, with the new boundary
condition, see Figure 3(a), the computed force curves are independent of rmax

for rmax ≥ 15 .

The behaviour of the three-phase contact line when the drops are under
a load depends on details of the drop-piezo stage interaction. Two limiting
cases are where the three-phase contact line is held fixed (stick) or where
the contact angle is fixed at θp (slip). In practice the three-phase line may
stick/slip randomly many times during a force measurement. The two cases
are compared in Figure 4(a) for two approach velocities. See that the force
is smaller for the constant θp case (compare blue with green (V = 13.2µm/s)
and red with pink (V = 2.4µm/s)). This is because the drops have an extra
degree of freedom when the contact line can slip — when under a load they
can ‘slip away’ leading to a reduced force. This is most noticeable when the
drops feel a strong repulsive force (they are pushed hard together); however,
the force minimum is relatively insensitive.

The influence of the initial contact angle θ for the stick boundary condi-
tion is illustrated in Figure 4(b). Higher contact angles correspond to greater
drop volumes — the initial radius of curvature is kept constant here but as
the initial contact angle increases, the drops become a larger fraction of a
sphere. For larger contact angles, the larger drops can ‘back off’ more, leading
to thicker films and lower forces, both repulsive and attractive. A compari-
son with Figure 3(b) shows that the boundary condition ḣrmax = ∓V mimics
the effect of increasing contact angle at fixed contact line — in effect, the
drops are undeformable beyond r = rmax . As rmax increases, the deformable
volume of the drops increases, producing a reduced force at all separations.
This continues without limit beyond reasonable values of rmax. See a sim-
ilar dependence on the contact angle θp for the slip boundary condition in
Figure 4(c) and for the same reason.

Plots of the film profiles for the two boundary conditions and different
values of θ, θp in Figure 4(d) justify the remarks above. They show the final
film thickness to be smallest for stick boundary condition and small contact
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Figure 4: (a) F/R0 for θ = 60◦ , V = 13.2µm/s : stick (blue) and
slip (green) boundary conditions, V = 2.4µm/s stick (pink) and slip (red);
(b) F/R0 for V = 13.2µm/s and stick bc: θ = 60◦ (blue), 90◦ (green)
and 120◦ (red); (c) F/R0 for V = 13.2µm/s and slip bc: θ = 60◦ (blue),
90◦ (green) and 120◦ (red); (d) film profiles at the force maximum for
V = 13.2µm/s , stick (solid lines) and slip (broken lines) bc: θ = 60◦ (blue),
90◦ (green) and 120◦ (red).
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angles. In these cases the drops can back away from the load the least, the
film is thinner and the force is higher.

4 Conclusions

This work describes new features of the interaction of two drops in an Atomic
Force Microscope following the model of Carnie et al [2]. Two movies showing
the deformation of the drops in an afm experiment and the relative velocity
of the drop surfaces give a vivid picture of the process.

Systematic comparisons show the importance of the new boundary con-
dition in producing results independent of the computational domain size.
Calculations with two plausible boundary conditions at the three-phase con-
tact line show that the choice of boundary condition does not qualitatively
alter the force curves but does have quantitative effects, especially when the
force between drops is strongly repulsive. The force minimum is less sensitive.

The results with different boundary conditions and different contact an-
gles are summarized as: when the drops have more freedom to minimize their
interaction — either by slipping at the contact line or by having a larger vol-
ume (higher contact angle) — they do so. They approach less closely, leading
to smaller forces of interaction, both repulsive and attractive.
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