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The retardation of the interfacial velocity due to the presence of surface-active species is a key feature that determines
the magnitude of the dynamic interaction force between colliding bubbles. Here we derive simple measures to quantify
the influence of a surface-active species during a head-on collision between bubbles to be used as guidelines in the design
and analysis of emulsion stability and related experiments. Thesemeasures are derived from a theoretical model that was
found to be consistent with experiment and are shown to characterize the interfacial dynamics without the need to use
numerical analysis. It is shown that a surface mobility may change with the geometry of the film between the bubbles for
a specific amount of a surface-active species. However, small amounts of surface-active species are sufficient to
immobilize the interfaces under most physical conditions as found in earlier studies.

1. Introduction

The thinning and thickening rates of a film between colliding
bubbles at close proximity are significant factors that may affect
the probability for coalescence.1 Trace amounts of surface-active
species (SAS) are known to have a considerable role at these
stages. SAS influence the mobility of fluid interfaces and the
magnitude of the hydrodynamic force that affect the probability
of the film between two bubbles to reach a critical thickness for
rupture.2 In this study, we attempt to quantify the influence of an
insoluble SAS on the gas/liquid interface, and in particular we
study the interaction force during film thinning and thickening in
bubble head-on collisions.

The influence of SAS on the drag force experienced by bubbles
has been examined in countless studies starting from Levich.3

However, its application to collision processes is not fully under-
stood.4-10 Early analyses of collisions relate to fluid interfaces
that are free of SAS and give rise to continuity of shear stress
between the dispersed and continuous phases.11-13 Under Stokes
flow, an exact description of the force between two drops with
surfaces that are free of SASwas given byHaber et al.12When the
viscosity of the drops is neglected, their surfaces cannot support

shear stress (referred to as fully mobile bubbles) and the interac-
tion force is14,15 F∼ 2πμVR log(R/h0), where μ is the viscosity of
the continuous phase, V is the relative velocity between the
colliding particles, R is the identical radii of the bubbles, and h0
is the minimum gap thickness. The hydrodynamic force between
fully mobile bubbles allows coalescence in finite time without
the need to invoke additional attractive forces. However, inter-
facial mobility is found to be highly sensitive to small amounts of
SAS16-22 and colloidal bubbles are usually observed to possess
tangentially immobile surfaces during collisions.23-26 A collision
between nondeforming bubbles at high concentrations of SAS
that are enough to immobilize their surfaces (referred to as
immobile bubbles) resembles a collision between solid spheres.
In the framework of the lubrication approximation, the force
experienced by these bubbles is11 F ∼ 3πμVR2/2h0.

Unlike the interaction between fully mobile bubbles, the force
between immobile bubbles does not enable contact in a finite
amount of time and the presence of attractive surface forces is
required to enable coalescence. Furthermore, at small separa-
tions, the interaction between fully mobile bubbles produces
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asymptotically small forces with respect to immobile bubbles
O(log(R/h0)/(R/h0)). The rate of approach between freely drifting
bubbles is therefore extremely sensitive to their surface mobility.

The key phenomenon that determines interfacialmobility is the
surface distribution of SAS rather than the SAS absolute con-
centration. As a result, very low amounts of adsorbed SAS may
have a significant retardation effect. In this paper, we deduce
measures to quantify the influence of a particular amount of
adsorbed SAS on the surface mobility and the resultant force
F during the filmdrainage between two interacting bubbles before
surface forces become dominant. SAS could be assumed insoluble
when the timeof the interaction is short comparedwith the time of
desorption and adsorption. As the time scale of measurement
procedures for the collisions between bubbles in atomic force
microscopy (AFM) experiments is short,24 many types of surfac-
tant species may behave as insoluble.2,27,28 This is the point of
view taken in the present study.We note that a previous study on
the interaction between bubbles did consider the influence of
adsorption on the distribution of SAS at the bubbles surfaces
making use of a Langmuir isotherm.22

The influence of surface diffusion and convection of a small
amount of insoluble SAS during bubble interactions are consid-
ered in section 2. In section 3, we deduce measures to determine
the mobility of an interacting bubble surface. The application of
the measures to the physics of the surface and to the interaction
force is presented in section 4 via a comparison to numerical
results. In section 5, we study the validity of this analysis when the
interacting bubbles deform, and conclude and generalize in
section 6.

2. Interactions between Bubbles with SAS

In this section, we develop the governing equations for the
axisymmetric collision between two spherical bubbles in the
lubrication approximation (Figure 1), where the presence of
insoluble SAS determine the hydrodynamic boundary condition.
The model couples the thickness h(r,t) of the continuous phase
film between the two bubbles and its velocity field u(z,r) to the
hydrodynamic pressure p(r) and is governed by the equations:

h0ðtÞ ¼ hinitial -
Z t

τ¼0

VðτÞ dτ ð1Þ

hðr, tÞ ¼ h0ðtÞ þ r2=R ð2Þ

Dh
Dt

¼ -
1

r

D
Dr
½rQ� ð3Þ

μ
D2u
Dz2

¼ Dp
Dr

ð4Þ

F ¼ 2π

Z ¥

0

pðr, tÞr dr ð5Þ

Equations 1 and 2 determine the separation between two bubbles
in the contact region h/R , 1 for the approach velocity V(t),
t is time, h0(t) is theminimum separationof the filmwith the initial
value h0(t=0)=hinitial, and hereR is the equivalent radius defined

asR-1=(R1
-1þR2

-1)/2, whereR1 andR2 are the radii of the two
interacting bubbles. The thinning or thickening of the film is
governed by the mass and momentum conservations eqs 3 and 4,
where Q(r,t) � R 0h(r,t) u(z,r) dz. Equations 3-5 are to be solved in
the bubbles contact region h/R, 1, where the contribution to the
drag force from the normal viscous stress is negligible. The
hydrodynamic pressure far from the contact region is taken to
be zero, and we account for the symmetries at r= 0 and at z=h/2
(Figure 1).

The boundary condition at the surfaces of the bubbles follows a
model that was recently developed to quantify the presence of
trace impurities at the gas/liquid interface.20,21 The presence of an
insoluble SAS at the interface at a local concentration Γ depresses
the interfacial tension from the ideal value σ0 to a lower value: σ=
σ0 - πs. At low surface concentrations, the surface pressure is
given by πs=kBT Γ, where kB is the Boltzmann constant and T is
temperature. Variations in πs along the interface produce the
tangential stress boundary condition, μ ∂u/∂z=∂πs/∂r at the gas/
liquid interface (z=0, h) following the Marangoni type model
developed by Levich.3 Equation 4 can then be interpreted to give
the relationship between the hydrodynamic pressure p and the
surface pressure πs at the gas/liquid interface

Dp
Dr

¼ -
2

h

Dπs

Dr
ð6Þ

The drag force is deduced from eqs 5 and 6 to be

F ¼ 2π

Z ¥

0

r2

h

Dπs

Dr
dr ð7Þ

The SAS is assumed to remain at the gas/liquid interface and
does not transfer into the aqueous phase during interaction.
Given the linear relationship of the surface concentration Γ to
the surface pressure πs, the species mass balance along a bubble
surface may be written as17

Dπs

Dt
þrt 3 ½ðusr̂Þπs� ¼ Drt

2πs ð8Þ

whereD is the SAS surface diffusion coefficient and the operator
rt depends solely on the coordinate, which is tangential to the
interface, while the surface tangential velocity usr̂ is determined
from eq 4 to be

us

Vr=2h
¼ 1-

h2

3μVr

Dπs

Dr
ð9Þ

where Vr/2h is the surface velocity of a fully mobile bubble and
us/(Vr/2h) is a measure for surface mobility. The equations are to
be solved in the region r < rmax. rmax is to be chosen in order to

Figure 1. Schematics of a head-on collision between spherical
bubbles subject to the approach velocity V(t) and the bubble radii
R1 and R2, where h in the frame to the right is the thickness of the
lubrication film between the two particles, u is the velocity field in
the film, the radial coordinate r is tangent to the surfaces, and the
axial coordinate z is normal to the lower surface,where the originof
the r,z coordinates is at the cross of the lower surface with the
horizontal symmetry line shown as a dashed curve.
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encompass the region that produces the main contribution to the
interaction force11 but not to exceed beyond the contact region.
That is, (Rhinitial)

1/2 , rmax , R. Detailed scaling arguments for
the choice of rmax are given elsewhere.24,29 Estimation of the
contributions to the surface pressure πs, the hydrodynamic
pressure p, and the force F from the contact region h/R , 1
where r > rmax are given in the Appendix. The boundary
condition at r= rmax is

20,21 r (∂πs/∂r) þ 2(πs - πs0)=0, where
πs0 is the average value of the surface pressure πs. It is an
asymptotic derivation based on the assumption that the duration
of the collision is short compared to the diffusion time
R2/D and the convection time R/V over the extent of the bubble
thus, the surface pressure does not change far away from the
contact region.

Finally, the initial condition to themass balance eq 8 is taken to
be a uniform surface pressure distribution πs0, which is assumed
identical on the two bubbles. It corresponds to bubbles at rest
that experiences a sudden velocity V at t=0 as applicable to the
experimental procedures with the atomic force microscope. Note
that the lubrication approximation is incapable of resolving the
drag force between two fully mobile bubbles, which is the
consequence of a uniform distribution of surface pressure. The
zero drag force that results from eq 7 underestimates the O(μVR
log(R/h0)) force magnitude given from the exact solution of the
problem.12Nevertheless, we expectO(μVR log(R/h0)) forces to be
small in ourO(μVR2/h0) force scale that corresponds to a partially
mobile or immobile bubble surface when the SAS distribution is
altered by convection. Inour present analysis, we regard the initial
force to be F(t=0)=0 þ O(μVR log(R/h0)). As an example, we
consider two bubbles with equivalent radius R=50 μm that are
separated by h0 = 0.1 μm while approaching each other at a
relative velocity V = 30 μm/s. The bubbles experience
a force F ∼ 6.0 � 10-2 nN if their surfaces are fully mobile and
a force F ∼ 3.5 nN if they are immobile.

The characteristics of the normal and tangential lengths and
tangential velocity in the contact region are11 hc=h0, rc=(Rh0)

1/2,

Figure 2. Separation (h0) variations of the forceF(t) between twoundeformedbubbleswith equivalent radiusR scaledwith the forcebetween
two solid spheres 3πμVR2/2h0 for the average surface pressure quantities πs0=0.01, 0.05, 0.1, 0.5, and 1 mN/m as will be measured with
the AFM, where the equivalent radius of the bubbles R and their collision velocity V are (a) 100 μm and 100 μm/s, (b) 50 μm and 100 μm/s,
(c) 100 μm and 10 μm/s, and (d) 50 μm and 10 μm/s. The time for the initial rise of the force starting from h0=3 μm at t=0 toward the
immobile bubbles result F/3πμVR2/2h0f1 is given asΔt1 andΔt2 for the average surface pressure πs0=0.5 and 1mN/m in (a) and (b) and
πs0=0.05 and 0.1 mN/m in (c) and (d).

Table 1. k1 versus Separation h0

h0

3 μm 2 μm 1 μm 0.1 μm

k1 in Figures 2a, 2b 3.3� 101 s-1 5.0� 101 s-1 1.0� 102 s-1 1.0� 103 s-1

k1 in Figures 2c, 2d 3.3� 100 s-1 5.0� 100 s-1 1.0� 101 s-1 1.0 � 102 s-1

Table 2. k2 versus the Average Surface Pressure πs0

πs0

0.01 mN/m 0.05 mN/m 0.1 mN/m 0.5 mN/m 1 mN/m

k2 in Figures 2a, 2b 6.6� 101 s-1 3.3� 102 s-1 6.6� 102 s-1 3.3� 103 s-1 6.6� 103 s-1

k2 in Figures 2c, 2d 1.3� 102 s-1 6.6� 102 s-1 1.3 � 103 s-1 6.6� 103 s-1 1.3� 104 s-1
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and uc = Vrc/hc = V(R/h0)
1/2. Note that these characteristics

change in time with the evolution of the film. The interfacial
convective and diffusive times, as originated from the speciesmass
balance eq 8, are rc/uc and rc

2/D. Their ratio Pe=RV/D does not
depend on the film thickness h0. Equations 7-9 are to be solved
with the method of lines, where the geometry of the film is
updated at each time step with eqs 1 and 2 subject to an arbitrary
relative bubble velocityV. A detailed description of themethod of
solution is given elsewhere.20,21

3. Analysis of Surface Mobility

The surface mobility us/(Vr/2h) is evaluated from the surface
velocity in eq 9. The surface pressure gradient required to arrest
surface flow (us/(Vr/2h) f 0) is ∂πs/∂r = 3μVr/h2, where the
expression to the right is the hydrodynamic shear stress on the
immobile bubble surface. Integration from the outer limit of the
contact regionh/R, 1,which is associatedwith rf¥ andπs=πs0
(as discussed in the previous section), to an arbitrary r value in the
contact region yields the perturbation in the surface pressure that
will arrest surface flow

π̂sðr, tÞ ¼ πcritical
s ðr, tÞ � 3μVR=2h ð10Þ

where π̂s=πs0 - πs is the perturbation in the surface pressure πs
from its average value πs0. πs

critical is scaled with πsc(t)=3μVR/2h0
subject to the characteristics presented in the former section.Note
that the spatial scale πsc(t) evolves with the velocity V(t) and the
film minimum thickness h0(t). As an example for the evolution
of πs

critical, we consider again two bubbles with equivalent
radius R= 50 μm that are approaching each other at a velocity

V=30 μm/s. The magnitude of the spatial perturbation in the
surface pressure to arrest surface flow at the separation h0=1 μm
is πs

critical∼ πsc=0.002mN/m, and at the separation h0=0.1 μm is
πs
critical∼ πsc=0.002 mN/m. As shown in the example, a collision

between bubbles is a dynamic process and the magnitude of the
critical perturbation in the surface pressure πs

critical changes with
the geometry of the film. The key aspect of the present analysis is
the influence of the mass balance eq 8 on the perturbation in the
surface pressure π̂s with respect to the critical value πs

critical. The
dynamics of the perturbation in the surface pressure π̂s is
determined from the time dependent mass balance eq 8, while
the dynamics of its critical value πs

critical is purely a function of the
film geometry and its rate of change in time. A perturbation in
the surface pressure that follows its critical value (π̂s f πs

critical)
arrests the flow on the bubble surface and gives rise to
an interaction force (F) that follows the solid spheres result.
However, a perturbation in the surface pressure that cannot
follow its critical value results with surface flow that reduces the
interaction force. In the following, we measure the rate of change
of the spatial perturbation in the surface pressure π̂s and the rate
of change of its critical value πs

critical. Then we use the character-
istics presented in the former section to scale these measures and
explore the properties that affect surface mobility.

We measure the rate in time of πs
critical with respect to its

magnitude using

1

πcritical
s

Dπcritical
s

Dt
¼ V

h
ð11Þ

Substituting the characteristic for film thickness hc=h0(t) shows
the rate of change in eq 11 scales with k1(t)=V/h0 that increases
with an increase in the velocityV and decreases with theminimum
film thickness h0. Next wemeasure the actual rate of change of the
perturbation in the surface pressure that originates from the

Figure 3. Radial variations of the surface pressure πs scaled with the average value πs0 at the film thicknesses h0=2.4, 1.8, 1.2, 0.6, and
0.3 μmduring the collision of two undeformed bubbles for the average surface pressure πs0=0.1mN/m, where the radius of the bubblesR and the
relative velocity V are (a) 100 μm and 100 μm/s, (b) 50 μm and 100 μm/s, (c) 100 μm and 10 μm/s, and (d) 50 μm and 10 μm/s.

(29) Carnie, S. L.; Chan, D. Y. C.; Lewis, C.; Manica, R.; Dagastine, R. R.
Langmuir 2005, 21, 2912–2922.
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dynamic species mass balance eq 8. For simplicity, it is defined as
the maximummagnitude of the term ∂π̂s/∂t in eq 8 (that occurs at
even distribution of surface pressure ∂π̂s/∂r=0) with respect to
πs
critical and takes the form

1

πcritical
s

Dπ̂s

Dt
¼ 2πs0h0

3μRh
at Dπ̂s=Dr ¼ 0 ð12Þ

Substituting the characteristic hc=h0(t) shows the rate of change
in eq 12 scales with k2=2πs0/3πR that increaseswith an increase in
the averagemagnitude of the surface pressureπs0, a decrease in the
viscosity of the film μ, and a decrease in the equivalent radius of
the bubblesR. A detailed evaluation is presented in theAppendix.

While the rate of change in the surface pressure ∂π̂s/∂t is
sufficient to follow the rate of change in the perturbation that
will arrest surface flow ∂πs

critical/∂t, the surfaces of the bubbles are
immobile. That is, the perturbation in the surface pressure follows
the critical magnitude π̂sf πs

critical. Otherwise, a flow is generated
at the interfaces since the perturbation in the surface pressure π̂s is
not sufficient to resist the stress that originates fromthe flow in the
film u. Following the characteristics k1 and k2, the surfaces of the
bubbles are immobile (us/(Vr/2h)f 0) if the ratio k1/k2=πsc/πs0=
3μVR/2h0πs0 is small with respect to unity, fully mobile (us/(Vr/
2h) f 1) if the ratio is large with respect to unity, and partially
mobile otherwise. It is apparent that except for systems that are
deprived of SAS, where πsc ∼ πs0 or πsc . πs0, the surfaces of the
bubbles are immobile.

4. Numerical Study

In this section, we demonstrate the application of the scales k1
and k2 (that quantify the rate of change in timeof the perturbation
in the surface pressure that will arrest surface flow πs

critical and its
actual value π̂s) to the bubble surface mobility us/(Vr/2h) and the
forceF.We compare values ofk1, k2, andπsc to numerical analysis
of the model presented in section 2 (eqs 1-9), where the relative
velocity between the bubbles V is maintained constant as in the
standard AFM procedure. The results are presented in
Figures 2-4 for the physical properties μ=1 mPa s, D=10-5

cm2/s, and hinitial=3 μm following magnitudes that are encoun-
tered in AFM measurements. Furthermore, the average surface
pressure studied here is πs0e 1 mN/m, which equates to less than
one SASmolecule per a bubble surface of 4 nm2. This surface area
is roughly 1 order of magnitude greater than the area of many
SASmolecules,30 and therefore compatible with the view adopted
in the model that the adsorbed SAS behave as an ideal two-
dimensional gas at the surface.

In Figure 2a, we present the interaction force F (scaled with the
immobile bubbles result 3πμVR2/2h0) experienced by bubbles
with the equivalent radius R=100 μm initially at rest and then
driven toward each other at a relative velocity V=100 μm/s. The
distributions of the surface pressureπs0 at the initial film thickness
h0 (t=0)=3 μm are uniform and evolve with convection and
diffusion at the surface of the bubbles.We see that for πs0=1 and
0.5 mN/m the force F rises to the immobile bubbles result
3πμVR2/2h0 within the changes in the minimum film thickness
Δh0 ∼ 0.2 μm and Δh0 ∼ 0.4 μm. The SAS at the surface of the
bubbles therefore adopt the distribution required to arrest surface
flow during the periods Δt1=Δh0/V ∼ 0.002 s and Δt2=Δh0/
V∼ 0.004 s that are presented in the figure. Note thatΔt1 andΔt2
correspond roughly to 10 times the interfacial time characteristic
1/k2 that quantifies the interfacial convective time response.
Values of k1 and k2 are presented in Tables 1 and 2. Between
h0 ∼ 3 and 0.1 μm, the force F corresponds to the immobile

bubbles result that is us/(Vr/2h)f 0 with accordance to the small
magnitude of the ratio k1/k2. It emphasizes the ability of the mass
balance eq 8 to alter the perturbation in the surface pressure in a
manner that follows the critical value π̂s f πs

critical. Then as the
bubbles are separated by h0∼ 0.1 μm the scaled force F/(3πμVR2/
2h0) decreases. This is because the convection is not sufficient to
alter the perturbation in the surface pressure π̂s in a manner that
will resist the increasing and rapidly changing shear stress applied
on the interfaces by the flow in the film u. It is manifested with
a comparable magnitude of the scales k1 and k2. For πs0=0.1,
0.05, and 0.01 mN/m, we see that the force F does not rise to the
immobile bubbles result but is intermediate and corresponds to
partially mobile bubbles. That is, 0 < us/(Vr/2h) < 1. This is
because the convection of the surface pressure is not sufficient to
distribute the surface pressure in order to resist the shear stress
applied on the interfaces at all separations (h0). The slow increase
in the scaled force from the initial fully mobile limit at h0=3 μm
reflects the slower convection of the surface pressure with πs0=1
and 0.5 mN/m. It is measured as before with the interfacial time
characteristic 1/k2 in Table 2. Then within the film thickness h0=
1-2 μm the scaled force decreases after it reaches a maximum.
This is because the shear stress applied on the surface of the
bubble becomes increasingly dominant, that is, k1/k2 increases. In
Figure 2b-d, we examine the equivalent radius/velocity pairsR=
50 μm/V=100 μm/s,R=100 μm/V=10 μm/s, andR=50 μm/V=
10 μm/s that span the range of bubble radii and scan velocities
investigated with the AFM in the dynamic regime. In comparison
to Figure 2a, the interaction force F increases (with respect to the
immobile bubbles result) with a decrease in the radius R or the
velocity V. That is, the surfaces of the bubbles are less mobile as
follows from the ratio k1/k2=3μVR/2h0πs0. This is because the
shear stress applied on the interfaces decreases with a decrease in
the radiusR or the velocityV. The time required for the initial rise
of the force toward the immobile bubbles result is presented for a
few of the force curves in the figures withΔt1 andΔt2. In all cases,
it is roughly 10 times the magnitude of the interfacial time
characteristic 1/k2.

Next we study the variations in the surface pressure πs and in
the bubble surface velocity us that give rise to the force curves in
Figure 2 and their relation to the analysis of surface mobility in
section 3. In Figure 3a, we present the variations in the scaled
surface pressure πs/πs0 for the average surface pressure πs0 =
0.1 mN/m that leads to the intermediate force presented in
Figure 2. The surface pressure πs varies from the apex at r=0
outward (r>0) and is shown for the separations h0=2.4, 1.8, 1.2,
0.6, and 0.3 μm. The trivial initial variation at h0=3 μm, where πs

(r,t=0)/πs0=1, is excluded. We see that as the separation h0
decreases, the perturbation in the surface pressure from its
average value π̂s = πs - πs0 increases in order to resist the
increasing shear stress applied on the surface by the flow in the
film u. Note that the perturbations follow the scale πs=3μVR/2h0
that increases with a decrease in h0. In Figure 3b-d, the velocityV
and the radius R match the conditions in Figure 2b-d. In
comparison toFigure 3a, the different perturbations in the surface
pressure from its average value π̂s are qualitatively similar, yet are
quantitatively smaller. This is because a decrease in the radius R
or the velocity V decreases the flow velocity in the film and the
shear stress it applies on the surface of the bubble.Note that again
the decrease of the perturbation in the surface pressure π̂s follows
the scale πsc.

In Figure 4a, we present the variations in the surface velocity
us that correspond to the variations in the surface pressure in
Figure 3a. The variations are tangent to the surface of the bubbles
from the apex at r=0 outward (r>0). The variations in the(30) Sottmann, T.; Strey, R.; Chen, S. H. J. Chem. Phys. 1997, 106, 6483–6491.
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velocity us are scaled with the fully mobile surface velocity Vr/2h
to show the local deviation from a fully mobile bubble surface. In
a similar manner to Figure 3a, the variations in the surface
velocity are shown at the separations h0=2.4, 1.8, 1.2, 0.6, and
0.3 μm. The trivial initial fully mobile velocity us(r,t=0)/(Vr/2h)=
1 at h0=3 μm is excluded.We see that between h0=3.0 and 1.8 μm
the surface velocity us decreases from a fully mobile surface
velocity to a partially mobile surface velocity that is roughly
us/(Vr/2h) ∼ 0.1. Note that the surface velocity at h0=1.8 μm
corresponds to the maximum of the scaled force in Figure 2a.
That is, the scaled force increases from its initial fully mobile
magnitude to its maximum during the initial transitions in the
surface velocity us (that results from the initial redistribution of
the spatial perturbation in the surface pressure π̂s to resist the
surface flow).We see that at the end of the initial transition at h0=
1.8 μm the surface flow us is spatially intensified close to the apex
at r=0. This is because the spatial perturbation in the surface
pressure is less susceptible to resist the high shear stress applied on
the surfaces of the bubbles next to the apex. When the film
thickness continues to decrease (h0=1.2, 0.6, and 0.3 μm), the entire
spatial range of the surface velocity us is intensified. This is because
the perturbation in the surface pressure π̂s in Figure 3a is less
susceptible to follow the value that will arrest surface flow (πs

critical)
as the thickness h0 decreases. It ismanifested in the scale ratiok1/k2=
3μVR/2h0πs0 that increases as h0 decreases. In Figures 4b-d, we
match the velocityV and the radiusR to those in Figures 3b-d. In
comparison to Figure 4a, the surfaces of the bubbles are less
mobile with a decrease in the radius R and the velocity V. This is
because the weaker shear stresses and their slower rate of change
allow a more efficient convective distribution of the surface
pressure πs (presented in Figures 3b-d) in order to arrest the

interfacial flow us (which is manifested in the magnitude of the
ratio k1/k2). Note that the initial transition from the fully mobile
surface velocity is not captured in the presented resolution (h0=
2.4, 1.8, 1.2, 0.6, and 0.3 μm) in Figures 3b-d as it was in
Figure 3a.

5. Deformations

Deformations are a key phenomenon during interactions
between bubbles. However, they may be neglected in early stages
when the capillary number Ca=μVσ is sufficiently small.31-33

Here we perturb the measures for the bubble surface mobility eqs
11 and 12 for a small bubble deformation in order to assess the
deviation from the analysis in section 3. That is, we evaluate the
range of parameters in which k1 and k2 may be used to predict
surface mobility in physical systems.

We make use of a recent perturbation analysis for small
deformations during particle collisions33 at close proximity. Each
bubble was assumed to rest on a flat substrate with an inner
contact angle θ. The substrates move with a relative velocity
V toward each other, and the perturbed film geometry between
two identical bubbles was found to be

hðr, tÞ ≈ h0ðtÞ þ r2

R
-
3

4

CaR2

h0
log

h

4R

� �
þ 2BðθÞ

 !
ð13Þ

where B(θ) is a known function of the contact angles.24 Equation
13 suggests the order of the correction relative to themagnitude of

Figure 4. Radial variations of the surface velocity us scaled with the fully mobile surface velocity Vr/2h at the film thicknesses h0 = 2.4,
1.8, 1.2, 0.6, and 0.3 μm during the collision of two undeformed bubbles with the average surface pressure πs0 = 0.1 mN/m, where
the radius of the bubbles R and the velocity V are (a) 100 and 100 μm/s, (b) 50 and 100 μm/s, (c) 100 and 10 μm/s, and (d) 50 and
10 μm/s.

(31) Leal, L. G. Phys. Fluids 2004, 16, 1833–1851.
(32) Ascoli, E. P.; Dandy, D. S.; Leal, L. G. J. Fluid Mech. 1990, 213, 287–311.
(33) Chan, D. Y. C.; Klaseboer, E.; Manica, R. Soft Matter 2009, 5, 2858–2861.

http://pubs.acs.org/action/showImage?doi=10.1021/la902243q&iName=master.img-004.jpg&w=387&h=299
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the undeformed film thickness isCa(R/h0)
2.Wenote that a similar

analysis by Valkovska et al.34 found a similar correction magni-
tude to the film geometry under different boundary conditions.
Following the methodology presented in section 3 for the mea-
sures of surface mobility eqs 11 and 12, we find from eq 13 that

kconv ≈ 2πs0h0

3μRh
1þ 3CaR2

8h0
2

f1

 !
for Dπs=Dr¼ 0 ð14Þ

and

kshear ≈
V

h
1þ 3CaR2

8h0
2

f2

 !
ð15Þ

were the dimensionless expressions f1 and f2 are order unity when
scaled with the characteristics presented in section 3.
A detailed evaluation and the expressions f1 and f2 are presented
in the Appendix. Here we emphasize the leading order correction
to the former nondeforming analysis is Ca(R/h0)

2. The scales k1
and k2 are appropriate when deformations are small. That is,
Ca(R/h0)

2 , 1. For colloidal bubbles, this is the range where the
interaction force that originates from hydrodynamics is appreci-
able. Note that at large deformation (Ca(R/h0)

2 . 1) the Laplace
pressure of the bubbles exerts force that diminishes the hydro-
dynamics contribution.24

6. Conclusion

The mobility of the interfaces during a collision between
bubbles in the presence of insoluble SAS is determined from the
ratio of two simple scales k1 and k2. The first quantifies the rate of
change in time of the spatial perturbation in the surface pressure
(that is, the distribution of the SAS on the surface) that will arrest
the flow on the surface of the interacting bubbles πs

critical. The
second quantifies the rate of change in time of the actual spatial
perturbation in surface pressure π̂s. The ratio k1/k2 is dynamic
during the thinning and thickening of the film between the two
bubbles, and a specific amount of adsorbed SAS may render the
interfacesmobile, partiallymobile, or immobile at different stages
of the same process. However, small amounts of SAS were found
to be sufficient to immobilize the interfaces under most physical
conditions as found in earlier studies. Applications of k1 and k2 to
physical systems are plausible when deformations are small. That
is, Ca(R/h0)

2 , 1. This is the region where hydrodynamics may
have an appreciable influence on the dynamics of a bubble in a
colloidal system. Furthermore, the present analysis provides an
upper limit to the forceF for any degree of SAS solubility. Surface
pressure distributions generated from the dynamics of insoluble
SAS are reduced when the desorption and the adsorption of SAS
are substantial,22,35 and the resultant force F may only decrease
below the magnitude estimated with insoluble SAS.
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Asymptotic Analysis for the Numerical Procedure. The
numerical scheme is solved in the contact region r < rmax.

24,29

Inclusion of the contribution in the region r> rmax to the
hydrodynamic pressure and drag force is required to increase
the accuracy of the numerical calculations. Previous asymptotic
analysis of the film thinning equations20,21 reveals the surface
pressure profile is ∂πs/∂r∼C/r3 at rg rmax, whereC is a constant.
We eliminate the constant to find

Dπsðr g rmaxÞ=Dr ≈ ðDπsðr¼ rmaxÞ=DrÞðrmax=rÞ3 ðA1Þ
The asymptotic contribution to the hydrodynamic pressure at
r > rmax is deduced from eq 6 and A1 to be

pasymptotic ¼ 2

Z ¥

rmax

1

h

Dπs

Dr
dr ≈ R

2rmax

DπsðrmaxÞ
Dr

ðA2Þ

Similarly, the contribution to the drag at r> rmax is deduced from
eq 7 and A1 to be

Fasymptotic ¼ 2π

Z ¥

rmax

r2

h

Dπs

Dr
dr ≈ πRrmax

DπsðrmaxÞ
Dr

ðA3Þ

The approximate result for the hydrodynamic pressure and drag
force therefore can be written as

p ≈ 2

Z rmax

r

1

h

Dπs

Dr
drþ pasymptotic ðA4Þ

F ≈ 2π

Z rmax

0

r2

h

Dπs

Dr
drþ Fasymptotic ðA5Þ

Interfacial Dynamics. Following the methodology presented
in section 3, we derive the measure for the rate of change of the
perturbation in the surface pressure due to interfacial dynamics.
Its limiting value takes place for ∂πs/∂r=0 (that is, πs=πs0) where

Dπ̂s=Dt¼ -πs0 Dufullymobile
s =Drþ ufullymobile

s =r
� �

ðA6Þ

us
fully mobile is the fullymobile surface velocity and is revealed from

a mass balance on the film to be

ufullymobile
s ¼ -1

rhperturb

Z r

0

Dhperturbðr0, tÞ
Dt

r0 dr0 ðA7Þ

Equations 12, 1, 3, and 4 yield the perturbed surface pressure
gradient

Dπs

Dr
¼ -6μ

rhperturb
2

Z r

0

Dhperturbðr0, tÞ
Dt

r0 dr0 þ 6μ

hperturb
us ðA8Þ

An integration of the magnitude of surface pressure gradient
required to immobilize the bubble surface (us=0) results in the
corresponding perturbation in the surface pressure

π̂s ¼ πcritical
s �

Z ¥

r

Dπsðr0, tÞ
Dr0

dr0 ðA9Þ(34) Valkovska, D. S.; Danov, K. D.; Ivanov, I. B. Colloids Surf., A 1999, 156,
547–566.
(35) Chen, J.; Stebe, K. J. J. Colloid Interface Sci. 1996, 178, 144–155.
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at us = 0. Dividing eq A6 by eq A9 and expanding to order
Ca(R/h0)

2 yields the measure for the rate of change in time
of the perturbation in the surface pressure due to interfacial
dynamics

1

πcritical
s

Dπ̂s

Dt
≈ 2πs0h0

3μRh
1 þ 3CaR2

8h0
2

f1

 !
ðA10Þ

where f1=(1/R2h0h){2r
4 - Rh0[3Rh0 - 2r2(1 - 2B(θ) - log(h/

4r))]}.
Dividing the time derivative of eq A9 by eq A9 and expanding

to orderCa(R/h0)
2 yields themeasure for the rate of change of the

perturbation in the surface pressure that is required to arrest
surface flow

1

πcritical
s

Dπcritical
s

Dt
≈ V

h
1þ 3CaR2

8h0
2

f2

 !
ðA11Þ

where f2 = (1/R2h0
2h){h0[2r

4 þ Rh0(r
2 þ Rh)][-1 þ 4B(θ) þ

2log(h/4r)] þ 2R2h3 log(Rh/r2)}.

Note Added after ASAP Publication. This article was
published ASAP on October 7, 2009. A text change has
been made in the first paragraph of section 3. The correct
version was published on October 14, 2009.


