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Dynamic interactions between deformable drops in the Hele–Shaw geometry†
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A model has been developed to describe the collision and possible coalescence of two driven deformable

drops in the Hele–Shaw cell. The interdependence between hydrodynamic effects and interfacial

deformations is characterised by a film capillary number: Caf ¼ (mv/s)(Ro/ho)3/2 as revealed by an

analytic perturbation solution of the governing equations for a system with continuous phase viscosity

m, interfacial tension s, drop radius Ro, characteristic relative velocity v and separation ho between the

drops. Numerical solutions of the model demonstrate the importance of the full dynamic history of the

interacting drops in determining stability or coalescence. The geometry of the Hele–Shaw cell allows for

the possibility of using the model to infer the time-dependent force between colliding drops by

measuring their separation.
1. Introduction

There is currently intense interest in fundamental research and

practical implementation of microfluidics for the production of

controlled droplets and complex emulsions in high value appli-

cations.1,2 Droplet-based microfluidics using �100 mm size drops

of volume in the nanolitre range has become a platform tech-

nology for high-throughput processing3 and separation.4 These

techniques also form the basis of novel encapsulation processes

based on colloidosome manufacture,5 for which considerable

amounts of empirical data have been collected. These applica-

tions require fundamental understanding of the way deformable

drops and bubbles interact and coalesce under different flow

conditions. A general elucidation of the basic interaction

dynamics is therefore highly desirable.

In bulk solution, there are a number of complementary experi-

mental and theoretical approaches to quantify the interaction

dynamics between deformable drops and bubbles driven together

or separated by applied external fields. For example, the four-roll

mill has been used extensively as a well-defined experimental and

theoretical system to study interaction between polymeric drops in

silicone oil under external flow fields.6,7 The time-dependent

deformations of drops attached to the ends of thin approaching

capillaries in a non-miscible continuous phase have been

measured8 for various non-polar/polar fluid combinations and

modelled9 with good quantitative agreement. Interferometric

techniques have also been used to measure, with sub-nanometre

precision, complex dynamic deformations of a mercury drop

moving in water towards and away from a mica surface,10,11 and

the results can be explained in terms of the combined effects of
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hydrodynamics, electrical double layer forces and interfacial

deformations.12,13 The atomic force microscope has been

employed to make direct measurements of dynamic forces between

approaching and receding emulsion drops14 or micro-bubbles15 in

water to elucidate the effects of hydrodynamic boundary condi-

tions, drainage of nanometer thick films and interfacial deforma-

tions. Such systems are relatively well understood. In addition to

detailed numerical modeling of the above experiments, there are

also simple analytic theories to elucidate the physics of the

coupling between hydrodynamic flow and drop deformations.16

Recently, the coalescence of two water drops in hexadecane has

been studied in a microfluidic cell in which the drops can be driven

together or separated by designing the cell geometry to control

flow rates,17 and a Hele–Shaw type model18 has been proposed to

explain the observed coalescence between separating drops.

However, the treatment of this model is flawed because of an

incorrect sign in the governing equation for the film thickness, and

an incorrect boundary condition has been imposed when consid-

ering flow and deformation in the interaction zone. These errors

resulted in the prediction of an unphysical cusp in the film thick-

ness at the point of closest approach between the interacting drops.

In this paper, we provide a simple analysis of the key features

of dynamic interaction between two drops in a Hele–Shaw cell

geometry in the limit where viscous forces on the drops are small

compared to their interfacial tension so that deformations are

small compared to the drop dimensions. The problem is subtle

and requires consideration of flow and deformation in the small

inner interaction zone between the two drops together with

a consistent account of global drop deformation. This important

physical consideration is needed to provide the correct outer

boundary condition for the inner problem. An analytic pertur-

bation solution is also obtained and its range of validity is

quantified by comparison with the full numerical solution of the

governing equations. Flow in the Hele–Shaw cell geometry gives

rise to scaling in term of the film capillary number that is different

to that found for a similar study of the interaction between axi-

symmetric drops in bulk.16

The structure of this paper is as follows. In section 2, we

derive the connection between the local (‘inner’) and global
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(‘outer’) deformations of a drop in a Hele–Shaw cell that is

subjected to a localized weak force density around the osculation

region or interaction zone between two interacting drops.

Hydrodynamic effects and surface forces that are only important

in the small inner interaction zone are treated by a lubrication

approximation in section 3. The outer solution which accounts

for volume conservation of the drop provides the required

boundary condition to completely determine the inner solution.

Such an approach has been used before in analyzing buoyancy-

driven interaction of deformable drops19 and in analyzing equi-

librium surface force measurements involving deformable

drops.20,21 In section 4 we present an analytical perturbation

solution of the governing equations and contrast our approach

with that of Lai et al.18 Numerical solutions of the governing

equations for approaching and separating drops are compared

with predictions of the perturbation theory in section 5. The

paper closes with a discussion in which we propose exploiting the

analytic form of the perturbation solution to devise a novel

method to measure the magnitude of dynamic forces

between interacting drops from simply observing the drop

separation.
2. Deformations of a Hele–Shaw drop

Consider two proximal drops in a Hele–Shaw cell in the xy-plane

(see Fig. 1) with thickness or depth 2b in the z direction. The

interaction between the drops is described by a pressure profile

p(x,t) localised in the osculation region between the drops which

deform from the unperturbed circular shape of radius Ro, with

Ro [ b. This pressure profile can be due to hydrodynamic

interaction as well as surface forces. The position-dependent

separation between the drops is 2h(x,t). The deformed boundary

of the drops y(x,t) with interfacial tension s is given by the

augmented Young–Laplace equation that relates the pressure

jump across the interface of the drop to the mean curvature (with

R1 and R2 the principal radii of curvature)

s

�
1

R1

þ 1

R2

�
¼ DP� p (2.1)
Fig. 1 Schematic representation of the interface (––) of two identical

interacting drops in a Hele–Shaw cell with film thickness (2h). The drops

are deformed under the action of a localized normal pressure distribution

p relative to the undeformed drops of radius Ro (– –).
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where DP is the Laplace pressure of the drop. In the Hele–Shaw

cell geometry, the Young–Laplace equation is approximated by

s
1

b
� v

vx

vy=vx�
1þ ðvy=vxÞ2

�1=2

2
4

3
5

0
@
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A ¼ s

b
þ s

R
� p (2.2)

The status of this depth-averaged equation in the context of

describing interfacial deformations in the Hele–Shaw cell has

been discussed in detail by Homsy.22,23 Here R can be regarded as

the Lagrange multiplier that ensures the drops deform in the

xy-plane under a constant volume constraint.

The interacting drops are taken to be symmetric about x¼ 0 so

we only need to consider x > 0. If the pressure p(x,t) arising from

the drop–drop interaction is localised around x ¼ 0 over a small

range xp� Ro, eqn (2.2) has two distinct regions of behaviour if

the deformation is small on the scale of the drop. We call the

region 0 < x < xp the inner region where |vy/vx|� 1, with an inner

solution of eqn (2.2) that obeys

v2yin

vx2
¼ �1

R
þ p

s
(2.3)

This can be integrated with the symmetry condition: vyin/vx ¼ 0,

at x ¼ 0 to give the outer asymptotic behaviour valid for xp� x

� R

yinðx; tÞ/fyð0Þ � kðtÞg � x2

2R
þ f ðtÞx; x[xp (2.4)

where

f ðtÞh1

s

ðN
0

pðx; tÞ dx

kðtÞh1

s

ðN
0

xpðx; tÞ dx

(2.5)

and the force acting on the drop is 4bs f(t). Small deformations

correspond to the dimensionless force f � 1. The linear and

quadratic behaviour in x will be matched to the outer solution

which will also determine the value of y(0).

In the outer region, x > fR > xp, the outer solution of eqn (2.2)

obeys
vyout=vxh

1þ ðvyout=vxÞ2
i1=2
¼ �x

R
þ f (2.6)

where we assume the drop subtends an acute contact angle q #

p/2 at x1 (see Fig. 1). Eqn (2.6) can be integrated to give the outer

shape of the drop

youtðx; tÞ ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
f � x

R
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� R
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r

(2.7)

For f� 1, the inner asymptotic behaviour, x�R, of yout(x) is, to

linear order in f,

youtðx; tÞ/

8><
>:R

	
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðx1=RÞ2

q 

� fx1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q

9>=
>;

� x2

2R
þ fx

(2.8)

As expected, the inner asymptotic behaviour of yout(x,t) in eqn

(2.8) and the outer asymptotic behaviour of yin(x,t) in eqn (2.4)
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have matching functional forms. In particular, the constant

terms in braces in eqn (2.4) and (2.8) are the same and this

determines y(0) in terms of R and f. The remaining task is to use

the constant-volume constraint to determine the relationship

between the radius of curvature R of the deformed drop and the

dimensionless force f.

The volume of the undeformed drop with radius of curvature

Ro and contact angle qo is (see Fig. 1):

Vo ¼ 2bRo
2{qo � sinqo cosqo} (2.9)

To linear order in f, the volume of the deformed drop Vdef with

radius of curvature R can be found by integrating only the outer

solution yout(x) given by eqn (2.7), since the volume from the

inner solution yin(x) does not contribute to linear order in f. Thus

Vdef ¼ 4b

ðx1

0

youtðx; tÞ dx

¼ 2bR

(
Rf

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

p
þ R

h
arcsinðf Þ � arcsin

�
f � x1

R

�i

� ðRf þ x1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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�
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(2.10)

By putting R h Ro (1 + r), and imposing the constant volume

constraint Vdef ¼ Vo we find, after some algebra, that to linear

order in f and r

r ¼ �
�

1� cos qo

sin qo � qocos qo

�
f (2.11)

With this result, the outer asymptotic form of the inner solution

yin(x) in eqn (2.4), can be cast into a physically perspicuous form:

yinðx; tÞzRoð1� cos qoÞ � f ðtÞRo

�
2� 2cos qo � qosin qo

sin qo � qocos qo

�

� x2

2R
þ f ðtÞx

(2.12)

where the first term on the right-hand side is the height of the

undeformed drop and the second represents a correction to the

drop height due to the applied force f. As the term in braces is

positive, the effect of approaching drops will give rise to

a compressive force f > 0, so the drop height will be reduced as

expected as a result of the interaction. One the other hand, for

separating drops for which f < 0, this correction term that is

proportional to f will cause the drop interfaces to deform

towards each other to give a thinner film than expected. Note

that because of volume conservation, the global deformation of

the drop has an influence on the form of drop deformation in the

inner region.

3. Film drainage between drops

In view of the geometric relation: L(t)¼ h(x,t) + y(x,t) (see Fig. 1)

and eqn (2.3), the half-thickness, h(x,t), of the film between the

drops obeys the equation

s
v2h

vx2
¼ s

R
� p (3.1)

in the inner interaction zone.
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The time evolution of the film can be treated by the usual

lubrication theory for the dominant x-component of the fluid

velocity u(y) which in Stokes flow obeys: vp/vx ¼ m(d2u/dy2),

where m is the viscosity of the continuous phase. Applying the no-

slip boundary condition u(�h) ¼ 0 at the drop surfaces gives the

solution: u(y) ¼ (1/2m)(vp/vx)(y2 � h2). Integrating the continuity

equation with the kinematic condition at the drop surfaces give

the Stokes–Reynolds film drainage equation

vh

vt
¼ 1

3m

v

vx

�
h3vp

vx

�
(3.2)

Eqn (3.1) and (3.2) are the governing equations for the space-

time evolution of the film half-thickness h(x,t) and can be solved

together with the following boundary conditions. Symmetry

requires vp/vx ¼ 0 ¼ vh/vx at x ¼ 0. At large x, we expect (see

later) p � x�4, which can be implemented as vp/vx + 4p/x ¼ 0. By

differentiating the geometric relation: L(t)¼ h(x,t) + yin(x,t) with

respect to t and using eqn (2.12) we have, at a suitably large value

of x ¼ xmax

vhðxmax; tÞ
vt

¼ dLðtÞ
dt

þ
�

Ro

�
2� 2cos qo � qosin qo

sin qo � qocos qo

�
� xmax

�
df ðtÞ

dt

(3.3)

The function L(t) is specified to reflect how the drops are driven

together or separated in an experiment. These boundary condi-

tions together with a given initial shape of the drops for h(x,t) at

t ¼ 0 allow eqn (3.1) and (3.2) to be solved numerically by the

method of lines as a set of coupled differential-algebraic equa-

tions.24 This completes the formulation of the interacting drop

problem. The numerical solution will be independent of the

precise magnitude of choice xmax as long as it is sufficiently large.

We will return to this point when we consider numerical results.

Eqn (3.1) can be integrated with the symmetry condition vh/vx

¼ 0 at x ¼ 0 and eqn (2.4) to give the outer asymptotic form at

large x

hðx; tÞ/hooðtÞ þ
x2

2R
þ kðtÞ � f ðtÞx (3.4)

with the function hoo(t) to be determined. We note that the linear

and quadratic dependence of h(x,t) at the outer edge of the film

follow from the behaviour of the inner shape, yin(x,t) of the

deformed drop and is a general consequence of simply inte-

grating eqn (3.1).
4. Perturbation solution of film drainage equations

In this section we develop a perturbation solution of the Stokes–

Reynolds film drainage equations given by eqn (3.1) and (3.2).

The asymptotic behaviour in eqn (3.4) suggests we seek

a perturbation solution of the form

hðx; tÞhhoðx; tÞ þ h1ðx; tÞ ¼
	

hooðtÞ þ
x2

2R



þ h1ðx; tÞ (4.1)

Using the zeroth-order solution: ho(x,t) h hoo(x,t) + x2/(2R) in

eqn (3.2) gives the zeroth-order pressure relative to the pressure

at infinity
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Fig. 2 Evolution of the film half-thickness h(x,t) between two initially

parabolic Hele–Shaw drops with initial scaled value hoo(t ¼ 0) ¼ 10,

pulled apart with scaled velocity dL(t)/dt ¼ 1 � e�t (cf. eqn (5.2)):

numerical solution (––), analytic perturbation solution (eqn (4.5)) (– –)

and analytic perturbation solution with the numerical force (� � �) for (a)

the central deformation h1(0,t) and film half-thickness h(x,t) in the inset,

(b) perturbation deformation h1(x,t): left – numerical solution and

analytic perturbation solution with the numerical force; right – analytic

perturbation solution.
poðx; tÞ ¼
�3m

dhooðtÞ
dt

R

2

�
hooðtÞ þ

x2

2R

�2
(4.2)

This confirms the p � x�4, x / N behaviour assumed in the

previous section. Within this perturbation scheme, the scaled

force fo(t) due to this pressure po(x,t) is, according to eqn (2.5)

foðtÞ ¼ �
3pmR

8s

dhooðtÞ
dt

½2RhooðtÞ�1=2

½hooðtÞ�2
(4.3)

If we define the capillary number: Ca¼ (m/s) (dhoo/dt) we see that

the scaled force f is proportional to a film capillary number:

Caf ¼ Ca(Ro/hoo)3/2. In contrast, the corresponding film capillary

number for interaction between axi-symmetric drops16 is

Caf ¼ Ca(Ro/hoo)2.

Inserting eqn (4.1) into eqn (3.1), the first-order solution h1(x,t)

satisfies

s
v2h1

vx2
¼ �poðx; tÞ ¼

3m
dhooðtÞ

dt
R

2

�
hooðtÞ þ

x2

2R

�2
(4.4)

This can be readily integrated with the symmetry condition

vh1/vx ¼ 0 at x ¼ 0 to give the complete perturbation solution

hðx; tÞ

¼
	

hooðtÞ þ
x2

2R



þ foðtÞRo

�
2� 2cos qo � qosin qo

sin qo � qocos qo

�

� 2foðtÞ
p
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2RhooðtÞ

p ( 
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2RhooðtÞ
p

!
arctan

 
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2RhooðtÞ
p

!
þ 1

)

(4.5)

Here hoo(x,t)¼ L(t)�Ro(1� cosqo) as we have used L(t)¼ h(x,t)

+ yin(x,t) and eqn (2.12) to simplify the result. We note that eqn

(4.5) has the linear and quadratic behaviour at large x as antic-

ipated in eqn (3.4) as [z arctan(z)] / (pz/2) � 1 as z / N.

This derivation of a perturbation solution follows the

approach taken by Lai et al.18 but with two important differ-

ences. The right-hand side of eqn (4.4) has a different sign to that

in eqn (2.6) of Lai et al. This is an error that was propagated

throughout their calculation. If this sign error were rectified, the

approach of Lai et al. would have predicted deformations with

the opposite sign to that observed experimentally. The reason for

this is due to the boundary condition that should be imposed.

Here we stipulated the symmetry condition: vh1/vx ¼ 0 at x ¼
0 since the fluid interface must have continuous derivatives

everywhere, whereas Lai et al. imposed the condition h1(x,t) /

0 as x / N. Consequently, their solution of the fluid interface

possesses an unphysical cusp at x ¼ 0 and their function h(x,t)

does not have a linear term proportional to the scaled force f at

large x as required by the general result in eqn (3.4). This linear

term in h(x,t) originates from the perturbation contribution

h1(x,t) via the last term in eqn (4.5).

5. Numerical results and perturbation theory

We compare results from numerical solutions of the drainage

and deformation equations of Hele–Shaw drops given by eqn
1812 | Soft Matter, 2010, 6, 1809–1815
(3.1) and (3.2) with the perturbation results from section 4.

For simplicity we take the contact angle qo ¼ p/2 consistent with

x1 ¼ Ro (see Fig. 1). We calculate the deformation when the

distance L(t) is chosen to model cases where drops are driven

together or driven apart from an initial half separation hoo(0) and

accelerate smoothly from rest to a constant velocity. The form of

L(t) we use is:

L(t) ¼ Lo + vo (t � 1 + e�t/s) (5.1)

with the constant velocity parameter vo > 0 (or < 0) corre-

sponding to the drops being driven apart (or driven together).

We also consider the case where L(t) is taken from experimental

data17,18 where the drops are first driven together and then

separated.

To solve eqn (3.1) and (3.2) we choose the following scales:24

xshCa1=4Ro; hshCa1=2Ro;

tshmCa�1=2Ro=s; pshs=Ro;
(5.2)

with Ca h mvo/s to non-dimensionalise eqn (3.1) and (3.2). We

use the algorithm detailed in Carnie et al.24 with (xmax/xs) ¼ 15

and with 301 grid points between 0 and (xmax/xc), which is

sufficient to give over 4 digits precision.

In Fig. 2 we compare numerical solutions of eqn (3.1) and (3.2)

with the perturbation solution eqn (4.5) for two deformable
This journal is ª The Royal Society of Chemistry 2010



Fig. 3 Evolution of the film half-thickness h(x,t) between two initially

parabolic Hele–Shaw drops with initial scaled value hoo(t ¼ 0) ¼ 10,

pushed together with scaled velocity dL(t)/dt ¼ �1 + e�t (cf. eqn (5.2)):

numerical solution (––), analytic perturbation solution (eqn (4.5)) (– –)

and analytic perturbation solution with the numerical force (� � �) for (a)

the central deformation h1(0,t) and film half-thickness h(x,t) in the inset,

(b) perturbation deformation h1(x,t): left – numerical solution and

analytic perturbation solution with the numerical force; right – analytic

perturbation solution.
drops with initial parabolic shape being separated from rest. All

quantities have been scaled according to eqn (5.2). In Fig. 2a, we

see that the central value at x ¼ 0 of the deformation correction

h1(0,t) is negative, that is, the drops deform towards each other as

they are being separated. The rate of deformation and subse-

quent recovery predicted by the analytic perturbation theory,

eqn (4.5), is too fast compared to the numerical solution. Inter-

estingly, if we replace the analytic scaled force fo(t) in eqn (4.3)

and (4.5) by the actual f(t) obtained from the numerical solution,

the result is in almost perfect agreement with the full numerical

solution. The space-time evolution of the film half-thickness

h(x,t) is given in the inset of Fig. 2a for the 4 time points A to D

marked on the main graph. The apparent agreement between the

numerical solution and the analytic perturbation result is due to

the fact that the magnitude of the perturbation is small in this

case.

In Fig. 2b we see that the spatial form of the deformation

h1(r,t) is not well predicted by the analytic perturbation theory

for separating drops even though the magnitude of h1(x,t) (<0.4)

is small compared to the film half-thickness h(x,t) (>10).

However, by replacing the analytic scaled force fo(t) in eqn (4.3)

and (4.5) by the actual f(t) obtained from the numerical solution,

the deformation h1(x,t) can be predicted very accurately. This

suggests that the analytic perturbation solution in eqn (4.5) has

the correct functional form in the spatial coordinate x, but the

scaled force is not well represented by the perturbation expres-

sion fo(t) in eqn (4.3).

In Fig. 3, we present the same set of comparisons for two

parabolic drops initially at rest but driven together instead. In

this case, the central deformation h1(0,t) is positive because the

drops will flatten as they approach but the deformation predicted

by the analytic perturbation solution is too large. The space-time

evolution of the film half-thickness h(x,t) is given in the inset of

Fig. 3a for the 4 time points A to D marked on the main graph.

Note that at time D, the scaled central film half-thickness h(0,t)

has decreased from 10 to 5 where the scaled deformation h1(0,t) is

about 1.5, which accounts for about 30% of the thickness. Note

that by replacing the dimensionless force fo(t) in eqn (4.3) by the

value of f(t) obtained from the numerical solution, eqn (4.5) can

give almost perfect agreement with the full numerical solution for

the central deformation h1(0,t). This suggests that if h1(0,t) can be

measured, eqn (4.5) can be used to infer the time-dependent scale

force f(t) quite accurately for approaching drops.

In Fig. 3b we see that the spatial form of the analytic pertur-

bation theory for the deformation h1(r,t) is rather inaccurate.

However, by replacing the analytic scaled force fo(t) in eqn (4.3)

and (4.5) by the actual f(t) obtained from the numerical solution,

the deformation h1(x,t) then becomes almost indistinguishable

from the full numerical result (left side of Fig. 3b) which is in

accord to the results seen in Fig. 3a.

We now examine predictions of the Hele–Shaw model using

parameters pertinent to the coalescence studies in microfluidic

cells of Bremond et al. Two drops of radius Ro ¼ 30 mm are

driven together in a microfluidic cell according to an experi-

mentally controlled displacement function d(t) between the

centre of mass of the drops.18 The experimental d(t) values are

fitted to a polynomial and differentiated to obtain the velocity as

a function of time (Fig. 4a). We see that the drops are initially at

a centre-to-centre separation of 65 mm or an initial minimum
This journal is ª The Royal Society of Chemistry 2010
separation of 5 mm. They are driven together initially until t � 0

and then separated (Fig. 4a). Using data corresponding to water

drops in hexadecane (s ¼ 50 mN/m, m ¼ 3 mPa s) the evolution

of the film half-thickness h(x,t) on approach (t < 0) is given in

Fig. 4b corresponding to the time points A to E indicated in

Fig. 4a. We see clear evidence of flattening due to hydrodynamic

interactions. As the separation is greater than 330 nm at all times,

van der Waals interaction between the drops is negligible.

For t > 0, when the outer part of drops are being separated,

corresponding to time points E to J, the central portion of the

film continues to thin (see Fig. 4c) and attains the minimum

thickness, at time J, of about 160 nm. Beyond this time, the

central portion of the film also starts to separate as well

(see Fig. 4e).

A movie showing the space-time evolution of the film thickness

that models this approach-and-separation experiment is avail-

able as ESI†.

To illustrate the history dependence and dynamic nature of the

drop–drop interaction we compare these results with the case of

two stationary parabolic drops at an initial separation of 330 nm,

the same separation at time E, t ¼ 0, and separate them for t >

0 according to the same experimental velocity schedule as in

Fig. 4a. The evolution of this film half-thickness h(x,t) in this case
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Fig. 4 (a) The experimental separation d(t) ¼ 2L(t) between the centre of mass of two interacting water drops (Ro ¼ 30 mm) in hexadecane in

a microfluidic cell: experimental data (B) from Lai et al.18 fitted with a 10th-order polynomial (––) (left ordinate) and the velocity v(t) obtained by

differentiation of the fitted polynomial (–�–) (right ordinate). (b) The hexadecane film half-thickness h(x,t) between the drops during approach at times

marked in Fig. 4a. (c) The film half-thickness h(x,t) during separation at times marked in Fig. 4a. (d). The film half-thickness h(x,t) of an initially

stationary parabolic film being separated at the same velocity as in Fig. 4c from the same minimum separation as the film at time E. (e) The central film

half-thickness h(0,t): numerical solution of approach-then-separate (–�–), numerical solution of initially stationary parabolic drops (––) and analytic

perturbation solution of initially stationary parabolic drops (/). (f) central deformation h1(0,t): numerical solution of initially stationary parabolic

drops (––) and analytic perturbation solution of initially stationary parabolic drops (– –). A movie of the approach-then-separate result is available as

ESI†.
is shown in Fig. 4d. The result differs significantly from that for

the approach-then-separate results in Fig. 4c. The reason is that

during the approach phase, the drops flattened considerably

from the initial parabolic shape and the drop surfaces are still

moving when the separation phase commences. Thus the

behaviour on separation is very different from that of separating

parabolic drops that are initially at rest. Consequently, any

intuition based on studying the behaviour of separating para-

bolic drops from rest may be misleading when applied to moving

drops.18 We illustrate this point by comparing the central half

separation h(0,t) between these two cases in Fig. 4e. We also

show that the analytic perturbation theory for h(0,t) for sepa-

rating two initially stationary parabolic drops is also misleading,

as it predicts coalescence of the drops almost immediately upon

separation (see arrow on Fig. 4e). Although the maximum

magnitude of the deformation predicted by the analytic pertur-

bation theory for h1(0,t) is nearly correct (Fig. 4f), this maximum

deformation is attained too early in the separation phase and

leads to the incorrect inference that the initially stationary

parabolic drops may coalesce immediately upon separation.
6. Discussion

We have developed a model to describe the head-on dynamic

interaction between two quasi-two-dimensional drops in a Hele–

Shaw cell. The model focuses on treating hydrodynamic inter-

actions, surface deformation and thin film drainage in detail in
1814 | Soft Matter, 2010, 6, 1809–1815
the osculating region between the drops when the size of the

deformation is small on the scale of the drop radius. Nonetheless,

the effect due to global deformations arising from volume

conservation needs to be included through matching of the outer

drop shape to provide a physically consistent boundary condi-

tion for the differential equations that govern phenomenon in the

inner thin film region.

While numerical solutions of the governing equations are

required, we also gave an analytic perturbation solution. Even

though this solution is not particularly accurate in some cases, it

does provide useful physical insight into the dynamic properties

in interacting drops for this system. The perturbation solution

reveals that the amplitude of the deformations of the interface is

characterised by the film capillary number: Caf ¼ (mv/s)(Ro/ho)3/2

and the profile of the thin film appears to diverge linearly at the

outer edge (see eqn (4.5)). A similar study of the dynamic inter-

action between three-dimensional axisymmetric drops16,25 leads

to a film capillary number: Caf¼ (mv/s)(Ro/ho)2 and the profile of

the thin film diverges logarithmically at the outer edge. These

apparently divergences are due to the mathematical form of the

Young–Laplace equation in one dimension or where there is

axial symmetry, and these asymptotic forms are required to

match to the global deformations of the drops via volume

conservation of the drops.

On the other hand, accurate quantitative predictions of the

evolution of the film thickness between drops can be obtained

from the analytic perturbation solution in eqn (4.5) provided the
This journal is ª The Royal Society of Chemistry 2010



correct numerical value of the dimensionless force f(t) is used in

place of the zeroth order perturbation expression fo(t), eqn (4.3).

This means that if the film thickness can be measured, eqn (4.5)

can be used to infer the time-dependent force between moving

drops in situations where the Hele–Shaw model is applicable.

In terms of the microfluidic experiments of Bremond et al., the

Hele–Shaw model does not appear to provide a good quantita-

tive model. Using plausible physical parameters and the experi-

mental drop separation function (see Fig. 4) we are not able to

obtain films thinner than 160 nm. At this thickness, destabilizing

van der Waals forces are completely negligible. The reason for

observing such thick films is that the Hele–Shaw model is

equivalent to fluid drainage between two cylindrical drops for

which the hydrodynamic repulsion between approaching drops is

overestimated. Furthermore, the geometry of the experimental

microfluidic cell is not very thin compared to observed drop

radius. Indeed, the drops probably resemble oblate spheroids

with an axis ratio of about 3 : 1. Using an axi-symmetric model24

with a radius equivalent to the harmonic mean, the minimum

separation can be as small as 5 nm where van der Waals forces

can then be large enough to induce coalescence.

However, it is interesting to note that the Hele–Shaw model

does predict the minimum separation would occur at around

1 ms, which is within the spread of coalescence times observed in

the microfluidic experiments.18 Recall that we assumed the no-

slip or immobile hydrodynamic boundary condition holds at the

water/hexadecane drop interface. If on the other hand, the fully

mobile or continuity of tangential stress condition were applied

at the drop interface, the coalescence time would be smaller by

more than an order of magnitude.26 Our choice of the no-slip

boundary condition at the fluid interface is motivated by the fact

that when water is one of the fluids, trace amounts of surfactants

or impurities will render the water interface to behave as a no-slip

boundary.8,15 The water/hexadecane viscosity ratio of 1/3 cannot

account for the no-slip condition, as the viscosity ratio must be

much greater than (Ro/ho)1/2 (�15 in this case) in order for the

drop interface to attain the no-slip condition.18
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