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a b s t r a c t

A model for the unsteady rise and deformation of non-oscillating bubbles under buoyancy force at high

Reynolds numbers has been implemented using a boundary element method. Results such as the

evolution of the bubble shape, variations of the transient velocity with rise height and the terminal

velocity for different size bubbles have been compared to recent experimental data in clean water and

to numerical solutions of the unsteady Navier–Stokes equation. The aim is to capture the essential

physical ingredients that couple bubble deformation and the transient approach towards terminal

velocity. This model requires very modest computational resources and yet has the flexibility to be

extended to more general applications.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Results of experiments pertaining to bubble rise in a variety of
liquids and liquid mixtures have been reviewed recently by Loth
[1]. Magnaudet and Eames [2] summarised various theoretical
and empirical approaches to the problem of bubble motion at
high Reynolds numbers. The focus of this paper is on modelling
the behaviour of rising bubbles in clean water for equivalent
bubble diameters up to � 4 mm or Reynolds number up to
� 1000. The aim is to predict the transient rise velocity and
corresponding deformation of initially spherical bubbles under
the influence of buoyancy forces. The well-known summary of
terminal velocity, U, versus equivalent bubble diameter, d, in
clean and unpurified water of Clift et al. [3] (Fig. 1) provides a
good visual overview. Also shown in this figure are theoretical
results for a spherical bubble corresponding to the Hadamard–
Rybczynski (HR) formula [4]: U ¼ 4rgd2=3m valid for Stokes flow;
the Levich formula [5–7]: U ¼ 4rgd2=9m valid in the limit of
infinite Reynolds number, Re¼ rUd=m-1; and the empirical
correlation formula given by Magnaudet and Eames [2] which has
been constructed from the results of Mei et al. [8] and Moore [9]
(together denoted as MM) to fit experimental data for spherical
bubbles in the range 0rRer500. Here r is the water density, m
the dynamic shear viscosity and g the gravitational acceleration.
All these theoretical results assume the zero tangential stress
boundary condition at the surface of a spherical bubble which is

appropriate for experiments conducted in highly purified water. It
is well known that rising bubbles in ultra clean water follow a
rectilinear path until a critical equivalent diameter of about 2 mm
when the terminal velocity attains a local maximum, and beyond
which the bubble path can zig-zag or spiral. However, the
terminal velocity in the rectilinear regime is very sensitive to
even trace amounts of contamination so it is important to cross-
validate experimental data from a number of independent sources
and ascertain that the measurements are free from artifacts.

Recently, Malysa et al. [10] measured the transient rise of
deformed bubbles of equivalent diameter between 1.35 and
1.43 mm (around the location of the velocity maximum in Fig. 1)
in ultra clean water. The observed terminal velocity of 35 cm/s
(which corresponds to a Reynolds number of about 500) is in
excellent agreement with the experiments of Duineveld [11] and
Wu and Gharib [12] who measured the terminal velocities of
deformed bubbles in clean water in the range of equivalent
diameters between 1 and 2 mm. These results are also consistent
with the earlier measurements of Okazaki [13]. This range of
bubble size is of particular significance in mineral flotation
applications [14] and many other industrial processes.

With small amounts of added surfactants, Malysa et al. [10]
reported that the terminal velocity for same sized bubbles fell to
15 cm/s, which again is in excellent agreement with the observa-
tions of Zhang and Finch [14] and of Wu and Gharib [12] for cases
where the bubbles become contaminated by the bubble genera-
tion method. These small concentrations of added surfactants
render the bubble surface immobile while the interfacial tension
remains unaffected.
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The results of three independent experimental studies by
Duineveld, Malysa et al. and Wu and Gharib on the terminal
oblate ellipsoidal shapes of bubbles in clean water as character-
ized by variations of the aspect ratio with equivalent bubble size
are also in excellent agreement (see Fig. 2b). In the presence of
surfactants or for contaminated bubbles, all three studies reported
lower terminal velocities of the same magnitude ðRe� 200Þ and
the terminal bubble shapes remain nearly spherical. Therefore,
one can be quite confident that these results represent the correct
behaviour of rising bubbles in water under clean, contaminant
free conditions. Taken together with the recent measurements of
the rise of microbubbles in ultra clean water by Parkinson et al.
[15], we have a complete and reliable experimental data set for
the rectilinear rise of spherical and deformed bubbles in water for
Reynolds numbers up to � 500.

Numerical modelling of unsteady rising bubbles using grid-
based numerical methods that take into account deformations in
a self-consistent way has been attempted using both an axi-
symmetric boundary-fitted coordinate formulation [16,17] and a
full three-dimensional solution [18,19] of the Navier–Stokes
equation. Such approaches are quite complex to implement and
are very demanding in terms of computational resources [20].
This places practical limitations on extending them to more
complex and interesting multiphase problems [21] involving, for
example the motion and deformation of multiple bubbles in
response to external fields or to model dynamic interactions
between bubbles and between bubbles and surfaces or interfaces.
A relatively simple, yet accurate model that can accommodate
these complexities at relatively high Reynolds numbers is there-
fore desirable [10].

A promising approach to treat bubble dynamics at high
Reynolds number is via a boundary integral formulation that
only uses the properties of the bubble surface to track its
evolution. In addition to computational efficiencies conferred by
the reduction of one spatial dimension, the focus on the boundary
means that interactions between bubbles and surfaces that may
involve short-ranged surface forces can be included without
complex implementation issues associated with obtaining a
sufficiently accurate resolution of a deforming air/water interface
in grid-based computational schemes.

The boundary integral method has been used in the past
to simulate models involving deformable rising bubbles.
Miksis et al. [22] considered potential flow and obtained shapes
and terminal velocities but did not consider transient behavior.

Boulton-Stone et al. [23] and Blake et al. [24] considered the
transient motion of one bubble or a pair of bubbles rising in the
absence of viscosity effects and so did not address the question of
terminal velocities.

The theory considered in this paper is motivated by the
boundary integral formulation by Lundgren and Mansour [25],
appropriate at high Reynolds numbers, to study weak viscous
effects on the oscillation of a liquid drop in a gravity-free
environment. However, for the rising bubble problem, we include
a gravitational body force at the outset. The aim is to produce a
theory that can describe the evolution of the position, velocity and
deformations of the bubble surface in a self-consistent way. At
high Reynolds number, the viscous potential flow approach [26] is
able to predict the exact limiting forms of the terminal velocities
of spherical and ellipsoidal bubbles using a viscous correction due
to Joseph and Wang [27] for the viscous pressure. Here we extend
this approach to estimate bubble deformations and transient
effects. As we shall see, the self-consistent bubble shapes so
obtained are close to perfect oblate ellipsoids, therefore we expect
this approach will yield quantitatively correct results. The
practical utility of this approach is illustrated by comparing
predictions of this approach with experimental results summar-
ized earlier.

2. Formulation

The velocity field u of an incompressible Newtonian fluid
obeys the Navier–Stokes equation [28]

r @u

@t
þru � ru¼�rpþmr2u�rg ð1Þ

and the conservation of mass condition r � u¼ 0, where p

represents the pressure, t the time and g the body force acting
on the fluid due to gravity. The boundary condition at the surface
of the bubble is given by the Young–Laplace equation for which
the difference in normal stress across the bubble surface is
balanced by the product of the interfacial tension, s and the local
mean curvature, k:

pin�pþ2m @un

@n
¼ sk ð2Þ

where pin is the internal pressure of the bubble, un is the normal
component of the velocity and n is the unit outward normal
directed into the fluid. In the above equation, @=@n¼ n � r
represents the normal derivative. We also assume the bubble
surface is fully mobile so that the tangential stress vanishes.

We employ the exact Helmholtz decomposition: u� upþv¼
rfþv, where u is written as a sum of an irrotational field, rf
(with f the velocity potential) and a rotational field, v. Eq. (1) can
then be recast as

r r @f
@t
þ

1

2
rjrfj2þpþpvþrgz

� �
¼ 0 ð3Þ

where the viscous pressure, pv is given by

rpv � r
@v

@t
þrðv � rÞðrfÞþrðrf � rÞvþrv � rv�mr2v ð4Þ

At high Reynolds numbers, the irrotational part of the velocity
rf provides a uniformly valid leading order approximate solution
to the velocity field so that @un=@nffi@2f=@n2 [29]. The evolution
of the potential and the position X of an element of the bubble
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Fig. 1. Numerical results of the terminal velocity of deformable bubbles predicted

by the present model and by the full 3D solution of the unsteady Navier–Stokes

equation of Hua et al. are compared to experimental data summarised by Clift

et al. [3]. Familiar theoretical results for spherical bubbles are also plotted. See text

for details.
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surface is governed by

rDf
Dt
¼

1

2
rjrfj2�2m @

2f
@n2
þsk�rgz�pin�pvþp0ðtÞ ð5Þ

DX

Dt
¼rf ð6Þ

Here p0(t) is the ambient pressure that can be time dependent in
general and D/Dt is the material derivative: D=Dt¼ @=@tþup � r.
The form of the internal pressure of the bubble pin depends on the
choice of equation of state for the bubble, which may for example,
be the isothermal or the adiabatic equation. The continuity
condition for the liquid implies r2f¼ 0 so that on the surface of
the bubble we have the integral equation [30]

cfþ
Z

S
f
@G

@n
dS¼

Z
S

G
@f
@n

dS ð7Þ

with G the 3D Green function for the Laplace equation and c the
solid angle.

Eqs. (5)–(7) now constitute a boundary integral formulation
for the unsteady motion and deformation of a bubble that
accounts for effects of buoyancy, inertia, viscous forces and
surface tension effects.

Joseph and Wang [27] proposed a method to estimate the
viscous pressure pv at the bubble surface for high Reynolds
numbers when the velocity field can be approximated by the
potential flow solution up ¼rf. They argued that in order to
satisfy the zero tangential stress boundary condition at the bubble
surface, the viscous pressure pv must compensate for the non-
zero shear stress: ts ¼ 2mt � rup � n, at the bubble surface that
arises from the irrotational solution. This is expressed as an
integral condition on the bubble surface:

�

Z
S
ðup � nÞpv dS¼

Z
S
ðup � tÞts dS ð8Þ

Joseph and Wang [27] derived this equation by calculating the
kinetic energy in the fluid domain based on the Navier–Stokes
equations. The rate of change of this energy is then considered and
expressed in terms of surface integrals, taking into account that the
shear stress vanishes on the bubble surface. They then continue to
argue that the dissipation in potential flows does not vanish and
gives rise to a viscous pressure contribution (which is basically a
correction to the irrotational pressure term). Interested readers are
referred to Joseph and Wang for more details.

For an axi-symmetric problem, pv on the bubble surface can be
expanded in terms of the surface harmonics. For our model, we
retain only one term: pv � C1cosðbÞ where 0rbop is the
normalised arc length of the bubble surface and the constant C1

is then determined from (8).
Our aim is to model the experiments of Duineveld, Malysa

et al. and Wu and Gharib by starting with a spherical bubble at
rest and obtain a description of the transient behaviour as the
bubble rises under buoyancy force to its terminal velocity and
deforms into its final shape.

3. Numerical implementation

An axi-symmetric implementation of the boundary element
method using a cylindrical coordinate system (r, z) is used to solve
the governing Eqs. (5)–(8). The terms @2f=@n2 in (5) and ts in (8)
can be obtained with the help of the Laplace equation as [22,25]

@2f
@n2
¼�

nz

r

@f
@s
�k @f

@n
�
@2f
@s2
¼�
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ut�k

@f
@n
�
@ut

@s
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ts ¼ 2m @un

@s
þut nr

@nz

@s
�nz

@nr

@s

� �� �
ð9bÞ

with nr and nz the r and z components of the normal vector, ut the
tangential component of the velocity and s the arclength along the
bubble surface. Furthermore, the curvature k is obtained with
tany¼ dz=dr resulting in k¼ siny=rþdy=ds according to Chesters
[31] which is equivalent to k¼�nr@nz=@sþnz@nr=@sþnr=r.

The code we employ has been used extensively to study
oscillatory bubble dynamics, such as in underwater explosions
[32,33], micro-pumps [34], lithotripter shockwave–bubble inter-
action [35], accelerating particles due to cavitation [36] and
bubbles in sound waves near biomaterials [37]. The N nodes on
the bubble are distributed evenly along the surface. A node
redistribution scheme, based on a cubic spline interpolation with
respect to the arc length along the bubble surface, is applied to
prevent the nodes from clustering as the bubble evolves.
Furthermore smoothing is applied every 50 time steps using a
five-point smoothing formula of Longuet-Higgins and Cokelet [38].
The position and potential at the next time step for each node are
obtained from (5) and (6) as

ftþDt
¼ft
þ
Dt

r
1

2
rjrfj2�2m @

2f
@n2
þsk�rgz�pin�pvþp0

� �t

ð10Þ

XtþDt
¼Xt
þDtðrfÞt ð11Þ

with Dt the time step, t the present time and tþDt the new time.
Applying (7) for each node will give a N�N matrix equation to be
solved for the unknown normal velocity. The velocity vector is
obtained using this normal velocity and the potential distribution
along the surface of the bubble (which will give the tangential
velocity component). For more details on the numerical imple-
mentation see [39]. To calculate a bubble rising from rest to attain
terminal velocity requires several minutes on a desktop general
purpose computer. The initial conditions for the problem
are taken as a spherical bubble at rest at t¼0, with initial
volume V0 ¼ pd3=6 and initial pressure pin,0 ¼ p0þ4s=d, with
p0 ¼ p0ðtÞ ¼ 1 bar. The time-step is taken to be 0:01d

ffiffiffiffiffiffiffiffiffiffiffi
r=p0

p
. We

assume the ideal adiabatic equation of state for the bubble:
pin ¼ pin,0ðV0=VÞg where g¼ 5

4, but the variation in the bubble
volume V is less than 1% as it rises.

4. Results

The terminal velocity predicted by our model for equivalent
bubble diameter, d, up to 4 mm is shown in Fig. 1 together with
the collection of experimental data from Figure 7.3 of Clift et al.
[3]. For d44 mm bubbles no longer rise along a rectilinear path.
At any bubble size, the scatter in the experimental terminal
velocities is due to the presence of contaminants or surfactants in
the water which lower the terminal velocity by varying degree.
The curve labelled SN [40] corresponds to the empirical formula:
CD ¼ (24/Re) (1 + 0.15 Re0.687) for the terminal velocity of a ‘solid’
sphere which obeys the no-slip rather than the zero tangential
stress boundary condition. Also shown are results of calculations
for deformable bubbles based on a full 3D solution of the
unsteady Navier–Stokes equations by Hua et al. [18] which
predicted terminal velocities lower than that observed in ultra
clean water.

To demonstrate the effects of bubble deformation, we also
show theoretical results for spherical bubbles valid at different
ranges of the Reynolds number, Re, summarised by Magnaudet
and Eames where the terminal velocity is given implicitly by the

E. Klaseboer et al. / Engineering Analysis with Boundary Elements 35 (2011) 489–494 491



Author's personal copy

relation prgd3=6¼ ðp=8ÞCDrU2d2, for 0rRer500, where CD in
the interpolation formula combines the result by Mei et al.

CD ¼
16

Re
1þ

8

Re
þ

1

2
1þ

3:315

Re1=2

� �� ��1
( )

, 1oReo50 ð12aÞ

and [9]

CD ¼
48

Re
1�

2:21

Re1=2

� �
, ReZ50 ð12bÞ

For larger diameters, d41:0 mm and considering the absence
of adjustable parameters, our high Reynolds number model
agrees quite well with experimental data for clean bubbles (see
Fig. 1). There is also agreement with the interpolation formula
(12) for d between 0.4 and 1.0 mm where bubble deformation is
not significant. For d below 0.4 mm, the Reynolds number
becomes less than 30, and viscous effects become important
which accounts for the deviation from (12).

In Fig. 2 we compare, on a linear scale, experimental results
obtained independently by Duineveld, Malysa et al. and Wu and

Gharib for bubbles in ultra clean water for which the zero
tangential stress boundary condition applies. In the practical
range of equivalent diameter, d between 0.5 and 2 mm, where
bubble deformation is important (50oReo600, based on the
terminal velocity and equivalent bubble diameter), our model
predicts the existence of the velocity maximum around the
equivalent diameter of 1.5 mm, but underestimates experimental
velocities by about 10% (Fig. 2a). This is due to the fact that in the
limit of a non-deforming spherical bubble, our theory will give the
Levich drag coefficient of CD ¼ 48/Re which is an upper bound. By
assuming bubbles deform as fore-aft symmetric oblate ellipsoids,
Moore [41] derived a result for the drag coefficient CD that included
a correction of order Re�3/2, and reduces to (12b) for spherical
bubbles, and provides closer agreement with experiments. Using a
boundary-fitted coordinate system, Yang et al. [17] solve the axi-
symmetric Navier–Stokes equations for three bubble diameters
between 0.72 and 1.2 mm and their results for the terminal
velocities are in good agreement with experiments. Also shown in
Fig. 2a is the empirical relation of the terminal velocity from Clift
et al. [3]: U ¼ ½ð2:14s=dÞ þ0:505gd	1=2 valid for d41:1 mm.

In Fig. 2b, we compare the degree of deformation as measured
by the bubble aspect ratio corresponding to the terminal
velocities in Fig. 2a. The present theory as well as that of Moore
[41] and Yang et al. [17] are all in good accord with experiments.
Over this size range, the deformed bubbles closely resemble
oblate ellipsoids.

In Fig. 3a–d, we present an overview of predicted variations in
bubble shape as spherical bubbles of different sizes are released
from rest in clean water and allowed to rise towards terminal
velocity and steady state deformed shape. Clearly our simple
model has captured the physical essence that a rising bubble will
begin to flatten when the pressure drop around the equator of the
bubble due to the Bernoulli effect ðrU2Þ can no longer balance the
Laplace pressure ð4s=dÞ of the bubble. The resulting flattening
then creates a larger cross-sectional area normal to the direction
of bubble motion which increases the drag on the bubble. The
balance between these two effects then gives rise to a steady state
velocity and deformed shape. The deformation of the bubble is
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determined by the Weber number We¼ rU2d=s. In Fig. 3a–d we
see that the terminal shape of the bubble becomes an oblate
ellipsoid as We exceeds unity.

In Fig. 4, we compare the prediction of our model with the
experimental results of Malysa et al. [10] on the evolution in rise
velocity and bubble shape as a spherical bubble (diameter
1.46 mm) is released from rest and allowed to rise and attain
terminal velocity and shape. In this case, the Reynolds number
based on the terminal velocity is around 500. This confirms that
the present model is capable of predicting both steady state and
transient behaviour of rising bubbles.

5. Discussion and conclusions

The current model is closely related to the Rayleigh–Plesset
equation for the radius R(t) of an oscillating spherical bubble
[42,43]

pin�r
3

2

dR

dt

� �2

þR
d2R

dt2

" #
�

2s
R
�p0ðtÞ�

4m
R

dR

dt
¼ 0 ð13Þ

in which viscous effects are included through the normal viscous
stress jump condition at the interface via the last term on the left-
hand side which corresponds to 2mð@un=@nÞ in (2). However, due
to spherical symmetry, the shear stress and the viscous pressure
term pv are absent. In the present model we use the idea
suggested by Joseph and Wang [27] to estimate the pv contribu-
tion and this approach can be viewed as a generalised
Rayleigh–Plesset model for oscillating and translating bubbles.
Omitting the pv contribution will give the model of Miksis et al.
[22] which predicts a smaller value of CD (giving CD ¼ 32/Re

instead of 48/Re for spherical bubbles) and therefore over-
estimates the terminal velocity of deformed bubbles (see
Fig. 2a) as well as the degree of deformation (see Fig. 2b).

The present model cannot account for the possibility of
recirculation zones that can develop on the down-stream side of
the bubble. However, we can see in Fig. 1 that because bubble
deformation in clean water is significant at finite Reynolds
number, the terminal velocity deviates from the Levich exact
asymptotic result which applies to spherical bubbles. From a

different perspective, the good agreement we observed with the
present model would strongly suggest that the effects of such
recirculation zones may only provide a small correction to the
terminal velocity and final shape for bubbles in this size range. To
predict the possibility of non-rectilinear motion observed for
bubbles larger than about � 2 mm would require a general 3D
rather than an axi-symmetric implementation of the present
model. Indeed a 3D formulation of the present approach will also
be required to model the motion of more than one bubble. This
retains the computation cost advantages of a boundary element
formulation although it will be necessary to formulate models to
handle bubble collisions that may lead to rebound or coalescence.

In summary:


 The current model predicts the shape, velocity and transient
behaviour of a rising bubble without fitting parameters.

 The good quantitative agreement between theoretical predic-

tions and experimental observations suggests that the con-
structed model is basically correct and has encompassed the
essential physical elements that determine bubble rise and
deformation.

 It also strongly suggests that the wake of the bubble is not a

primary determinant of the dynamics of the bubble. Instead
the dynamics are mainly controlled by potential flow where
the viscous effects enter through the boundary condition.

 The model as presented here provides a resolution to the

d’Alembert [44] paradox for the rising bubble problem (which
led to the remark ‘‘y résistance nulle. Ce qui est absurde.’’ by
d’Alembert) while avoiding the need for complex numerical
computations.
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