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Drainage of the air–water–quartz film: experiments and theory
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Experimental results of the kinetics of drainage of the trapped water film between an approaching

air bubble and a quartz plate have been analysed using recent theoretical advances in formulating

and solving the flow problem in deformable films. Excellent agreement is obtained between

experimental data and a model that assumes the bubble–water interface is tangentially immobile

in its hydrodynamic response. The coupling between hydrodynamic pressure, disjoining pressure

and film deformation is critical in determining the dynamic behaviour of the drainage process.

The Reynolds parallel film model that omits the effects of film deformation predicts results that

are qualitatively incorrect.

1. Introduction

The dynamics of the interaction between a solid surface and a

deformable drop or bubble in water and the associated

problem of the drainage of the entrapped water film is a

fundamental process that occurs in many technical applications.

These range from the optimisation of mineral flotation

efficiency to the efficacy of ultrasonic contrasting agents to

the transport of soft matter in microfluidic cells.

The first successful measurement of the spatial and temporal

evolution of a draining aqueous film between a bubble and a

smooth hydrophilic quartz plate was made almost two decades

ago by Fisher et al.1–3 They pointed out particular challenges

of such experiments because it was ‘‘very difficult to compare

results from different laboratories, since the method of forming

the draining film profoundly affects its shape and the kinetics

of the evolution of that shape. It is by no means clear that all

authors publishing in the field have been aware of these

limitations.’’ They further noted a ‘‘scarcity of data where

the initial conditions for film formation have been reliably and

reproducibly controlled’’. These comments still apply today as

the only studies of the spatial and temporal deformations of

thin films are those by Horn et al. on the dynamic deformations

of a mercury drop4–6 and a bubble7 approaching a mica

plate and by Klaseboer et al.8,9 on the deformations of two

approaching drops in another liquid.

Although the governing equations for film drainage involving

deformable boundaries have been formulated for some time,

it was only recently that boundary conditions appropriate to

different experimental conditions have been developed10,11 to

provide the key to practical implementation of numerical

solutions. In particular, it became relatively easy to account

accurately for the vastly different intrinsic length scales of the

problem: nanometre for the film thickness, micrometre for the

deformed region of the film and millimetre for the drop or

bubble size.

In this paper we analyse the film drainage data of Fisher et al.

using recent advances in modelling time-dependent interactions

between deformable drops and bubbles. In doing so, we

(a) determine the hydrodynamic boundary condition that

must prevail at the bubble–water interface,

(b) demonstrate the importance of bubble deformation in

giving a quantitative account of the drainage kinetics, and

(c) determine the shortcomings of the commonly accepted

Reynolds parallel film model for film drainage in its failure to

predict the correct quantitative effects of disjoining pressure

on the rate of drainage of deformable films.

We begin with a brief summary of the experimental

approach of Fisher et al. in Section 2 and develop the

theoretical model that will be used to analyse the film drainage

data in Section 3. Detailed comparisons between experiments

and theory are given in Section 4 and conclusions are summarised

in the final section.

2. Experimental method

Here we only give a brief summary of how a draining film of

distilled water or an aqueous electrolyte of known concen-

tration of sodium chloride was formed between an air bubble

and an optically polished (to 0.1 wavelength) hydrophilic

quartz plate. The original papers by Fisher et al.1–3 should

be consulted for further details.

As the initial step, a static protuberant air bubble of radius

Ro = 1.16 mm and an apical height of 570 mm was created at a
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2 mm diameter orifice in a Kel-F chamber. The quartz plate is

positioned 40 mm from the apex of the bubble and optical

alignment was carried out to ensure axial symmetry (Fig. 1).

The Laplace pressure of the bubble was thus estimated to be

Pinit = 124 Pa.

The drainage experiment began by activating a spring-

loaded lever that rapidly compressed a section of the sealed

air line supplying the bubble over a very brief period of much

less than 1 s. This produced an expanded bubble that flattened

at the apex against the quartz plate trapping an intervening

draining film of diameter 2a = 640 mm. From the geometry of

the experimental setup, see Fig. 1, the radius of the expanded

bubble, approximated by a truncated sphere, was estimated to

be R = 1.09 mm, corresponding to a final Laplace pressure,

Pfinal = 132 Pa. Thus the total force, F, acting on the deformed

bubble can be estimated as F E (pa2)Pfinal E 43 mN.

Reproducibility of this method of bubble expansion was

very high and was a key feature of this experimental approach.

Time-variations of the intensity of a He–Ne laser beam

reflected from a given radial position, r, gave the time

evolution of the film thickness, h(r,t), at that point. By

repeating such measurements at different r positions with

similarly created bubbles allowed the entire spatial–temporal

variation of film thickness to be mapped. Spatial resolution

was limited by the laser beam of diameter B30 mm.

Data for the film profile from 5 s after bubble expansion

were recorded for over 200 s as film drainage proceeded. Such

data sets were used in our analysis.

3. Theory

The slow hydrodynamic drainage of the axisymmetric water

film trapped between the bubble and the quartz can be

described by the lubrication theory in the Stokes flow. The

film thickness, h(r,t), is a function of the radial position, r, and

time, t, while the hydrodynamic pressure, p(r,t) in the film,

measured relative to the pressure in the bulk fluid, only

varies in the radial direction. The dominant fluid velocity

component, u(z,t), is in the radial direction and depends on

the coordinate, z, normal to the quartz plate.

On the quartz surface at z = 0, the familiar no-slip

boundary condition is assumed to hold at a fluid–solid

interface so the fluid velocity vanishes: u(0,t) = 0. At the

bubble surface, z = h(r,t), one can either assume the

tangentially immobile boundary condition: u(h,t) = 0 or

the fully mobile, zero tangential stress condition: qu/qz = 0.

Other possible boundary conditions that attempt to include

effects due to surface elasticity or an interfacial surfactant

layer lie between these limits.

With this model, the film thickness, h, and the pressure, p,

are related by the Stokes–Reynolds equation12

@h

@t
¼ b

12mr
@
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� �
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where m is the dynamic viscosity of the aqueous solution. For

the tangentially immobile condition at the bubble–water inter-

face, the constant b = 1, while the mobile, zero tangential

stress boundary condition corresponds to b = 4.

Deformation of the bubble–water interface with a constant

interfacial tension s is given by the Young–Laplace equation12
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where P(h(r,t)) is the disjoining pressure due, for example, to

electrical double layer and van der Waals interactions between

the quartz plate and the bubble–water interface: P > 0

corresponds to repulsion. In the present experiment with NaCl

concentrations below 1 mM and in the range of film thickness

in these experiments, it can be shown that P is entirely due to

repulsive electrical double layer interactions. The magnitude

of van der Waals interaction is negligibly small. For later

reference we call eqn (3.1) and (3.2) the Stokes–Reynolds–

Young–Laplace (SRYL) equations.

To solve the SRYL equations, we need to specify the initial

shape and velocity of the bubble together with boundary

conditions that describe the expanding bubble experiment.

We will develop these conditions in detail in Section 3.2 where

we will describe how to model the film drainage experiments

by solving the SRYL equations.

The challenge of having to solve the SRYL equations

as a pair of coupled partial differential equations has led to

the development of a number of approximate solutions to the

problem. Many of the simpler models have shown to be

unsuitable for providing quantitative descriptions of the

present experimental results.3

The Reynolds parallel film model, developed independently

by Stefan and Reynolds,13 is often used as an approximate

solution of the SRYL equations. It has been applied to

describe time dependent interactions involving bubbles and

drops14 and a number of complex extensions to the model

have been proposed.15 The availability of such detailed experi-

mental data for the spatial and temporal evolution of a

draining water film between a well-characterised system of

bubble and a quartz plate provides an ideal opportunity to

examine the predictions of the Reynolds parallel film model

compared to the solution of the SRYL equations.

3.1 Reynolds parallel film model

The Reynolds parallel film (RPF) model assumes that the

water film between the bubble and the quartz plate has

Fig. 1 A schematic diagram (not to scale) of the experimental

configuration of a protuberant bubble in an aqueous electrolyte

against a quartz plate that depicts the initial, transient and final states

of the bubble.
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uniform thickness, h(t), so that the bubble–water interface is

regarded as a disk of fixed radius a in the radial direction.

However, the magnitude of the film radius, a, is not known a

priori. Since the film is assumed to remain flat during the

drainage process, the Young–Laplace equation (eqn (3.2)) that

describes film deformation is no longer required. With the film

thickness, h(t), now being independent of r, the Stokes–

Reynolds equation (eqn (3.1)) can be integrated with the

boundary condition p(a,t) = 0 to give

pðr; tÞ ¼ � 3m
bh3

dh

dt

� �
ða2 � r2Þ: ð3:3Þ

The hydrodynamic force, Fhy in the z direction, due to viscous

film drainage arising from this pressure distribution is

Fhy ¼ 2p
Za

0

pðr; tÞrdr ¼ � 3pma4

2bh3
dh

dt

� �
ð3:4Þ

where hydrodynamic repulsion corresponds to Fhy > 0. By

balancing the applied force, Fapp > 0, that drives the bubble

towards the quartz plate against the hydrodynamic force, Fhy,

and the force due to disjoining pressure, P(h)(pa2), we obtain
an expression for the rate of drainage

dh

dt
¼ � 2bh3

3pma4
½Fapp �PðhÞðpa2Þ�: ð3:5Þ

This result shows that according to the Reynolds parallel film

model a repulsive disjoining pressure,P(h) > 0, will retard the

rate of drainage. We will show that this is opposite to what is

observed in the bubble–quartz experiment and the predictions

of the SRYL model using eqn (3.1) and (3.2).

Furthermore, if the disjoining pressure is due to van der

Waals attraction of the form:P(h) = �A/(6ph3), eqn (3.5) can

be solved analytically to give a finite coalescence time.14

Therefore it is not necessary to invoke the concept of surface

waves as a trigger for coalescence.15,16

3.2 Boundary conditions for film drainage

In this section we develop the initial and boundary conditions

that are appropriate to describe the bubble expansion and film

drainage experiment of Fisher et al.1–3 For an axisymmetric

film, we have the boundary conditions: qh/qr = 0 = qp/qr
at r= 0 that follows from symmetry and p - 0 as r-N. As

described in the previous section, the initial distance of closest

approach in the experiment, ho (40 mm), between the bubble

and the quartz plate is much smaller than the drop radius, Ro

(1.16 mm). The initial shape of the film can be represented

accurately by a parabolic profile: h(r,t = 0) = ho + r2/(2Ro).

After the rapid expansion of the bubble by triggering the

spring-loaded lever to compress the air line and drive the

bubble towards the quartz plate at t= 0, the first experimental

observation was taken at around t E 0.5 s when the film was

observed to have already developed a dimple. There were no

experimental data reported for t o 0.5 s. It was observed that

the drainage kinetics of the film shape between 5 to 200 s was

very reproducible. All this suggests that transient effects

associated with the bubble expansion process in the initial

0.5 s had totally dissipated and the film drained under a

constant force condition during the measurement period.

Consequently, in modelling this experiment, the details of

how the initial rapid bubble expansion is achieved are not

critical and indeed the event is so rapid that measurements

were not possible. The key therefore is to construct a simple

model for this initial rapid expansion to obtain the correct

shape of the film that was measured at the first time point at 5 s

and then predict how the shape of the film evolved for a

further 200 s.

The analysis of the transient deformation kinetics of an

anchored mercury drop in water due to a mica plate that was

driven momentarily towards it revealed a similar response to

the bubble–quartz experiment.17 The drop formed a dimple in

response to the approaching mica plate and after the mica had

stopped moving, the deformed mercury–water interface

continued to evolve while the force acting on the drop

remained constant. In the mercury drop experiment, we model

the momentary approach of the mica plate during the brief

period 0 o t o to by imposing the following condition at the

boundary of the domain 0 o r o rmax in which we solve the

SRYL equations:11

@hðrmax; tÞ
@t

þ a
2ps

dFðtÞ
dt
þUðtÞ ¼ 0 ð3:6Þ

where F(t) is the total force acting on the bubble given by

FðtÞ ¼ 2p
Z1

0

½pðr; tÞ þPðhðr; tÞÞ�rdr ð3:7Þ

In the mercury–mica experiment the function U(t) could be

estimated from experimental conditions. It turned out that the

most important feature in modelling the experiment is the total

distance, X, travelled during this initial period:

X ¼
Zto
0

UðtÞdt ð3:8Þ

rather than the detailed form of U(t) because the final

deformation is determined by the total displacement X.

In modelling the very rapid initial expansion in the present

bubble experiment we choose U(t) to have the form

UðtÞ ¼ Uo; 0ototo
0; toot

�
ð3:9Þ

Table 1 Experimental parameters for the results in Fig. 2

Fig. 2a1,2 Fig. 2b3 Fig. 2c3

Initial radius/mm 1.16 1.16 1.16
Final radius/mm 1.09 1.11 1.11
Initial separation/mm 40 40 40
Rim radius/mm 320 200 200
Velocity, Uo/mm s�1 2.75 2.75 2.75
Approach time, to/s 0.055 0.04 0.036
Surface potential—bubble/mV3 �34 �34 �34
Surface potential—quartz/mV3 �148 �130 �122
Concentration/mM 2 � 10�3 0.25 1
Contact angle 671 641 641
Surface tension/mN m�1 72.8 72.8 72.8
Viscosity/Pa s 0.89 0.89 0.89
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so that X= Uoto. In modelling all experiments, we have taken

Uo = 2.75 mm s�1 and chose the value of to to give the correct

film shape at t = 5 s. The values of to are small (o0.1 s) and

varied slightly between experiments, see Table 1.

During this initial expansion period and throughout the

experiment, the bubble is pinned to the orifice of radius 1 mm

(see Fig. 1). When the bubble is so pinned, the quantity a in

eqn (3.6) has the form11

a � 1þ ln
rmax

2Ro

� �
þ 1

2
ln

1þ cos y
1� cos y

� �
ð3:10Þ

where y is the initial angle that the bubble makes with the

orifice before the expansion takes place (see Fig. 1). Although

the contact angle must change during the expansion stage, the

expressions in eqn (3.6) and (3.10) have already taken this into

account.11 The assumption here is that the deformation zone is

small compared to the dimensions of the bubble and that the

deforming bubble is to a very good approximation regarded as

incompressible.11

An alternative is to model this initial expansion in the first

B0.1 s by using a force ramp instead of the velocity ramp in

eqn (3.9) to create the first measured film profile taken at 5 s.

As we observed above the detailed method of the brief

expansion process in the initial B0.1 s does not affect the

drainage process that was measured between 5–200 s. The key

is to ensure the initial shape at 5 s is correct.

The form of U(t) that drives the initial expansion in the

boundary condition, eqn (3.9), encapsulates the mechanical

phenomenon of fast bubble expansion. As we shall see, we can

use the same function to model different drainage experiments

under different aqueous electrolyte concentrations. This lends

further support to our notion that the details of this initial

transient of bubble expansion that extends overo0.1 s are not

critical to the modelling and understanding of the film

drainage process that takes place over 200 s.

The SRYL equations together with the initial and boundary

conditions developed in this section form a differential

algebraic equation system that can be solved by the method

of lines using standard numerical packages such as ode15s in

Matlab. Details of the numerical methods have been given

elsewhere.10,11

4. Results and discussions

In order to compare the results of the SRYL model with

results from drainage experiments of a bubble against a quartz

plate, we need to specify the form of the disjoining pressure

P(h). As experimental results are all taken at concentrations of

1 mM NaCl or less, electrical double layer repulsion provides

the only significant contribution to the disjoining pressure.

The magnitude of van der Waals interaction is negligible in

this regime. Relevant physical parameters such as surface

potentials and interfacial tensions are taken from Fisher

et al. These are summarised in Table 1.

Fig. 2 Shape of the draining water film between a bubble and a

quartz plate in (a) distilled water (taken to have B 2 � 10–6 mM

NaCl), (b) 0.25 mM NaCl and (c) 1 mM NaCl.

Fig. 3 Effects of the hydrodynamic boundary condition at the bubble

surface on film drainage.
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In Fig. 2, we compare the evolution of the film thickness

measured in distilled water (taken to have 2 � 10–6 M NaCl),18

in 0.25 mM and in 1 mMNaCl with corresponding predictions

of the SRYL model under the tangentially immobile boundary

condition at the bubble–water interface: b = 1 in eqn (3.1).

After the profile at the earliest time step has been used to

determine the drive velocity function U(t) in eqn (3.9), there

are no other free parameters in the model. The agreement

between experiment and theory in Fig. 2 is very good.

We note that at earlier time, t E 20 s, the films have a

well-defined dimple of radius rrim, and the film thickness varied

by over a factor of 4 between the centre and rrim. The slight

variations in the dimple radius across Fig. 2a–c are likely to be

due to the slightly differing amounts of air used in inflating the

bubbles.

The faster drainage rate that results from using the zero

tangential stress, fully mobile boundary condition (b = 4)

at the bubble–water interface instead of the tangentially

immobile condition (b = 1) can be seen in Fig. 3. For this

illustration, we take as the initial condition the film shape in

distilled water (B2 � 10–6 M NaCl) (Fig. 2a) at 5 s and

calculate how the film will evolve subsequently under the two

different boundary conditions at the bubble surface. However,

the magnitude of the electrical double layer repulsion that

controls the thickness of the film at rrim also affects the rate of

thinning of the film. This is the reason why the difference in the

drainage rate between the tangentially immobile and mobile

boundary conditions at the bubble surface is not a simple

factor of 4.

The observation that the tangentially immobile boundary

condition on the bubble surface afforded good agreement with

the cases of film drainage considered here is consistent with

atomic force microscope measurements. Results and features

of the force between the microbubble (B100 mm diameter)

that has been driven towards a mica plate19 and the force

between two colliding bubbles that lead to bubble coalescence

on separation20 can only be accounted for by the immobile

boundary condition on the bubble surfaces.

We can also compare changes in the volumetric drainage

rate that arise from a disjoining pressure, P, due to electrical

double layer repulsion. In the SRYL model, we define the

volume of water trapped at any time between the dimpled

bubble surface and the quartz plate by

VSRYLðt;PÞ ¼ 2p
Zrrim
0

hðr; tÞrdr ð4:1Þ

For the Reynolds parallel film (RPF) model, we can identify

the disk radius a with rrim and the volume of water in the film

is simply VRPF(t,P) = (pa2h). In Fig. 4, we compare the time

variation of the ratio of the volume of water in the film in the

absence of a disjoining pressure, V(t,0), to that in the presence

of a repulsive disjoining pressure, V(t,P), corresponding to

electrical double layer repulsion in distilled water.

The SRYL model predicts that in the presence of a repulsive

disjoining pressure, the film will drain faster, that is the ratio:

V(t,0)/V(t,P) > 1 (Fig. 4). The reason for this is that the film

thickness at the rim radius rrim is the key parameter that

controls the film drainage rate. A repulsive disjoining pressure,

P(h), serves to keep the film thicker at rrim for longer and thus

facilitates faster film drainage through this bottleneck.

On the other hand, with the Reynolds parallel film model,

the bubble–water interface is assumed to be flat and non-

deformable. As a result of ignoring film deformation, this

model predicts that drainage will become slower, that is the

ratio: V(t,0)/V(t,P) o 1, in the presence of a repulsive

disjoining pressure (Fig. 4). The observed trend in the bubble–

quartz experiment is in agreement with the SRYL model

but is opposite to that predicted by the Reynolds parallel

film model.

5. Conclusions

Using recent theoretical advances in the modelling of time

dependent forces between interacting deformable drops and

bubbles we are able to undertake a quantitative analysis of

data acquired about the kinetics of film drainage between a

bubble and a quartz plate. The experimental results are

consistent with a model of thin film hydrodynamic lubrication

flow where the bubble–water interface behaves as a tangentially

immobile boundary rather than an earlier model that assumed

mobile interfaces.21 Although the precise reason why the

bubble–water interface (even for distilled water) appears to

be immobile rather than mobile is not clear, it is known that

trace amounts of surface active agents, at concentrations that

will reduce the interfacial tension by about 0.1 mN m�1, will

be sufficient to arrest surface mobility and result in an

immobile surface.22

The need to include effects due to surface deformations

during film drainage is vital in accounting for the precise

spatial and temporal evolution of the draining film. Therefore

simple models such as the Reynolds parallel film and its

variants that neglect deformation fail to even predict the

qualitative trend of the effect of repulsive disjoining pressure

on the volumetric drainage rate.

Our success in analysing the well-characterised experiments

of the drainage of an aqueous film between a bubble and a

quartz plate suggests that we have a reliable foundation to

understand complex time-dependent interactions involving

Fig. 4 Comparison of relative changes in film volume with drainage

time in the absence and presence of a repulsive disjoining pressure P
according to the Stokes–Reynolds–Young–Laplace model and the

Reynolds parallel film model.
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deformable soft materials. The model has also been applied to

demonstrate analytically that as a result of deformation,

bubbles or drops can be triggered to coalesce by separating

them rather than by forcing them together23,24 as observed

experimentally.25,26
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