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The interaction between deformable drops or bubbles encompasses a number of distinguishing

characteristics not present in the interaction between solid bodies. The drops can entrap a thin liquid

film of the continuous phase that can lead to a stable film or coalescence. But before leading to either of

these outcomes, the film must drain under the influence of an external driving force. This drainage

process exhibits all the characteristic features of dynamic interactions between soft materials. For

example, the spatial and temporal variations of forces and geometric deformations, arising from

hydrodynamic flow, surface forces and variations in material properties, are all inextricably

interconnected. Recent measurements of time-varying deformations and forces between interacting

drops and bubbles confirmed that dynamic forces and geometric deformations are coupled and provide

the key to understand novel phenomena such as the ‘‘wimple’’ in mechanically perturbed films. The

counter-intuitive phenomenon of coalescence triggered by separating proximal drops or bubbles can

also be elucidated using the same theoretical framework. One approach to modelling such systems is to

use a fluid mechanics formulation of two-phase flow for which a number of parametric numerical

studies have been made. Another popular approach focuses on describing the thin film between the

interacting drops or bubbles with a flat film model upon which a phenomenological film drainage and

rupture mechanism has been developed. While both models have a similar genesis, their predictions of

the fate of the draining film are quite different. Furthermore, there have been few quantitative

comparisons between results obtained from many different experimental approaches with either

theory. One reason for this is perhaps due to difficulties in matching experimental parameters to model

conditions. A direct attempt to model dynamic behaviour in many experimental studies is challenging

as the model needs to be able to describe phenomena spanning six orders of magnitude in length scales.

However, with the recent availability of accurate experimental studies concerning dynamic interaction

between drops and bubbles that use very different, but complementary approaches, it is timely to

conduct a critical review to compare such results with long-accepted paradigms of film stability and

coalescence. This topic involves the coupling of behaviour on the millimetre–micrometre scale familiar

to readers with an engineering and fluid mechanics background to phenomena on the micrometre–

nanometre scale that is the domain of the interfacial science and nanotechnology community.
1. Introduction

1.1 Background

A feature that is central to understanding interactions involving

soft materials is the interdependence between variations in

geometric deformations and the strength of the interaction. For
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rigid bodies, only the unchanging geometry around the interac-

tion zone between surfaces in close proximity needs to be speci-

fied in order to determine the interaction force. Soft bodies, on

the other hand, can change shape in response to local variations

of the interaction force so that the total force and the corre-

sponding geometric variations must satisfy a mechanical equa-

tion of state that characterises deformations. If the deformable

material is incompressible, then local shape variations can give

rise to long-range effects. For an extendable spring, its length is

related to the tensile or compressive force acting upon it. Gen-

eralising this concept to soft materials, knowledge of the distri-

bution of forces acting on a deformable body is equivalent to

knowing the deformed shape, provided one has the material

equation of state that relates forces to deformations—the

analogue of Hooke’s Law for springs.

However, this coupling between forces and geometries can

extend over length scales of many orders of magnitude. For

example, the interaction between millimetre size drops or bubbles

across films of nanometre thickness can cause deformations

extending over tens to hundreds of micrometres. The incom-

pressibility of drops and to a good approximation, bubbles,
Soft Matter, 2011, 7, 2235–2264 | 2235



means that small changes on the scale of the size of drops or

bubbles can have significant effects on the scale of thin films.1

The drainage or thinning process of the liquid film between

interacting drops or bubbles is time dependent so dynamic effects

on different length scales will need to be measured with appro-

priate precision to facilitate quantitative analysis—an experi-

mental challenge that is often not easy to meet.2

‘The difficulties encountered in the design and operation of

industrial equipment in which coalescence occurs is partly due to

a lack of knowledge of coalescence’. Though this statement was

written almost 40 years ago,3 it is still true to a large extent today.

Since that time, there have been many attempts to measure the

dynamics of film drainage and coalescence of drops and bubbles,

but few succeeded to measure the time-dependent variations in

forces and deformations in sufficient detail and precision on

different length scales for quantitative analysis. Consequently,

phenomenological models have been proposed and accepted

without independent critique.

The past decade witnessed the increasing availability of high

precision measurements of temporal and spatial information
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associated with film drainage and coalescence of drops and

bubbles using a variety of experimental techniques. In addition,

direct measurements of the time dependent force between drops,

bubbles and solids in relative motion in the atomic force

microscope have also become possible. This body of data can

now be subjected to quantitative comparisons using models that

share a common theoretical underpinning. By undertaking such

a comparison in this review, we hope to bridge the existing gap

between experiment and theory and to offer a critique of the state

of commonly accepted notions of film drainage and coalescence

of drops and bubbles.
1.2 Scope

This review will focus on time-dependent interfacial deforma-

tion, interaction force and film drainage phenomena associated

with drop or bubble sizes on the millimetre to micrometre scale.

This size range is of particular relevance to material processing

applications and for which the effects of gravity on the drop or

bubble shapes are negligible. The regime of film thickness can be

down to nanometres so that both colloidal forces and hydrody-

namic interactions need to be considered. We therefore concen-

trate on a theoretical model that includes all these elements in

a consistent manner. Experimental studies that we have chosen

to highlight are those for which sufficient details have been

reported to permit quantitative comparison with theory. A dis-

tinguishing feature of this review is that we use a common

theoretical framework to interpret and compare experimental

results obtained from very different techniques that provides

complementary information about dynamic interactions between

drops and bubbles. Such an approach offers clear insight into the

key physical elements that are central to this complex problem.

We have two readership constituencies in mind: those with an

engineering and continuum mechanics background who are

familiar with material processing on the millimetre to micrometre

scale and those from the interfacial science and nanotechnology

community whose interests are in phenomena on the micrometre

to nanometre scale. Therefore as background material, we first

provide a summary of different kinds of experimental methods:

those based on techniques that measure the spatial and temporal

evolution of the drainage and deformation of thin films formed
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between interacting drops and bubbles that may precede possible

coalescence and those experiments that measure the time

dependent force acting between drops and bubbles in relative

motion. We also review theoretical models to a sufficient level of

detail to give a clear sense of the key underlying physical

assumptions and indicate how such models take into account the

initial and boundary conditions appropriate to each type of

experiment.

The current state of theoretical modelling comprises mainly of

numerical parametric studies without detailed reference to

experimental data. Where comparisons are made, only data from

a single experimental technique are used. We have therefore

gathered experimental data obtained from researchers located in

different continents and acquired in different centuries, using

a variety of different but complementary methods to study drop–

drop, bubble–bubble and drop or bubble-against-solid interac-

tions. We hope that quantitative comparisons of theoretical

predictions with a broad range of experimental results will

provide a better appreciation of the underpinning physics of

drainage and coalescence phenomena.

The review closes with a discussion of unsolved and unresolved

problems in the area. Issues and directions in experimental

methods and in theoretical model development where further

work is needed are also identified.
1.3 Historical perspective

Experimental investigations of the time dependent interaction

between a deformable bubble and a flat plate by Derjaguin and

Kussakov4 actually predated the formulation of the DLVO

theory of colloidal stability by Derjaguin–Landau5 and Verwey–

Overbeek.6 By observing the time evolution of the interference

fringes formed by the water film between a bubble rising under

buoyancy force towards a horizontal glass plate or mica sheet,

Derjaguin and Kussakov were able to deduce that a non-equi-

librium film profile forms a dimple.4 Although experimental

limitations did not allow them to make quantitative estimates of

the film thickness, they did point out the significance of the

barrier rim of the dimple in controlling the time taken for the

rising bubbles to reach the equilibrium state against the plate.

The most basic model needed to capture the key physics of

surface deformations and film drainage requires a description in

terms of coupled partial differential equations.7 Although

numerical solutions of the governing equations have been

demonstrated,8–17 sometimes for somewhat artificial initial and

boundary conditions, no substantial progress has been made in

direct quantitative comparisons with experiments. Also, many of

these theoretical model studies assume that the interface of the

drops or bubbles cannot sustain any shear stress in what is

sometimes referred to as the fully mobile interface. But as we

shall see, the dynamic response of such interfaces in many

experimental studies suggests that the interfaces of the drops or

bubbles behave more often than not as tangentially immobile

surfaces.

Paradoxically, the success of the DLVO theory in being able to

explain the stability of suspensions of solid particles in terms of

a balance of equilibrium surface forces led subsequent studies of

film drainage and interactions involving bubbles and drops to

perhaps overlook the importance of interfacial deformations and
This journal is ª The Royal Society of Chemistry 2011
hydrodynamic effects.18 In fact, transient phenomena were

generally considered using the Reynolds Flat Film Model19,20

that is attractive because a simple analytical solution is avail-

able.21 The flat film assumption of this model also meant that

only until recently, there were few experimental attempts to

investigate and quantify the spatial and temporal variations of

deforming and draining films. Moreover, the shortcomings of the

original Reynolds Flat Film Model gave rise to a number of

increasingly complex theoretical extensions22–28 that were not

capable of giving quantitative agreement with results of very

detailed experiments.2,29–52

A number of empirical analytical results53–56 has been devel-

oped to describe film drainage behaviour, unfortunately none

gave quantitative agreement when compared to experiments.30
2. Experimental studies

‘Theory without experiment is useless.’ I. B. Ivanov.57

We first summarise different experimental approaches that

have been used to study film drainage and time dependent

interactions involving drops and bubbles. These techniques fall

into three broad categories.

(1) Time variations in thickness of the film between drops and

bubbles during interaction can be obtained by recording the

optical interference fringe patterns produced by the deformed

interfaces. Such fringe patterns can be processed to extract

variations of the local thickness with time and with position along

the film. When combined with information about how the drops

or bubbles are being driven, this approach provides valuable data

for comparison with theory.

(2) Direct measurements of the time-dependent forces between

any pairing of drops, bubbles and solid particles as they are

moved together or separated in a controlled fashion in the atomic

force microscope. By driving the interacting bodies in different

prescribed ways, variations of the coalescence time, if coales-

cence occurs, can also be determined.

(3) Drop–drop interactions can be characterised by the

coalescence time when they are driven together under externally

imposed flow fields. This provides somewhat less detailed infor-

mation about the interaction dynamics than the previous two

approaches as neither deformations nor film thicknesses can be

measured with precision.

Although there have been many studies of drop/bubble inter-

actions and the associated phenomenon of film drainage and

coalescence, experimental data obtained under well-defined

conditions and suitable for quantitative analysis have only

become available in the past decade or so. This review will focus

on the comparison between theory and examples of such exper-

iments as summarised below.
2.1 Emerging drops/bubbles from capillaries

This technique focuses on the interaction between two bubbles or

drops in a surrounding fluid. The bubbles or drops are formed at

the ends of two opposing sealed capillary tubes that share

a common axis. The emergent drops or bubbles are then moved

towards each other by displacing the capillary tubes axially at

a known rate.31 Thinning and deformations of the film between

the drops/bubbles are monitored by optical interference
Soft Matter, 2011, 7, 2235–2264 | 2237



methods. If the drops/bubbles are brought together by injecting

fluid or air into the capillaries, the rate of inflation must be

measured accurately to permit quantitative analysis.58

2.2 Bubble on solid

Due to the relevance to mineral flotation processes, bubble–solid

interactions in water are of special interest. One way of studying

the approach of a bubble to a surface is to allow it to rise under

constant buoyancy force.59–63 Optical interference techniques can

be used to monitor the drainage of the water film trapped

between the bubble and the surface. Another method is to force

an emerging bubble from a capillary against a solid plate where

the axis of the capillary is oriented normal to the plate.2,29,30

Monitoring time variations of the intensity of reflected light at

different positions provides spatial and temporal information

about the water film between the bubble and the solid. Proper

characterisation of how the bubble is driven towards the surface

is required for quantitative analysis. This method operates at low

capillary pressures in the range of 100 Pa.

2.3 Mercury drop on solid

A very accurate method that tracks the evolution of both the

spatial and temporal variations of the thickness of a water film

trapped between a flat mica surface and a liquid drop is to

monitor the variations in fringes of equal chromatic order.33,34,39

Using a mercury drop with high reflectivity, this method is

capable of resolving film thicknesses with sub-nanometre preci-

sion. As mercury is also a conductor it is possible to adjust the

electrostatic interaction between the mercury drop and the

charged mica surface to explore both repulsive and attractive

electrical double layer interactions between the solid and the

mercury. Therefore this system can be used to study the behav-

iour of stable and unstable draining films. In addition, unex-

pected and novel spatial and temporal responses of a stable film

to mechanical and electrical perturbations can also be

quantified.37

2.4 Scheludko cell

The Sofia School has pioneered the study of film drainage by

monitoring the film trapped between two opposing menisci

formed inside a cylindrical cell—the Scheludko cell.18 The

interfaces are driven together by withdrawing the liquid in the

cell between the menisci. Although this experimental system has

been used to study liquid/liquid and gas/liquid systems as well as

the effects of different chemical additives, quantitative details of

the film profile and liquid withdrawal conditions are often not

reported. As experimental results from the Scheludko cell are

almost always interpreted in terms of the Stefan–Reynolds Flat

Film Model (see Section 6)19,20 the general focus is to consider

only the ‘‘average’’ film thickness rather than the detailed spatial

variations of the position of the film interface.

2.5 Atomic force microscope measurements

In contrast to all aforementioned experimental methods that are

concerned with film geometry, the atomic force microscope has

been used to measure time dependent forces between pairs of
2238 | Soft Matter, 2011, 7, 2235–2264
drops, bubbles, solid particles and flat surfaces in relative

motion. A drop/bubble/particle is attached at one end of a micro-

cantilever and the other end is moved by a piezo-electric motor at

a preset displacement pattern relative to the other drop, bubble

or surface.64–66 Time variations of the force are obtained from

recorded deflections of the cantilever. Although there is sufficient

information available to model the force without adjustable

parameters, information about drop or bubble deformations is

not directly accessible.

A robust model of time dependent film drainage and interac-

tion between drops and bubbles should be able to account for

data from the various types of experiments mentioned above

without fitting parameters.
3. Theoretical models

‘Experiment without theory is meaningless.’ I. B. Ivanov.57

Three essential elements are required to understand time-

dependent interactions involving deformable drops and bubbles:

(a) a description of how drops/bubbles deform and give rise to

characteristic geometric motifs such as the ‘‘pimple’’, ‘‘dimple’’

and ‘‘wimple’’,

(b) a description of the time and position dependent hydro-

dynamic interaction arising from film drainage, and

(c) the nature of surface or colloidal forces between interfaces

in close proximity that will determine collision stability or coa-

lescence.

There are many attempts in the literature to include these

elements with varying degrees of sophistication and technical

complexity. The exposition in this section will concentrate on the

simplest fundamental aspects of each of these physical features

and show how they can be assembled to form a coherent

description. We will return to a more detailed discussion of

different theoretical models in Section 6 after comparing the

prediction of one such model with a range of experiments.

Hereafter what we ascribe to drops will apply equally to bubbles.

The ideas developed for two drops also apply to head-on colli-

sions between a drop with a spherical particle or for normal

collision between a drop and a flat solid surface.

A head-on collision event between two drops in a suspending

medium can be separated into the following stages. Initially, the

drops travel at some known velocity under an external force, Fext,

that drives the collision. When the separation between the centres

of mass falls below the value at which the drops would touch if

they had retained their original shapes, the surfaces of the drops

around the region of closest approach must deform. If there is

a repulsive force between the surfaces of the drops, their inter-

faces will flatten. A thin film of the suspending medium will be

trapped between the drops and we can then speak of the

commencement of the film drainage stage. The drainage

dynamics, such as whether the film will develop a pimple or

a dimple or whether the drainage process will lead to coalescence,

is determined by a number of factors. These include the initial

separation, the manner by which the drops are driven together,

the physical parameters of the system such as viscosity and

surface tension, the nature of hydrodynamic flow in the thin film

and the form of any surface forces (e.g. Van der Waals, electric

double layer) that operate between the drops.
This journal is ª The Royal Society of Chemistry 2011



Fig. 1 Schematic illustration of the axisymmetric inner region of the

interaction zone with a dimple between approaching drops comprising of

the film of variable thickness h and radius rrim that are both small

compared to the drop dimensions: R1, R2 [ rrim [ h.
For example, the Van der Waals interaction between two

identical drops in a continuous phase is attractive. If other

surface forces such as electrical double layer or steric repulsion

cannot provide a sufficiently repulsive barrier, the film will drain

and rupture and the two drops will coalesce. At very low

approach speeds a pimple will form before coalescence, whereas

at higher approach speeds, the formation of a hydrodynamic

dimple (Fig. 1) will precede coalescence. However, if the initial

kinetic energy of the drops is sufficiently high for inertial effects

to be important, the drops may rebound after the collision.

If the surface forces between the drops are sufficiently repul-

sive, the equilibrium configuration under a constant external

force, Fext, will be one in which the two drops are separated by

a nearly parallel flat film of thickness heq and radius a. The

equilibrium force balance condition can be expressed as:

Fext ¼ pa2P(heq) (1)

where P(h) is the repulsive disjoining pressure that gives rise to

a stable film. For a given external force, Fext, and the functional

form of the disjoining pressure, P(h), the as yet unknown film

radius, a, and equilibrium film thickness, heq, can be determined

by specifying how the drop deforms due to externally applied

forces. In Section 3.1.5 we will see how the interaction zone or

film radius, a, emerges naturally when we examine drop defor-

mation under the Young–Laplace model.

By observing bubbles of radius, Ro (�1 mm), and interfacial

tension, s, being pushed against a horizontal flat plate by

buoyancy force, Derjaguin and Kussakov4 equated the external

force, Fext, to the buoyancy force and the unknown equilibrium

disjoining pressure, P(heq), to the Laplace pressure (2s/Ro) of the

drop and verified the applicability of eqn (1) for the relation

between the bubble radius, Ro, and the measured film radius, a.

More generally, there are three quite different characteristic

length scales relevant to dynamic interactions involving

deformable drops: millimetre for the drop radii, R, micrometre

for the dimpled film radius, rrim, and nanometre for the film

thickness, h (Fig. 1). Thus the need to describe phenomena

accurately over six orders of magnitude in length scale presents

very significant challenges when direct numerical computations

are used to model such interactions.

However, the detailed physics that determine interactions

involving deformable drops occur in the neighbourhood of the

thin film (Fig. 1). Provided the drop radius is much larger than
This journal is ª The Royal Society of Chemistry 2011
the film radius, i.e. R [ rrim, we can develop a model that will

allow us to focus only on the detailed drainage phenomenon

within the film, while effects on the scale of the drop radius can be

accounted for in terms of boundary conditions on the equations

that govern film drainage. Such boundary conditions are also

determined in part by the way the drops are driven together. In

the remainder of this section we will develop such a model.

This review will mainly be concerned with film drainage

phenomena at low Reynolds numbers where inertial effects are

not important in hydrodynamic interactions. The fact that the

drop radius, film radius and film thickness have very different

characteristic dimensions allows the use of the lubrication

approximation to describe hydrodynamic phenomena in the film.

We assume drop deformations during interaction are deter-

mined by the balance between the combination of hydrodynamic

pressure due to flow in the film and disjoining pressure due to

surface forces that tend to distort the drop shape, and capillary

forces that minimise the interfacial area. Implicit in this model is

that the response time of the drop due to capillary action is much

faster than characteristic times in the variation of the hydrody-

namic pressure and film thickness. If the interfacial tension of the

drops is constant, this is a reasonable assumption. However, if

the interface contains mobile surface-active species with char-

acteristic diffusion times along the surface and possible molec-

ular transport times to and from the interface, the characteristic

time scales of such phenomena must also be considered.

As a base model, we assume constant interfacial tensions and

see how well this accounts for a broad variety of experiments.

The few parameters needed to specify such a model can be

determined by independent measurements so that there are no

free variables available to fit experimental data. As most of the

experiments have been designed to study head-on interactions,

we may also assume axial symmetry. This base model has two

complementary parts: one to describe how a drop deforms as it is

subjected to external forces that are localised within a small area

on its surface and the other to describe fluid flows in the thin film

between the drops where the thickness of the film is determined

by the extent of drop deformation. Surface forces between the

drops are taken from known equilibrium models.
3.1 Augmented Young–Laplace equation

The equilibrium deformation of a drop due the proximity of

another drop or solid particle can be obtained by minimising the

Helmholtz surface energy of the system. Consider a pendant

drop on a substrate, immersed in a continuous medium as shown

in Fig. 2. Surface force interactions between the drop and a flat

surface (or another drop or a particle) at a distance D from the

substrate are given in terms of an interaction free energy per unit

area E(h) or the corresponding disjoining pressure P(h) h
�dE(h)/dh that are known functions of the film thickness h(r,t)

around the axisymmetric drop. The Helmholtz surface energy,

As, can be written in terms of the drop height z(r,t):67,68

As ¼ 2p

ðr1

0

h
s

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

r

q
þ sL � sS þ EðhÞ �Lz

i
r dr (2)

where zr h vz/vr. The first three terms in the integrand in eqn (2)

represent the energies associated with the deformable surface of
Soft Matter, 2011, 7, 2235–2264 | 2239



Fig. 2 Schematic of an axisymmetric pendant drop of constant surface

tension, s, on a substrate in which the interaction with a flat surface is

concentrated within a small interaction zone around the apex.

x Capillary waves of velocity c and wavelength l on a spherical drop obey
the dispersion relation: c2 ¼ 2ps/[l(rd + re)], where s is the interfacial
tension, rd and re the densities of the dispersed and continuous
phases.135 Taking l z 100 mm, the dimension of the deformation zone
gives c z 1 m s�1, which is much greater than characteristic approach
velocities of drops considered here.
the drop with interfacial tension or surface energy per unit area s,

the drop–substrate interface with surface energy per unit area sL

and the medium–substrate interface per unit area with surface

energy sS. The interaction free energy per unit area, E(h),

between the drop interface and the flat surface has a range of

nanometres and therefore is expected to only affect the apex

region of the drop. The final term Lz(r,t) in the integrand

accounts for the constraint of constant drop volume on the

energy minimisation, where the constant L is the Lagrange

multiplier. As we expect to be concerned with drop sizes of

a millimetre or smaller, we have omitted the gravitational

contribution to the free energy.

We work with the film thickness h(r,t) ¼ D(t) � z(r,t) and

consider the perturbation h(r,t) / h(r,t) + dh(r,t) in eqn (2) using

the calculus of variations. By requiring the first order variation

dAs to vanish we obtain the augmented Young–Laplace equation

for the equilibrium film shape (hr h vh/vr):

sðk1 þ k2Þh
s

r

v

vr

 
rhr�

1þ h2
r

�1=2

!
¼ 2s

RL

�PðhÞ (3)

We make the replacement L h (2s/RL), where the constant RL

so-defined is the Laplace radius. The Lagrange multiplier, L, is

the capillary pressure or the pressure difference between the

interior and the exterior of the drop. In the absence of interac-

tions, the disjoining pressure vanishes, P(h) / 0, and the

pendant drop shape will be a portion of a sphere of radius Ro and

the constant RL / Ro. This gives the expected expression for the

capillary pressure (2s/Ro) of an unperturbed drop. The magni-

tude of the constant RL is therefore of the order of the unper-

turbed drop radius.

The derivative in eqn (3) is the sum of the two principal

curvatures: k1 in the plane of Fig. 2 and k2 the circumferential

curvature of the axisymmetric drop surface. A repulsive inter-

action that corresponds to P(h) > 0 will flatten or reduce the

curvature of the drop at the apex, so interactions under constant

volume will change the capillary pressure as reflected in devia-

tions of RL from Ro.

Variations in the end point, r1 / r1 + dr1 (see Fig. 2), of the

surface energy of the attached pendant drop given by eqn (2)

yields the Young–Dupre condition: s cos q + sL ¼ sS for the

equilibrium contact angle q, since P(h) ¼ 0, at the base of the

drop which is far from the interaction zone.

The derivation of the augmented Young–Laplace equation

(eqn (3)) via energy minimisation assumes the drop is at
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equilibrium. In the presence of hydrodynamic interactions, we

make the reasonable assumption that the drop can adjust its

shape instantaneously to accommodate changes in the hydro-

dynamic and disjoining pressure. This is plausible as long as

changes in velocities of these perturbations are much slower than

the speed of propagation of interfacial disturbances around the

drop.x Thus we can add the effects of the hydrodynamic pres-

sure, p to the rhs of eqn (3) to give

s

r

v

vr

 
rhr�

1þ h2
r

�1=2

!
h

s

r

v

vr
ðr sin 4Þ ¼ 2s

RL

�Pðhðr; tÞÞ � pðr; tÞ

(4)

If the hydrodynamic pressure is repulsive (p > 0), it will flatten

the interacting zone around the drop apex. We have also

expressed the curvature in terms of the tangent angle, 4, where

hr h vh/vr h tan 4, see Fig. 2. Eqn (4) can also be derived by

a balance of normal forces against surface tension forces on

a surface element by a quasi-static treatment of the hydrody-

namic pressure.

In the remainder of this section, we shall develop the solution

of the Young–Laplace equation (eqn (4)) in terms of an inner

solution that describes details of drop deformations resulting

from the disjoining pressure and hydrodynamic pressure on the

nanometre to micrometre scale. We also demonstrate how this

inner solution is coupled via drop volume conservation to the

outer solution that describes deformations on the scale of the

drop radius. Without the ability to split the problem into an inner

and outer solution, a direct numerical solution of eqn (4) would

require an algorithm that can cope with deformations that vary

over six orders of magnitude in length scale.

3.1.1 Drop shape outside the interaction zone. A number of

important general results concerning drop deformation can be

deduced by taking the first integral of eqn (4) with respect to r to

give

r sin 4 ¼ r2

RL

� 1

2ps
Fðr; tÞ (5)

Fðr; tÞh2p

ðr
0

½pðr 0; tÞ þPðr 0; tÞ�r 0dr 0 (6)

The function F(r,t) is related to the total force, F(t):

FðtÞ ¼ 2p

ðN
0

½pðr 0; tÞ þPðr 0; tÞ�r 0dr 0h FðN; tÞ (7)

that acts on the drop due to the hydrodynamic and the disjoining

pressures, p and P respectively. At positions outside the inter-

action zone that corresponds to r [ rrim, both p and P are

negligibly small, and eqn (5) for the drop shape becomes (Fig. 1)
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r sin 4 ¼ r2

RL

� FðtÞ
2ps

; for r[rrim (8)

This result does not depend on the detailed forms of p and P in

the interaction zone. Thus provided the extent of interaction

zone is small on the scale of the drop radius, the drop shape

outside the interaction zone only depends on the total force F(t)

as it appears in eqn (8). This is a key observation that provides

the necessary boundary condition that governs film deformation

during interaction (see Section 3.2).

3.1.2 Origin of the ‘dimple’, ‘pimple’, ‘wimple’ and ‘ripple’.

Eqn (5) and (6) also give a physical demonstration between forces

acting on the drop and the geometric characteristics of resulting

deformations.

Since F(0,t)¼ 0, the drop always has zero slope at the apex r¼
0 as expected from the assumption of axial symmetry. In the

absence of interactions, which corresponds to F(r,t) ¼ 0, we

have, from eqn (5), sin 4 > 0 for r > 0, so the shape of the drop

will always be concave up as illustrated in Fig. 2.

In general, the magnitude of F(r,t) is bounded and approaches

the constant value F(t) for r [ rrim, see eqn (7). Therefore, the

curvature of the drop shape in Fig. 2 must be concave up outside

the interaction zone. However, within the interaction zone, the

term [(2psr2/RL) � F(r,t)] determines the possible formation of

deformations such as the ‘pimple’, ‘dimple’ or ‘wimple’.

(1) Pimple: if [(2psr2/RL) � F(r,t)] > 0 for all r, the drop shape

will have a ‘pimple’69 (Fig. 3) provided its derivative with respect

to r has two zeroes at 0 < r1
* < r2

* in addition to a zero at r ¼ 0,

a condition that is equivalent to having two solutions of 2s/RL ¼
(p + P) at r1

* and r2
* where the total pressure is equal to the

Laplace pressure.

(2) Dimple: if [(2psr2/RL) � F(r,t)] has a zero at r* > 0, but is

negative for 0 < r < r*, and positive for r > r*, the drop shape will

have a ‘dimple’70 (Fig. 3).

(3) Wimple: if [(2psr2/RL) � F(r,t)] has two zeroes at r1
* and

r2
*, but is negative for r1

* < r < r2
*, then the drop shape will

exhibit a ‘wimple’37 (Fig. 3).

(4) Ripple: the interface can exhibit additional pairs of maxima

and minima71 as determined by the number of zeroes in the

function [(2psr2/RL) � F(r,t)]. In physical terms, this is

controlled by the spatial variation of the integral of the sum of

the hydrodynamic pressure, p, and the disjoining pressure, P, as

they appear in eqn (6).

The formation of the pimple, dimple or wimple follows directly

from the spatial variation of the hydrodynamic and disjoining

pressures that appear in the augmented Young–Laplace equation

(eqn (5) and (6)). The hydrodynamic boundary condition at the

drop surface only enters indirectly in determining the
Fig. 3 Commonly observed shapes, pimple, dimple and wimple, of the

interface of deformable drops and bubbles.
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hydrodynamic pressure. This also explains why dimple forma-

tion has been observed in models with very different physical

descriptions of the film drainage process.31,72–77

In qualitative terms, we can deduce from eqn (5) and (6)

conditions under which a film can develop a pimple or dimple.

For a pimple to develop, we must have F(r,t) < 0. This can arise,

for example, when the disjoining pressure P is attractive (<0) and

the hydrodynamic pressure p is small in magnitude (corre-

sponding to slow moving drops) or when the hydrodynamic

pressure p is large and negative (corresponding to fast separating

drops) and the disjoining pressure P is small. Of course, other

combinations of magnitudes of p and P that ensure F(r,t) < 0 can

also give rise to a pimple. Similarly, when F(r,t) > 0, the drop will

be flattened from the undeformed shape. However, when [(2psr2/

RL) � F(r,t)] < 0, there will be an inversion in the curvature and

a dimple will develop. This can happen, for example, when P is

small and p is large and positive (for fast approaching drops). In

fact, since in theory the hydrodynamic pressure can increase

without bounds for approaching drops, a dimple will always

form in the absence of a disjoining pressure although the sepa-

ration when this happens can be unrealistically small if the

approach velocity is very low. We will see experimental examples

of such film deformations in Section 4.

3.1.3 Inner equation and asymptotic solution. We now

summarise the different forms of the augmented Young–Laplace

equation for the film thickness, h, between: (i) a drop (or bubble)

and a flat wall, (ii) a drop and a spherical solid particle and (iii)

between 2 drops.

(i) Drop/bubble against flat wall. Within the interaction zone

or the inner region defined by the interval r ¼ 0 to r z rrim, the

drop interface is relatively flat on the scale of the drop size. So to

a good approximation: sin 4 z vh/vr � 1, so the augmented

Young–Laplace equation (eqn (4)) can be linearised to give

s

r

v

vr

�
r

vh

vr

�
¼ 2s

RL

�P� p ðdrop--wallÞ: (9)

Given the disjoining pressure, P, and the hydrodynamic pres-

sure, p, the thickness of the inner region of the film, h, as

a function of position r can be found by integrating this equa-

tion—in general, numerically.

However, by formally integrating eqn (9) with respect to r

twice from 0 to r we obtain the result

hðr; tÞ ¼ hð0; tÞ þ r2

2RL

� 1

2ps
log

�
r

2Ro

�
Fðr; tÞ þ 1

2ps
Xðr; tÞ

(10)

Xðr; tÞh2p

ðr
0

½pðr 0; tÞ þPðr 0; tÞ�r 0log

�
r 0

2Ro

�
dr 0 (11)

where h(0,t), the film thickness at r¼ 0, has yet to be determined.

The characteristic length scale in this drop-flat wall problem is

the Laplace radius, RL in eqn (9). However, in the logarithmic

term in eqn (10) and (11) we have chosen the known radius of the

undeformed drop, Ro, as the scaling factor as we shall be using
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these results in the regime when the extent of the deformation is

small compared to the size of the drop and so we have RL z Ro.

We observe that for r > rrim, the film thickness, h, will become

large so the corresponding magnitudes of P and p will be small.

Therefore for r > rrim, we can replace the upper limits in the

integrals in eqn (6) and (11) by infinity to obtain the outer

asymptotic form of h(r,t) in terms of the force, F(t), defined by

eqn (7), acting on the drop

hðr; tÞ/hð0; tÞ þ r2

2RL

� FðtÞ
2ps

log

�
r

2Ro

�
þHðRo; tÞ; r . rrim

(12)

HðR; tÞh 1

s

ðN
0

�
pðr 0; tÞ þPðr 0; tÞ

�
r 0log

�
r 0

2R

�
dr 0 (13)

In Section 3.1.4, we will see that the logarithmic behaviour for r >

rrim in eqn (12) will match up with the inner asymptotic behav-

iour of the outer solution of the augmented Young–Laplace

equation (eqn (8)). What is significant here is that the total force,

F(t), acting on the drop is encoded in the geometric shape or

deformation of the film outside the interaction zone. This loga-

rithmic limiting form of the film thickness has been observed

experimentally.78 This result is analogous to Hooke’s Law for

a linear spring where the force exerted on the spring can be

deduced from the extension.

(ii) Drop/bubble against a spherical particle. For a drop or

bubble interacting with a solid sphere of radius Rs, the film

thickness, h, has to account for variations in the shape of the

sphere (see Fig. 4) and so the drop height, z, is given by: z(r,t) ¼
D(t) + r2/(2Rs) � h(r,t). By the same calculus of variation

calculation that led to eqn (3) followed by linearisation in the

inner region where vh/vr � 1, we obtain the inner form of the

(linearised) augmented Young–Laplace equation:

s

r

v

vr

�
r

vh

vr

�
¼ 2s

Rds

�P� p ðdrop--sphereÞ (14)

where Rds h (1/RL + 1/Rs)
�1. In the same manner as we derived

eqn (10), (11) and (12), we find for r > rrim

hðr; tÞ/hð0; tÞ þ r2

2RL

� FðtÞ
2ps

log

�
r

2Rdso

�
þHðRds; tÞ; r . rrim

(15)

with Rdso h (1/Ro + 1/Rs)
�1.
Fig. 4 Definition of the film thickness h between a drop/bubble and

a spherical particle or between two drops/bubbles.
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(iii) Two drops or bubbles. For the interaction between two

drops (or bubbles) whose shapes are given by z1(r,t) and z2(r,t)

(see Fig. 4) we have to minimise the surface energies of both

drops with interfacial tensions s1 and s2, and capillary pressures

(2s1/RL1) and (2s2/RL2). The resulting augmented Young–Lap-

lace equations, after linearisation in the inner region where

vz1/vr, vz2/vr� 1, can be combined in terms of the film thickness,

h, using the geometric relation: z1 + z2 ¼ D � h (see Fig. 4) to

give7

1

2

�s

r

v

vr

�
r

vh

vr

�
¼ 2�s

�R
�P� p ðdrop--dropÞ (16)

The constants �R and �s are defined by

1
�R

h
1

2

�
1

RL1

þ 1

RL2

�
and

1

�s
h

1

2

�
1

s1

þ 1

s2

�

Note the additional factor (1/2) on the lhs of eqn (16) for this two

drops case. The outer asymptotic form for r > rrim is given by

hðr; tÞ/hð0; tÞ þ r2

�R
� 2

�
FðtÞ
2p�s

�
log

�
r

2 �Ro

�
þ 2Hð �Ro; tÞ; r . rrim

(17)

with the scale factor �Ro h 2/(1/R1o + 1/R2o), chosen as before in

terms of the unperturbed radii of the two drops. Eqn (17) has the

same logarithmic form as eqn (12) and (15) with the force F(t) as

the pre-factor except for an additional factor of 2.

3.1.4 Outer asymptotic solution. The unknown quantities

h(0,t) and H(R,t) that appear in the outer asymptotic form of the

inner solution h(r,t) given by eqn (12), (15) and (17) can be found

by first solving eqn (8) for the drop shape outside the interaction

zone and then matching this to the inner solution.

In Appendix A, we derive an analytic solution of the outer

solution valid to linear order in the parameter F/(2psRL) � 1

which is applicable when the extent of drop deformations arising

from interactions is small on the scale of the drop size—

a condition that is well satisfied for all the experiments we

examine in Sections 4 and 5. From eqn (A14) and (A16), the

limiting form of the shape of the drop as one approaches the

interaction zone from the outside is

zðr; tÞ/Roð1� cos qoÞ �
r2

2RL

þ FðtÞ
2ps

	
log

�
r

2Ro

�
þ BðqoÞ



; r/rrim

(18)

BðqÞ ¼

1þ 1

2
log

�
1þ cos q

1� cos q

�
pinned r1

1þ 1

2
log

�
1þ cos q

1� cos q

�
�
�

1

2þ cos q

�
constant qo

8>>>><
>>>>:

(19)

This result depends on whether the drop deforms with a pinned

three phase contact line at position r1 (see Fig. 2) or with

a constant contact angle qo. The general case in which both the

contact line and the contact angle change is expected to lie

between these two limits.
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We now match these results to the inner solution in eqn (12)

and (17) at r z rrim in order to determine the unknown constants

h(0,t) and H(R,t), and the film thickness h(r,t) just beyond the

film radius r $ rrim.

(i) Drop/bubble against flat wall. For the interaction

between a drop and a solid flat surface, we have h(r,t) ¼ D(t) �
z(r,t) (see Fig. 2), so the unknowns h(0,t) and H(t) in eqn (12) for

the asymptotic form of h(r,t) valid for r $ rrim can be eliminated

using eqn (18) to give

hðr; tÞy DðtÞ � Roð1� cos qoÞ þ
r2

2RL

�
�

FðtÞ
2ps

�	
log

�
r

2Ro

�

þ BðqoÞ


; r $ rrim

(20)

The unknown constants of the inner solution in eqn (12)

h(0,t) + H(Ro,t) ¼ D(t) � Ro(1 � cos qo) � F(t)B(qo)/(2ps),

follow from eqn (12) and (20). This completes the demonstration

of the matching between the inner and the outer solution.

Likewise we can match the corresponding results for interaction

configurations of a drop/bubble against a spherical particle and

between two drops or bubbles.

(ii) Drop/bubble against a spherical particle. For a drop or

bubble interacting with a solid sphere, we have the geometric

relation h(r,t) ¼ D(t) + r2/(2Rs) � z(r,t) where Rs is the sphere

radius and D(t) is the position of the apex of the solid

sphere (Fig. 4). Thus the form of h(r,t) valid for r $ rrim is with

Rds h (1/RL + 1/Rs)
�1,

hðr; tÞy DðtÞ � Roð1� cos qoÞ þ
r2

2Rds

�
�

FðtÞ
2ps

�	
log

�
r

2Ro

�
þ BðqoÞ



; r $ rrim

(21)

(iii) Two drops or bubbles. The geometric relation between

the heights, z1 and z2, of two interacting drops and the separa-

tion, D, between the substrates is h(r,t) ¼ D(t) � z1(r,t) � z2(r,t)

(Fig. 4) so the asymptotic form of h(r,t) for r $ rrim is

hðr; tÞy DðtÞ � R1oð1� cos q1oÞ � R2oð1� cos q2oÞ

þ r2

�R
�
�

FðtÞ
2ps1

�	
log

�
r

2R1o

�
þ Bðq1oÞ




�
�

FðtÞ
2ps2

�	
log

�
r

2R2o

�
þ Bðq2oÞ



; r $ rrim

(22)

As we shall see, the results in eqn (20)–(22) provide the vital

link between the way the drop is moved as specified by the

separation D(t) and the value for vh/vt at some position rmax

(>rrim) outside the interaction zone. Therefore the manner in

which the drops are driven as characterised by the function D(t)

will appear as a boundary condition for the inner equation that

governs the evolution of drop deformations in the interaction

zone.

In addition, if the interaction is repulsive, that is F(t) > 0, so

that the drops will flatten around the interaction zone, it is

possible to derive general analytic force–displacement formulae
This journal is ª The Royal Society of Chemistry 2011
from eqn (20)–(22) that describe how drops deform under

a constant volume constraint.

3.1.5 Force–displacement relation for deforming drops. From

the inner form of the augmented Young–Laplace equations that

describe the film thickness, h, for various geometries given by eqn

(9), (14) and (16) we can identify the position at which vh/vr ¼
0 as the film radius a at each interaction geometry. And by

evaluating eqn (20)–(22) at r ¼ a, we can obtain the corre-

sponding force–displacement relations.

(i) Drop/bubble against flat wall. By integrating the inner

form of the augmented Young–Laplace equation (eqn (9)) for

a drop against a flat wall with respect to r, we have vh/vr ¼ 0 at

r ¼ a h [F(t)RL/2ps]1/2. We evaluate eqn (20) at the interaction

zone radius a to find
DDðtÞh DðtÞ � Roð1� cos qoÞ � hða; tÞ

y
FðtÞ
4ps

	
log

�
FðtÞRL

8psR2
o

�
þ 2BðqoÞ � 1



(23)

By approximating the Laplace radius RL z Ro in the logarithm

term, this gives a very useful approximate relation between the

force, F, and the relative displacement, DD (see Fig. 2) that

reflects the deformation of the drop under a constant volume

constraint that has been imposed in the derivation of eqn (18) in

Appendix A. In practice, the film thickness h(a,t) is small

compared to the other quantities and so eqn (23) relates the force,

F, to the relative displacement DD which is a control variable in

a force measurement experiment. Eqn (23) is very useful for

checking experimental force measurements that involve

deformable drops and bubbles as all the physical parameters

such as the interfacial tension, s, drop radius, Ro, and contact

angle, qo, can be measured independently.

We note that the non-linear force–displacement relation (eqn

(23)) follows from the solution of the Young–Laplace equation

and implies that a drop or bubble does not behave as a Hookean

spring under deformation as often assumed.64,65,79 Furthermore

this result is independent of the details of the repulsive disjoining

pressure which determines the magnitude of the film thickness

h(a,t), that is small in comparison to the separation D in eqn (23).

In other words, for repulsive interactions, measuring the static or

equilibrium force–displacement relationship will provide infor-

mation about the interfacial tension s, the drop radius Ro and the

contact angle qo. However, the result will be insensitive to the

detailed form of the repulsive disjoining pressure.

The force–displacement relation, eqn (23), will hold for

repulsive interactions provided the deformation is a small frac-

tion of the drop radius.

In a similar manner, we can derive similar approximate

analytic force–displacement formula for the repulsive interaction

between a drop/bubble and a spherical particle or between two

drops/bubbles. These results are given below.

(ii) Drop/bubble against a spherical particle. By integrating

the inner form of the augmented Young–Laplace equation (eqn

(14)) for a drop against a spherical particle of radius, Rs, we have

vh/vr ¼ 0 at r ¼ [F(t)Rds/2ps]1/2, where Rds h (1/RL + 1/Rs)
�1.
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Fig. 5 The geometry of the atomic force microscope (AFM).
The desired force–displacement formula follows from evaluating

eqn (21) at r ¼ a h [F(t)Rds/2ps]1/2,

DDðtÞh DðtÞ � Roð1� cos qoÞ � hða; tÞ

y
FðtÞ
4ps

	
log

�
FðtÞRds

8psR2
o

�
þ 2BðqoÞ � 1



(24)

where we may approximate Rds z (1/Ro + 1/Rs)
�1 in terms of the

known unperturbed drop radius, Ro, and particle radius, Rs.

(iii) Two drops or bubbles. From the inner form of the

augmented Young–Laplace equation in eqn (16) for two inter-

acting drops, the film radius is at r ¼ a h [F(t) �R/2p�s]1/2. Eval-

uating eqn (22) at this position gives

DDðtÞhDðtÞ � R1oð1� cos q1oÞ � R2oð1� cos q2oÞ � hða; tÞ

y
FðtÞ
4ps1

	
log

�
FðtÞ �R

8p�sR2
1o

�
þ 2Bðq1oÞ




þ FðtÞ
4ps2

	
log

�
FðtÞ �R

8p�sR2
2o

�
þ 2Bðq2oÞ



� FðtÞ

2p�s

(25)

where we may approximate �R z 2/(1/R1o + 1/R2o) in terms of the

known unperturbed drop radii, R1o and R2o.

(iv) Measurements on the atomic force microscope. To apply

the above force–displacement formulae between a drop and

a spherical particle (eqn 24) or between two drops (eqn 25) to

force measurement experiments on the atomic force microscope

(AFM), we have to relate the separation D(t) to the position of

the end of the cantilever X(t) and the cantilever deflection S(t)

using the geometric condition (Fig. 5):

D(t) ¼ X(t) + S(t) ¼ X(t) + F(t)/K (26)

where K is the spring constant of the cantilever.

Recall that the constant compliance response in AFM force

measurements is used to estimate the absolute separation

between interacting bodies that can come into ‘‘hard contact’’.

For soft deforming bodies where the concept of ‘‘hard contact’’

does not exist, the combined results of eqn (26) and (24) or (25)

provide the important replacement relation between the canti-

lever displacement and a repulsive interaction that also takes into

account drop/bubble deformations. This repulsive interaction

may be due to repulsive disjoining pressure at low approach

speeds or may be dominated by repulsive hydrodynamic inter-

actions at high approach speeds. The results in eqn (23)–(25)

apply irrespective of how the repulsive force F has been

generated.

We have extracted key physical information and behaviour

about drop deformation according to the augmented Young–

Laplace equation. From eqn (5) and (6) we demonstrated how

various observed characteristic deformation shapes such as the

pimple, dimple, wimple and ripple arise from the combined

variations of the hydrodynamic and disjoining pressures. In

practice, deformations arising from interactions are small

compared to the drop dimensions, hence, the asymptotic analysis

of the inner and outer region that resulted in eqn (20)–(22)

enabled us to treat the outer solution as a boundary condition for
2244 | Soft Matter, 2011, 7, 2235–2264
the inner problem that has to be solved numerically. This

circumvents the need to obtain numerical solutions that must

resolve dimensions on the millimetre scale for drop sizes to the

nanometre scale for film thicknesses. Deformations of the rest of

the drop arising from the volume conservation constraint of the

drop/bubble can be included as boundary conditions for the

inner problem. Information about how the interacting drops are

driven by external forces is contained in the function D(t).

To completely determine the spatial and temporal evolution of

drop deformations arising from interactions, we need to specify

the hydrodynamic pressure p(r,t) in order to solve eqn (9), (14) or

(16). This will be discussed in the next section.

3.2 Stokes–Reynolds hydrodynamics

In experiments on drop–drop interactions and film drainage

considered in this review, Stokes flow appropriate at low Rey-

nolds number provides an adequate description. Since the film

thickness is small compared to the radial extent of the film, the

Reynolds lubrication theory80,81 can be applied to describe

hydrodynamic drainage in the deformable film. Within the

axisymmetric film, the radial r-direction component of the

velocity, u is dominant and the pressure, p, only varies in the radial

r-direction. Under such conditions, flow within the film is

described by the radial component of the Stokes equations:

m
v2uðr; z; tÞ

vz2
¼ vpðr; tÞ

vr
(27)

where m is the shear viscosity of the continuous medium.

The equation for the time evolution of the film thickness

follows from integrating the continuity equation from z ¼ 0 to

h(r,t) together with the kinematic condition on the film surface:

vhðr; tÞ
vt

¼ �1

r

v

vr

0
@r

ðhðr;tÞ

0

uðr; z; tÞdz

1
A (28)

If hydrodynamic boundary conditions are specified on the

boundary of the film at z ¼ 0 and z ¼ h(r,t), eqn (27) may be

integrated with respect to z to find u(r,z,t) in terms of p(r,t).

Substitution of the solution into eqn (28) will give an equation

relating h(r,t) and p(r,t). This result, together with the appro-

priate augmented Young–Laplace equation given by eqn (9), (14)

or (16), will provide a complete description of the spatial and

temporal evolution of the film.

Different types of hydrodynamic boundary conditions at the

surfaces of solids, drops and bubbles have been proposed. The

appropriate choice will be dictated by experimental conditions.

In this section, we shall only consider the tangentially immobile
This journal is ª The Royal Society of Chemistry 2011



boundary condition in which the fluid velocity at the film

boundary is prescribed. For the axisymmetric head-on inter-

actions considered here, this is equivalent to setting the

tangential component of the fluid velocity to zero at the film

boundary. In Section 4, we show that this boundary condition

is consistent with results from a variety of experiments

involving solids, drops and bubbles. The consideration of

other types of boundary conditions will be deferred to

Section 6.

3.2.1 Tangentially immobile interfaces. At the fluid–fluid

interface of drops or the fluid–gas interface of bubbles with

a constant interfacial tension, the conventional boundary

conditions are that the tangential components of the fluid

velocities and the shear stress are continuous, and the difference

in the normal stresses across the interface is balanced by the

Laplace pressure.82 On the other hand, if the interface has

a tangential surface tension gradient due, for example, to the

presence of mobile surface-active species which have a non-

uniform concentration along the interface, then this surface

tension gradient will account for the difference in tangential

shear stress across the boundary.82

The experiments in film drainage or dynamic interactions

between deformable drops and bubbles surveyed in Sections

4 and 5 all involve head-on encounters that generate an

axisymmetric lubrication flow in the radial direction in the

film. The predicted time scales of the dynamics all turned out

to be only consistent with the tangentially immobile boundary

condition where the radial velocity vanishes, u(r,z,t) ¼ 0, at

the film boundaries: z ¼ 0 and z ¼ h(r,t). In other words,

although the interfaces of the drops and bubbles deform

according to the Young–Laplace equation, the hydrodynamic

boundary condition at these interfaces are like that at

a ‘‘solid’’ surface. This observation is consistent across

a variety of experiments and the most likely physical expla-

nation is that such interfaces are immobilised by the presence

of surface-active molecules.

With the tangentially immobile boundary condition, the

solution of eqn (27) has the parabolic form:

uðr; z; tÞ ¼ 1

2m

�
vp

vr

�
zðz� hÞ (29)

By combining this result with eqn (28), we have the Stokes–

Reynolds equation for film drainage:

vh

vt
¼ 1

12mr

v

vr

�
rh3vp

vr

�
ðtangentially immobileÞ (30)

We also note that with the tangentially immobile boundary

condition at the fluid–fluid interface, any flow field inside the

drop or bubble will not contribute to the film drainage process

and so the internal viscosity of the drops or bubbles does not

appear when this boundary condition is imposed.

The Stokes–Reynolds equation (eqn (30)) for tangentially

immobile interfaces together with one of the augmented Young–

Laplace equations (eqn (9), (14) or (16)) which we call collectively

the Stokes–Reynolds–Young–Laplace (SRYL) equations

completely describes the spatial and temporal evolution of the

thin film between a drop and a flat surface or a particle or
This journal is ª The Royal Society of Chemistry 2011
between two interacting drops. Of course, if boundary conditions

different from the tangentially immobile condition were

imposed, this would be reflected in the form of the Stokes–

Reynolds equation (eqn (30)). These cases will be considered in

Section 6.

Although the SRYL equations have been developed earlier,7

being a set of coupled non-linear partial differential equations,

they cannot be solved analytically although perturbation solu-

tions for weak interactions have been developed.83–85 Direct

numerical solutions of the equations appropriate to drop–drop

interactions in the four-roll mill are available86 but due to the

widely different length scales of the problem, very significant

computational effort is required. Recently, an approach that

combined boundary conditions specific to experimental setups

together with a rapid and robust numerical algorithm has been

developed to solve the SRYL equations and facilitate direct

comparison with experimental data.87 In Sections 4 and 5, we will

undertake detailed comparison between the SRYL model and

different types of experiments that measure deformations and

forces.

There are other approximate solutions of the SRYL equations

beginning with the classical Stefan–Reynolds model19,20 that

assumes the film trapped between deformed drops or bubbles can

be approximated by a flat parallel disk of radius a. While this

model gives a simple analytical solution, the film radius a is not

known a priori and the model also predicts effects due to surface

forces that are opposite to that observed in experiments

(see Section 6.5 for detailed discussions). There are also

numerous embellishments of the Stefan–Reynolds model with

varying degrees of complexity and varying numbers of additional

assumptions and parameters.25,27 These models have been

applied to a rather small number of simple experiments and none

has been applied to account for a large number of experimental

measurements of the spatial and temporal evolution of draining

films.

3.2.2 Modelling different types of experiments. The Stokes–

Reynolds–Young–Laplace equations, eqn (30) and (9), (14) or

(16), together with eqn (7) for the force, completely determine the

axisymmetric interaction and drainage of a thin film between

deformable drops. As a system of coupled non-linear partial

differential equations, they can only be solved numerically when

the form of the disjoining pressure P is specified. With appro-

priate initial conditions, these equations can be solved in the

finite domain 0 < r < rmax together with boundary conditions at

r ¼ 0 and rmax.

We can impose the conditions vh/vr ¼ 0 ¼ vp/vr at r ¼ 0

because of axisymmetry. At r z rmax, we see from eqn (20)–(22)

that the film thickness, h, contains a quadratic and a logarithmic

term. Since according to the Young–Laplace equation the loga-

rithmic term does not contribute to the pressure, p, and from the

Stokes–Reynolds equation, a quadratic behaviour in h will

contribute to a pressure that decays like r�4, for vh/vt z constant.

This asymptotic behaviour of the pressure can be implemented as

the condition: r(vp/vr) + 4p ¼ 0 at r ¼ rmax.

In most experiments, the drops at the initial distance of

closest approach, ho, are undeformed, so we can assume

a locally quadratic drop shape with the initial film thickness of

the form:
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hðr; 0Þ ¼

ho þ
r2

2R
drop--wall

ho þ
r2

2

�
1

R
þ 1

Rs

�
drop--particle

ho þ
r2

�R
drop--drop

8>>>>>>><
>>>>>>>:

(31)

The final condition is to specify how the drops are moved. For

the drop–wall or drop–particle interaction, this can be found by

differentiating the asymptotic results in eqn (20) or (21) with

respect to time, t, and evaluate it at rmax:

vhðrmax; tÞ
vt

¼ dDðtÞ
dt
� 1

2ps

dFðtÞ
dt

	
log

�
rmax

2Ro

�
þ BðqoÞ



(32)

To model force measurement experiments using the atomic

force microscope, we need to account for the deflection of the

force sensing cantilever given by S ¼ F/K, where K is the spring

constant of the cantilever. With reference to the schematic

diagram of the atomic force microscope in Fig. 5, we use the

geometric condition: D ¼ S + X to eliminate D in eqn (32) in

terms of the position, X, of the cantilever which can be controlled

independently in the atomic force microscope. This gives the

following boundary condition for the drop–wall or drop–particle

interaction in AFM experiments:

vhðrmax; tÞ
vt

¼ dXðtÞ
dt
� 1

2ps

dFðtÞ
dt

	
log

�
rmax

2Ro

�
þ BðqoÞ �

2ps

K



(33)

For two interacting drops in the AFM, the boundary condi-

tion at rmax can be found in the same manner from eqn (22) to be

vhðrmax; tÞ
vt

¼ dXðtÞ
dt
þ 1

K

dFðtÞ
dt

� 1

2ps1

dFðtÞ
dt

	
log

�
rmax

2R1o

�
þ Bðq1oÞ




� 1

2ps2

dFðtÞ
dt

	
log

�
rmax

2R2o

�
þ Bðq2oÞ



(34)

Eqn (32)–(34) are conditions to be imposed at the boundary of

the solution domain at r ¼ rmax, of the inner problem as defined

by the Stokes–Reynolds–Young–Laplace equations, namely eqn

(30) with one of eqn (9), (14) or (16).

The way in which drops are driven enters via the prescribed

functions dD/dt or dX/dt. The value of the force, F(t), in these

equations is obtained from eqn (7) by numerical integration. The

disjoining pressure is negligible for r > rmax, but the contribution

from the long-ranged nature of the pressure p should be included

analytically using the r�4 dependence between rmax < r < N.

The boundary conditions in eqn (32) and (33) reflect the fact

that we have already solved for the drop shape outside the

interaction zone analytically by a perturbation method (see

Appendix A) and then used this solution to provide a boundary

condition for the inner problem at r ¼ rmax. The force, F(t), that

appears in the boundary condition in eqn (32) and (33) depends

on the motion and deformations of the drop that occurred at

earlier times. Therefore, to completely determine the interaction

between deformable drops it is important to have relevant initial
2246 | Soft Matter, 2011, 7, 2235–2264
conditions or past data. The term involving dF/dt has been

omitted in earlier theoretical treatments of drop interac-

tions11,16,31 as these models were not concerned with modelling

force measurement experiments.

The Stokes–Reynolds–Young–Laplace equations together

with the boundary conditions in eqn (32) or (33) constitute

a differential algebraic equation system. This can be solved

numerically by the method of lines using standard software

packages.87 Since the film thickness may be down in the nm range

while the domain rmax may be up to 100 mm, appropriate scaling

of the equations is necessary for numerical robustness. Details of

this scaling are given in Appendix B. As the scaled equations are

nearly universal, some general and useful observations about the

characteristics of dimple formation and film drainage rates are

also given in Appendix B.

This completes the development of necessary theoretical

background to understand and explain a broad range of exper-

imental studies of film drainage and dynamic interaction

involving drops and bubbles. In Sections 4 and 5 we will see how

the model can be used to give quantitative explanations of results

from measuring time dependent film deformations and forces

involving drops and bubbles.
4. Dynamic deformations: experiments vs. theory

‘Both (theory and experiment) are worthless without a new original

idea.’ I. B. Ivanov.57

In this section, we review measurements of time variations of

the shape of draining films trapped between drops or between

a drop and a flat surface. A variety of complementary experi-

mental techniques were used and in many instances, results were

presented originally without detailed comparison with theory.

However, using the theoretical framework developed in Section 3

it is possible to account for such results with quantitative preci-

sion and without adjustable parameters.
4.1 Stable film: glycerol drops in silicone oil

The experiments we first consider correspond to the case of two

identical drops that were driven together at constant velocity

(detailed in Appendix B), in which opposing protuberant half

drops of glycerol emerging from the ends of two sealed capillaries

(3 mm diameter) in silicone oil 47V300 were used. The drops have

an undeformed radius of Ro ¼ 1.52 mm, interfacial tension s ¼
30 mN m�1, and subtend a contact angle q ¼ 90� at the capil-

lary.31,44 Careful alignment of the capillary axes ensured head-on

interactions (Fig. 6). The drops were driven together from rest at

an initial separation ho, by propelling one capillary along the

common axis towards the other at a constant velocity, V ¼
6.7 mm s�1. With the instant t ¼ 0 set to the time when the two

drops would have touched if they did not deform, the drive was

stopped at tstop ¼ 27 s. The spatial–temporal evolution of the

profile of the film of silicone oil trapped between the glycerol

drops continued after the drive has stopped and was recorded by

filming the optical interference fringe pattern.

A comparison of experimental and theoretical fringe patterns

predicted by the Stokes–Reynolds–Young–Laplace is given in

Fig. 7 (inset). The film thickness profiles, h(r,t), at times after the

formation of the dimple deduced from the measured fringe
This journal is ª The Royal Society of Chemistry 2011



Fig. 6 Two interacting glycerol drops in silicone oil that have emerged

from two opposing capillaries.
patterns are shown in Fig. 7 and compared against theory.31,44 As

the dimple first appears when the draining film is just over 5 mm

thick, it is the long-range repulsive hydrodynamic pressure rather

than the disjoining pressure that is responsible for the formation

of the dimple. This occurs when the pressure in the film exceeds

the Laplace pressure, 2s/RL z 40 Pa for the glycerol drops in this

experiment.

The agreement in both spatial and temporal variations of the

fringe pattern or the film thickness, h(r,t), without any adjustable

parameters indicates that the Stokes–Reynolds–Young–Laplace

(SRYL) equations with the assumption of tangentially immobile

hydrodynamic boundary conditions at the drop interfaces has

captured the physical behaviour of the system. The presence of

trace impurities is likely to be responsible for the tangentially

immobile boundary condition of the glycerol/silicone oil inter-

face.

The same experimental setup has been used to study the

interaction between two drops of aqueous solutions of poly-

ethylene oxide (PEO) in a continuous phase of poly-

dimethylsiloxane (PDMS).129 Time dependent fringe patterns

similar to those observed in glycerol drops in silicone oil were

observed and these were consistent with dimpled films of
Fig. 7 Silicone oil film profile between glycerol drops at various times

after the formation of the dimple: experiments (symbols) and theory

(lines). Note the very different magnitudes of the vertical and horizontal

scales. Inset: comparison of experimental and theoretical optical inter-

ference fringe patterns of the silicone oil film at t¼ 27 s when the capillary

drive was stopped.
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thickness in the 1–2 mm range. Although no detailed comparisons

of the film profile were made, it was clear that the rate of film

drainage was again consistent with the tangentially immobile

boundary condition. Given the presence of surface active PEO in

the aqueous drop, this is not unexpected.
4.2 Stable film: bubble against quartz

Fisher et al.2,29,30 used an optical interferometric technique to

measure the evolving shape of a water film trapped between an

expanding bubble against an optically flat hydrophilic quartz

plate (Fig. 8). The protuberant bubble (unperturbed radius

1.16 mm), at an initial distance of closest approach of 40 mm from

the quartz plate, was expanded rapidly from an orifice (diameter

2 mm) in a fraction of a second. The shape of the trapped water

film that subsequently drained before reaching a stable film was

measured. The final equilibrium film was stabilised by electrical

double layer repulsion between the quartz surface and the

bubble. Depending on the concentration of added electrolyte, the

drainage process could last over 200 s.

As the bubble was expanded rapidly in a fraction of a second,

the subsequent drainage process took place under a constant

applied force.41 Although this constant force is not known

a priori in the experiment, its magnitude can be deduced from the

final shape of the stable film together with the surface potential of

the quartz and bubble surface that determine the repulsive elec-

trical double layer repulsion.

In Fig. 9, we compare the experimental results of Fisher et al.2

with predictions of the full Stokes–Reynolds–Young–Laplace

model for film drainage in distilled water. This experiment gave

the thickest equilibrium film. Comparisons with results at higher

salt concentrations are equally good.52 The theoretical results

were obtained with no adjustable parameters.

The change in Laplace pressure of the deformed bubble in

these experiments was small. For the case in distilled water, the

pressure changed from 124 Pa to 132 Pa upon expansion, and

drainage took place under an applied force of 43 mN over an

interaction zone of radius �360 mm.

By increasing the salt concentration, the double layer repulsion

is decreased and the equilibrium film will be thinner. However,

the drainage of the dimpled film is controlled by the film thick-

ness, hrim, at the barrier rim. Thus at higher electrolyte concen-

trations, hrim is smaller and therefore the dimple takes longer to

drain.52 In contrast, the Stefan–Reynolds parallel film model
Fig. 8 Schematic diagram of a protuberant drop or bubble that has

emerged from a capillary against a flat solid surface.
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Fig. 9 The axisymmetric shape of the draining water film thickness,

h(r,t), as a function of position, r, between a bubble and a quartz plate in

distilled water (�2 � 10�6 M NaCl).
predicts that drainage is faster at higher salt concentrations—

opposite to experimental observations.52 See also Section 6.5.

The tangentially immobile hydrodynamic boundary condition

was applied at the quartz and bubble surfaces. While this is

a reasonable boundary condition for the quartz–electrolyte

interface, the reason why this is also required at the bubble

surface is not certain. What is clear is that any other hydrody-

namic boundary condition at the bubble surface would result in

the water film draining too fast compared to experimental

observations.

Interestingly, a recent experiment that measured the rate of

rise and approach of microbubbles (diameters < 100 mm) in ultra

clean water towards a hydrophilic titania (TiO2) plate also

indicated that results are consistent with the tangentially

immobile boundary condition at the bubble surface.62,63 This is

unexpected because the measured terminal velocities of such

rising bubbles follow the Hadamard–Rybczynski formula that

corresponds to a fully mobile bubble interface88 (see also Section

6.4). A possible explanation of such apparently contradictory

observations may be attributed to trace surface-active contami-

nants that accumulate at the bubble surface as they approach

a solid surface in spite of extreme care taken in cleaning the

water. Only trace amount of such accumulated surfactants,

sufficient to lower the bubble interfacial tension by 0.1 mN m�1,

a variation that is difficult to detect, is sufficient to give rise to

a tangentially immobile interface.45,46 However, a definitive

explanation has yet to be found.
Fig. 10 Time evolution of the thickness of the aqueous electrolyte

(0.1 mM KCl) film trapped between a mercury drop and a negatively

charged mica plate as it approaches at 24 mm s�1.41 The profile drawn in

broken line indicates the time at which the mica plate stopped. The dis-

joining pressure due to electrical double layer interaction is (a) repulsive

with a negative mercury surface potential that resulted in an equilibrium

film in a time interval of 14 s as shown and (b) attractive with a positive

mercury surface potential that resulted in coalescence over a time interval

of 0.6 s as shown. Note the very different magnitudes of the vertical and

horizontal scales.
4.3 Stable and unstable films: mercury against mica

The Surface Force Apparatus had been adapted to measure the

time evolution of the shape of the aqueous electrolyte film

trapped between a mercury drop and an approaching or receding

molecularly smooth mica surface33,34 (Fig. 8). By observing

Fringes of Equal Chromatic Order (FECO) it was possible to

resolve the film thickness with sub-nanometre precision. Mercury

was selected for its deformability, known interfacial tension and

for its high optical reflectivity that facilitated the formation of

sharp fringes. Being a perfectly polarising fluid, its surface

potential could be controlled independently to give repulsive as

well as attractive electrical double layer disjoining pressures that
2248 | Soft Matter, 2011, 7, 2235–2264
allowed the evolution of stable and coalescing films to be

investigated. The material properties used were well defined so

such experiments provided detailed and information-rich

benchmark results of the film drainage mechanism.

The changing film shape was measured by video recording of

the FECO fringes with subsequent conversion to film thickness

profiles. In Fig. 10, we compare the time evolution of the

drainage of an axisymmetric aqueous electrolyte (0.1 mM KCl)

film trapped between the mercury drop and the approaching

mica plate moving with velocity 24 mm s�1 for a time and then

stopped. When the mercury drop was held at a negative surface

potential,34,41 the drop surface developed a dimple and the elec-

trical double layer repulsion between the drop and the negative

mica plate was responsible for an equilibrium film of about

90 nm thick. The final 14 s of the evolution of the film profile is

shown in Fig. 10a. With the mercury held at a positive potential

that gave a double layer attraction, the mercury rapidly jumped

into contact with the mica plate in about 0.6 s as shown in

Fig. 10b. The coalescence mechanism is via a rapid axisymmetric

thinning of the barrier rim although eventually this symmetry is

likely to be broken at the very final moments of coalescence.
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After the mica plate stopped, at the times indicated by the

broken curves in Fig. 10, the film continued to drain under

a constant force constraint because there was no further external

displacement in the system. The force calculated according to the

Stokes–Reynolds–Young–Laplace model was consistent with

this expectation41 (see also Fig. 12).

The key lessons in this comparison is that the Stokes–Rey-

nolds–Young–Laplace model together with electrical double

layer interactions calculated using the full Poisson–Boltzmann

model gave good quantitative agreement using input parameters

(e.g. interfacial tension, surface potentials) that can be measured

independently. There are no free parameters in the model. The

coalescence mechanism is what would be expected from the

Derjaguin–Landau–Verwey–Overbeek (DLVO) theory of

colloidal stability but with allowance for interfacial deform-

ability. There is no need to invoke thermal fluctuations in the film

thickness to initiate coalescence.21 Furthermore, for coalescing

films, the assumption of the Stefan–Reynolds parallel film

geometry becomes progressively less realistic.

Again we observe that the drainage rates of both stable and

coalescing films are consistent with the tangentially immobile

boundary condition at the mercury–electrolyte interface

although a physical mechanism that gives rise to this boundary

condition is not immediately apparent.
4.4 Transient behaviour: mercury against mica

The ability to move the mica plate independently in close prox-

imity to the deformable mercury drop affords the opportunity to

investigate complex transient behaviour of deformable drops and

bubbles. Starting with the initial state of an equilibrium aqueous

film that had been stabilised by double layer repulsion, the mica

plate was displaced rapidly over a short time period further

towards the drop. Clearly, the final state would be an equilibrium

film of the same thickness, but with a larger radial dimension as
Fig. 11 Wimple: the transient shapes between two equilibrium aqueous elec

plate towards the mercury drop according to experiments (symbols) and theor

the film, 0.0–0.28 s, (b) the intermediate shapes including the wimple, 0.28–2
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the mercury had been compressed further. The question we ask

is: what are the intermediate shapes of the deformable mercury

drop and of the aqueous film during the transition from the

initial to the final state under such a mechanical perturbation?

The experimental results37 and predictions of the Stokes–

Reynolds–Young–Laplace model42 are shown in Fig. 11. The

transition from the initial flat film is shown in Fig. 11a and the

approach to the final of the same thickness, but of larger radial

dimension, is shown in Fig. 11c. The novel behaviour of this

axisymmetric film is the transient ‘wimple’ shape—middle curve

in Fig. 11b, which exhibits a local maximum and a local

minimum in thickness in addition to the local minimum at the

axis of symmetry, r ¼ 0. It is also interesting to note that the film

thickness at the axis of symmetry, r ¼ 0, first increased as the

mica was displaced towards the mercury drop (Fig. 11 a and b)

before returning to the equilibrium value in Fig. 11c.

There are other attempts to model this experiment using the

same differential equations. However, either the boundary

conditions chosen were unrelated to the experimental situa-

tion89,90 or an inappropriate one-dimensional scaling metric for

a Taylor bubble was used for the actual axisymmetric problem.71

Therefore any agreement between such theories and experiments

is at best, qualitative.

A second transient experiment involved pushing the mica plate

towards the mercury drop under a repulsive double layer dis-

joining pressure, waiting for the equilibrium film to establish and

then rapidly pulling the mica surface away from the flattened

mercury drop. In Fig. 12, we show the experimental and theo-

retical time variations of the central thickness, ho(t) h h(r ¼ 0,t),

of the axisymmetric aqueous film, as well as the rim thickness,

hrim(t) h h(rrim,t), when it can be identified after the formation of

the dimple (see also Fig. 1). Note the changes in scale of the time

axis.

Salient features of the sequence of transient behaviour in this

push–pull experiment are highlighted in Fig. 12. After dimple
trolyte (1 mM KCl) films generated by a rapid displacement of the mica

y (lines). Arrows indicate the progression of time: (a) the initial shapes of

.52 s and (c) the approach to the final state, 2.52–18 s.
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Fig. 12 Comparison of the measured and predicted film thickness of electrolyte (0.1 mM KCl) between a mica plate and a mercury drop at the centre of

the film, ho(t), and at the rim of the dimple, hrim(t). The mica was driven towards the mercury drop at 24 mm s�1 until 0.7 s after the formation of a dimple

and was then stopped for 13 s before it was rapidly retracted from the drop.

Fig. 13 Schematic diagram of the Scheludko cell.
formation that occurred at around 0.15 s, the mica plate was

stopped at 0.7 s and the system continued to evolve under

constant force until the establishment of a flat equilibrium film at

around 10 s as indicated by ho(t) ¼ hrim(t). At 13.7 s, the mica

plate was pulled away rapidly from the mercury drop and they

jumped apart to a large separation at around 14.5 s. Unlike

expectations for rigid systems, the central separation, ho(t),

actually decreased as the mica plate was pulled away from the

mercury drop. This novel behaviour was the response of the

deformable drop to the negative hydrodynamic pressure gener-

ated by the retraction of the mica plate. This is similar to the

suction one experiences while attempting to lift a wet glass off the

table.

These complex transient responses are predicted with quanti-

tative accuracy by the Stokes–Reynolds–Young–Laplace model.

They are also consistent with coalescence on separation between

two drops in another liquid under shear flow conditions between

parallel plates.91 It was also observed in a four-roll mill setup,

when the drops were driven slightly off-centre where they would

rotate alongside each other and coalesce in the extensional

quadrant.92–94 Avalanches of coalescence events95 were also

observed experimentally and could be associated with this

separation effect.

Perturbation solutions of the Stokes–Reynolds–Young–Lap-

lace equations do indeed offer a hint of the above experimental

observations83,84 and also corrected a flawed explanation85 of

drop coalescence upon separation in a microfluidic channel.96

However, quantitative agreement with the observed transient

response of the film requires the (numerical) solution of the non-

linear SRYL equations with the correct boundary conditions.
4.5 Scheludko cell experiments

One of the earliest studies of the film drainage mechanism was

based on the Scheludko cell.18 The basic operation of the cell is

illustrated in Fig. 13. A drop of solution is placed in a cylindrical

cell of diameter in the millimetre range. To model the interaction

between two drops or bubbles, both ends of the cell are filled with
2250 | Soft Matter, 2011, 7, 2235–2264
a second liquid or gas phase. The central solution is then with-

drawn from the cell at some volumetric rate Q and the resulting

thinning of the film of solution between the two ‘‘drops/bubbles’’

is observed by optical interference. A very large body of literature

comprising original papers and review articles of experimental

work and theoretical models has accumulated over the past half-

decade around this technique.18,21–23,28,48,49

In principle, it is possible to obtain the time evolution of the

entire film profile, h(r,t), as in experiments described earlier in

this section. In practice, only the time variation of the ‘‘average’’

film thickness is reported and such results are then only analysed

in terms of the Stefan–Reynolds Flat Film Model (see Section

6.5) or its later variants. It is unfortunate that important and

informative experimental data relating to the drainage process

observed using the Scheludko cell have not been recorded or

reported to allow comparison with theories not based on the

Stefan–Reynolds Flat Film Model.

With one exception97,98 the physical content of various

attempts at modelling drainage in the Scheludko cell are less than

physically perspicuous as increasingly complex assumptions are

made and esoteric mechanisms are added to remedy the inherent

limiting assumptions of the Flat Film Model. Furthermore, these

complex models have not been applied to account quantitatively

for any of the experimental results that have not been obtained

using the Scheludko cell.

Therefore, although the Scheludko cell was a pioneering

experiment technique in the field and had stimulated the
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development of a number of theoretical models, the deployment

of experiment and theory has not yet been sufficiently general to

exploit their full potential.
5. Dynamic forces: experiments and theory

The understanding of nanoscale interactions and stability to

macroscale static and transport properties of emulsions and

particulate systems has long been based upon the consideration

of equilibrium interactions. Only in the past decade have direct

dynamic force measurements on the nanoscale been extended to

particles and drops in relative motion. The combined conse-

quences of hydrodynamic interactions, deformation of soft

materials and molecular transport have given rise to funda-

mental questions that remain unexplored.

In this section, we review recent developments in direct force

measurement involving deformable drops and bubbles in relative

motion using the atomic force microscope (AFM). These

experiments require novel techniques to generate, capture and

accurately place drops and bubbles of �100 mm diameters on

substrates and on force sensing micro-cantilevers.

Time varying changes in geometries associated with defor-

mations during the interaction process require a cognate theo-

retical framework to interpret the measurements. In the previous

section, we saw that such a theoretical framework is able to

account for detailed measurements of dynamic deformations. In

this section, we review recent results of dynamic force measure-

ments that complement such dynamic deformation studies.

Dynamic force measurements using the AFM can be regarded

as studying controlled collisions between two drops. With a drop

positioned on the substrate and accurately aligned to another

drop anchored on one end of the force sensing micro-cantilever,

the axisymmetric collision is driven by changing the cantilever

displacement, X(t), of the other end using a piezo electric motor

(see Fig. 5). From an initial position where the colliding drops are

far apart, X(t) is first decreased in the approach phase for a set

time interval at a nominal speed and then increased in the

retraction phase at the same or different speed. This is termed an

approach–retract cycle. Variations of this collision protocol may

be an approach–stop or approach only drive without retraction.

The time dependent force, F(t), can be deduced from the

cantilever deflection detected using a light lever together with the

spring constant of the cantilever that is determined indepen-

dently. The nature of dynamic forces and the robustness of any

theoretical model can be probed by varying experimental vari-

ables such as the nominal approach and retraction speeds, the

maximum displacement of the cantilever and the initial starting

position.

As all physical parameters of the system can be measured

independently, at least to within experimental tolerance, there

are no free parameters available to match experiments and

theory. Consequently, there is confidence in using such a theo-

retical framework to infer physical attributes or mechanisms that

may not be easy to measure directly.
Fig. 14 The time dependent force between two decane drops (radii

43 mm and 90 mm) in 3 mM SDS and 1 mM NaNO3 aqueous electrolyte,

at nominal approach and retraction velocities 2.0, 9.3 and 28 mm s�1.

Time is scaled by the total collision time, ttotal, over a cantilever

displacement amplitude of 2 mm.
5.1 Stable drops: hydrocarbon drops in water

The theoretical basis for analysing AFM measurements between

two drops is embodied in the Young–Laplace equation (eqn (16))
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for interfacial deformation due to hydrodynamic and disjoining

pressures and in the Stokes–Reynolds model, eqn (30), for fluid

flow in the thin film between the two drops. In eqn (30) the

interfaces are assumed to be tangentially immobile in their

hydrodynamic response. The collision between two drops as

a function of time, t, is specified by the cantilever displacement

function X(t) (see Fig. 5) that enters as a boundary condition, eqn

(33), for the Stokes–Reynolds–Young–Laplace equations. Eqn

(7) gives the time dependent force, F(t).

In Fig. 14, we show a comparison between the time dependent

force measured using the AFM40 and predictions of the Stokes–

Reynolds–Young–Laplace model between two decane drops in

aqueous electrolyte. The drops with radii 43 mm and 90 mm were

driven at different nominal cantilever speeds for an approach–

retract collision. Sodium dodecyl sulfate (SDS) was also present

at a concentration of 3 mM to ensure that the decane/electrolyte

interfacial tension was a known quantity and would not be

affected by possible trace contamination. The surface potential

of the SDS populated oil/water interface was also known which

allowed the disjoining pressure due to electrical double layer

repulsion to be determined.

For each drive speed, the total cantilever displacement was the

same so that the time axis can be scaled by the total time, ttotal, of

a single approach–retract collision. The thermal Brownian

velocities of emulsion drops of comparable sizes (�7 mm s�1) fall

within the range of drive speeds used.

At low drive speeds (2 mm s�1) there is near symmetry between

the approach branch (0 < t < ½ttotal) and the retract branch

(½ttotal < t < ttotal) of the force curve (Fig. 14). With increasing

drive speeds, the velocity dependent force became significantly

more repulsive on approach due to hydrodynamic repulsion as

water had to be displaced from between the approaching drops.

Near the start of the retraction phase, the force rapidly became

attractive with a deeper minimum at higher speeds. The devel-

opment of the attractive minimum was again due to hydrody-

namic suction as upon separation water had to be drawn in to fill

the thickening film between the separating drops. As the

hydrodynamic force between two rigid particles would become

negative as soon as the cantilever motion changes from the
Soft Matter, 2011, 7, 2235–2264 | 2251



approach phase to the retraction phase, the rounded shape of the

hydrodynamic minimum was a signature of the ability of the

drops to deform.

The height of the force maximum depends on the combined

value of the initial separation between the drops and the total

displacement of the cantilever which in turn determines the

extent that the drops have been pushed together and the extent of

drop deformation.
5.2 Drop–particle interactions and viscosity effects

By replacing the drop on the cantilever with a silica micro-

sphere, the same atomic force microscope setup can be used to

measure the force between a particle and a drop. The general

features of the force curves are similar to the two drops case

considered in Section 5.1 if there is no coalescence between the

particle and the drop.

Such particle–drop systems have been used to study the effects

of viscosity of the continuous phase on the dynamic force.50

Results for the driven collision between a silica microsphere

(radius 12 mm) and a tetradecane drop (radius 107 mm) in

aqueous sucrose solutions of varying concentrations with 5 mM

SDS are shown in Fig. 15. The dynamic force is shown as

a function of the cantilever displacement at a speed of 1 mm s�1.

The addition of up to 40% by weight of sucrose can increase the

viscosity of the Newtonian aqueous solution by almost 6-fold.

As expected, increasing the viscosity had a similar effect to

increasing the drive speed of the collision. With no added

sucrose, only a very small hysteresis in the force curve was

evident. As the viscosity of the continuous aqueous phase was

increased an attractive hydrodynamic attraction began to

develop on the retraction branch.

Another informative feature of the results in Fig. 15 is the

illustration of the utility of the force–displacement formula (24)

which in the present context can be re-cast in the following form

since DX(t) is arbitrary up to an additive constant:
Fig. 15 Viscosity effects on the force between a tetradecane drop and

a silica particle as a function of cantilever displacement at 1 mm s�1 in

sucrose solution of varying concentration in wt% with 5 mM SDS:

experiments (symbols) and theory (solid lines). For visual clarity, the zero

force datum line at different sucrose concentrations have been displaced

vertically. Results according to the high force formula in eqn (35) are

shown as broken lines.
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Predictions of this approximate analytic result are shown as

broken lines in Fig. 15. At modestly high forces when the

approach and retraction portion of the force curves overlap, this

analytic formula gives excellent agreement with experiments.

Being a quasi-static result, it is independent of viscosity as

evident in Fig. 15. The result in eqn (35) replaces the constant

compliance condition for rigid particles in contact and also

illustrates that the response of the deformable drop is not Hoo-

kean since the force, F(t), is clearly not proportional to the

displacement, DX(t).

The theoretical model that is used to model experimental

results in Fig. 14 and 15 assumed the decane or tetradecane

interface is tangentially immobile. This is entirely expected in the

presence of added SDS surfactant that would arrest interfacial

flow. With the tangentially immobile boundary condition, there

is no need to consider viscosity ratios of the drop to the

continuous phase as this boundary condition decouples flow

outside the drop to any possible flow inside the drop.

In Fig. 16 we show a comparison of the time dependent force

between experiment and theory around the initial rise of the

approach branch and around the attractive minimum on the

retraction branch at two different drive speeds.47 The entire force

curve at a drive speed of 23 mm s�1 is shown as an inset.

The quantitative difference in the force curves between the

results in Fig. 14 for two oil drops (radii 43 mm and 90 mm) and

Fig. 16 for between an oil drop (radius 55 mm) and a microsphere

(radius 12 mm) is in the magnitudes of the attractive minima at

comparable drive speeds. Even though the oil drop in the

particle–drop experiment can deform, the small fixed size of the

microsphere reduced the effective area of interaction, because for

two interacting drops, both drops can deform to increase the

effective area of interaction.

As an illustration of drop deformation around the micro-

sphere, we show in Fig. 17, the shape of the deformed drop as

well as the thickness of aqueous electrolyte trapped between the

particle and the drop. This film was stabilised by electrical double
Fig. 16 Close up view of the force minimum between a silica micro-

sphere (radius 12 mm) and a tetradecane drop (radius 55 mm) at two

different nominal drive speeds: experiments (symbols) and theory (solid

lines). The time axis is scaled by the total collision time. Inset: force versus

time curve at a nominal drive speed of 23 mm s�1. See Fig. 17 for an

explanation of the points labelled A to G.
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Fig. 17 Theoretical results for a tetradecane drop (radius 55 mm)

interacting with a silica microsphere (radius 12 mm) at a drive speed of

23 mm s�1. The panels show the calculated drop shape (a) on approach

and (b) on retraction and the calculated aqueous film thickness, h(r,t),

during the (c) approach and (d) retraction phase. The large arrows

indicate the directions of motion of the interface. The labels A to G

correspond to time points marked in the inset of Fig. 16.

Fig. 18 The time dependent force between two bubbles (radius

50–70 mm) during collision events at a nominal drive speed of �50 mm s�1

in 0.5 M NaNO3 aqueous electrolyte: experiments (symbols) and theory

(solid lines). The results of three collision protocols are shown:

(a) Approach only and Approach–Stop, and (b) Approach–Retract for

the same bubble pair at different initial separations, ho. The coalescence

time is indicated by the downward pointing arrows.
layer repulsion between the microsphere and the oil drop that

were both negatively charged. This repulsion determines the

thickness of the water film as the oil drop wrapped around the

microsphere near the force maximum (curve D in Fig. 17a and b).
5.3 Coalescence: bubble–bubble

The outcome of bubble–bubble collisions determines the efficacy

of bubbles as contrast agents in medical ultrasonic imaging to the

delivery of flavour and sensation in soft drinks and champagne.

The coalescence of two bubbles or gas voids in water is perhaps

the simplest interacting system that one can study. Surprisingly,

the idea of driving two bubbles together or separating them in

a well controlled and characterised manner while measuring

directly the dynamic force between them has only been attempted

with quantitative success recently.51 Such experiments can also

reveal the varied and sometimes unexpected conditions under

which coalescence can take place.

Three different collision modes were used to study bubble

collision and coalescence using the atomic force microscope.

Ultrasonic generated bubbles of radii in the 50–100 mm range in

aqueous electrolyte (0.5 M NaNO3) were used. One bubble was

mounted on the substrate and the other anchored at one end of

a rectangular force-sensing cantilever.51 The other end of the

cantilever was driven towards the substrate at a nominal speed of

�50 mm s�1. In this case of continual approach, the repulsive force

between the bubbles increased monotonically with time. For two

bubbles with radii 62 mm and 86 mm and initial separation of 5.5

mm, such an ‘‘Approach only’’ force curve is shown in Fig. 18a. We

see that the bubbles coalesced when the force reached about 150

nN. In a second similar experiment, the cantilever was driven

towards the substrate at the same nominal speed but was then

stopped while the force between the bubbles continued to evolve.

The force corresponding to such an ‘‘Approach–Stop’’ collision

between bubbles with radii 67 mm and 85 mm and initial separation
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of 1.65 mm, is shown as the ‘‘Approach–Stop’’ curve in Fig. 18a.

Note that after the cantilever stopped, the bubbles continued to

evolve under an almost constant force condition (�27 nN) before

coalescence eventually occurred.

The third mode of collision involved driving the cantilever

towards the substrate at the same nominal speed for a fixed time and

the cantilever is then retracted at the same nominal speed. The

outcome of such an ‘‘Approach–Retract’’ collision depended rather

sensitively on the initial separation. For a pair of bubbles with the

same radius (74 mm) at an initial separation of 2.45 mm, the dynamic

force (Fig. 18b) attained a maximum of about 8 nN and then

decreased during the retraction phase and reached an attractive

minimum of about 6 nN in magnitude before separating eventually.

Thus this collision is stable as the bubbles did not coalesce and the

force curves are similar to those seen between two oil drops

(Sections 5.1) and between a particle and an oil drop (Section 5.2).

However, repeating the experiment with the same bubble pair, but

starting at smaller initial separation of 2.05 mm, the force reached

a larger repulsive maximum of about 18 nN (Fig. 18b) and then

decreased during the retraction phase. But instead of reaching some

attractive minimum as in the previous Approach–Retract collision,

the bubbles coalesced—while they are being separated.

In Fig. 18, the experimental data are shown in points and the

predictions of the Stokes–Reynolds–Young–Laplace model,

shown as lines, only included the attractive Van der Waals

contribution to the disjoining pressure. Electrical double layer

interactions are negligible in a 0.5 M NaNO3 solution. Although

no surfactants were added and Millipore water of specific resis-

tance in excess of 18.3 MU cm were used, once again, the

experimental force data were consistent with predictions using

the tangentially immobile boundary condition for these two

bubble interactions.

In Fig. 19, we show observed experimental coalescence times

obtained from 30 different trials on the AFM from the three

collision modes of Approach only, Approach–Stop and

Approach–Retract.51 These are compared against predicted

values from the Stokes–Reynolds–Young–Laplace model. The

quantitative agreement is quite satisfactory and suggests that the

postulated mechanism of coalescence being initiated by ther-

mally excited surface fluctuations21 does not play a role in these

experiments.

Since the Stokes–Reynolds–Young–Laplace model gave good

quantitative predictions for the dynamic force and coalescence
Soft Matter, 2011, 7, 2235–2264 | 2253



Fig. 19 A comparison of experimental and predicted coalescence times

for the three different collision protocols. The time t ¼ 0 is defined as the

instant when the bubbles are 1.5 mm apart.
times, we can, with some confidence, use the model to predict the

dynamics of surface deformations of the bubbles during inter-

action. An example of this is given in the animation video in the

ESI† where the evolution of the film velocity, vh(r,t)/vt, is shown

for the case of the stable Approach–Retract collision given in

Fig. 18b. The two salient features to note are that (a) when the

force, F, between the drops is zero during the retraction phase

(see inset in Fig. 20a), the quantity vh(r,t)/vt is negative (shown in

red in Fig. 20a), that is the film is thinning in the central portion

of the film for small r, but at the same time, vh(r,t)/vt is positive,

that is the film is thickening, in the outer part of the film at large r

(shown in blue in Fig. 20a and b) after the attractive minimum of

the force curve (see inset in Fig. 20a), the thickness of the central

portion of the film at small r increases faster than or ‘‘over-

shoots’’ the retraction speed before the bubbles finally separate

(see Fig. 20b). Note that such behaviour occurs within the low

Reynolds number, Stokes flow regime and comes about because

the model took into account the effects of bubble deformation

and pressure variations in the deformed thin film in a consistent

way.
6. Other theoretical considerations

In our review of experiments thus far, all examples of film

drainage and dynamic interactions involving drops and bubbles

appear to be consistent with the tangentially immobile hydro-

dynamic boundary condition at the deformable interfaces.

However, there is a large body of theoretical models of
Fig. 20 Velocity of the bubble surface, vh(r,t)/vt, with the force, F(t), in

the inset, as the bubbles are driven together and then separated at

a nominal speed of 50 mm s�1 at: (a) the instant when the dynamic force,

F ¼ 0, during the retraction phase and (b) just after the force minimum.

An animated movie file is available as ESI.†
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interacting drops and bubbles that consider other boundary

conditions. These will be summarised in this section with

comments as to their role in modelling experimental measure-

ments.
6.1 Remarks on hydrodynamic boundary conditions

6.1.1 Solid–liquid interfaces. In formulating the Stokes–

Reynolds equations that govern the axisymmetric film drainage

in Section 3.2.1 we have imposed the tangentially immobile

hydrodynamic boundary condition at the liquid–liquid and

bubble–liquid interfaces. This condition is equivalent to speci-

fying the fluid velocity at the interface. For radial lubrication

flow in the film drainage problem, the dominant tangential fluid

velocity is set to zero at the interface. This boundary condition is

equivalent to that applied normally at a solid surface—

commonly referred to as the ‘‘no slip’ condition, although we do

allow the fluid–fluid interface to undergo deformation according

to the Young–Laplace equation under the combined influence of

hydrodynamic and disjoining pressure.

The choice of the hydrodynamic boundary condition is

determined by flow conditions and transport processes that

prevail at the interface. Historically, this issue was a subject of

intense debate at the time when the Navier–Stokes continuum

description of fluid mechanics was first formulated.99,100 Nav-

ier101 proposed that the tangential component of fluid velocity at

a solid boundary may be proportional to the tangential shear

stress, with the constant of proportionality being the slip length,

b (Fig. 21a). But following an investigation commissioned by the

Royal Academy of Science, the ‘‘no slip’’ boundary condition at

a solid–liquid interface was adopted after considering experi-

mental results from different quarters.99

Towards the end of the last century, there was a resurgence of

interest in the phenomenological Navier model as a way to allow

the boundary condition at a smooth solid surface to deviate from

the familiar no-slip condition. The origin of this can be traced to

an assertion102 that the boundary condition for the flow of water
Fig. 21 Schematics velocity profile, u, for various boundary conditions:

(a) Navier slip at solid surfaces with slip lengths bo and bh, (b) mobile

interfaces between different fluids with surface velocity U, (c) tangentially

immobile interfaces and (d) plug flow between interfaces.
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at smooth hydrophobic surfaces obeys the Navier slip condition.

Although the magnitude of the slip length was not predicted or

specified in this model, an unrealistically large slip length of

1 mm103 was needed to match what was attributed to ‘‘hydro-

phobic attraction’’ observed using the Surface Forces Apparatus.

In reality, surfaces that are deemed hydrophobic can be rather

complex. In some hydrophobic surfaces, bubbles nucleate and

populate such surfaces104 while other examples of hydrophobic

surfaces may have complex surface geometries that impart the

characteristic hydrophobic properties.105 Therefore it is not

informative to subsume such interfacial complexities using

a model with a mathematically smooth surface that has a slip

length as a fitting parameter.

Interest in flow in microfluidic geometries also prompted renewed

questions about the validity of the ‘‘no-slip’’ boundary conditions for

flow in confined geometries down to the nanometre regime. There are

a number of reports of observed deviations from Stokes flow with the

‘‘no-slip’’ boundary for Newtonian fluids at ‘‘smooth solid’’

surfaces.106–108 However, as such experiments were based on dynamic

force measurements between a microsphere probe and a flat solid

surface on the atomic force microscope, the conclusions depend

critically on the accurate location of the solid–liquid boundaries. A

recent careful re-evaluation of such measurements suggests that the

slip length, b, for water in such systems is close to zero: b z 1 nm�
1 nm, within experimental tolerance and indistinguishable from the

‘‘no-slip’’ boundary condition.109,110 Moreover, as the magnitude of

the slip length is dependent on the type of the force sensing cantilever

used in the measurements111 it is not possible to rule out entirely the

effects of technical artefacts in the phenomenon of slipobservedusing

the atomic force microscope.

6.1.2 Fluid–fluid interfaces. The physical processes that give

rise to different hydrodynamic boundary conditions at the

interface between two Newtonian fluids are well known.82 If the

interface is ideal in the sense that there are no mechanisms

present at the interface to sustain tangential stress, the boundary

condition at such interfaces will be the continuity of the

tangential components of the fluid velocities and the tangential

shear stress across the interface. This follows from kinematic and

force balance considerations.82 In Section 6.3 we give the film

drainage equations for this case that will replace eqn (30) for the

tangentially immobile boundary condition and discuss the

characteristics of this model. However, in the presence of mobile

surface-active molecules or processes associated with chemical

reactions, material transport or temperature gradients, a surface

tension gradient can occur that can balance the tangential shear

stress.82 In the context of dynamic surface force measurements

involving bubbles and a solid surface at low concentrations of

aqueous electrolyte, such a model has been developed to model

the case in which low concentrations of insoluble surfactants are

present at the surface of the bubbles.45,46

As the shear stress is involved in the boundary condition

between two Newtonian fluids, an additional parameter, the

viscosity ratio of the dispersed phase to the continuous phase,

enters in the formulation of the problem (Fig. 21b). In contrast,

for the tangentially immobile boundary condition (Fig. 21c), the

viscosity of the dispersed phase does not enter as the velocity of

the continuous phase at the boundaries is specified.
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The special case of two clean ideal bubbles assumed to have

zero internal viscosity that cannot sustain tangential stress at

the interface requires a different approach. The vanishing of

the tangential stress at such bubble surfaces means that the

solution of the lubrication equation (eqn (27)) is a constant.

That is, one has plug flow in the lubrication approximation

(Fig. 21d). Chesters and Hofman75 formulated a model for the

case of two interacting deformable bubbles in which the non-

linear inertia term of the Navier–Stokes equations are retained

but the equations are still solved within the lubrication

approximation. This model will be considered in Section 6.4

as its behaviour has very different characteristic time scales

compared to other models.

6.2 Surfaces with Navier slip

For completeness, we give the film drainage equation between

two solid surfaces that obey the Navier slip boundary condition.

At a flat surface with an outward normal in the �z-direction this

boundary condition is: u ¼ � b (du/dz) where u is the tangential

fluid velocity and b is the slip length (Fig. 21a). In almost all

applications, the value of b is not known a priori, but is used as

a free parameter to fit experimental data.

Thus for the solution of eqn (27) with the possibility of

different slip lengths bo at z ¼ 0 and bh at z ¼ h, the drainage

equation which replaces the Stokes–Reynolds equation (eqn

(30)) has the form
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12mr
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vr

�
(36)

The schematic velocity profile that corresponds to this drainage

equation is illustrated in Fig. 21a.

There are two interesting limiting cases of this result. The

condition at a classical ‘‘no-slip’’ can be obtained by setting

the slip lengths to zero. If only one surface, say the surface at

z ¼ h, is that of an ideal bubble—with zero viscosity and

cannot sustain tangential stress, we can take the bh / N.

However, as discussed in Section 6.1, we cannot obtain the

result for film drainage between the surfaces of two ideal

bubbles from eqn (36).

6.3 Two drops with mobile interfaces

When modelling lubrication drainage of the film between two

identical drops with internal viscosity md, with interfaces that

cannot sustain tangential stress, the solution of eqn (27) will

involve the velocity U(r,t) of the interface. The continuity of the

tangential stress then gives the following set of coupled integro-

differential equations to replace eqn (30):11,13,112
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The characteristic behaviour of this model depends on the

dimensionless ratio: m h (m/md)(R/h)1/2 where R is the charac-

teristic radius of the drops.13,112 For m� 1, the interfaces become

essentially immobile, while for m [ 1, the drainage rates are

much faster and the forces are much smaller than the case for

immobile interfaces.113

As might be expected, the task of obtaining numerical solu-

tions of eqn (37), (38), (39) and (16) for two such interacting and

deformable drops is more difficult than that for immobile

interfaces. While there are other formulations for the drainage

between drops with mobile interfaces that appear simpler, their

treatment of the internal flow is not correct.114,115 Moreover,

there are at present no detailed experimental data where the

model of eqn 37, (38) and (39) provides a good quantitative

description.

6.4 Chesters–Hofman: two bubbles with mobile interfaces

The interaction between two bubbles in a liquid is a very

important and fundamental problem. If the bubbles have fully

mobile surfaces that cannot sustain shear stress, the solution to

eqn (27) that is valid for low Reynolds numbers would be

a constant plug flow velocity that provides no information on the

pressure distribution.

Chesters and Hofman75 considered the interaction between

two deformable bubbles with mobile surfaces at high Reynolds

numbers. They retained the Reynolds lubrication treatment but

regarded the liquid as an inviscid fluid so that only inertial effects

are included. In their model, eqn (27) was replaced by the non-

linear Navier–Stokes equation for the plug flow velocity U(r,t) in

the radial direction in the film:

vU

vt
þU

vU

vr
¼ � 1

r

vp

vr
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and the continuity equation can be written as

vh

vt
¼ � 1

r

v

vr
ðrhUÞ (41)

These equations were solved numerically with the Young–Lap-

lace equation (eqn (16)) to characterise deformations but without

the inclusion of a disjoining pressure (P ¼ 0). The initial film

profile was taken to be h(r,0) ¼ ho + r2/Ro that corresponds to

spherical bubbles of radius Ro at an initial distance of closest

approach ho. The initial velocity is U(r,0) ¼ Vr/[2h(r,0)] where V

is the assumed constant approach velocity of the two bubbles.

Based on the calculations of Chesters and Hofman,75 we can

estimate how long it would take for two bubbles of radius 1.0 mm

approaching each other at 10 cm s�1 to coalesce. These velocity

and size range are typical for bubbles in many industrial appli-

cations. Assuming the bubble-in-water surface tension to be

72 mN m�1, a dimple would appear at a separation of 1.4 mm with

a film radius of 0.19 mm. The coalescence time would only be

about 1.4 ms, counting from the moment the drops would have

touched if they did not deform. This is an extremely short time

that is at variance with experimental observations. Although the

Chesters–Hofman model is often cited in the context of bubble
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coalescence, experimental verification of this model does not

seem to exist. If the model is correct, it might be extremely

difficult to observe such small coalescence times.

It should be noted that the Chesters–Hofman model predicts

film rupture at the rim, without the need of any Van der Waals

attraction or other surface forces. In the model from Sections 3

and 6.3, film rupture would not occur in the absence of attractive

surface forces.116 Instead the film would drain at a decreasing rate

without reaching zero thickness. Another peculiarity of this

model is that in the case of non-deforming bubbles, eqn (40) and

(41) will predict an infinite force between the bubbles. This is due

to the slow decay of the pressure field in the radial direction that

is inherent in the two-dimensional lubrication formulation of the

model.81 The numerical results of the Chesters–Hofman calcu-

lation pertained to deformable bubbles but it is not clear that the

divergence problem associated with the slow decay of the pres-

sure field is avoided by surface deformability.

In practice, rising bubbles in water are only observed to exhibit

properties consistent with a zero shear stress condition, when

extreme care has been taken to de-ionise and clean the

water.60,88,117–119 At low Reynolds numbers, which restrict

bubbles with radii with values below 60 mm, the terminal rise

velocities of such bubbles in ultra clean water follow the Hada-

mard–Rybczynski formula that corresponds to a zero shear

stress bubble surface.88 Yet when the same bubbles rise towards

a solid titania plate, their rate of approach suggested that the

boundary condition at the bubble surface is again a tangentially

immobile condition.62,63 The precise physical reason for this

behaviour has yet to be established although trace impurities that

originate from the titania plate or accumulate during bubble rise

may be implicated.

For the drainage experiments summarised in Sections 4 and 5,

there were sufficient trace surface-active impurities in the system

to render the bubbles to exhibit tangentially immobile surfaces

even though extreme care was taken to avoid such impurities. In

actual industrial applications such impurities are in most cases

present in abundance.
6.5 Stefan–Reynolds parallel film model

In Sections 6.1–6.4, we have summarised various models that

describe interactions involving deformable drops and bubbles

and the related film drainage problem. The common feature of all

such models is that film drainage with different assumptions

about hydrodynamic flow and boundary conditions is coupled

with a consistent treatment of interfacial deformations using the

Young–Laplace model. However, the resulting system of coupled

partial differential equations, even for simple axisymmetric flow,

can only be solved numerically. Although perturbation solutions

in the limit of weak interactions do give some physical insight

into the drainage and coalescence phenomena,83,84,112 it is only

recently that full numerical solutions together with appropriately

formulated boundary conditions have been developed to enable

quantitative comparison with results obtained from different

experimental methods (see Section 3).

The apparent complexity of the Stokes–Reynolds–Young–

Laplace model has prompted the development of a number of

approximate theories aimed at describing film drainage
This journal is ª The Royal Society of Chemistry 2011



dynamics. However, when tested against experimental data,

almost all such theories failed to give quantitative agreement.30

The most enduring of such approximate solutions of the

Stokes–Reynolds–Young–Laplace equations is based on the

Stefan–Reynolds Flat Film Model.19,20 Conceptually it is perhaps

also the most confusing because in spite of the inherent incon-

sistencies of the original basic Stefan–Reynolds model that we

shall detail below, numerous extensions and modifications have

been proposed to add new features to the model. The physical

contents of these modifications are not always well justified1 and

even with the increased complexity, such extensions are not

capable of producing the results obtained from the full numerical

solution of the original Stokes–Reynolds–Young–Laplace

equations given in Sections 4 and 5.

To illustrate the status of the Stefan–Reynolds Flat Film

Model and its variants, consider the simple case of a drop (or

bubble) approaching a flat solid surface in a continuous phase.

Instead of solving the Young–Laplace equation, the deformation

is assumed to have the shape of a circular flat disk of some radius,

a, oriented parallel to the solid substrate (see Fig. 22). The

dimension of the disk radius, a, is not known a priori.

As the drop approaches the flat surface under the action of an

external force, Fext which in general can be time dependent, the

axisymmetric flow of displaced fluid with radial velocity, u(r,z,t),

in the film of uniform thickness, h(t), is assumed to be described

by low Reynolds number Stokes flow. At the solid surface

located at z ¼ 0, the familiar boundary condition u(r,0,t) ¼ 0 is

imposed. If the flat surface of the drop at z ¼ h is tangentially

immobile, one then applies the condition u(r,h,t) ¼ 0. If on the

other hand, the flat surface of the drop is fully mobile such that

the shear stress vanishes, the condition vu(r,z,t)/vz¼ 0 is imposed

at z ¼ h.

Solving the Stokes flow equations (eqn (27) and (28)) with the

above boundary conditions gives the pressure profile due to

viscous flow in the film:

pðr; tÞ ¼ po �
3m

bh3

�
dh

dt

��
a2 � r2

�
; 0\r\a (42)

where po is the (constant) pressure in the continuous phase in r >

a, m is its viscosity with b ¼ 1 if the flat surface of the drop is

tangentially immobile and b ¼ 4 if the flat surface of the drop is

fully mobile and has zero shear stress.

The result for the quadratic pressure profile in eqn (42) which

has a maximum value at r ¼ 0 for an approaching drop with dh/

dt < 0 and decreasing to po at r ¼ a, presents an immediate

inconsistency. In this model, the deformed interface of the drop is
Fig. 22 Schematic of the Stefan–Reynolds Flat Film Model for a drop

or bubble with interfacial tension, s, approaching a flat solid surface.
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assumed to be a flat disk (with zero curvature) at the outset, so

according to the Young–Laplace equation, the pressure on either

side of such a flat interface must be equal. However, the pressure

inside the drop is uniform which is inconsistent with a quadratic

pressure distribution given by eqn (42) within the film.

If there is a disjoining pressure, P(h), due to surface forces

acting across the film of area pa2, the film thinning dynamics is

found by a quasi-static force balance in the z direction:

�Fextẑ + Fhydroẑ + (pa2)P(h)ẑ ¼ 0 (43)

where the hydrodynamic force is determined from eqn (42) to be

Fhydro ¼ 2p

ða
0

ðp� poÞrdr ¼ �3pma4

2bh3

�
dh

dt

�
(44)

and the external force Fext is taken to be positive if it acts to push

the drop onto the flat surface.

If the disjoining pressure P(h) has the non-retarded Van der

Waals form: P(h) ¼ �A/(6ph3), where A is the Hamaker

constant, then eqn (43) and (44) give

Fext þ
3pma4

2bh3

�
dh

dt

�
þ
�
pa2

� A

6ph3
¼ 0 (45)

Provided the external force Fext and the film radius a are

independent of time, eqn (45) can then be integrated120 to give for

t $ 0:

t ¼ s
6a2

	
log

��
1þ a

H þ a

�3�
H3 þ a3

1þ a3

��

þ
ffiffiffiffiffi
12
p �

arctan

�
2� affiffiffi

3
p

a

�
� arctan

�
2H � affiffiffi

3
p

a

��
 (46)

where H(t) h h(t)/ho is the film thickness scaled by the initial

thickness, ho h h(0) with

a h

 
a2A

6h3
oFext

!1=3

and sh

 
3pma4

2bh2
oFext

!
: (47)

If the Van der Waals interaction is attractive, that is A > 0 and

a > 0, then the coalescence time can be found by setting H ¼ 0 in

eqn (46). If the Van der Waals interaction is repulsive, that is A <

0 and a < 0, the film will thin down or thicken (depending on the

initial thickness) to the final equilibrium thickness:

heq h hðNÞ ¼ �
�

a2A

6Fext

�1=3

(48)

For the special case with A ¼ 0 (no disjoining pressure), eqn

(45) gives the well-known film thinning result:18

hðtÞ ¼ ho

�
1þ 2t

s

��1=2

(49)

Although the Stefan–Reynolds model appears attractive in

being able to furnish analytical results as those illustrated above,

in reality its utility is rather limited. From the above derivations,

we see that analytic results are only available in the special case

where the external force Fext is a known constant, which is

suitable for interaction under buoyancy forces, for example.

However, the film radius is not known a priori which limits the
Soft Matter, 2011, 7, 2235–2264 | 2257



Fig. 23 Comparison of the variation of film volume ratio in the absence

and presence of a repulsive disjoining pressure P according to the

Stokes–Reynolds–Young–Laplace model and the Stefan–Reynolds Flat

Film Model.52
predictive capabilities of the model. There are further develop-

ments of the Stefan–Reynolds model in which the film radius a is

some assumed function of time7 but then the analysis of such

models generally cannot progress beyond eqn (45) as the inte-

gration cannot be carried out analytically. Nonetheless, such

theories continue to employ results that were derived under the

assumption that the film radius a is a constant, which is not

a logically consistent approach.

There are also other extensions of the basic Stefan–Reynolds

model that attempt to correct the flat film geometry by adding

corrections written in terms of an infinite series of Bessel func-

tions involving unknown coefficients.89 But despite such mathe-

matical sophistication, these extensions are unable to produce

the quantitative agreements with experiments that we have seen

in Sections 4 and 5. In fact, all available comparisons7,23,25,28

between various extensions of the Stefan–Reynolds model are all

based on an ‘‘average’’ film thickness that is not well defined in

terms of experimentally accessible quantities.

Furthermore with the addition of a repulsive disjoining pres-

sure, the Stefan–Reynolds model predicts the film will drain

slower whereas the Stokes–Reynolds–Young–Laplace model

predicts a faster drainage rate (Fig. 23) because the additional

repulsion increases the thickness of the film at the barrier rim and

facilitates faster drainage—which is exactly what is observed in

experiments.2,52

In summary, the rather restrictive assumptions inherent in the

Stefan–Reynolds Flat Film Model and its later variants render its

status to a historical curiosity rather than a viable quantitative

and predictive theory for the future.
Fig. 24 Fringe patterns of film drainage instability of a glycerol–water

mixture between silicone oil drops (radii 1.5 mm). The time interval

between successive images (a)–(f) is 16 s. The film thickness at the centre is

about 1.5 mm and around 1 mm at the edge. The film has a radius of

around 500 mm, the rim is located at the dark broad fringe in the first

frame. See text for other details. A movie file is available as ESI†.
7. Challenges for the future

This review has concentrated on film drainage and coalescence in

systems that are relatively pure in composition and symmetrical

in the interaction geometry. We examined results in water and in

simple alkanes with the possible addition of simple inorganic

salts and charged surfactants. The interaction geometries are

chosen to have axial symmetry to facilitate comparison with

tractable theoretical models. Having examined many experi-

mental results on dynamic deformations and forces obtained

using different techniques, we have obtained a good under-

standing of the fundamental physical principles that operate and
2258 | Soft Matter, 2011, 7, 2235–2264
have a theoretical framework with accurate predictive capabil-

ities. However, there remain important practical areas where

there are rich opportunities for accurate quantitative experi-

ments and theoretical modelling.

One example is the spontaneous loss of axial symmetry in film

drainage. In Fig. 24 we show a time sequence of fringes from the

drainage of a film of glycerol (70%)–water (30%) mixture

(viscosity 23 mPa s) trapped between two approaching silicone

oil (47V50) drops (viscosity 50 mPa s, interfacial tension 30 mN

m�1).121 The drops were driven together at 13.3 mm s�1 and were

then stopped. A dimple in the film had already formed 33 s before

the first image, which was taken 80 s after the drops were

stopped. A movie file of this symmetry breaking drainage process

is available as ESI†.

Examples of an initially axisymmetric film developing asym-

metric patterns have been seen elsewhere.122,130 Burrill and

Woods3 refer to this as even and uneven drainage and noted such

occurrences are dependent on the concentration of adsorbed

surfactant. It is possible that in this instance, spatial variations in

the interfacial tension associated with fluctuations in local

concentrations in the glycerol–water mixture may play a role.

But a general understanding of the mechanism that triggers

asymmetric drainage would be useful.

Chesters observation:123 ‘the entire area of variable interfacial

tension is virtually unexplored’ appears to be true today. It is well

known that variations in the interfacial tension along the surface

can give rise to an interesting phenomenon known generically as

the Marangoni effect. Such an effect can also be caused by

temperature or solute concentration differences or by mass

transfer between phases that create surface tension gradients.

Furthermore, mass transfer of a solute could either enhance or

delay film drainage by driving interfacial flow and fluid circula-

tion.124,130

In Fig. 25 and in a movie in the ESI†, we see an example of

Marangoni flow arising from mass transfer of acetone from the

dispersed phase (glycerol drops plus 5% acetone) towards the

continuous phase (silicone oil 47V50).125 Effects such as circu-

latory flow into and out of the film of the continuous phase

between the drops are evident. In addition flow vortices are also

evident in the interior of the drops. Quantitative experimental
This journal is ª The Royal Society of Chemistry 2011



Fig. 25 Marangoni flow due to mass transfer of acetone from two

stationary drops of glycerol drops plus 5% acetone into the continuous

phase (silicone oil 47V50). The image is a superposition of successive

images taken at 1 s apart to visualise the motion of tracer particles. A

movie file is available as ESI†.
characterisation of such phenomena is still in its infancy and

a fundamental understanding of the general physics that drive

such flows is lacking.

So far we have only focussed on experiments where fluid

motion is slow enough to be in the low Reynolds number Stokes

flow regime. However, many interesting phenomena involving

deformable drops and bubbles lie well outside this domain. For

instance, the terminal velocity of rising bubbles in the mm size

ranges corresponds to Reynolds number of order 500 and inertial

effects are therefore important. Many important industrial

processes, such as mineral flotation operate with bubbles in this

range. When such bubbles collide with solid bodies they can

rebound. Detailed experimental studies of such encounters are

beginning to emerge59,60 and theoretical models are still being

developed.126 There are certainly opportunities for more funda-

mental work in this area.

Another aspect about the coalescence process that we have not

explored is the detailed dynamics of how two distinct drops

combine to become one. Compared to the time taken for drop

approach and film drainage, the formation of a liquid bridge

between the drops and its subsequent expansion as the two drops

combine occurs over a very short time interval. Experimental

investigations require high-speed video observations to record

events occurring in a small volume between the drops. This can

be partially overcome by using exotic dispersions that comprise

mixtures of polymers and colloids131,132 with ultra low interfacial

tensions (�0.1 mN m�1). From a theoretical modelling viewpoint,

parametric studies of such experiments invariably assume

tangentially mobile interfaces.133,134 In the light of many experi-

ments we have reviewed here, consideration should be given to

examine the effect of the tangentially immobile boundary

condition.

The challenge remains to develop experimental methods

underpinned by quantitative theory to improve our under-

standing in fundamental problems in the interaction involving

soft deformable systems.
8. Conclusions

This review has surveyed a broad range of experimental studies

on the interaction and coalescence of deformable drops and

bubbles in which detailed quantitative spatial and temporal
This journal is ª The Royal Society of Chemistry 2011
evolution of interfacial deformations or the dynamic forces have

been reported. Such results are compared to a quantitative

theory that has no adjustable parameters. For systems involving

simple liquids with uniform interfacial properties, the combina-

tion of hydrodynamic (Stokes) flow and interfacial deformation

as described by the Young–Laplace equation—when treated in

a self-consistent manner—provides all the physical ingredients

that underpin and explain the observed behaviour. Equally,

failure to treat the dynamic and the deformation behaviour in

a balanced manner simply leads to unnecessary complexities and

inconsistencies.

Generalising these observations to other soft or deformable

materials, it is clear that quantitative knowledge of the ‘‘equation

of state’’, the analogue of the Young–Laplace equation, that

relates deformations and applied forces or stresses on the soft

material is key to a quantitative understanding of the dynamics

of soft materials. This should be taken into consideration when

developing new experimental tools and protocols when the

objective is to make quantitative studies of dynamic interactions

involving soft matter.
Appendix A: outer drop shape

In this Appendix, we derive the outer solution of the Young–

Laplace equation for the shape of a sessile drop with constant

interfacial tension, s, that has an external force, F(t), acting on its

apex within a small interaction zone of dimension: r z a, with

a small compared to the drop size. Where a dimple exists, the

dimple radius rrim would be of order a. The outer solution is valid

for r > a. The inner asymptotic form of this outer solution in the

limit r / a will be matched to the inner solution of the film

profile found in Section 3.1.3. The idea is that we only need to

solve (numerically) the Stokes–Reynolds–Young–Laplace equa-

tions for the evolution of the film thickness between interacting

drops within the interaction zone. The outer solution will furnish

the appropriate boundary condition at the outer edge of the film.

This approach allows us to obtain accurate numerical solutions

of the shape of the drop in the interaction zone without inte-

grating over the entire drop.

When the dimension of the interaction zone is small compared

to the drop size, a condition that is well satisfied in the experi-

ments we discussed, we can obtain an analytic form of the outer

solution. Here we use the approach of Chesters127 that provided

a simple and physically perspicuous derivation. Earlier attempts

at the same problem68,79 were based on a Cartesian coordinate

system that was more complex and led to various algebraic errors

that were subsequently remedied by Bardos.128

The key results of this Appendix are in eqn (A14) and (A16).

We also give an analysis of the effects of bubble compress-

ibility on deformations to show that for bubbles in water,

compressibility will be important for small bubbles with radii

below about 1 mm.

We start with the first integral of the Young–Laplace equation

expressed in terms of the tangent angle 4 (Fig. 2) given in eqn (8).

We recall that this result is valid outside the interaction zone. To

simplify the notation, we define G(t) h F(t)/(2ps), a quantity

with the dimension of length that is expressed in terms of the

force acting on the drop, F(t), see eqn (7) and denote the Laplace

radius, RL by R h RL. Thus eqn (8) becomes
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r sin 4 ¼ r2

R
� GðtÞ; for r [a (A1)

This can be solved for r to give

r ¼ 1

2
R

�
sin4þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2

4þ 4G=R

q �
(A2)

As we approach the apex of the drop from outside the interaction

zone by taking the limit r / a and 4 / 0, we see from eqn (A2)

that r / [GR]1/2 h [FR/(2ps)]1/2. Thus the length (GR)1/2 is

a natural measure of the extent of the interaction zone.

Using eqn (A2), we integrate the identity: dz/dr ¼ �tan 4

(Fig. 2) to obtain the height, z(r), of the drop outside the inter-

action zone:

zðrÞ ¼
ð4
q

dz

dr

dr

d4
d4 ¼ � 1

2
R

ð4
q

sin 4

 
1þ sin 4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2
4þ 4G=R

q
!

d4

(A3)

This result can be expressed in terms of elliptic integrals.

However, we are only interested in the result for z(r) at small

forces as characterised by the limit (G/R)¼ F/(2psR)� 1. In this

case, deviations of the contact angle: q¼ qo + dq and the Laplace

radius R ¼ Ro + dR due to interactions from the unperturbed

values, qo and Ro, are small.

For ease of matching with the inner solutions in Section 3.1.3

we only expand the lower limit of integration, q, and the inte-

grand in eqn (A3) to linear order in dq, dR and G to give

zðrÞ ¼ �R

ð4
qo

sin 4d4þ fRosin qogdqþ

8<
:
ð4
qo

1

sin 4
d4

9=
;G

¼ R cos 4j4qo
þ fRosin qogdq�

	
1

2
log

�
1þ cos 4

1� cos 4

�




4

qo



G

(A4)

The form of z(r) near the apex of the drop corresponds to the

limit 4 / 0, where from eqn (A1) we have

sin 4 z 4þ. ¼ r

R
� G

r
(A5)

cos 4 z 1� 1

2
42 þ. ¼ 1� r2

2R2
þ G

R
þO

�
G2
�

(A6)

and inserting these into eqn (A4) for z(r) gives as r / a

zðrÞ/Roð1� cos qoÞ �
r2

2R
þ f1� cos qogdRþ fRo sin qogdq

þ
	

log

�
r

2Ro

�
þ 1þ 1

2
log

�
1þ cos qo

1� cos qo

�

G

(A7)

This is the limiting form of the outer solution that we seek on

approaching the interaction zone (4 / 0) from outside the film,

r / a from above. This result is correct to linear order in dq,

dR and G. The first term: Ro(1 � cos qo), is just the height of

the undeformed drop. The quadratic term in r is scaled by the
2260 | Soft Matter, 2011, 7, 2235–2264
Laplace radius, R, while the remaining constants represent

changes to the drop height due to the external force.

The remaining task is to relate the perturbation, dq and dR, to

the total force, F ¼ 2psG, acting on the drop. We assume the

drop/bubble maintains constant volume as it deforms. The

effects of a compressible bubble will be considered later.

The volume of the drop, Vd, can be found by integrating the

outer solution:

Vd ¼
ðzð0Þ
0

pr2dz ¼
ð0
q

pr2 dz

dr

dr

d4
d4

¼ pR3

8

ðq
0

�
sin 4þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2

4þ 4G=R

q �3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2

4þ 4G=R

q sin 4 d4 (A8)

The constant volume constraint can be expressed as

dVd ¼
�

vVd

vq

�
o

dqþ
�

vVd

vR

�
o

dRþ
�

vVd

vG

�
o

G ¼ 0

¼
�

pR3
osin3

qo

�
dq

þ
n

pR2
oð1� cos qoÞ2ð2þ cos qoÞ

o
dR

þ
�

pR2
oð1� cos qoÞ

�
G ¼ 0

(A9)

which gives one relation between dq, dR and G.

A second relation between dq, dR and G can be found by

specifying how the drop responds to the external force. We

will consider two simple possibilities: (1) the drop can deform

by maintaining the three phase contact position pinned at r1

(see Fig. 2), so that the contact angle changes or (2) by

maintaining a constant contact angle qo while the position of

the three phase contact line is free to move along the

substrate.
A.1 Pinned contact line at r1: dr1 ¼ 0

At the pinned contact line: r1¼ Rosin qo and 4¼ q¼ qo + dq, eqn

(A1) becomes

r2
1 � r1Rsin (qo + dq) � RG ¼ 0 (A10)

By expanding this to linear order in dq, dR ¼ R � Ro and G we

obtain the second relation between dq, dR and G

{sin2 qo}dR + {Ro sin qocos qo}dq + G ¼ 0 (A11)

Now we can obtain the desired relation between dR and G by

eliminating dq between eqn (A9) and (A11)

dR ¼ �1

ð1� cos qoÞ
G (A12)

Similarly, by eliminating dR between eqn (A9) and (A11) we

obtain dq in terms of G

dq ¼ 1

Rosin qo

G (A13)

Finally, using eqn (A12) and (A13) in (A7) we have
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zðrÞ ¼Roð1� cos qoÞ �
r2

2RL

þ FðtÞ
2ps

	
log

�
r

2Ro

�
þ 1þ 1

2
log

�
1þ cos qo

1� cos qo

�
 (A14)

which is the limiting form of the outer solution we are seeking as

one approaches the interaction zone (4 / 0) for a drop

deforming under the pinned contact line condition. We have

restored the notation for the Laplace radius: R h RL to conform

to the notation as in the main text.
A.2 Constant contact angle qo: dq ¼ 0

For deformations at constant contact angle, qo, we can imme-

diately set dq ¼ 0 in eqn (A9) to find the corresponding relation

between dR and G

dR ¼ �1

ð1� cos qoÞð2þ cos qoÞ
G (A15)

And by inserting this into eqn (A7) with dq ¼ 0, we have the

limiting form of the required outer solution as one approaches

the interaction zone (4 / 0) for deformation under the constant

contact angle condition (after restoring the notation for the

Laplace radius R h RL as in the main text)

zðrÞ ¼ Roð1� cos qoÞ �
r2

2RL

þ FðtÞ
2ps

	
log

�
r

2Ro

�
þ 1

þ 1

2
log

�
1þ cos qo

1� cos qo

�
� 1

2þ cos qo
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All the above results are identical to those obtained by Bar-

dos,128 but the derivation given here is more compact and

physically transparent without the need to treat the cases of acute

and obtuse contact angles separately.
A.3 Bubble compressibility

We can estimate the effects of bubble compressibility by

assuming that the internal pressure, Pin, of the bubble containing

N molecules of ideal gas and its volume Vb obeys: PinVb ¼ NkT,

where k is the Boltzmann constant. Using the Young–Laplace

equation: Pin ¼ Pout + 2s/R, where Pout z 1 atm, the bubble

volume can be expressed as:

VbðRÞ ¼
NkT

ðPout þ 2s=RÞ (A17)

Thus the variation of the bubble volume with a change in the

Laplace radius R ¼ Ro + dR is

dVb ¼
�

vVb

vR

�
o

dR ¼
	

VbðRoÞ
Ro

2s=Ro

Pout þ 2s=Ro



dR (A18)

If we assume terms involving cos qo in eqn (A9) are of order

unity, the magnitude of the coefficient of dR in eqn (A9) will be

comparable to that of the coefficient of dR in eqn (A18) when

(2s/Ro) z Pout z 1 atm. In other words, for a bubble in water,

bubble compressibility is important for bubbles with radii below

about 1 mm. For a bubble radius of 70 mm, bubble compress-

ibility contributes about a 1% effect.
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Appendix B: results from scaled equations

Due to the very different characteristic dimensions of the film

thickness, film radius and drop size, appropriate scaling of the

governing equations is essential for developing robust numerical

solutions. General features of the problem can be extracted by

working with dimensionless or even double dimensionless

forms.123 Here we will consider the drainage of the film between

two identical drops when they approach either at constant

velocity (so that the force between the drops will vary) or at

constant force (so the relative velocity will vary).
B.1 Two identical drops driven at constant velocity

This case corresponds to experiments when the drops are

anchored on solid substrates or have emerged and then pinned at

the orifice of capillary tubes with undeformed radius, Ro. The

substrates or the capillary tubes are driven at constant velocity,

V, to cause the drops to approach or separate. A key parameter

of the problem is the capillary number Ca h mV/s that measures

the ratio of viscous forces to surface tension forces. For the

experimental systems considered here, the drive speed is low and

we always have Ca � 1.

The Stokes–Reynolds–Young–Laplace equations can be non-

dimensionalised into a universal form with the following scaling

parameters123 for the

film thickness: h, z z Ca1/2Ro,

radial coordinate: r z Ca1/4Ro,

time: t z Ca1/2Ro/V,

pressure: p z s/Ro and

force: F z (s/Ro)(Ca1/4Ro)2 z Ca1/2sRo.

Denoting scaled variables by asterisks, the Stokes–Reynolds

equation that describes film drainage between two drops with

immobile boundary conditions at the drop surfaces, eqn (30),

becomes

vh*

vt*
¼ 1

12r*

v

vr*

�
r*h*3 vp*

vr*

�
ðimmobile interfacesÞ (A19)

and the Young–Laplace equation (eqn (16)) for two identical

drops becomes

1

2r*

v

vr*

�
r*vh*

vr*

�
¼ 2�

�
Ro

s

�
P� p* ðidentical dropsÞ (A20)

with the initial condition, eqn (31)

h*(r*,0) ¼ h*
o + (r*)2 (A21)

These equations contain no other physical parameters apart

from the scaled disjoining pressure. The boundary condition at

r*
max, obtained by differentiating eqn (22) with respect to time, t,

and setting dD(t)/dt ¼ �V, has a weak logarithmic dependence

on the capillary number Ca:

vh*
�
r*

max; t
*
�

vt*
¼ �1� 1

p

dF *

dt*

	
log

�
1

2
Ca1=4r*

max

�
þ BðqoÞ



(A22)

Numerical solutions44 of these equations in the absence of

a disjoining pressure, P ¼ 0, revealed that under such constant

velocity approach, the initially parabolic film profile will first

exhibit a dimple when the central separation reaches the value
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h(r ¼ 0,t) ¼ cRCa1/2 h hdimple (A23)

with c being a constant that ranges from �0.3 for Ca z 10�10 to

�0.5 for Ca z10�4. Note that in Manica et al.44 and Chan et al.83

the corresponding constant quoted for hdimple was for a drop

against a solid plate, namely, �0.4 for Ca z10�10 and �0.7 for

Ca z 10�4. For two approaching identical drops, the maximum

shear stress is about smax z 0.5Ca1/4s/Ro and occurs at the rim

position, rrim z 3Ca1/4Ro. The time for the thickness at rrim to

drain from hdimple to ½hdimple is about t z 50Ca1/2Ro/V. The film

thickness at the rim thins slowly, but the radius of the rim, rrim,

continues to increase with time.

B.2 Two identical drops driven at constant force

The constant velocity case exhibited a weak dependence of the

results on the capillary number, Ca, in the term proportional to

dF/dt in the boundary condition. The constant force case

corresponds to dF/dt¼ 0. In the absence of a disjoining pressure,

P ¼ 0, this ‘leads to a universal set of equations containing no

parameters at all’123 that has the same form as eqn (A19) and

(A20) using the scaling parameters:

film thickness: h, z z F/s,

radial coordinate: r z (FRo/s)1/2,

time: t z mRo
2/F and

pressure: p z s/Ro

A numerical study of the governing equations shows that the

dimple in the film will first appear at the separation

h(r ¼ 0,t) ¼ 0.08(F/s) h hdimple (A24)

Just after the time of dimple formation, the shear stress takes on

the maximum value of smax z 0.25(Fs/Ro
3)1/2 around the rim

region of the film and subsequently gradually decreases as film

drainage progresses. The rim radius approaches a constant value

of rrim z 0.375 (FRo/s)1/2 for times larger than t z 200 mRo
2/F.

The rim thickness drains from hdimple to ½hdimple in around t z
100 mRo

2/F and to about 0.1hdimple at t z 1000mRo
2/F, with an

asymptotic time dependence112 of t�2/3.

The general results presented here were derived from a scaling

of the equations determined by the characteristic constraints of

the experimental situation e.g. constant velocity or constant

force. A recent attempt to model a similar dynamic drainage

phenomenon71 used a scaling analysis appropriate to an unre-

lated two-dimensional flow problem so quantitative comparisons

of the predictions of this theory with experiments were not

possible.
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